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Abstract. We prove that in the presence of the ∆2 condition the com-
pact embedding of the Orlicz-Sobolev space is equivalent to the existence
of a bounded embedding into a higher Orlicz space. We formulate re-
sults in an abstract setting of spaces of measurable functions with the
property that every bounded sequence has a subsequence convergent
a.e. We also provide an example showing that the theorem is not true
without the ∆2 condition.

1. Introduction

If Ω ⊂ Rn is a bounded domain and the Sobolev space W 1,p(Ω) is emeb-
dded into Lq(Ω), then for any 1 ≤ s < q, the embedding W 1,p(Ω) b Ls(Ω)
is compact, see e.g. [4, Theorem 4]. This result generalizes to the setting
of Orlicz-Sobolev spaces. Let A,Φ,Ψ be Young functions. If the embed-
ding W 1,A(Ω) ⊂ LΨ(Ω) is bounded and Ψ increases essentially faster than
Φ, Ψ �� Φ, then the embedding W 1,A(Ω) b LΦ(Ω) is compact, see [1,
Theroem 8.24]. The last statement contains the previous one since the func-
tion tq grows essentially faster than ts for q > s. The proof given in [4, The-
orem 4] is based on the following consequence of the Rellich-Kondrachov
theorem: every bounded sequence in W 1,p(Ω) (or W 1,A(Ω)) has a subse-
quence that is convergent a.e. and thus it is not surprising that the results
can be generalized to the setting of abstract normed spaces W of measurable
functions with the property that every bounded sequence has a subsequence
convergent a.e., see Theorem 3.1 for a precise statement. This is nothing
really new. What is new is that under the ∆2 condition the converse im-
plication is also true: If a Young function Φ satisfies the ∆2 condition near
infinity and the embedding W b LΦ is compact, then there is a Young func-
tion Ψ that grows essentially faster than Φ such that the embedding W ⊂ LΨ

is bounded. Hence in the presence of the ∆2 condition compact embedding
is equivalent with an embedding into a better space, see Theorem 3.2. This

2000 Mathematics Subject Classification. Primary 46E35; Secondary 46E30.
P.H. was supported by NSF grant DMS-0500966.

1



2 PIOTR HAJ LASZ, ZHUOMIN LIU

result has several natural consequences. In particular it shows that the op-
timal embedding is never compact, of course under the ∆2 condition, see
Corollary 3.3. In the last section we show an example (Theorem 4.1) that
Theorem 3.2 is not true without the ∆2 condition.

2. Notation and basic definitions

In this section we recall basic definitions and facts from the theory of
Orlicz spaces. For more details, see [1], [6].

We say that Φ : [0,∞) → [0,∞) is a Young function if it is convex,
continuous, strictly increasing, Φ(0) = 0 and Φ(t) → ∞ as t → ∞. If Φ
and Ψ are two Young functions, we say that Ψ grows essentially faster near
infinity than Φ if for every k > 0, Ψ(t)/Φ(kt) →∞ as t →∞. We denote it
by Ψ �� Φ. Finally a Young function Φ is said to satisfy the ∆2 condition
near infinity if there are constants K, t0 > 0 such that Φ(2t) ≤ KΦ(t) for
all t > t0.

Observe that if Φ satisfies the ∆2 condition near infinity, then Ψ �� Φ if
and only if Ψ(t)/Φ(t) →∞ as t →∞.

Let Φ be a Young function and (X, µ) be a measure space. For simplicity
we will always assume that µ(X) < ∞. The Orlicz space LΦ(X) consists of
all measurable functions u on X such that∫

X
Φ(λ|u(x)|) dµ < ∞ for some λ > 0.

It follows from the convexity of Φ that LΦ(X) is a linear space and one can
prove that this space equipped with the Luxemburg norm

‖u‖Φ = inf
{

k > 0 :
∫

X
Φ
(
|u(x)|

k

)
dµ ≤ 1

}
is a Banach space. Note that∫

X
Φ
(
|u(x)|
‖u‖Φ

)
dµ ≤ 1 .

If Φ satisfies the ∆2 condition near infinity, then

LΦ(X) =
{

u :
∫

X
Φ(|u(x)|) dµ < ∞

}
but this claim is not true without the ∆2 condition.

Convexity of Φ implies that for 0 < ε ≤ 1, Φ(x) ≤ εΦ(x/ε) and hence it
is easy to see that convergence un → u in LΦ implies

(2.1)
∫

X
Φ(|un − u|) dµ → 0 .
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Convergence (2.1) is called convergence in mean and we note here that con-
vergence in mean implies convergence in the Luxemburg norm only if Φ
satisfies the ∆2 condition near infinity.

Given an open set Ω ⊂ Rn and a Young function A we can define
in a natural way the Orlicz-Sobolev space W 1,A(Ω). If A(t) = tp, then
W 1,A(Ω) = W 1,p(Ω). Convexity of A implies that A(t) ≥ at for t ≥ t0 and
hence W 1,A(Ω) ⊂ W 1,1

loc (Ω). Thus it follows from the Rellich-Kondrachov
theorem and the standard diagonal argument that every bounded sequence
in W 1,A(Ω) has a subsequence that is convergent a.e.

We say that a family of functions F ⊂ L1(X), is equi-integrable if for
every ε > 0 there is δ > 0 such that

sup
f∈F

∫
E
|f |dµ < ε whenever µ(E) < δ.

Note that equi-integrability does not imply in general that the family F is
bounded in L1(X) even if µ(X) < ∞ (which is our standing assumption),
because the measure may have atoms.

We will need the following result of de la Vallée Poussin which we state
as a lemma. For a proof, see [3], [6].

Lemma 2.1 (de la Vallée Poussin). Let (X, µ) be a measure space with
µ(X) < ∞ and let F ⊂ L1(µ) be bounded. Then F is equi-integrable if and
only if there is a Young function Φ, limt→∞ Φ(t)/t = ∞ such that

(2.2) sup
f∈F

∫
X

Φ(|f |)dµ ≤ 1 .

In most of the statements found in the literature the condition is that
the integral (2.2) is finite. Dividing Φ by an appropriate constant we may
further require that the integral is less than or equal to 1, as we do in (2.2).

3. Main Theorems

The following result is a common generalization of [1, Theorem 8.24], [4,
Theorem 4].

Theorem 3.1. Let W (X) be a normed space of measurable functions on
(X, µ), µ(X) < ∞, with the property that every bounded sequence in W (X)
has a subsequence that is convergent a.e. If Ψ is a Young function such that
the embedding W (X) ⊂ LΨ(X) is bounded, then for every Young function
Φ such that Ψ �� Φ, the embedding W (X) b LΦ(X) is compact.

Proof. Since the embedding W ⊂ LΨ is bounded, there is a constant
C > 0 such that ‖f‖Ψ ≤ C‖f‖W for all f ∈ W . Let {fi} ⊂ W be a bounded
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sequence, ‖fi‖W ≤ M . It suffices to prove that a subsequence of fi is a
Cauchy sequence in LΦ. Let ui = fi/ε. Then

‖ui − uj‖Ψ ≤ C‖ui − uj‖W ≤ 2CMε−1

and hence ∫
X

Ψ
(
|ui − uj |
2CMε−1

)
dµ ≤ 1 for all i, j.

Since Ψ grows essentially faster than Φ, there is t0 > 0 such that

Φ(t) ≤ 1
4

Ψ
(

t

2CMε−1

)
for t > t0.

On the set {|ui−uj | < t0} we have Φ(|ui−uj |) < Φ(t0). Let δ = (4Φ(t0))−1.
If E ⊂ X is such that µ(X \ E) < δ, then∫

X\E
Φ(|ui − uj |) dµ ≤

∫
{|ui−uj |>t0}

Φ(|ui − uj |) dµ +
∫

X\E
Φ(t0) dµ

≤ 1
4

∫
X

Ψ
(
|ui − uj |
2CMε−1

)
dµ +

Φ(t0)
4Φ(t0)

≤ 1
2

for all i, j.

By our assumptions ui has a subsequence uij that is convergent a.e. Ac-
cording to the Egorov theorem there is a measurable set E ⊂ X such that
µ(X \E) < δ and uij converges uniformly on E. Hence there is N such that

|uij (x)− uik(x)| ≤ Φ−1

(
1

2µ(X)

)
for all x ∈ E and j, k ≥ N .

Then for j, k ≥ N we have∫
X

Φ
( |fij − fik |

ε

)
dµ =

∫
E

Φ(|uij − uik |) dµ +
∫

X\E
Φ(|uij − uik |) dµ

≤ µ(X)
2µ(X)

+
1
2

= 1

and hence
‖fij − fik‖Φ ≤ ε for all j, k ≥ N .

The proof is complete. 2

The following theorem is the main result of the paper.

Theorem 3.2. Let W (X) be a normed space of measurable functions on
(X, µ), µ(X) < ∞, with the property that every bounded sequence in W (X)
has a subsequence that is convergent a.e. Let Φ be a Young function that
satisfies the ∆2 condition near infinity. Then the following conditions are
equivalent.

(a) W (X) is compactly embedded into LΦ(X), W (X) b LΦ(X).
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(b) There is a Young function Ψ �� Φ such that W (X) is continuously
embedded into LΨ(X), W (X) ⊂ LΨ(X).

Proof. The implication from (b) to (a) is contained in Theorem 3.1, so
we are left with the proof of the implication from (a) to (b). Suppose that
W b LΦ and Φ satisfies the ∆2 condition near infinity. Let C > 0 be such
that ‖f‖Φ ≤ C‖f‖W for f ∈ W . Consider the unit sphere in W

S = {f ∈ W : ‖f‖W = 1}.

We claim that the family

F = {Φ(|f |/C) : f ∈ S}

is bounded and equi-integrable in L1(X). Boundedness follows from the
definition of the Luxemburg norm. Indeed, ‖f‖Φ ≤ C for f ∈ S and hence∫

X
Φ(|f |/C) dµ ≤ 1 .

Thus F is contained in the unit ball in L1(X). By contrary suppose that
F is not equi-integrable. Then there is ε > 0 and two sequences En ⊂ X,
fn ∈ S such that µ(En) < 1/n, while

(3.1)
∫

En

Φ
(
|fn|
C

)
dµ ≥ ε .

The sequence 2fn/C is bounded in W and since the embedding W b LΦ

is compact, the sequence has a subsequence (still denoted by 2fn/C) con-
vergent in LΦ to some function g ∈ LΦ. The convergence in mean (2.1)
gives ∫

X
Φ
(∣∣∣∣2fn

C
− g

∣∣∣∣) dµ < ε for n ≥ n1.

Since g ∈ LΦ and Φ satisfies the ∆2 condition near infinity,
∫
X Φ(|g|) dµ < ∞

and hence there is n2 such that∫
En

Φ(|g|) dµ < ε for n ≥ n2

by absolute continuity of the integral. For n > max{n1, n2} convexity of Φ
gives∫

En

Φ
(
|fn|
C

)
dµ ≤

∫
En

Φ
(

1
2

∣∣∣∣2fn

C
− g

∣∣∣∣+ 1
2
|g|
)

dµ

≤ 1
2

∫
En

Φ
(∣∣∣∣2fn

C
− g

∣∣∣∣) dµ +
1
2

∫
En

Φ(|g|) dµ < ε

which contradicts (3.1). We proved that the family F satisfies assumptions
of the de la Vallée Poussin theorem and hence there is a Young function η
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such that η(t)/t →∞ as t →∞ and

sup
f∈S

∫
X

η

(
Φ
(
|f |
C

))
dµ ≤ 1 .

Hence for all 0 6= f ∈ W and Ψ = η ◦ Φ∫
X

Ψ
(

|f |
C‖f‖W

)
dµ ≤ 1

which proves boundedness of the embedding W ⊂ LΨ with the same con-
stant ‖f‖Ψ ≤ C‖f‖W . It remains to observe that Ψ �� Φ. Indeed, for any
k > 0

lim
t→∞

Ψ(t)
Φ(kt)

= lim
t→∞

η(Φ(t))
Φ(t)

Φ(t)
Φ(kt)

= ∞

since Φ(t)/Φ(kt) is bounded away from 0 by the ∆2 condition. 2

Corollary 3.3. If Φ satisfies the ∆2 condition near infinity and a bounded
embedding W (X) ⊂ LΦ(X) is optimal in the category of Orlicz spaces, then
it is not compact.

All of the above theorems apply to Sobolev and Orlicz-Sobolev spaces
since in the statements we can take W = W 1,A(Ω), where Ω ⊂ Rn is an
open set of finite measure.

Nečas [5, Théorème 1.4] proved that if Ω ⊂ Rn is a bounded domain
with continuous boundary (i.e. the boundary is locally a graph of a contin-
uous function), then the embedding W 1,2(Ω) ⊂ L2(Ω) is compact. As an
immediate consequence of this result and Theorem 3.2 we obtain

Corollary 3.4. If Ω ⊂ Rn is a bounded domain with continuous boundary,
then there is a Young function Φ that grows essentially faster at infinity than
t2, such that the embedding W 1,2(Ω) ⊂ LΦ(Ω) is bounded.

A more precise description of the function Φ can be obtained from the
information about the modulus of continuity of the functions used to rep-
resent the boundary as a graph, but it is interesting to observe that our
argument implies the existence of Φ without any careful investigation of the
structure of the boundary.

4. Example

The following example shows that we cannot avoid the ∆2 condition in
Theorem 3.2. In particular the example shows that if we do not assume the
∆2 condition, the optimal embedding can be compact, differently than in
the case of Corollary 3.3. We do not know if there is a similar example in
the setting of Sobolev spaces.
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Theorem 4.1. There is a Banach space W of measurable functions on [0, 1]
with the following properties:

(a) Every bounded sequence in W has a subsequence convergent a.e.
(b) W b LΦ([0, 1]) for Φ(t) = 2

π (et − 1).
(c) There is no Young function Ψ �� Φ such that W ⊂ LΨ([0, 1]).

Remark 4.2. A we do not require in (c) that the embedding W ⊂ LΨ([0, 1])
has to be bounded. We only assume that every function in W belongs to
LΨ([0, 1]).

Proof. First we will define auxiliary functions that will be used to con-
struct the space W . Let

f(x) = − log(x + x log2 x), x ∈ (0, 1] .

Note that f is strictly decreasing from ∞ to 0. We have∫ 1

0
Φ(|f(x)|) dx =

2
π

∫ 1

0

(
ef(x) − 1

)
dx =

2
π

(π

2
− 1
)

< 1

since the antiderivative of ef(x) = (x + x log2 x)−1 is arctan log x. It is easy
to see that for any 0 < k < 1∫ 1

0
Φ
(
|f(x)|

k

)
dx = ∞

and hence ‖f‖Φ = 1. For n ≥ 2 we define

gn = cnχ[0, 1
n ], where cn = − log

(
π

2
+ arctan log

1
n

)
.

Observe that cn > 0 for n ≥ 2. Finally let fn = f + gn. We have∫ 1

0
Φ(|fn(x)|) dx =

2
π

(∫ 1/n

0

(
ef(x)ecn − 1

)
dx +

∫ 1

1/n

(
ef(x) − 1

)
dx

)

≤ 2
π

(
1− 1

n
+

π

2
− 1
)

< 1

and for 0 < k < 1∫ 1

0
Φ
(
|fn(x)|

k

)
dx >

∫ 1

0
Φ
(
|f(x)|

k

)
dx = ∞ ,

so ‖fn‖Φ = 1. Note also that fn → f in LΦ as n → ∞. Indeed, for every
ε > 0

lim
n→∞

∫ 1

0
Φ
(
|fn − f |

ε

)
dx = lim

n→∞

2
π

1
n

(
ecn/ε − 1

)
= 0

by a simple application of the l’Hospital rule.
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Now we define a Banach space W of measurable functions on [0, 1] as

W =

{
h =

∞∑
i=1

aifi : (ai)∞i=1 ∈ `1

}
with the norm

‖h‖W =
∥∥∥ ∞∑

i=2

aifi

∥∥∥
W

:=
∞∑
i=2

|ai| .

Since for every x ∈ (0, 1], fi(x) = f(x) for all sufficiently large i, the series∑∞
i=2 aifi(x) converges at every x ∈ (0, 1] and hence it defines a measurable

function. Considering intervals (1/(n+1), 1/n], n = 1, 2, 3, . . . one can easily
check by induction that if

∑∞
i=2 aifi = 0 a.e., then ai = 0 for all i, so the

coefficients ai are uniquely determined and hence ‖ · ‖W is a well defined
norm. Now it is obvious that W is isometric to `1 and hence W is a Banach
space.

The partial sums of the series series
∑∞

i=2 aifi form a Cauchy sequence in
LΦ because ∥∥∥∑̀

i=k

aifi

∥∥∥
Φ
≤
∑̀
i=k

|ai|‖fi‖Φ =
∑̀
i=k

|ai|

and hence the series converges in the Banach space LΦ. This also shows
that W is continuously embedded into LΦ

‖h‖Φ =
∥∥∥ ∞∑

i=2

aifi

∥∥∥
Φ
≤

∞∑
i=2

|ai|‖fi‖Φ =
∞∑
i=2

|ai| = ‖h‖W ,

but what is more interesting, the embedding is compact, W b LΦ([0, 1]).
Before we prove this fact observe that compactness of the embedding implies
that every bounded sequence in W has a subsequence that is convergent a.e.
which is the property (a).

Recall that fn → f in LΦ as n →∞ and hence the set

F = {fi}∞i=1 ⊂ LΦ, where f1 = f

is compact. Then also family of functions

K = {x 7→ tfi(x) : t ∈ [−M,M ], i ≥ 1} ⊂ LΦ

is compact. Indeed, K is the image of a continuous mapping defined on a
compact set

λ : [−M,M ]× F → LΦ, λ(t, fi) = tfi, λ([−M,M ]× F ) = K .

According to Mazur’s theorem [2, Theorem 4.8], the convex hull co(K) is
relatively compact in LΦ. With this introduction we can complete the proof
of (b) as follows.
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Let hn ∈ W be a bounded sequence and let h̃n =
∑k(n)

i=2 an
i fi be such that

‖hn − h̃n‖W < 1/n. The sequence h̃n is bounded, say

‖h̃n‖W =
k(n)∑
i=2

|an
i | ≤ M .

Then

h̃n =
k(n)∑
i=2

|an
i |

‖h̃n‖W

(
sgn (an

i )‖h̃n‖W fi

)
∈ co(K)

and hence h̃n has a subsequence convergent in LΦ. This also implies that
hn has a subsequence convergent in LΦ to the same limit.

We are left with the proof of (c). Suppose that there is Ψ �� Φ such that
W ⊂ LΨ. It follows from the closed graph theorem that the embedding is
bounded. Indeed, if hn → h in W and hn → g in LΨ, then from boundedness
of the embedding into LΦ, hn → h in LΦ and hence g = h.

Since ‖fn‖W = 1, the sequence fn is bounded in LΨ, say ‖f‖Ψ ≤ C, so

(4.1)
∫ 1

0
Ψ
(
|fn(x)|

C

)
dx ≤ 1 .

Note that
inf

x∈[0,1/n]
fn(x) ≥ f(1/n) →∞ as n →∞

and therefore the condition Ψ �� Φ implies

An = inf
x∈[0,1/n]

Ψ
(
|fn(x)|

C

)
Φ(|fn(x)|)

→∞ as n →∞.

Thus ∫ 1

0
Ψ
(
|fn(x)|

C

)
dx ≥ An

∫ 1/n

0
Φ(|fn(x)|) dx

=
2
π

An

∫ 1/n

0

(
efn(x) − 1

)
dx

=
2
π

An

(
1− 1

n

)
→∞

which contradicts (4.1). The proof is complete. 2
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