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Abstract. This article shows that, so called, general Green-Taylor solutions, also called Taylor
solutions or eddy solutions of the 2d Navier Stokes equations are also exact solutions to approximate
deconvolution models of turbulence. Thus these special structures in flows exist as exact features in
the models studied and their persistence / transient behavior is exactly determined by their stability
not by the effects of modelling or truncation errors.
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1. Introduction. Consider the 2d Navier-Stokes equations1 (NSE) under 2π
periodic boundary conditions: for Ω = (0, 2π)2, t > 0

ut + u · ∇u− ν△u+∇p = 0 and ∇ · u = 0 (1.1)

One fundamental exact solution of (1.1) is the Green-Taylor vortex. In the simplest
case, it is an array of signed vortices which decay in place as t increases. These
have been used as a test problem in CFD, e.g., Chorin [Chorin68], Kim and Moin
[KM68], Brachet [Brachet91], Orszag [Ors74] (and many others since) and have been
used to explore the analytic structure of some turbulence models by Berselli [B05]
(a remarkable and interesting paper) and Barbatto, Berselli and Grisanti [BBG07].
In this note we follow this latter approach and use general Green-Taylor vortices
of the NSE, also called eddy solutions by Walsh [Walsh92] and Taylor solutions by
Berselli [B05], and Barbatto, Berselli and Grisanti [BBG07] to explore similarly when
a relatively new approach to turbulence models can replicate these fundamental vortex
structures.

First we recall from Walsh [Walsh92] (see also Berker’s classic article [Berker63])
the definition of Taylor / eddy solutions of the NSE.

D��������� 1.1. Let φ(x) be 2π periodic and satisfy

−△φ = λφ,∇ ·φ = 0. (1.2)

Then

u(x, t) = e−νλtφ(x)

with pressure p satisfying

∇p = −u · ∇u

is a Taylor solution / eddy solution of the NSE.
Walsh [Walsh92] showed that for such a u, ∇× (u · ∇u) = 0 and thus such a p

exists with (u, p) satisfying (1.1). We note that 3d generalizations, corresponding to
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1The usual abbreviations: NSE = Navier-Stokes equations, CFD = Computational Fluid Dy-
namics, LES = Large Eddy Simulation, ADM = Approximate Deconvolution Model.
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viscous extensions of abc (Arnold-Beltrami-Childress) flows, have been given by Ross
Ethier and Steinman [ES94].

R���� 1.2. The construction of Taylor / eddy solutions can begin with scalar
eigenfunctions of the Laplacian. As noted by Walsh [Walsh92] if ψ is 2π periodic and
satisfies

−△ψ = λψ

then φ = (ψ
x2
,−ψ

x1
) satisfies (1.2). All the eigenvalues of this problem are given by

λ = n2 +m2, where n,m ∈ N

The most commonly seen example is

λ = n2 and ψ = cos(nx1) cos(nx2).

For this choice, u(x, t) consists of a checkerboard / rectangular array of +/− vortices
which decay in place as t→∞. Walsh [Walsh92] has shown that much more intricate
spacial patterns occur when

λ = n2 +m2 = k2 + l2, where n,m 	= k, l.

Walsh [Walsh92] gives the example

λ = 32 + 42 = 52, and ψ =
1

4
cos(3x1) sin(4x2)−

1

5
cos(5x2)− 15 sin(5x1). (1.3)

We prove herein in Section 2 that Taylor / eddy solutions of the NSE are also exact
solutions of the general Approximate Deconvolution Model (ADM ) of turbulence (2.1)
below, proving that ADMs ’ structure allows persistence of a large class of special
solutions of the NSE. The spacial structure of the ADM solutions is exactly the same
as for Taylor / eddy solutions of the NSE and the decay exponents are slightly larger
for the ADM Taylor / eddy solution than for the corresponding NSE Taylor / eddy
solution.

2. Approximation deconvolution models of turbulence. Simulation of the
pointwise velocity in turbulent flows by solving the NSE (1.1) down to the last per-
sistent scale of motion is not feasible within time and resource constraints in many
important applications. The normal approach is instead to derive (approximate)
equations for local spacial averages (denoted by u(x, t)) and to solve these for the
(approximate) averaged velocities (denoted herein by w(x, t)). The class of mod-
els we study herein, Approximate Deconvolution Models (ADMs) were pioneered by
Geurts [Geu97] and Stolz, Adams, Kleiser and their co-workers [AS01], [AS02], [SA99],
[SAK01a], [SAK01b]. A sound theoretical foundation exists supporting their practical
effectiveness, e.g., [BIL04], [LMNR06], [LN07], [S07]. In large eddy simulation (LES)
the averages are defined by a local spacial filter (with filter radius denoted by δ); see
[BIL04], Sagaut [S01] for details and examples of models and filters. Herein we select
a differential filter (an idea of Germano [Ger86]) denoted by overbar or the action of
the filter operator G given by

u = Gu,G := (−δ2△+ 1)−1.
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Averaging (1.1) leads to the non-closed Space Filtered NSE

ut +∇ · uu− ν△u+∇p = 0,∇ · u = 0.

In ADMs an approximate filter inverse / deconvolution operator D is constructed
and used to close the SFNSE by uu = (formally) G−1(u)G−1(u) ≃ D(u)D(u) . There
are several used. We assume the chosen deconvolution operator D can be expressed
as

D = f(G), where f : R→ R.

Significant examples of deconvolution operators where D = f(G) include
• Modified Tikhonov, (Stanculescu [S07]) : D = ((1− µ)G+ µI)−1, for µ > 0,

• van Cittert (e.g., [BB98], [LMNR06]): D =
∑
N

n=0
(I −G)n, N fixed,

• Optimized or unoptimized Tikhonov and iterated versions thereof.
This closure approximation with an added time relaxation / secondary regular-

ization term χ(w −D(w)) (see [LN07], [R89], [ST92] for background on this term),
the general ADM which is

wt +∇ ·D(w)D(w)− ν△w +∇q + χ(w −D(w)) = 0,∇ ·w = 0. (2.1)

Here w denotes the resulting approximation of u. By analogy to spectral methods
for periodic problems (which are currently the "gold standard" for problems to which
they apply), the secondary regularization term χ(w−D(w)) is comparable to spectral
vanishing viscosity in damping scales near the cutoff length. The closure model of
the nonlinear term ∇ ·D(w)D(w) is comparable to the 3/2 rule in providing a more
accurate representation of the restriction of the nonlinear term to the resolved scales.

An abstract theory of the general ADM is now in place, Stanculescu [S07]. We
turn to particular features of ADMs; we prove next that Taylor / eddy solutions of
the NSE are also exact solutions of the above general ADM. The spacial structure is
exactly the same as for Taylor / eddy solutions of the NSE and the decay exponents
are slightly larger for the ADM Taylor / eddy solution than for the corresponding
NSE Taylor / eddy solution.

T����� 2.1. If u(x, t) = e−νλtφ(x) is a Taylor / eddy solution of the NSE
then (w, q) where

w(x, t) = e−αtφ(x), α = −[νλ+ χ(1− f(
1

δ2λ+ 1
)

1

δ2λ+ 1
)],

∇q = −D(w) · ∇D(w)

is a Taylor / eddy solution of the ADM. Further ∇×
(
D(w) · ∇D(w)

)
= 0 so q exists.

The energy and enstrophy of Taylor / eddy solutions decay exponentially at the same
rates:

Energy(t)

Energy(0)
= e−2λνt, and

Enstrophy(t)

Enstrophy(0)
= λe−2λνt

Proof. The proof is an extension of the construction in the NSE case. Indeed, we
show that ∇×D(φ) · ∇D(φ) = 0 so the ADM pressure q exists and then it is simple
to verify by direct substitution that w(x, t) satisfies

wt − ν△w +∇q + χ(w −D(w)) = 0,∇ · w = 0.
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First we recall from Walsh [Walsh92] that ∇ × (φ · ∇φ) = 0. Indeed, let φ =
(u, v). It is easy to verify by a direct calculate that

∂

∂x2
(uux + vux2)−

∂

∂x1
(uvx1 + vvx2) = 0

using −△(u, v) = λ(u, v) and ux1 + vx2 = 0.
Since differential and convolution operators commute in the absence of boundaries

(including periodic boundary conditions), it follows that ∇× (φ · ∇φ) = 0 and ∇×(
φ · ∇φ

)
= 0 are equivalent. Consider ∇×

(
D(w) · ∇D(w)

)
. This is zero provided

∇×D(w)·∇D(w) = 0 . Let w̃ = D(w). we claim that −△w̃ = λw̃,∇·w̃ = 0 so by the
(above) same argument as the NSE case ∇ × (φ · ∇φ) and thus (going backwards)

∇ ×
(
D(w) · ∇D(w)

)
= 0. Indeed, in the absence of boundaries all the operators

involved commute. Thus

∇ · w̃ = ∇ ·D(w) = e−αt∇ ·D(φ) = e−αt∇ · f(G)φ = e−αtf(G)∇ · φ = 0,

−△w̃ = e−αtD(−△φ) = e−αtλD(φ) = λe−αtD(φ) = λw̃.

The claimed decay of energy and enstrophy is directly calculated from the exact
solution.

3. Comments. For most families of deconvolution operators the zeroth order
member is D = I (i.e., approximate u by u). For this simplest case we have the rate
constant

α = −λ

(
ν +

χδ2

λδ2 + 1

)
.

Thus the effect of time relaxation / secondary regularization here is (i) to increase the
viscosity coefficient slightly from ν to roughly ν+χδ2, and (ii) due to the denominator
in the second term, the additional damping acts slightly stronger on larger spacial
scales (smaller λ). This seems paradoxical since the intent of time relaxation is to
damp smaller scales exponentially in time. We note however that in Taylor / eddy
solutions all scales are damped exponentially so a clear conclusion cannot be drawn
from this point.

A close look at the above proof shows that the following also holds.
T����� 3.1. If u(x, t) be a 2π periodic solution of the 2d or 3d NSE (1.1) with

∇× (u · ∇u) = 0. then this same u(x, t) is an exact solution of the ADM (2.1) with
χ = 0.
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