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Abstract. We introduce a general methodology for parameter identification in reaction-diffusion
systems that display pattern formation via the mechanism of diffusion-driven instability. A Modi-
fied Discrete Optimal Control Algorithm is illustrated with the Schnakenberg and Gierer-Meinhardt
reaction-diffusion systems using PDE constrained optimization techniques. A quadratic cost func-
tional that measures the discrepancy between morphogen concentrations and target concentrations
is minimized with the reaction diffusion system as a constraint. The numerical optimal control
procedure efficiently and accurately estimates key parameters in the systems concerned.
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1. Introduction. One of the central challenges in developmental biology is to
understand how spatial patterning arises in embryogenesis. Traditional mathematical
biology has addressed this issue through a top-down approach, which assumes that
either a gradient in signalling chemical (termed morphogen) is set-up to which cells
respond by differentiating in a multi-threshold dependent manner (Wolpert, 1969),
or that complex spatial patterns are set up in a self-organising manner which then
only require a single threshold for differentiation (Murray, 2002, 2003). The most
well-known such model is the Turing model in which spatial patterning emerges in
a system of reacting and diffusing chemicals via the phenomenon of diffusion-driven
instability (Turing, 1952). This idea was extended by Gierer and Meinhardt (1972)
to the general patterning principle of short-range activation, long-range inhibition.
Several top-down models have been proposed involving different biological hypotheses
(for example, cell-chemotaxis (Keller and Segel, 1971), mechanochemical (Oster et al.,
1983), and neural models (Ermentrout et al., 1986)) but they all obey this underlying
patterning principle. As a result, all these models produce very similar patterns and
therefore it makes sense to study the simplest such model, which is the Turing model.

The first step towards determining if an observed pattern is a consequence of
activator-inhibitor self-organisation is to investigate if such a model system can pro-
duce the pattern. While this is by no means a proof that such a pattern in nature is
generated by this type of model, it is a necessary starting point. To our knowledge, no
systemic procedure exists to investigate this - while simple periodic patterns of stripes
and spots can be investigated using linear stabily analysis, more complex patterns are
not amenable to such analysis. The goal of this paper is to propose methods from
control theory to address this problem.

The structure of our paper is outlined as follows. In Section 2 the governing
reaction-diffusion systems (‘state equations’) are introduced and a Direct Problem
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defined where we seek morphogen concentrations associated with given key parame-
ters. In Section 3 the Inverse Problem is defined where we seek to recover the key
model parameters that led to given target morphogen concentrations. The mathe-
matical theory of optimal control is then used to derive an optimality system, which
allows us to characterize the optimal (‘key’) parameters of the systems in terms of
adjoint variables (see Section 4). In Section 5 we discuss the numerical methods
used to approximate the state and adjoint equations, construction of the target func-
tions, and implementation of a Modified Discrete Optimal Control Algorithm. The
results of some numerical experiments are presented in Section 6 and the results and
implications discussed in Section 7.

2. Direct Problem. We study coupled pairs of reaction-diffusion equations,
called the ‘state equations’, with the following general form






∂u
∂t = Du∇2u + f1(u, v),

∂v
∂t = Dv∇2v + f2(u, v),

(2.1)

where u(x, t) and v(x, t) are morphogen concentrations at (vector) position x =
(x, y)T ∈ Ω and time t ∈ (0, T ). Here Ω is a bounded domain in R2. Du and Dv

are the positive diffusion coefficients of u and v respectively. The standard Laplacian
operator in two space dimensions is given by ∇2 = ∂2/∂x2 + ∂2/∂y2. The functions
f1 and f2 model the reaction kinetics of u and v. We assume there is no flux of the
morphogen concentrations across the boundary of Ω and that the initial concentra-
tions, u0(x), v0(x), are bounded and nonnegative. To illustrate our methodology we
focus on the following nonlinear examples of f1 and f2:

(i) the Schnakenberg (1979) model (first proposed in Gierer and Meinhardt (1972)):

f1(u, v) := γ(a− u + u2v),

f2(u, v) := γ(b− u2v), (2.2)

where γ, a, and b are positive constants.
(ii) the Gierer and Meinhardt (1972) model:

f1(u, v) :=
ru2

v
− µu + r,

f2(u, v) := ru2 − αv, (2.3)

where r, µ, and α are positive constants.

The aim of this paper is to estimate key parameters associated with patterns
arising via diffusion-induced instability. For concreteness we focus on parameters c1

and c2 where

c1 = a, c2 = b in the Schnakenberg model,
c1 = µ, c2 = α in the Gierer-Meinhardt model. (2.4)

It is natural to assume pointwise bounds on the parameters, and thus we restrict the
parameters to the admissible set

Uad = {(c1, c2) ∈ R2 : 0 < c1 ≤ C1, 0 < c2 ≤ C2}, (2.5)
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where C1 and C2 are determined from knowledge of the Turing spaces of the systems
concerned.

We now state the direct problem:

(DP) For given parameters (c1, c2) belonging to the admissible set Uad,
find the morphogen concentrations u(x, t) and v(x, t) satisfying
(2.1) with kinetics (i) or (ii) for all (x, t) ∈ Ω× (0, T ).

In order to prove a technique for the identification of parameters in our method
(see Garvie and Trenchea (2009)), it is necessary that the solutions of the reaction-
diffusion system (2.1) exist, are unique, are nonnegative and depend continuously on
the initial data. In the case of kinetics (i) as we were unable to find a proof in the
literature we provide a proof in the Appendix. In the case of kinetics (ii), existence
and uniqueness are proved in the monograph by Rothe (1984), and the nonnegativity
of solutions follows from an analogous argument to the one given for kinetics (i).

3. Inverse Problem Statement and Parameter Identification. The basic
description of the inverse problem is as follows. We start with given stationary ‘target
functions’ (ū, v̄) that represent some desired morphogen concentrations of the system
(a ‘pattern’). We then seek the key parameters such that the solution of the direct
problem (DP) (u, v) matches the target functions (ū, v̄) as closely as possible.

The target functions may be noisy due to measurement error, or may not be a
solution of the direct problem (DP). Thus we employ a least squares technique so that
(u, v) best approximates (ū, v̄). The basic optimal control technique is to minimize a
quadratic cost functional subject to the reaction-diffusion system as a constraint.

Denoting the Banach space of square integrable functions over ΩT := Ω× (0, T )
by L2(ΩT ), for given ū and v̄ in L2(ΩT ), the least-squares approach leads to the
minimization problem:

inf
c1,c2∈Uad

J(c1, c2) (3.1)

where the cost functional J is defined by:

J(c1, c2) =
1
2

∫

Ω

(
γ1|u(x, T )− u(x)|2 + γ2|v(x, T )− v(x)|2

)
dx +

δ1

2
c2
1 +

δ2

2
c2
2, (3.2)

subject to the reaction-diffusion system (2.1) as a constraint. The terms weighted
by γi measure the discrepancy between the solution and targets at the final time
T . The terms weighted by δi effectively bound the size of the key parameters c1

and c2, which is a requirement of (2.5) and also allow for possibly noisy data. By
appropriately choosing the weights in the cost functional we can place more emphasis
on the solutions matching the targets, or we can place more emphasis on limiting the
size of the parameters.

We now state the inverse problem for parameter identification in the reaction-
diffusion system (2.1) with kinetics (i) or (ii):

(IP) For given target functions ū, v̄ ∈ L2(ΩT ), find optimal parameters
(c∗1, c∗2) ∈ Uad and optimal solutions (u∗, v∗) of (2.1) that satisfy
the minimization problem (3.1).

The rigorous proof of the existence of a solution to the inverse problem (IP) for the
reaction-diffusion system (2.1) with kinetics (2.3) is given in (Garvie and Trenchea,
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2009) and first-order necessary conditions for optimality are used to derive an opti-
mality system of partial differential equations whose solutions provide optimal states
and controls. The corresponding results for the simpler system with the Schnakenberg
kinetics (2.2) are proved in a similar fashion.

4. Optimality System. The mathematical theory of optimal control theory
leads to the derivation of a linear reaction-diffusion system for ‘adjoint’ variables
(p(x, t), q(x, t)) called the ‘adjoint system’





−∂p

∂t = Du∇2p + g1(p, q),

−∂q
∂t = Dv∇2q + g2(p, q),

(4.1)

corresponding to the system for the Lagrange multipliers of the PDE constrained
optimization problem. Corresponding to kinetics (i) we have

g1(p, q) := 2γuv(p− q)− γp,

g2(p, q) := γu2(p− q), (4.2)

and corresponding to kinetics (ii) we have

g1(p, q) :=
(
2r

u

v
− µ

)
p + 2ruq,

g2(p, q) := r
u2

v2
p− αq. (4.3)

The adjoint equations are backward in time and thus terminal conditions are needed
instead of initial conditions:

p(·, T ) = γ1(u(·, T )− ū(·)), q(·, T ) = γ2(v(·, T )− v̄(·)). (4.4)

We also use the adjoint system to obtain an explicit characterization of the optimal
controls in terms of the adjoint variables, which are called ‘optimality conditions’

c∗1 = max
{

0,min
{

d1

δu

∫

ΩT

p dx dt, C1

}}
, c∗2 = max

{
0,min

{
d2

δv

∫

ΩT

q dx dt, C2

}}
,

where with kinetics (i) d1 = d2 = −γ, and with kinetics (ii) d1 := u∗, d2 := v∗. The
state equations (2.1), and the adjoint equations (4.1) together with the optimality
conditions are called the ‘optimality system’. For mathematical details concerning
derivation of the optimality systems see (Lenhart and Workman, 2007; Garvie and
Trenchea, 2009).

5. Numerical methods.

5.1. Approximation of the state and adjoint equations. We approximate
the state equations and adjoint equations on the unit square using an unstructured
grid generator. In all our simulations we partition the domain into 8192 approximately
equilateral triangles with 4225 nodes and then apply the standard Galerkin finite
element method (Ciarlet, 1978) with piecewise linear continuous basis functions. For
a given generic reaction-diffusion equation of the form

∂u

∂t
= D∇2u + f(u),
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where D is the diffusion coefficient for a morphogen u, application of the finite element
method leads to a large system of ordinary differential equations (an initial value
problem (IVP)) in the form

U̇ = D∇2
hU + F(U),

where ∇2
h is the discrete Laplacian depending on a (spatial) step-size h and U is the

solution vector of approximate nodal values.
For the time discretization of the IVP it is well-known that several popular

time-stepping schemes for reaction-diffusion equations modeling pattern formation
yield qualitatively poor results (Ruuth, 1995). In order to approximate the reaction-
diffusion system with kinetics (i) we employed the following ‘first-order semi-implicit
backward Euler difference scheme’ (1-SBEM)

un+1 − un

∆t
= Du∇2un+1 + γ(a− un+1 + unun+1vn),

vn+1 − vn

∆t
= Dv∇2vn+1 + γ(b− (un)2vn+1), (5.1)

where ∆t is the uniform time-step of the time interval [0, T ] and n refers to the n-th
time level at time tn := n∆t. Note that the diffusion and linear components of the
reaction kinetics are approximated implicitely, while the nonlinear components are
treated semi-implicitely. This scheme was successfully used by Madzvamuse (2006)
to accurately simulate Turing patterns of the Schnakenberg system.

To solve the reaction-diffusion system with kinetics (ii) we employed a second
order, 3-level, implicit-explicit (IMEX) scheme (2-SBDF) recommended by Ruuth
(1995) as a good choice for most reaction-diffusion problems for pattern formation,
namely

3un+1 − 4un + un−1

2∆t
−Du∇2un+1 = 2f1(un, vn)− f1(un−1, vn−1),

3vn+1 − 4vn + vn−1

2∆t
−Dv∇2vn+1 = 2f2(un, vn)− f2(un−1, vn−1), (5.2)

where f1 and f2 are given by the Gierer-Meinhardt kinetics (2.3). One of the advan-
tages of this scheme is that we can use relatively large time-steps and still obtain a
good approximation of highly oscillatory solutions. IMEX schemes use an implicit dis-
cretization of the diffusion term, and an explicit discretization of the reaction terms.
As the scheme 2-SBDF involves three time levels we approximate the solutions at
the first time level using a first order IMEX scheme (1-SBDF) with a small time-step
(Ruuth, 1995).

The numerical schemes used to approximate the linear adjoint equations were
similar to the schemes used to approximate the state equations. Application of the
finite element method for the spatial discretization coupled with the time-stepping
schemes in all cases led to sparse linear systems of algebraic equations, which were
solved in MATLAB (R2008a) using the GMRES iterative solver.

5.2. Construction of the Target Function. The target functions (ū, v̄) used
in this paper were generated from the reaction-diffusion systems themselves via the
mechanism of diffusion-driven instability (the ‘Turing mechanism’). Solutions were
generated on the unit square with homogeneous Neumann boundary conditions. The
standard approach in the literature for constructing Turing patterns is to prescribe
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the initial data equal to small random perturbations about the corresponding station-
ary states of the spatially homogeneous systems, i.e., the reaction-diffusion systems
without diffusion. The problem with this approach is that this is often done using an
unspecified random number generator with an unspecified ‘seed’, and thus the numer-
ical results are effectively not reproducible. To circumvent this problem we perturb
the stationary states using known functions. For kinetics (i) we choose the initial
conditions (see Ruuth (1995), or Madzvamuse (2006))

u(x, 0) = 0.919145 + 0.0016 cos(2π(x + y)) + 0.01
8∑

j=1

cos(2πjx),

v(x, 0) = 0.937903 + 0.0016 cos(2π(x + y)) + 0.01
8∑

j=1

cos(2πjx), (5.3)

while the initial functions for kinetics (ii) were chosen equal to the same functions,
but with ‘cosine’ function replaced with the ‘sine’ function.

(a) (b)

Fig. 5.1: (a) Target function ū for the Schnakenberg kinetics: T = 5, Du = 1, Dv = 10, γ = 1000,
a = 0.126779, b = 0.792366, ∆t = 0.0001 (1-SBEM). (b) Target function ū for the Gierer-Meinhardt
kinetics: T = 238.853, Dv = 0.27, Du = 9.45 × 10−4, r = 0.001, α = 100, µ = 2.5, ∆t = 1 × 10−8

(1-SBDF), ∆t = 0.001 (2-SBDF). For details concerning the finite element methods and initial and
boundary conditions see the main text above.

The state equations were solved until the transient solutions died out, which was
determined by waiting until some large time t = T when the l2 norm of the change
in state in one time-step was less than some small tolerance. We checked that the
patterns were unchanged at t = 2T , thus confirming that the solutions were indeed
stationary. Target functions for u are shown in Figures 5.1(a)-5.1(b) (the patterns for
v are similar). See the caption for the parameter values.

5.3. Discrete optimal control procedure.

The Standard Algorithm. To approximate the inverse problem (IP) we apply
a ‘variable step gradient algorithm’ (Garvie and Trenchea, 2009) yielding a sequence
of approximations to the optimal solutions and optimal parameters (Ciarlet, 1989).
We begin by making an initial guess for the parameters c0

1, c
0
2 and the step length λ0.
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Initial conditions for the states were chosen to be the same as the initial conditions
used to generate the target functions (see Section 5.2). Then for each iteration k of the
gradient method we solve the nonlinear reaction-diffusion system for uk, vk (k ≥ 1),
and store the cost J(ck

1 , ck
2). We also compute the adjoint variables pk, qk, determine

dJ(ck
1 , ck

2)/d(ck
1 , ck

2), the total derivative of J with respect to the vector (uk, vk), and
take a step along this direction using the appropriate step length, provided the cost
functional decreases. If the cost functional fails to decrease, then the step length
is rejected and the step length decreased. If the step length is accepted, then the
parameters (ck+1

1 , ck+1
2 ) are updated using a standard gradient update

(ck+1
1 , ck+1

2 ) = (ck
1 , ck

2)− λk dJ(ck
1 , ck

2)
d(ck

1 , ck
2)

, k ≥ 1.

The procedure is repeated until the relative change in the cost is smaller than some
tolerance. This is computationally expensive as each iteration of the discrete optimal
control algorithm requires the numerical solution of the state equation up to some final
time T , the numerical solution of the adjoint equations backward in time from T , and
gradient updates. The bulk of the computational costs are found in the backward-in-
time solution of the adjoint system (4.1) and the forward-in-time solution of the state
system (2.1).

A Modified Discrete Optimal Control Algorithm. We present a Modified
Discrete Optimal Control Algorithm based on the Standard Algorithm above. The
modified algorithm utilizes the fact that the target functions are stationary patterns.
As the target functions are known data, we choose the initial data of the state equa-
tions equal to the target functions, take T = 2∆t∗, and seek parameters c1 and c2

that make the initial data stationary. All other aspects of the modified algorithm are
the same as in the Standard Algorithm. If the parameters c1 and c2 are optimal then
the cost after two time-steps 2∆t is zero and the algorithm stops. If the parameters
c1 and c2 are suboptimal the initial data evolves over two time-steps 2∆t. The dis-
crepancy between the solutions and targets is then measured by the cost functional
and the variable step gradient algorithm adjusts the parameters accordingly. A big
advantage of the modified algorithm is that only two time-steps are needed to test
if the initial data is stationary for the current parameters, which is a huge saving in
computational cost compared to the Standard Algorithm.

6. Numerical results. We were unable to obtain satisfactory results using the
Standard Algorithm as the iterative procedure failed to converge and frequently stag-
nated, yielding parameter values far from the optimal ones (results not presented).
However, the Modified Algorithm converged for almost all starting values (‘initial
guesses’) of the key parameters c1 and c2, taking on the order of half a minute to ac-
curately estimate the optimal parameters used to generate the target patterns (using
a Mac Pro with a 2 × 3 GHz Dual-Core Intel Xeon processor). Table 6.1 shows the
results of one experiment for each system. We obtained more significant figures of
accuracy when estimating a and b than when estimating µ and α, which was generally
the case. To verify convergence we also plotted the cost functional against iteration
count for both reaction-diffusion systems. The plots show an initial rapid decrease in
cost with a subsequent slow decrease after the first few iterations of the optimal control

∗Two time-steps are the minimum number of time-steps that the discrete optimal control proce-
dure needs to run.
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algorithm (see Figures 6.1(a) - 6.1(b) and the caption for the remaining parameters
used in the simulations).

Table 6.1: Model parameter estimates for the Modified Algorithm.

Parameter Start value Controlled value Optimal value
a 5 0.126776 0.126779
b 0.3 0.792365 0.792366
µ 50 2.499473 2.5
α 30 99.994690 100

(a) (b)

Fig. 6.1: (a) Change in cost with iteration count. (a) Schnakenberg system: Du = 1, Dv = 10,
γ = 1000, ∆t = 0.0001 (1-SBEM), γ1 = γ2 = 1 × 1010, δ1 = δ2 = 1. (b) Gierer-Meinhardt
system: Dv = 0.27, Du = 9.45× 10−4, r = 0.001, ∆t = 1× 10−8 (1-SBDF), ∆t = 0.001 (2-SBDF),
γ1 = γ2 = 1× 1015, δ1 = δ2 = 0.
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7. Discussion. In this paper we presented a Modified Discrete Optimal Control
Algorithm for the accurate and efficient estimation of parameters used to generate
patterns via the mechanism of diffusion-driven instability. Unlike previous ad hoc
studies of parameter estimation in Turing systems, the modified algorithm is based on
the rigorous mathematical theory of optimal control theory and provides a systematic
and reliable approach to parameter estimation. The methodology is illustrated with
the Schnakenberg and Gierer-Meinhardt reaction-diffusion systems where two key
parameters are estimated in each model.

Sensitivity of pattern formation on model parameters. Once the optimal
parameters of a system have been accurately found we can investigate how sensitive
the patterns are to changes in the parameters. For fixed target patterns we plotted the
surfaces corresponding to the cost as a function of the parameters in the Schnakenberg
and Gierer-Meinhardt reaction-diffusion systems (see Figures 7.1(a) and 7.1(b)). We
can see from Figure 7.1(a) that the target pattern is relatively insensitive to changes
in a compared to changes in b. Similarly, we can see from Figure 7.1(b) that the
target pattern is relatively insensitive to changes in α compared to changes in µ. The
insensitivity of a pattern to changes in a model parameter tells us that there exists a
family of similar patterns in a neighborhood of the optimal pair (c∗1, c∗2). For example,

(a) (b)

Fig. 7.1: (a) The cost functional as a function of the parameters c1 and c2 for (a) the Schnakenberg
system, and (b) the Gierer-Meinhardt system. The surfaces were plotted using 200 × 200 points in
the c1-c2 plane.

in Figure 7.1(b) if we fix µ at it’s optimal value µ∗ = 2.5, then we expect the patterns
associated with the points (2.5, α), α ∈ R, to be similar, provided we are close to the
optimal pair (2.5, 100). This is verified in Figures 7.2(a) and 7.2(b), which show the
patterns associated with points close to the optimal parameter pair (µ∗, α∗), where
we have perturbed either µ∗ or α∗. As predicted, the pattern in Figure 7.2(a) is very
similar to the target pattern in Figure 5.1(b), unlike the pattern in Figure 7.2(b) that
is very different.
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(a) (b)

Fig. 7.2: Morphogen concentrations u for the Gierer-Meinhardt system with T = 238.853, Dv = 0.27,
Du = 9.45× 10−4, r = 0.001, ∆t = 1× 10−8 (1-SBDF), ∆t = 0.001 (2-SBDF). (a) α = 90, µ = 2.5.
(b) α = 100, µ = 2.4. For details concerning the finite element methods and initial and boundary
conditions see the main text above.

An ‘Image Driven Parameter Identification Methodology’. For the ex-
amples presented in this paper we used the reaction-diffusion systems themselves to
generate the target patterns via the mechanism of diffusion-driven instability. Ideally
we would like to identify the model parameters associated with target patterns (ū, v̄)
arising from some biological application. The Modified Algorithm does not require
the target functions to be solutions of the reaction-diffusion system, however, if the
patterns are far from solutions of the state equations then the discrete optimal control
procedure may fail to converge. One of the difficulties in developing a general ‘Image
Driven Parameter Identification Methodology’ for targets that arise in practical ap-
plications is that we may have no knowledge of the maximum and minimum values of
those functions, for example, in the case of images taken from the web. In practical
situations we would expect to be able to use knowledge of the biological situation to
infer approximate bounds on the solutions. We also have flexibility in the choice of
the weights δ1 and δ2 used in the cost functional (3.2) that allows us to take into
account noisy data.

Potential biological applications. In developing mathematical models, ideally
one determines parameter values from independent data sources. However, in many
biological applications, this is very difficult to do. The methodology presented in this
paper will allow us, in principle, to determine the parameter values necessary for such
models to form a pattern in question or, indeed, determine if the pattern observed
experimentally can be exhibited by a particular model. As such, the methodology
presented here could have broad ranging application in mathematical modelling. In
particular, it could determine to which parameters model behavior is most sensitive
and therefore prioritize which parameters should be the focus of experimental inves-
tigation.

Acknowledgments. The authors received partial support from: an NSERC
Discovery Grant : RGPIN 340739-2008 (MRG); an Air Force Grant: FA9550-09-1-
0058 (CT); and a Royal Society-Wolfson Merit Award (PKM).
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8. Appendix.

8.1. Well-posedness of the Schnakenberg system. We provide a proof of
the well-posedness of the Schnakenberg system using the theoretical setup of Morgan
(1989).

Theorem 8.1. Let the initial concentrations (u0(x), v0(x)) be bounded and lie
in [0,∞)2 for all x ∈ Ω. Then there exists a unique nonnegative classical solution of
the Schnakenberg system (2.1) with kinetics (2.2) augmented with zero flux boundary
conditions for all (x, t) in Ω× [0,∞).

Proof. For notational convenience we swap u and v in the Schnakenberg system,
which effectively swaps the first and second equations in the reaction kinetics (2.2),
yielding the equivalent system






∂u
∂t = Du∇2u + f̂1(u, v),

∂v
∂t = Dv∇2v + f̂2(u, v),

where f̂1(u, v) := γ(b− v2u),

f̂2(u, v) := γ(a− v + v2u).

The local existence of solutions follows from well-known semigroup theory (see for ex-
ample Pazy (1983), or Henry (1981)). In particular, from Proposition 1 in Hollis et al.
(1987) it follows immediately that the Schnakenberg system has a unique noncontinu-
able classical solution (u, v) for (x, t) ∈ Ω× [0, Tmax). To prove the nonnegativity of
solutions observe that the reaction kinetics satisfy

f̂1(0, v), f̂2(u, 0) ≥ 0 for all u, v ≥ 0,

and recall that the initial data lies in the positive quadrant of phase space by as-
sumption. Thus by a maximum principle (Smoller (1983, Lemma 14.20)) the solution
(u(x, t), v(x, t)) lies in [0,∞)2 for all x ∈ Ω and for all time for which the solution
exists. Thus [0,∞)2 is positively invariant for the system. We apply the theoretical
framework of Morgan (1989) to prove global existence and uniqueness of classical solu-
tions, which requires ‘intermediate sum’ conditions and polynomial growth conditions
on the kinetics to hold.

We first define a so called Lyapunov-type function given by

H(u, v) := h1(u) + h2(v), where h1(u) = u, h2(v) = v.

Then with a11 = a22 = a21 = 1, K2 = K4 = K6 = γ(a + b), K1 = r = 1, K3 = γ/3,
K5 = 0, and q = 3 the following conditions are easily verified for all (u, v) ∈ [0,∞)2,
corresponding to conditions (H4)(i), (H5), and (H6) in Morgan (1989) respectively:

a11h
′

1(u)f̂1(u, v) ≤ K1(H(u, v))r + K2,

a21h
′

1(u)f̂1(u, v) + a22h
′

2(v)f̂2(u, v) ≤ K1(H(u, v))r + K2,

h
′

1(u)f̂1(u, v), h
′

2(v)f̂2(u, v) ≤ K3(H(u, v))q + K4,

∇H(u, v) ·
(

f̂1(u, v)
f̂2(u, v)

)
≤ K5H(u, v) + K6.

Thus as r = 1 Theorems 3.2 and 2.2 in Morgan (1989) hold, which implies Tmax =∞,
i.e. we have global existence of nonnegative, classical solutions.



12 M.R. GARVIE AND C. TRENCHEA

References.
Ciarlet, P., 1978. The Finite Element Method for Elliptic Problems. Vol. 4 of Studies

in Mathematics and its Applications. North-Holland Publishing Company, Amster-
dam.

Ciarlet, P., 1989. Introduction to numerical linear algebra and optimization. Cam-
bridge University Press, Cambridge.

Ermentrout, B., Campbell, J., Oster, G., 1986. A model for shell patterns based on
neural activity. Veliger 28 (4), 369–388.

Garvie, M., Trenchea, C., 2009. The identification of space-time distributed parame-
ters in reaction-diffusion systems. In preparation.

Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik
12, 30–39.

Henry, D., 1981. Geometric Theory of Semilinear Parabolic Equations. Vol. 840 of
Lecture Notes in Mathematics. Springer-Verlag, New York.

Hollis, S., Martin, R., Pierre, M., 1987. Global existence and boundedness in reaction-
diffusion systems. SIAM J. Math. Anal. 18 (3), 744–761.

Keller, E., Segel, L., 1971. Travelling bands of bacteria: a theoretical analysis. J.
Theor. Biol. 30, 235–248.

Lenhart, S., Workman, J., 2007. Optimal control applied to biological models. Math-
ematical and Computational Biology Series. Chapman & Hall/CRC, London.

Madzvamuse, A., 2006. Time-stepping schemes for moving grid finite elements applied
to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214,
239–263.

Morgan, J., 1989. Global existence for semilinear parabolic systems. SIAM J. Math.
Anal. 20 (5), 1128–1144.

Murray, J., 2002. Mathematical Biology I: An Introduction, 3rd Edition. Vol. 17 of
Interdisciplinary Applied Mathematics. Springer-Verlag, New York.

Murray, J., 2003. Mathematical Biology II: Spatial Models and Biomedical Appli-
cations, 3rd Edition. Vol. 18 of Interdisciplinary Applied Mathematics. Springer-
Verlag, New York.

Oster, G., Murray, J., Harris, A., 1983. Mechanical aspects of mesenchymal morpho-
genesis. J. Embryol. Exp. Morphol. 78, 83–125.

Pazy, A., 1983. Semigroups of Linear Operators and Applications to Partial Differ-
ential Equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New
York.

Rothe, F., 1984. Global solutions of reaction-diffusion systems. Vol. 1072 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin.

Ruuth, J., 1995. Implicit-explicit methods for reaction-diffusion problems in pattern
formation. J. Math. Biol. 34, 148–176.

Schnakenberg, J., 1979. Simple chemical reaction systems with limit cycle behavior.
J. Theoret. Biol. 81, 389–400.

Smoller, J., 1983. Shock Waves and Reaction-Diffusion Equations. Vol. 258 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York.

Turing, A., 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B
237, 37–72.

Wolpert, L., 1969. Positional information and spatial pattern of cellular differentia-
tion. J. Theor. Biol. 25 (1), 1–47.


