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Abstract

We consider the steady motion of a twinning dislocation in a Frenkel-Kontorova lattice with
double-well substrate potential that has a non-degenerate spinodal region. Semi-analytical trav-
eling wave solutions are constructed for the piecewise quadratic potential, and their stability and
further effects of nonlinearity are investigated numerically. We show that the width of the spinodal
region and nonlinearity of the potential have a significant effect on dislocation kinetics, reducing
the velocity gaps where there is no steady motion and lowering the propagation stress. We also
conjecture that a stable steady propagation must correspond to an increasing portion of the kinetic

relation between the applied stress and dislocation velocity.

PACS numbers: 64.70.K-, 63.90.+t, 61.72.Bb



I. INTRODUCTION

Martensites can accommodate very large deformations (up to 10% strain in ferromagnetic
shape memory alloys) due to the phenomenon of twinning.! A planar twin boundary sepa-
rates two symmetry-related variants of the same crystalline phase. When external loading is
applied, the atoms on one side of the twin boundary undergo a shear deformation relative to
the other. On the microscopic level, a twin boundary propagates via the motion of twinning
dislocations (also known as steps or ledges) along the boundary.2* Lattice dynamics of a
twinning dislocation thus largely determines the macroscopic kinetics of a twin boundary.?

Since the mid-sixties, a lot of progress has been made in understanding dislocation dy-
namics on the lattice level (see Refs. 5-12 and references therein, as well as Refs. 13, 14 and
other related work reviewed in Ref. 15). Nevertheless, a number of questions remain open.
In particular, existing lattice models generally predict that a dislocation cannot propagate
steadily through an underdamped lattice with a velocity below a certain threshold. How-
ever, the influence of the nonlinearity of the elastic interactions on this threshold and on the
existence and size of other “forbidden” velocity intervals is not well understood. It is the
focus of this work.

To model the motion of a twinning dislocation, we use a variant of the well-known Frenkel-
Kontorova (FK) model.'® The model was originally formulated for slip dislocations in crystals
but its various modifications have since been used to model a whole spectrum of physical and
biological phenomena, including twinning, dry friction, surface reconstruction, proton con-
ductivity of hydrogen-bonded chains, the motion of domain walls in ferroelectrics, Josephson
junctions and DNA dynamics and denaturation.!® The model consists of a linearly elastic
chain of particles placed in a nonlinear substrate potential. The linear nearest-neighbor
interactions model interatomic interactions on the twin plane, and the nonlinear substrate
potential accounts for the interactions with other atoms. In general, the substrate potential
is periodic, with alternating slip and twinning energy barriers, but since in martensitic mate-
rials such as Cu-Al-Ni the energy barriers for slip are much higher than those for twinning,®
it suffices to consider a double-well potential. The wells correspond to two different variants
of the martensite phase. A twinning dislocation is represented by a displacement profile
that connects equilibrium states in two different wells. Under a force (representing an ex-

ternal loading of the crystal) applied to each particle, the dislocation is either pinned or



propagates through the lattice. No internal damping is introduced, so the discrete system is
Hamiltonian. Although the FK model is one-dimensional, it successfully captures the essen-
tial features of the dislocation dynamics and is more transparent than its higher-dimensional
counterparts.

A steadily moving dislocation is a traveling wave solution of the governing equations. As
first shown in Ref. 6, exact analytical solution can be found for a two-parabola (biquadratic)
substrate potential. In this case the nonlinearity is concentrated at one point where the
two convex parabolae meet, and the traveling wave equation can be solved using Fourier
transform. For smoother potentials, the existing literature mostly relies on the results of
numerical simulations and continuum and active point approximations that are valid only
within certain velocity intervals and parameter regimes.''7 In this paper we consider a three-
parabola substrate potential where the two convex parabolas (variant wells) are connected
by a concave parabola that represents a non-degenerate spinodal region. Using the approach
described in Ref. 12 in the context of a high-velocity screw dislocation motion, we find the
traveling wave solution at a given velocity as a convolution of a certain shape function and
the already available exact solution of the problem with a biquadratic potential. The shape
function can be found by solving the eigenvalue problem for an integral operator whose kernel
is again determined by the solution of the two-parabola problem. Recently this approach
was used to analyze the role of spinodal region in a related quasilinear problem for a phase-
transforming nonlinear chain.!® In the context of FK model, some elements of this solution
procedure were first introduced in Ref. 10, but the shape functions were only found using
the continuum approximation and did not in general satisfy the consistency conditions of
the discrete problem.!?

Using the constructed traveling wave profiles, we study the influence of the width of
the spinodal region on the kinetic relation between the applied stress and the dislocation
velocity. We find that a sufficiently wide spinodal region substantially changes the kinetics
of a twinning dislocation. As in Refs. 18 and 12, the obtained solutions feature smaller
amplitude of the lattice waves emitted by the moving front and a smaller driving force. This
results in the existence of small-velocity solutions with lattice waves of different wave lengths
emitted both ahead and behind the moving dislocation. The velocity intervals containing
such solutions are separated by wvelocity gaps where no traveling wave solutions exist. These

gaps become narrower, and the lowest propagation speed becomes smaller, as the width



of the spinodal region is increased. In contrast, in the biquadratic case (or when spinodal
region is narrow enough) traveling wave solutions exist only at relatively large velocities and
have a single oscillation mode propagating behind the dislocation.® The only velocity gap in
this case is between the zero speed and the lowest propagation speed.

To verify the obtained solutions and study their stability, we conduct a series of numerical
simulations of the initial value problem for the original discrete system. We use either
piecewise constant displacement or the constructed solutions as initial conditions. As in
numerical simulations in Refs. 17, 10 (which include damping), we see that the dislocation
does not propagate until the applied stress reaches a certain threshold value op. This
value is lower than the Peierls stress op below which equilibrium states exist and are locally
stable. Above o7 the numerical solution around the front converges to one of the constructed
traveling waves, suggesting its stability. Since the numerical simulations only fall onto the
increasing portions of the kinetic curve, we conjecture that this is a necessary (but not
sufficient) condition for stability of steady dislocation motion. In the biquadratic case this
is consistent with the hypothesis in Ref. 6 that only traveling waves above the minimum
stress (called dynamic Peierls stress) of the highest-velocity kinetic segment are stable. As
the width of the spinodal region is increased, the speed of the first stable traveling wave
decreases. When the spinodal region is wide enough, there are two or more stable segments
of the kinetic relation that correspond to different number of radiative modes emitted by the
moving front. These segments are separated by velocity intervals where there is no stable
steady propagation.

To access the effect of full nonlinearity, we consider a one-parameter family of smooth
functions that approximate the three-parabola potential at small values of the parameter.
Numerical simulations with these potentials show that velocity gaps persist. Thus the gaps
are not an artifact of piecewise quadratic potentials but rather a generic feature of the
discrete model. At large parameter value (strong nonlinearity) the lowest propagation speed
becomes notably smaller, reducing, but not eliminating, the first velocity gap. This indicates
that the nonlinearity itself, and not only the width of the spinodal region, determines the
lowest propagation speed.

Overall, we find that nonlinearity in general and a sufficiently wide spinodal region in
particular reveal a more complex structure of stable solutions of the FK model than the one

suggested by the biquadratic model. In particular, we show that a twinning dislocation can



move steadily at speeds that are “forbidden” in the biquadratic case and emit waves in both
directions. The combination of semi-analytical calculations and numerical simulations allows
us to see features of the discrete kinetics, such as velocity gaps and the detailed structure of
emitted lattice waves, that are easy to miss if one relies on numerical simulations alone.
The rest of the paper is organized as follows. The model is introduced in Sec. II, and
the traveling wave solutions for the three-parabola potential are constructed in Sec. III.
In Sec. IV we discuss solution admissibility, obtain the kinetic relation and analyze their
dependence on the width of the spinodal region. The equilibrium states are discussed in
Sec. V. In Sec. VI we present the numerical simulations that suggest stability of some of
the obtained solutions. The effect of nonlinearity is further analyzed in Sec. VII, and the

concluding remarks can be found in Sec. VIIL.

II. THE MODEL

Consider an infinite Frenkel-Kontorova chain of particles of mass m connected by massless
linear springs to each other and interacting with an external substrate potential ®(u,,), where
un(t) is the displacement of nth mass from its reference position at time t. We assume that
the particles can move only along one direction and that an external stress o, acting in
the same direction, is applied to each mass. Let € denote the reference length of the linear
springs and p = m/e be the mass denisty. The total energy of the system is given by

= [1 o 1 Un+1 — Un 2
E= Z [505% + §Es<T> +&(®(up) — oun) |,

n=—oo

and the equations of motion are
. F ,
petiy, — ;(unﬂ — Uy + Up—1) + (P (u,) — o) = 0.

Here 4, and i, denote the first and second derivatives of u,(t), respectively, and E > 0 is
the elastic modulus of the harmonic nearest-neighbor interactions. To model twinning, we
assume that the substrate potential has two symmetric wells that represent two different
variants of the martensite phase. The wells are located at u = £a and have the local elastic

modulus G

®'(+a) =0, G =9"(+a) > 0.



We now introduce the dimensionless variables

-t [p _ Uy  _ o - ®
t=—|=, Up=—, 0=—, &=— 1
eVE " a’ aE’ aFE (1)
and the dimensionless parameter
= 2
& )
measuring the relative stiffness of the nonlinear interaction with the substrate. In terms of
the new variables, with the bars dropped, the dimensionless equations of motion are

Ty, = Uns1 — 2Up + Up_1 + (0 — D' (uy)). (3)

To obtain semi-analytical results, we will further assume that the substrate potential is

piecewise quadratic, with a continuous piecewise linear derivative

u+1, u< —0/2
'(u) = (1-2/6)u, —6/2<u<d/2 (4)
u—1, u>0/2,

The two linearly increasing segments correspond to the two symmetric quadratic wells of
®(u), connected by a downward parabola (|u| < 6/2) that represents the spinodal region of
width ¢ such that

0<d<2.

III. TRAVELING WAVE SOLUTIONS

To model a steadily moving twinning dislocation, we seek solutions of (3) in the form of
a traveling wave:

un, =u(§), &=n-Vt. (5)
Substituting this ansatz in (3), we obtain the advance-delay differential equation
VA" = u(€ +1) — 2u(§) + u(€ = 1) + p(o — @' (u(€)))- (6)

In what follows, we will assume that ®'(u) is given by (4). We are interested in finding

solutions of (6) subject to the following conditions at infinity:

(u(€)) >0 F1 as&— +oo. (7)
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Here 0 F 1 are stable equilibrium solutions of (6), and the angular brackets denote the
average value of the displacement because we expect the Hamiltonian discrete system to
develop oscillations. The average is taken over the largest oscillation period.

To solve the problem (6), (7) for given V' > 0 and find the corresponding o = o(V), we
follow the approach of Ref. 12, recently applied to a related quasilinear problem in Ref. 18.
Since the details of the solution procedure can be found in Refs. 12 and 18, we only outline
the main steps. First, we assume that u () takes values inside the spinodal region (|u| < §/2)
when £ is in the interval || < z, for some z > 0 to be determined. We further assume that
for £ < —z we have u > 6/2 (second well) and for £ > z we have u < 6/2 (first well). Then

we can write

¥u(€) = u©) - [ hs)20(s) - s, ®)

—z

where () is a unit step function, and we introduced an unknown shape function A(s) which
is zero outside the interval [—z, z] and is normalized so that

/ " h(s)ds = 1 9)

z

Thus we obtain

z

VA" + (p+ 2u(é) —u(+1) —u( - 1) =plo -1+ 2/ h(s)0(s — £)ds). (10)

—Z

For comnsistency, we must require that in addition to (10) and (7), the solution satisfies the

conditions
() =-2, u-2)="2 (11)
u(z) = 5 u(—z) = 5
and the inequalities
)
)
w@) <5, el <z (12
)

Applying Fourier transform to (10) and using the convolution theorem, one can show (see

Ref. 18 for details) that

du z
- / h(shale = 5)ds, (13)



where the kernel is the negative derivative of the solution u°(¢) of the problem with bi-

quadratic potential with a degenerate spinodal region (§ = 0):

du®

ﬂ@z—gz- (14)

At the same time, (4) and (8) imply that for |£| < z

) = (1-2 )@ =u©+ 2160

and thus u/(§) = —0h(§) for |£| < z. Together with (13), this yields the integral equation

[ nsyate - 9)is = dnce), el <= (15)

Thus the shape function k() is the eigenfunction of the integral operator in the left hand
side of (15) with the kernel (14) associated with the eigenvalue d. The eigenvalue problem
is similar to the the ones obtained in Ref. 12 for the uniform motion of a screw dislocation
and in Ref. 18 for the motion of a phase boundary (with different kernels) and was derived
in the same way.

The solution for any nonzero § is thus obtained from the solution u°(§) for the case of
§ = 0 (biquadratic potential). The latter can be found exactly using Fourier transform® (see

also Refs. 17, 11 for more details). Performing these calculations for our case, we obtain

. 5 k€
o’ —1-2u —, >0
kLg(k,V
W(6) = reirf) Rl V) (16)
o +1+2p Y s, €<,
kes—(v) kLk(k, V)
where
1
0=2 -, 17
=2 D LT "
keN(V)
Here
M*(V) ={k: L(k,V) =0, Imk 2 0} |_JN*(V) (18)
are all roots of the dispersion relation
k
L%J3:u+4m95—v%2 (19)
contributing to the solution on either side of the front, and
N*(V)={k: Lk, V) =0, Imk =0, kLy(k,V) = 0} (20)
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denotes the sets of real roots distributed according to the radiation condition®!'. Note that
the applied stress o in (17) is determined entirely by the real roots, which correspond to
phonon waves that carry energy away from the moving front (radiative damping). As shown
in Ref. 11, one can derive (17) by accounting for the energy fluxes carried by these waves.
Knowing the solution for § = 0 and a given V' > 0, we determine the kernel of the integral

operator in (15),

2ui Y] et £E>0

i —_— >
Lk (k: V)

q(§) = hEMTV) cike (21)
—2ui Y, ———, £<0,

rer= vy Le(k, V)’
and find the unknown shape function h(¢) and its support [—z, z] using a numerical ap-
proximation of (15), as described in the next section. The solution for § > 0 is then given

by

¥4

u(é) = o — o’ +/ h(s)u’(& — s)ds, (22)

—Zz

where the applied stress
1 z
o=0"— 5 / h(s)(u’(z — s) + u’(—=z — 5))ds (23)

is found by using the switch conditions (11).

IV. ADMISSIBLE SOLUTIONS AND KINETIC RELATIONS

Since solutions of the problem with biquadratic substrate potential (§ = 0) serve as
the foundation for the construction of the traveling wave solutions in the case of a non-
degenerate spinodal region, we start by briefly reviewing their properties. The reader is
referred to Refs. 6, 17, 11 for additional details.

For each non-resonant velocity V' > 0, one can calculate the traveling wave solution (16)
and compute the corresponding applied stress o using (17). The resulting functional relation
o = o(V), often referred to as a kinetic relation, is shown in Figure 1 for the case of y = 1.
The relation consists of disjoint segments separated by resonance velocities, i.e. values of V
such that L(k,V) = 0 and Li(k,V) = 0 for some real k. A typical solution above the first
resonance (V' = 0.5) is shown in grey in Figure 2. One can see that a moving dislocation
emits phonon oscillations behind it, with the wave number corresponding to the single real

root of (19). As velocity decreases below the first resonance (see the grey curve at V = 0.2 in
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0.5 1.0 15 %

FIG. 1: Kinetic relation in the case of the biquadratic potential (§ = 0). Only a few segments are

shown at low velocities. Here p = 1.

FIG. 2: Displacement profiles at 6 = 0 (grey curves) and § = 0.8 (black). At § = 0 the traveling

wave solution at V = 0.5 is admissible, while the one at V' = 0.2 is not. At § = 0.8 both solutions

are admissible. Here y = 1.

Figure 2), more oscillation modes appear, and the formally obtained u°(£) features phonon
emission on both sides. However, a closer inspection reveals that this “solution” is in fact
inadmissible and should be removed because it violates the assumption that u%(£) < 0 for
& > 0. In fact, all segments of the kinetic relation below the first resonance do not contain
any admissible traveling waves and thus need to be removed, while the remaining large-
velocity segment contains admissible solutions above a certain threshold velocity!'! (in the
case of u = 1, V > 0.35). This implies non-existence of traveling wave solutions with the

velocity lower than the threshold value in the § = 0 case. Nevertheless, as we will see, some
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of the solutions that are non-admissible in this case still play an important role because they
are used to construct admissible low-velocity solutions when the spinodal region is no longer
degenerate.

Consider now potentials with nonzero §. The procedure used to find the traveling wave
solutions and obtain the kinetic relations in this case is as follows. After computing the
kernel (14) of the integral operator in (15) from the solution for § = 0 case for given V,
the integral equation is approximated using the trapesoidal rule for a finite z, so that the
eigenvalue problem reduces to finding z and h such that the given J is an eigenvalue of
the resulting matrix in the numerical approximation, and the vector h is the corresponding
eigenvector that approximates the eigenfunction A(£). In some cases, there are two values of
z but our calculations show that at most one value yields admissible solutions that satisfy
the constraints (12). Once z and h are found, the trapesoidal approximation of the integrals
in (22) and (23) is used to compute the solution u(£) and the applied stress o.

The resulting displacement profiles at 6 = 0.8 are shown by black curves in Figure 2. The
main effects of § > 0 are the phase shift, the decreased amplitude of the oscillations and
the lower value of the applied stress. These were also observed and explained in Ref. 12.
The phase shift occurs due to the continuous particle acceleration at 6 > 0 (as opposed to
the discontinuity at ¢ = n/V when § = 0), which results in lower velocities and thus longer
time needed to reach the maxima of oscillations. Meanwhile, wave modulation during the
finite time interval [n — z/V,n + z/V]| when ®(u,,) for the well-switching nth particle has
the negative slope leads to the diminished contribution of the short-wave oscillations to the
energy radiation (and thus lower applied stress).

As a result of the smaller wave amplitude, some velocities for which solutions were inad-
missible at § = 0 may in fact lead to admissible solutions at sufficiently large nonzero . For
example, the solution at V' = 0.2 is admissible at § = 0.8, while the corresponding solution
for the biquadratic potential is not. Thus, as in Ref. 18, we conclude that the main feature
of the dynamics with a smoother substrate potential is the existence of traveling waves at
least at some small velocities away from the resonances.

Figure 3(a) shows the half-width z of the transition region as the function of V' for § = 0.4,
0.8 and 1.2. One can see that z increases with J, as expected. Note also that along the
highest-velocity segment (above the first resonance) z initially decreases as V' grows (more

rapidly at larger 0), reaches a minimum at a moderately large velocity and then increases.
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FIG. 3: (a) The half-width z of the transition region as the function of V for different 6. (b) The
corresponding kinetic relations, shown together with the one for § = 0. Only a few segments are

shown at low velocities. Here p = 1.

The corresponding kinetic relations, along with the one for § = 0 (in grey) are shown in
Figure 3b. Note that resonances, while still present, become much less pronounced as ¢
increases, while the applied stress decreases at each V. As remarked above, some velocity
intervals around the resonances need to be removed for each § (and the entire low-velocity
interval below a certain speed needs to be removed when § = 0) because they do not contain
admissible traveling waves. These intervals get smaller as ¢ increases and more low-velocity
solutions become admissible.

As V tends to infinity, the kinetic relation approaches the spinodal value o = 1 —
J, the maximum value for which there exist equilibrium solutions of ®'(u) = o in two
different wells. We remark that at sufficiently large velocities (V' > 1) the amplitude of the
waves propagating behind becomes so large that the oscillations enter the spinodal region,
violating the constraint u(§) > §/2 at £ < —z that was assumed to obtain solutions. The
corresponding solutions are thus technically not admissible, although, as we will see, they

are still very close to the displacement profiles obtained numerically.

V. LATTICE TRAPPING AND THE PEIERLS THRESHOLD.

In addition to dynamic solutions, there are trapped equilibrium states (V' = 0) governed

by the system of difference equations

Ups1 — 2Up + Up_1 + (o — @' (uy,)) =0 (24)
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Solutions of (24) can be found, for example, in Ref. 19. Here we merely summarize the
results for completeness using our notation.

If no particles have displacement in the spinodal region, the problem is solved the same
way as in the case of biquadratic potential considered in Ref. 20. The equilibrium solutions

with a single dislocation that has larger displacement behind are given by

o—1+ Ay7, n>0
Up = 2 (25)
oc+1+(A-2)y?, n<O,
with
A Vitp— i
Va+p
and

y1,2:1+§ﬂ:4\/4+u-

Solutions (25) exist if and only if the applied stress is inside the trapping region |o| < op,

where

OP:\/4+/L_§

is the Peierls stress. At stresses outside the trapping region only dynamic solutions exist.

Vi 0 (26)

Since the Peierls stress must be nonnegative, the obtained equilibrium solutions only exist
for suffficiently narrow spinodal regions, i.e. when
0<6< M
T T VAt
For larger ¢, equilibria must have at least one particle with spinodal displacement. The
trapped states in the case of a single particle in the spinodal region are again given by (25)

but with
200y
6((2+ pyr —2) — 2uy,’

A=1+
and the Peierls stress becomes

(1 —y2—6/2)(0((2+ )y — 2) — 2uy:)
2u(1 —y1) +6((2 + wyr — 2) '

Notice that the dependence on ¢ is no longer linear, as it was for (26). These solutions exist

(27)

op =

whenever

2/ f—
\/mﬁéﬁ\/l_ﬁ( 4+ p—
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FIG. 4: Dependence of the Peierls stress on the width § of the spinodal region at 4 = 1. Here k

denotes the number of particles in the spinodal region in the corresponding trapped equilibria.

Figure 4 shows the dependence of Peierls stress on the width ¢ of the spinodal region for the
cases of zero and one spinodal particles. Note that there is no lattice trapping (op = 0) at

6 =2/p/vVAi+pand 6 = /u(vV/A+p—/B). At 6> /u(vA+ p— /p) we need to insert

two particles in the spinodal region, then three, etc.

VI. STABILITY OF THE TRAVELING WAVES: NUMERICAL SIMULATIONS

To access stability of the obtained traveling waves and verify the above calculations, we
conducted a series of numerical simulations of the Riemann initial value problem with the
initial displacement

oc+1, n<ng
un(0) =< s, n = ng (28)

o—1, n> ny,
where 0 < s < /2, and zero initial velocity. For a given applied stress o, we solved the
system (3) of ordinary differential equation for a truncated lattice with N masses (typically
N = 600 but a longer chain is used if the simulation runs for a long time, in order to avoid re-
flection of elastic waves from the domain boundaries), subject to the above initial conditions
and the corresponding boundary conditions. After a sufficiently long time (usually ¢ = 200
but longer for small-velocity solutions), the solution aproaches an attractor corresponding

to either a stationary dislocation (zero velocity) or a periodic front motion with a steady
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FIG. 5: Results of the numerical simulations (black dots) with initial displacement (28) and zero
initial velocity, shown together with the kinetic curves for (a) 6 = 0, (b) § = 0.4, (c) 6 = 0.8 and (d)
d =1.2. Here 4 =1 and in (28) s = 0 in (a) and s = 0.1 in (b-d). The thick vertical segment along
V = 0 axis indicates the trapping region. The grey dots in (d) are the results of the numerical
simulations with the corresponding traveling wave taken as the initial condition. Inserts zoom in

on the corresponding rectangles near the origin.

period T, yielding the velocity V' = 1/T. The velocity is averaged over the last ten periods.

Figure 5 shows the results for different values of ¢ and compares the numerical results
with the semi-analytical kinetic curves. Thick vertical segment along V = 0 axis indicates
the trapping region 0 < o < op in each case. For sufficiently small o the long-time solution
corresponds to an equilibrium state (V' = 0) superimposed with elastic waves propagating
away from the trapped dislocation. Once o exceeds a certain threshold value or (which
is below the Peierls stress op), the front starts moving with a finite velocity V, and the

solution around the front approaches the traveling wave solution we constructed with the
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FIG. 6: (a) Displacement profiles at t = 0 and ¢t = 600 for the numerical simulation at § = 0.8,
@ =1 and o = 0.011. (b) The numerical solution (dots) around the dislocation front compared to

the traveling wave solution (solid curve) with the same velocity, V' = 0.162.

same velocity. Note that this transition is accompanied by a finite jump in velocity over
a very small change in the applied stress. For example, at § = 0.4, the stress ¢ = 0.068
yields V' = 0 but at o = 0.069 we obtain V = 0.265 (see Figure 5b). In this case and at
d = 0 (Figure 5a) the jump is from zero velocity to a solution on the first (higher-velocity)
segment of the kinetic relation. But at 6 = 0.8 (Figure 5¢) and 6 = 1.2 (Figure 5d) the
numerical solutions instead approach a traveling wave along the second kinetic segment,
with velocities V' = 0.162 (¢ = 0.011) and V = 0.157 (¢ = 0.003), respectively. See
Figure 6, where the numerical solution at § = 0.8 that yields V = 0.162 is compared to
the corresponding traveling wave solution. Recall that these solutions feature a dislocation
emitting oscillations in both directions and that there are no admissible traveling waves
at these velocities when § = 0. As we increase o, the numerical results continue to follow
the corresponding kinetic curves. In the case of § = 0.8 and § = 1.2 the second kinetic
segments is followed for a while, and then there is another velocity jump, to the first kinetic
segment. Specifically, at 6 = 0.8 the jump is from V = 0.215 at ¢ = 0.022 to V = 0.269
at 0 = 0.023 (see the insert in Figure 5¢). In case of § = 1.2, the jump is even bigger,
from V' = 0.16 at 0 = 0.008 to V = 0.559 at o = 0.009 (see the black dots in the insert in
Figure 5d). However, numerical simulations with the corresponding traveling waves taken
as initial conditions instead of (28) suggest stability of all solutions along the first kinetic
segment starting with its minimum point, V' = 0.45 (see the grey dots in the insert in

Figure 5d). Meanwhile, solutions along the portion of the segment where o is decreasing
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appear to be unstable: for example, when the traveling wave with V = 0.35 is used as the
initial condition, the numerical solution converges to the traveling wave with V' = 0.489,
which is located on the increasing portion of the kinetic segment at the same applied stress.

In general, our simulation results suggest the following

Conjecture. A necessary (but not sufficient) condition for stability of the traveling wave
solution of (3) with velocity V' is that it is located on the increasing portion of the kinetic

curve: o'(V) > 0.

We emphasize that the above condition is not sufficient. For example, at § = 0.8 the
traveling wave solution with V' = 0.24 is admissible and located along the increasing part of
the second segment of the kinetic curve (see the insert in Figure 5¢). Using it as an initial
condition, however, we obtain the traveling wave with V' = 0.336, which is located along the
increasing portion of the first kinetic segment. The necessity of the condition ¢'(V) > 0 is
suggested by the observation that each traveling wave solution obtained via the numerical
simulation is located on an increasing portion of the kinetic relation. Proving this conjecture
is not an easy task even in the biquadratic case where stable dynamic solutions are located
only on the higher-velocity segment of the kinetic relation. In this case a proof of stability
of traveling waves with sufficiently high velocities can be found in Ref. 21, along with some
remarks about extending these results to smoother potentials. Unfortunately, the proof does
not extend to the entire conjectured stability interval, since it relies on positivity of Green’s
functions, and in the conservative case these functions change sign at speeds below a certain
value.?!

As remarked above, the threshold value or beyond which the dislocation is no longer
static in the Riemann simulations is below the Peierls threshold op, meaning that the initial
conditions for ¢ > o7 are in the basin of attraction of the solutions with a moving dislocation.
Nevertheless, the equilibrium states remain locally stable and coexist with the dynamic

solutions for oy < o < op'’.
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FIG. 7: The first derivative of the potential ®.(u) defined in (29) for € = 0 (grey curve) and ¢ = 0.1
and 0.25 (black curves). Here § = 0.8 and pu = 1.

VII. FULLY NONLINEAR POTENTIALS

In order to obtain semi-analytical solutions, we have assumed that the potential ®(u) (for
d > 0) has piecewise linear continuous first derivative and piecewise quadratic discontinuous
second derivative. To access the effect of full nonlinearity on the Frenkel-Kontorova kinetics,
for given 6 > 0 we now consider a family of fully nonlinear potentials ®.(u) with the second

derivative given by

12 u? — &
O (u) = M(l -3 + - arctan = 4 ) (29)

In the limit € — 0 ®”(u) approaches the piecewise constant discontinuous second derivative
®"(u) of the potential defined by (4). At small ¢ ®.(u) approximates the piecewise linear
function ®'(u) by smoothing its corners; see Figure 7.

The results of the Riemann simulations using the fully nonlinear potentials with ¢ = 0.1
and ¢ = 0.25 are shown in Figure 8, where the kinetics for the piecewise linear case (¢ = 0,
grey curve) is also included for comparison. In each case we see two dynamic branches. The
threshold stresses beyond which the dislocation in the solution of the Riemann problem is
no longer stationary are or = 0.011 for ¢ = 0, o = 0.0104 for ¢ = 0.1 and o7 = 0.0001
for £ = 0.25. As ¢ increases, the stress at each velocity decreases, which is consistent with
the fact that the limiting spinodal stress also becomes lower. Observe that the velocity gaps

between first and second kinetic branches are nearly identical in all three cases, showing
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FIG. 8: Results of Riemann simulations at € = 0.1 and 0.25 (black curves), shown along with the

results for ¢ = 0 (in grey). Insert zooms in on the rectangle near the origin. Here § = 0.8 and

=1

that it is not an artifact of piecewise linearity but rather an intrinsic feature of the discrete
model. Note, however, that while the lowest nonzero velocity is nearly the same for piecewise
quadratic (¢ = 0) and “almost piecewise quadratic” (¢ = 0.1) potentials (V = 0.16 in
both cases), it becomes significantly lower (V' = 0.077) at ¢ = 0.25, reducing (though not
eliminating) the first velocity gap. This suggests that existence and stability of low-velocity
traveling wave solutions are strongly influenced by the nonlinearity of the substrate potential
and not only by the width of the spinodal region (which only slightly increases with ). Recall
that in the case of the biquadratic potential (¢ = § = 0) the lowest nonzero velocity in the
Riemann simulation was V' = 0.424, and only the higher-velocity kinetic branch contained

stable solutions.

VIII. CONCLUDING REMARKS

We studied the effect of nonlinearity of the elastic interaction potential on the motion of a
twinning dislocation in the framework of FK model. Using a piecewise quadratic interaction
potential potential with non-degenerate spinodal region, we showed that the width of the
region has a significant effect on the kinetics of the dislocation and the existence and stability
of steady motion at low velocities. As the width of the spinodal region is increased, the
lowest propagation speed becomes smaller and eventually slowly moving dislocations that

emit waves in both directions become admissible. We presented numerical simulations that
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suggest stability of some of the obtained solutions and conjectured that a necessary condition
for stability is that the solution is located on an increasing part of the kinetic relation. Both
numerical results and analytical calculations show the existence of velocity gaps in which
there is no steady motion. Depending on the width of the spinodal region, these gaps can
be much narrower than predicted by the biquadratic model. Numerical simulations with
smooth potentials show that the gaps persist but may be further reduced by a stronger
nonlinearity. We conclude that the velocity gaps are a generic feature of the underdamped
discrete model. The gaps are completely eliminated only when unrealistically high internal
damping is included into the model.!%20

Although we presented our results in the context of a twinning dislocation motion, the
main conclusions apply more generally to a variety of physical and biological processes
that can be described by the FK model or related higher-dimensional lattice models. To
extend our calculations to a periodic potential one needs to impose additional constraints
on the values of the displacement in each well.2® This will yield an upper bound for velocity
beyond which the constructed solutions are no longer valid because the large amplitude of
oscillations behind the front violates the constraints. However, the low-velocity behavior
of solutions connecting two neighboring wells will remain the same. Of course, a periodic
potential also makes possible solutions that connect non-neighboring wells (e.g. 4m-kinks!?),
and such solutions are clearly beyond the scope of this work.

It remains unclear whether there are any periodic attractors (not of the traveling wave
form) with average velocity inside one of the velocity gaps. If such solutions do exist and
are stable, the generic piecewise constant initial conditions we used do not appear to be in

their basin of attraction.
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