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INTRODUCTION 

OpenFOAM is an opensource program based in C++ that can simulate incompressible and compressible 

fluid flows. Its complete list of pre-configured solver, utilities and libraries makes it suitable for using in 

research or engineering applications. However, little attempt has been made to evaluate the different 

solvers and turbulence models in specific civil engineering applications such as river hydrodynamics, 

spillways or bridge piers. In order to validate one of the pre-configured turbulence models in 

OpenFOAM a comparison analysis was performed. The present work shows a comparison between 

three LES turbulence models: k-eddy one equation model, Smagorinsky model and Spalart-Allmaras 

model. Herein, the case used was a duct with a mesh and boundary conditions explained in the 

following sections. Finally, the validation is performed by comparison with existing DNS data for a similar 

case.  

 

METHODS 

Mesh construction 

To model the duct case mentioned in the introduction a hexahedral shape mesh was chosen. The 

dimensions of it are a height of 2m, a length of 4m and a width of 2m. The mesh was constructed using 

the program blockMesh included in the OpenFoam package. It is a structured mesh compound of 

hexahedral units. These units vary in the y axis from the center to the edges with a contraction factor of 

0.1 (as shown in Figure 1) whereas the dimensions of every unit remains constant in the other two 

directions x and z. The latter is due to the need of a finer mesh in the top and bottom wall of the mesh. 

In that sense the duct is divided symmetrically by the red line shown in Figure 1 to allow the refining in 

the top and bottom walls. The resulting total number of faces was 184,700 and the number of points 

was 64,821.  

 

 

 

Figure 1-Duct Mesh using blockMesh 
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Boundary conditions 

Figure 2 shows the boundary entities used in this case. To apply the initial boundary conditions to the 

domain the major faces of the mesh were named topwall, bottomwall, sides1, sides2 , inout1 and inout 

2. The vertices are numbered considering a clockwise direction looking from the inside of the block to 

the outside. A list of the boundary faces is shown in Table 1. 

Table 1-List of boundary faces 

Face Name Vertices 

Topwall (4 10 11 5) 

Bottomwall (0 1 7 6) 

Sides1 (0 2 3 1) and (6 7 9 8) 

Sides2 (2 4 5 3) and (8 9 11 10) 

Inout1 (1 3 9 7) and (0 6 8 2) 

Inout2 (3 5 11 9) and (2 8 10 4) 

 

The entities called sides1, sides2; inout1 and inout2 were modeled with periodic boundary conditions 

making a continuous loop between them. For the internal velocity field a uniform initial value of 0.14 

m/s was used. Whereas, for the initial velocity values at the walls fixed values of 0 were used. For the 

internal pressure field a uniform initial value of 0 was used. Additionally, the pressure was modeled 

considering a zero-gradient in the walls entities and periodic boundary conditions for the “sides” and 

“inout” entities.  

 

  

Figure 2-Boundary Entities 
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Equation Discretization 

The time discretization was performed using a backwarding difference scheme. Converting the 

derivative time terms to integral terms we have that the linearized form of the backwarding difference 

scheme is given by: 

𝜕

𝜕𝑡
 𝜌𝜑𝑑𝑉
𝑉

=
3(𝜌𝑃𝜑𝑃𝑉)

𝑛 − 4(𝜌𝑃𝜑𝑃𝑉)
𝑜 + 4(𝜌𝑃𝜑𝑃𝑉)

𝑜𝑜

2∆𝑡
 

 

Where the exponents n, o and oo represent the new values, old values and old-old values of the 

discretised term respectively. These values are given for by: 

𝜑𝑛 = 𝜑 𝑡 + ∆𝑡  

𝜑𝑜 = 𝜑(𝑡) 

𝜑𝑜𝑜 = 𝜑 𝑡 − ∆𝑡  

Additionally the variable represents any tensor field, p represents any tensor field for the cell of 

interest P and the variable V represent the control volume. On the other hand the discretization for the 

gradient terms were linearized in integral form using Gauss theorem to the volume integral given by: 

 ∇𝜑𝑑𝑉
𝑉

=  dS𝜑 =  𝑆𝑓
𝑓𝑆

𝜑𝑓  

Where the subscript f is labeling the face of interest in a cell. 

 

Results 

The results of the simulation for the centerline of the middle section of the duct (shown in Figure 3) 

were compared with a DNS simulation performed by Kim et al (1987). The evaluated parameters were 

the mean velocity profile, the viscous stress and the Reynold stress. All the parameters were compared 

using a linear correlation coefficient R2 and plotted against a normalized value of the distance given by 

y/δ. The mean velocity profile was generated using a normalized value by the bulk velocity defined as 






0

1
dyUU in which U  represents de velocity time average. On the other hand, the viscous stress 

was given by 
dy

Ud
v  in which v represent the velocity fluctuation in the y direction.  The Reynold 

stress was given by uv  in which u represents the velocity fluctuation in the x direction. Thus, the 

total shear stress is the sum of the viscous stress and the Reynold stress. Figures 4, 5 and 6 show the 
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comparison between the calculated parameters for the three turbulence models introduced in a 

previous section and the data of the Kim DNS simulation.  

 

  

Figure 3-Centerline of Middle Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-Velocity Mean Profiles for K-one eddy viscosity equation model, Smagorinsky Model, Spalart Allmaras 
Model and DNS Simulation 
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Figure 5-Viscous Stress for K-one eddy viscosity equation model, Smagorinsky Model, Spalart Allmaras Model 
and DNS Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-Reynold’s Stress for K-one eddy viscosity equation model, Smagorinsky Model, Spalart Allmaras Model 
and DNS Simulation 
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DISCUSSION AND CONCLUSIONS 

Although, all the turbulence models give the same level of correlation for the mean velocity profiles, 

visually the best correlated model is the Spalart-Allmaras as can be seen in Figure 4. According to Figure 

4 the k-one equation eddy viscosity model and the Smagorinsky model trend to underestimate the 

values of velocity in the inner layer y/ <0.1. Additionally, this models overestimates the velocity in the 

outer layer (in this case y/ >0.2) up to the location y/where it starts to underestimate the velocity 

with an almost-horizontal slope curve.  

In Figure 5, is shown that for the viscous stress parameter the Spalart-Allmaras model is the best 

correlated with a correlation coefficient of 0.90. However, the values of viscous stress are overestimate 

for the three turbulence models inside the inner layer. Additionally, in the Spalart-Allmaras model, after 

pass the inner layer the correlation improves in contrast  to the other two models in where the viscous 

stress keep overestimate until a value of  y/

In Figure 6, is shown that for the Reynold’s stress parameter the Spalart-Allmaras model is also the best 

correlated with a correlation coefficient of 0.72. Although this correlation coefficient represents that the 

model is not highly correlated with the DNS simulation is still a good reference value to consider the 

Spalart-Allmaras a good LES approximation in comparison with the two other models. In contrast to the 

behavior of the results for the viscous stress, the Reynold’s stress is underestimating in the inner layer. 

The latter means that the expected correlation for the total shear stress will be better than the two 

separate components of it (viscous and Reynold’s stress).  

From the discussion above is concluded that the best LES turbulence model for the duct problem in 

OpenFOAM is the Spalart-Allmaras. The Spalart-Allmaras model (1994) is a one equation model 

developed for aerodynamics applications including boundary layer separation.  The one equation model 

is given by: 

𝜕𝑣 

𝜕𝑡
+ 𝑢𝑗

𝜕𝑣 

𝜕𝑥𝑗
= 𝑐𝑏1 1 − 𝑓𝑡2 𝑆 𝑣 −  𝑐𝑤1𝑓𝑤1 −

𝑐𝑏1
𝜅2

𝑓𝑡2  
𝑣 

𝑑
 
2

+
1

𝜎
 

𝜕

𝜕𝑥𝑗
 (𝑣 + 𝑣 )

𝜕𝑣 

𝜕𝑥𝑗
 + 𝑐𝑏2

𝜕𝑣 

𝜕𝑥𝑖

𝜕𝑣 

𝜕𝑥𝑖
  

Where the terms are defined by: 

 Turbulent viscosity model: 𝜇𝑡 = 𝜌𝑣 𝑓𝑣1  with  𝑓𝑣1 =
𝜒3

𝜒3+𝑐𝑣1
3  and 𝜒 =

𝑣 

𝑣
. 

 𝑆 = Ω +
𝑣 

𝜅2𝑑2
𝑓𝑣2,where Ω is the magnitude of vorticity , d is the distance from the field point to 

the nearest wall and 𝑓𝑣2 = 1 −
𝜒

1+𝜒𝑓𝑣1
. 

 𝑓𝑤1 = 𝑔  
1+𝑐𝑤3

6

𝑔6+𝑐𝑤3
6  

1/6

 where 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟) and 𝑟 = 𝑚𝑖𝑛  

𝑣 

𝑆 𝜅2𝑑2
, 10 . 

 𝑓𝑡2 = 𝑐𝑡3exp⁡(−𝑐𝑡4𝜒
2). 

 Finally the constants are: cb1=0.135, =2/3, cb2=0.622, =0.41, cw2=0.3, cw3=2, cv1=7.1, ct3=1.2, 

ct4=0.5 and 𝑐𝑤1 =
𝑐𝑏1

𝜅2
+

1+𝑐𝑏2

𝜎
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