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Abstract. We consider the NS-alpha and the family of high accuracy, NS-alpha-deconvolution
models of turbulence on Ω = [0, LΩ]3 subject to periodic boundary conditions. For body force driven
turbulence, we prove directly from the model equations of motion the following bounds on the time
averaged modified energy dissipation rate, 〈εα,N(wα,N)〉, and unmodified helicity dissipation rate,
〈γ(wα,N)〉, for the Nth model (N = 0, 1, 2, . . . )

〈εα,N(wα,N)〉 ≤ C1(1 + N)
U3

N

LN
, and | 〈γ(wα,N)〉 | ≤ C2(1 + N)

U3
N

L2
N

.

Here, N is the degree of the approximate deconvolution operator, UN and LN are global velocity
and length scales, and C1 and C2 are constants that don’t depend on UN .
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1. Introduction. The three-dimensional (3D) Navier-Stokes equations (NSE)
have remained intractable to both rigorous mathematical analysis as well as direct
numerical simulation for many important applications. For this and other reasons,
there is a continuing interest in both turbulence models and regularizations of the
NSE. One such is the NS-alpha model, given by

wt − w ×∇× w − ν4w +∇q = f

w = A−1w and ∇ · w = 0,
(1.1)

where A = I − α24. We consider (1.1) and related models (1.2) under periodic
boundary and zero mean conditions

w(x+ LΩej , t) = w(x, t) j = 1, 2, 3 and,∫
Ω
φdx = 0 for φ = w, w0, f, q.

With periodic boundary conditions, the condition ∇ · w = 0 in (1.1 is equivalent to
∇ · w = 0. We suppose throughout that the data w0(x) and f(x) are periodic with
zero mean, smooth and satisfy

∇ · w0 = 0 and ∇ · f = 0.

Among its many attractive properties, the NS-alpha model conserves both a modified
kinetic energy [FHT02] and unmodified helicity [R08]. Its main limitations as a basis
for numerical simulation of parctical flows are that (i) its accuracy is limited to O(α2),
even in smooth flow regions, and (ii) its microscale is significantly smaller than the
averaging radius α, [FHT02].

The NS-alpha-deconvolution models [R08] are, for N = 0, 1, 2, . . . , a family of
models O(α2N+2) consistent with NSE that includes NS-alpha as the N = 0 case.
These models are given by

wt −DN (w)×∇× w − ν4w +∇q = f, and ∇ ·DNw = 0. (1.2)
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In (1.2), DN is an approximate deconvolution operator given by DN =
∑N

n=0(I −
A−1)n and discussed in Section 2.1. Since D0 = I, (1.2) includes (1.1) as the zeroth
order case. The operator DN : L2 → L2 is bounded, symmetric, and positive definite
and approximates the filter inverse with high accuracy on smooth functions φ [DE06]:

φ = DNφ+O(α2N+2).

Energy and helicity are two fundamental integral invariants of the 3D Euler equa-
tions (Moreau [M61]). Helicity is given by

H(w(t)) :=
1
|Ω|

∫

Ω

w(t) · (∇× w(t))dx =: (w,∇× w).

(Inner products used herein are divided by volume.) The helicity of a flow vanishes
if and only if the flow has a reflectional symmetry, and the helicity magnitude can be
interpreted as the degree to which vortex lines are knotted and intertwined (defined
precisely in terms of the total circulation and the Gauss linking number of interlocking
vortex filaments), Moffatt [M84], Moffatt and Tsoniber [MT92]. Much less is known
about helicity than energy and its mathematical study is more difficult than that of
energy because more derivatives are involved and neither H nor its dissipation rate γ
have one sign.

A similarity theory of coupled helicity and energy cascades with universal statis-
tics has been developed for the NSE, Brissaud, Frisch, Leorat, Lesieur and Mazure
[BFL73], Andre and Lesieur [AL77], Chen, Chen and Eyink [CCE03], Ditlevsen and
Giuliani [DG01a], [DG01b] and it has been observed in turbulent flows, Bourne and
Orszag [BO97]. An analogous theory for the related family of approximate deconvolu-
tion turbulence models appears in [LMNR08]. In these theories, in the inertial range
(after suitable averaging), the only quantities that distinguish one flow from another
in these two cascades are their energy and helicity dissipation rates. Thus, a model’s
prediction of average energy and helicity dissipation rates is critical for evaluating the
model’s physical fidelity.

Bounds for time averaged energy and helicity dissipation rates for the NS-alpha
and NS-alpha-deconvolution models are derived herein and mirror both the analogous
rates for the underlying solution of the NSE and estimates derived by dimensional
analysis. This work builds on the fundamental advances of Constantin and Doering
[CD92], Doering and Gibbon [DG95], Foias [F97], Wang [W97], and Doering and
Foias [DF02] providing analytic estimates of turbulent flow statistics for the NSE.

For the NSE, an energy equality can be derived by multiplying the NSE through
by velocity and integrating. The result is an equality in which energy can be identified
as (w,w)/2. For NS-alpha, instead of multiplying through by velocity, an energy
equality arises from multiplying by w and integrating [FHT02]. This equality gives
rise to a modified energy given by (w,w)/2. The models (1.2) share a similar modified
energy equality arising from multiplication by DN (w). This energy balance gives rise
to expressions for modified energy and energy dissipation that are most naturally
expressed in terms of weighted inner products and norms, developed in Section 3.

Definition 1.1. For DN a bounded, self-adjoint, positive definite operator, define
the deconvolution weighted inner product and norm:

(u, v)DN
:=

1
|Ω|

∫

Ω

u ·DN (v)dx, and ‖u‖2DN
:= (u, u)DN

. (1.3)

It is known that ‖ · ‖DN
is equivalent to the usual L2 norm, Lemma 2.1 below.
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The energy and energy dissipation rate of the model are identified from the bal-
ance equation (3.1) as

Eα,N(w(t)) :=
1
2
(w(t), w(t))DN

, and εα,N(w(t)) := ν(∇w(t),∇w(t))DN
.

Both these quantities are shown to be non-negative in Section 3.
An helicity balance equation can be derived formally for the NSE by multiplying

by ∇×w and integrating. Similarly, for NS-alpha-deconvolution models, (see Section
5) the quantity

γ(w(t)) := ν(∇× w(t),∇× (∇× w(t)) )

plays the role of dissipation in the balance equation.
The present work focuses on long time averages of energy and helicity dissipation

rates. Let 〈·〉 denote long time averaging (defined in Section 2). K41 phenomenology,
e.g., Frisch [F95], Pope [P00] suggests the scaling of the energy and helicity dissipation
rates for the NSE, 〈ε〉 and 〈γ〉, satisfy

〈ε〉 ≈ Cε
U3

L
, and |〈γ〉| ≈ Cγ

U3

L2
. (1.4)

In Section 4, we prove that the NS-alpha-deconvolution family’s energy dissipation
rate satisfies

〈εα,N(w)〉 ≤ U3
N

LN

(
42 + 36N +

1
ReN

(1 +
α2

L2
N

)
)
. (1.5)

Here N denotes the degree of deconvolution and UN , LN denote natural velocity and
length scales associated with the largest scales of the model (1.2), defined precisely
in Section 2. ReN denotes the Reynolds number based on UN , LN , and ν. Estimate
(1.5) is consistent, as α→ 0, with the dimensional estimate (1.4) for the NSE.

In Section 5, we prove that the NS-alpha-deconvolution family’s helicity dissipa-
tion rate, |〈γ(w)〉|, satisfies

| 〈γ(w)〉 | ≤ 2(1 +
α2

L2
N

)
(

(18N + 21) +
1

ReN
(1 +

α2

L2
N

)
)
U3

N

L2
N

. (1.6)

Estimate (1.6) is also consistent, as α → 0, with the dimensional estimate (1.4) for
the NSE.

Remark 1.1. A time relaxation term of the form χ(w − DN (w)), with χ a
constant, can be included in (1.2) to improve numerical behavior. Such a term could
easily be included in the analysis below.

2. Notation and preliminaries. The deconvolution operator we consider was
studied by van Cittert in 1934, e.g., Bertero and Boccacci [BB98], and its use in LES
pioneered by Adams, Kleiser and Stolz [AS01], [SA99], [AS02], [SAK01a], [SAK01b],
[SAK02].

2.1. Approximate deconvolution operators. A filtering or convolution op-
erator A(w) = w is a bounded map: A : L2(Ω) → L2(Ω). The deconvolution problem
is to approximate w given (w + noise). If (as in the case we study) A is smoothing,
its inverse cannot be bounded. An unbounded inverse, even an exact inverse, would
magnify the noise catastrophically. An approximate deconvolution operator D is an
approximate inverse w 7→ D(w) ≈ w which:
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• Is a bounded operator on L2(Ω);
• Approximates w in some useful (typically asymptotic) sense; and,
• Satisfies other conditions necessary for the application at hand.

In particular, the most desirable conditions for an approximate deconvolution operator
in flow modeling include:

• On the large scales the operator has very high accuracy;
• Its calculational expense is modest;
• The deconvolution operatorD and the operator I−DA−1 are both self-adjoint

and positive semidefinite, Stanculescu [S07]; and,
• It commutes with filtering and differentiation.

Let A be the differential operator A = (−α24+I) for a small constant α. TheN th

van Cittert approximate deconvolution operator DN is defined by N steps (typically,
1 ≤ N ≤ 7) of Picard iteration, [BB98], for the fixed point problem:

given w, solve w = w + {w −A−1w} for w.

Eliminating intermediate steps gives a formula for DN .

DNφ =
N∑

n=0

(I −A−1)nφ = (A−A(I −A−1)N+1)φ. (2.1)

Lemma 2.1. Consider the approximate deconvolution operator

DN : L2(Ω) → L2(Ω)

Both DN and I −DNA
−1 are bounded, self-adjoint, positive definite operators. DN

satisfies

‖φ‖2 ≤ ‖φ‖2DN
≤ (N + 1) ‖φ‖2 , ∀φ ∈ L2(Ω) .

Proof. The first half is in [BIL06], for example, and the second half is a conse-
quence of (2.1) and the facts that A and I −A−1 are both positive definite.

2.2. Scaling and time averages. For each fixed N , define the following quan-
tities. When N = 0, these quantities will sometimes be written without subscripts.
The scale of the body force is defined by

FN := ‖f‖DN
, FN :=

∥∥f
∥∥

DN

The global length scale associated with the power input at the large scales, i.e.,
with f(x), is

LN := min{LΩ,
FN

||∇f ||L∞(Ω)
,
FN

‖∇f‖ ,
FN

‖∇ × f‖ ,
F

1
2

N

‖4f‖ 1
2
,

F
1
3

N

‖∇ ×4f‖ 1
3
,

FN

||∇f ||L∞(Ω)

,
FN

‖∇f‖ ,
FN

‖∇ × f‖ ,
F

1
2
N

‖4f‖ 1
2
,

F
1
3
N

‖∇ ×4f‖ 1
3
}

The long time average of a function φ(t) can be defined in several natural ways.
For this work, the long time average is taken as the limit of the finite window time
average;

〈φ〉[0,T ] :=
1
T

∫ T

0

φ(t)dt, and

〈φ〉 := lim
T→∞

〈φ〉[0,T ].
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With this definition,

〈φ+ ψ〉 ≤ 〈φ〉+ 〈ψ〉,

but equality does not hold unless, e.g., limT→∞〈φ〉[0,T ] exists.
Foias, Jolly, and Manley [FJM05] have recently proved estimates of finite time

averages of two-dimensional turbulent statistics—an important extension since data
is taken from experiments over long but finite time windows.

Assuming w is a solution of (1.2) and that the long time averages of w exist,
denote the quantities

UN = 〈w〉, UN = 〈w〉, and ReN :=
LNUN

ν
,

where ReN is the global Reynolds number and ν is the kinematic viscosity.

2.3. Basic estimates and identites. Two useful estimates are presented in
the next lemma. The first of these appears in [DE06]. The second involves the
curl operator, curlw = ∇ × w, repeated application of which will be denoted with
exponents, as in curl3w = ∇× (∇× (∇× w)).

Lemma 2.2. With A and DN defined as above, the following estimates hold.
∥∥α24A−1w

∥∥
DN

≤ ‖w‖DN
(2.2)

and, for 0 ≤ m ≤ 2N ,

∥∥αmcurlm(A−1)N+1w
∥∥

DN
≤ ‖w‖DN

{ (
1
2

)m/2 for 1 ≤ m ≤ N + 1
(

1
2

)N+1−m/2 for N + 1 ≤ m ≤ 2N + 1
(2.3)

Proof. The estimate (2.2) follows from Fourier series expansion using Parseval’s
equality. Note thatDN is positive definite by Lemma 2.1, so it has a square root whose

Fourier series coefficients, denoted (̂D1/2
N )k, are the square roots of the coefficients of

DN .

∥∥α24A−1w
∥∥

DN
=

∥∥∥∥
α2|k|2

(1 + α2|k|2) (̂D1/2
N )kŵk

∥∥∥∥ ≤
∥∥∥∥(̂D1/2

N )kŵk

∥∥∥∥ = ‖w‖DN
(2.4)

For (2.3), the case m = 0 reduces to ‖w‖DN
≤ ‖w‖DN

, whose proof follows from
(2.4) with α2|k|2 replaced by one.

For (2.3) with 1 ≤ m ≤ 2N , taking a Fourier series expansion yields the expression

∥∥αmcurlm(A−1)N+1w
∥∥

DN
≤

∥∥∥∥
αm|k|m

(1 + α2|k|2)N+1
(̂D1/2

N )kŵk

∥∥∥∥ .

For x ≥ 0 and m < 2N + 2, the function φ(x) = xm/(1 + x2)N+1 has a maximum
value when x =

√
m/2N + 2−m. For 1 ≤ m ≤ N + 1, x is smaller than 1, and for

N + 1 ≤ m < 2N + 1, x is larger than 1. φ can be rewritten in the form

φ(x) =
(

x2

1 + x2

)m/2 (
1

1 + x2

)N+1−m/2

.
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For x ≤ 1, the second factor is smaller than 1 and the first is monotone and takes
its maximum when x = 1, so that |φ(x)| ≤ (1/2)m/2. For x ≥ 1, the first factor is
smaller than 1 and the second is monotone and takes its maximum when x = 1, so
that |φ(x)| ≤ (1/2)N+1−m/2.

The following lemma expresses the Poincaré inequality in deconvolution weighted
form. Its proof is a standard application of Parseval’s equality.

Lemma 2.3. Each differentiable, periodic function w with zero mean satisfies the
estimate

‖w‖DN
≤ (LΩ/π) ‖∇w‖DN

. (2.5)

Proof. Again denoting the Fourier coefficients of w for multi-index k by ŵk, and

the Fourier coefficients of the square root of DN by (̂D1/2
N )k, Parseval’s equality yields

the following calculations.

‖w‖2DN
=

∑

|k|≥1

|(̂D1/2
N )kŵk|2,

where the |k| = 0 term vanishes because w has zero mean. Clearly,

∑

|k|≥1

|(̂D1/2
N )kŵk|2 ≤ L2

Ω

π2

∑

|k|≥1

| kπ
LΩ

(̂D1/2
N )kŵk|2 =

L2
Ω

π2
‖∇w‖2DN

. (2.6)

The following useful vector identities can be found in, for example, Gibbs [Gib09,
pp. 161, 169].

w × (∇× w) = −∇ · (ww) +
1
2
∇|w|2, and (2.7)

∇× (∇× w) = −4w +∇(∇ · w)
= −4w, if ∇ · w = 0. (2.8)

A final vector identity will be used in the sequel. It is a straightforward conse-
quence of (2.7). Its importance lies in the fact that 4 = −curl2 for divergence-free
functions, so that 4Nφ×(∇×φ) can be written as the divergence of a (dyadic) tensor
plus the gradient of a scalar.

Lemma 2.4. For sufficiently differentiable vector functions φ, and N ≥ 0, the
following identity holds.

curl2Nφ× curlφ =
N∑

k=1

∇ · ((curl2N−kφ)(curlkφ) + (curlkφ)(curl2N−kφ)
)

−
N∑

k=1

∇ (
(curl2N−kφ) · (curlkφ)

)
(2.9)

−∇ · ((curlNφ)(curlNφ)
)

+
1
2
∇(|curlNφ|2)
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Proof. An induction proof could be started with the N = 0 case, which is merely
(2.7). It is instructive, however, to consider the case N = 1.

curl2φ× curlφ = −curlφ× curl(curlφ)

= ∇ · ((curlφ)(curlφ))− 1
2
∇(|curlφ|2)

because of (2.7) with w replaced by curlφ.
From the induction hypothesis, we have

curl2N+2φ× curlφ = (curl2N+1φ− curlφ)× (curl(curl2N+1φ− curlφ))

− curlφ× (curl(curlφ))− curl2N+1φ× (curl(curl2N+1φ))

+ curl2N (curlφ)× (curl(curlφ))

The first three terms on the right side are transformed according to (2.7), yielding

curl2N+2φ× curlφ = curl2N (curlφ)× (curl(curlφ))

−∇ · ((curl2N+1φ− curlφ)(curl2N+1φ− curlφ)
)

+
1
2
∇(|curl2N+1φ− curlφ|2)

+∇ · ((curlφ)(curlφ))− 1
2
∇(|curlφ|2)

+∇ · ((curl2N+1φ)(curl2N+1φ)
)− 1

2
∇(|curl2N+1φ|2).

The binomial dyadic products can be expanded, as can the norm when regarded as
an inner product. Expanding and collecting like terms simplifies the expression.

curl2N+2φ× curlφ = curl2N (curlφ)× (curl(curlφ))

+∇ · ((curl2N+1φ)(curlφ) + (curlφ)(curl2N+1φ)
)

−∇ (
(curl2N+1φ) · (curlφ)

)

The first term on the right can be transformed by the induction hypothesis applied
to curlφ, yielding the following expression.

curl2N+2φ× curlφ =
N∑

i=1

∇ · ((curl2N−i+1φ)(curli+1φ)+

+ (curli+1φ)(curl2N−i+1φ)
)

−
N∑

i=1

∇ (
(curl2N−i+1φ) · (curli+1φ)

)

−∇ · ((curlN+1φ)(curlN+1φ)
)

+
1
2
∇(|curlN+1φ|2)

+∇ · ((curl2N+1φ)(curlφ) + (curlφ)(curl2N+1φ)
)

−∇ (
(curl2N+1φ) · (curlφ)

)

The dummy variable i in the sums can be replaced with i−1, and combining the final
7



two terms, yields the following expression.

curl2N+2φ× curlφ =
N+1∑

i=1

∇ · ((curl2N+2−iφ)(curliφ) + (curliφ)(curl2N+2−iφ)
)

−
N+1∑

i=1

∇ (
(curl2N+2−iφ) · (curliφ)

)

−∇ · ((curlN+1φ)(curlN+1φ)
)

+
1
2
∇(|curlN+1φ|2)

and the lemma is proved.
Remark 2.1. Existence of solutions. It is known that strong solutions of the

NS-alpha model exist uniquely and are as smooth as the problem data [FHT02]. A
corresponding theory can be developed for the NS-alpha-deconvolution family [MS08].
Since the data for (1.1) are regular, we may proceed formally in our estimates without
loss of generality.

3. Kinetic energy balance of the NS-alpha-deconvolution family. The
mathematical key to the estimates of energy and helicity dissipation rates is the
following energy estimate, recalled from [R08].

Proposition 3.1. If w is a solution of (1.2), w satisfies both a differential form
of conservation of energy

d

dt

1
2
(w(t), w(t))DN + ν(∇w(t),∇w(t))DN = (f, w(t))DN , (3.1)

and an integral form of conservation of energy

1
2
{‖w(T )‖2DN

+ α2 ‖∇w(T )‖2DN
}+

∫ T

0

ν{‖∇w(t)‖2DN
+ α2 ‖4w(t)‖2DN

}dt =

=
1
2
{‖w(0)‖2DN

+ α2 ‖∇w(0)‖2DN
}+

∫ T

0

(f(t), w(t))DNdt.

From Proposition 3.1, the model kinetic energy, Eα,N(w), and energy dissipation
rate, εα,N(w) are clearly identified.

Eα,N(w) :=
1
2
(w,w)DN

=
1
2
(‖w‖2DN

+ α2 ‖∇w‖DN
), (3.2)

εα,N(w) :=ν(∇w,∇w)DN = ν(‖∇w‖2DN
+ α2 ‖4w‖2DN

). (3.3)

The following corollary shows that Eα,N is bounded for all time and that 〈εα,N〉
is finite. Thus, w ∈ L∞(0,∞;H1(Ω)).

Corollary 3.2. Let f, u0 ∈ L2
0(Ω) and w be an LΩ-periodic solution of (1.2)

then

sup
t∈(0,∞)

Eα,N(w(t)) ≤ ‖f‖2DN

ν2(LΩ/π)2
+ Eα,N(w(0)) <∞

1
T

∫ T

0

εα,N(w(t))dt ≤ 1
T
Eα,N(w(0)) +

‖f‖2DN

ν(LΩ/π)
+ ‖f‖DN

√
Eα,N(w(0)) <∞
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Proof. We begin with the conservation of energy expression (3.1). Lemma 2.3
applied to w and ∇w yields

d

dt
Eα,N + ν(LΩ/π)Eα,N ≤ (f, w)DN

.

Because of the Cauchy-Schwarz and Young inequalities,

(f, w)DN
≤ ‖f‖DN

‖w‖DN
≤ ‖f‖2DN

2ν(LΩ/π)
+
ν(LΩ/π)

2
‖w‖2DN

,

so that, since ‖w‖2DN
≤ Eα,N,

d

dt
Eα,N(t) +

ν(LΩ/π)
2

Eα,N(t) ≤ ‖f‖2DN

2ν(LΩ/π)
.

This inequality admits an integrating factor to find

Eα,N(w(t)) ≤ ‖f‖2DN

ν2(LΩ/π)2
+ Eα,N(w(0))e−ν(LΩ/π)t/2

and the first conclusion follows immediately.
For boundedness of the time averaged dissipation rate, divide the energy estimate

from Proposition 3.1 by T , and note that ‖w‖2DN
≤ suptEα,N(w(t)):

1
T
Eα,N(w(T )) +

1
T

∫ T

0

εα,N(w(t))dt =
1
T
Eα,N(w(0)) +

1
T

∫ T

0

(f, w(t))DN
dt

≤ 1
T
Eα,N(w(0)) + ‖f‖DN

sup
t

√
Eα,N(w(t))

≤ 1
T
Eα,N(w(0)) +

‖f‖2DN

ν(LΩ/π)
+ ‖f‖DN

√
Eα,N(w(0))

Remark 3.1. In the next section, we will need the second estimate in Corollary
3.2 modified by integration over the interval [s, t].

να2

∫ t

s

‖4w(τ)‖2DN
dτ ≤ Eα,N(w(0)) + (t− s)

(
‖f‖2DN

ν(LΩ/π)
+ ‖f‖DN

√
Eα,N(w(0))

)

(3.4)

4. Bounds on energy dissipation rates. In this section, bounds for energy
dissipation rates are derived, based on precise estimates of the model’s energy balance.
These bounds are inspired by arguments of Foias [F97], Doering and Foias [DF02] for
the NSE, and Foias, Holm and Titi, [FHT02] for the NS-alpha regularization. The
following estimate on the model’s time averaged energy dissipation rates is the major
result of this section.

Theorem 4.1. If w is a solution of (1.2) for some fixed N ≥ 0, the average
energy dissipation rate for w satisfies

〈εα,N(w)〉 ≤ 6
1 + 3(N + 1)

LN
U3

N + νU2
N

(
1
L2

N

+ α2 1
L4

N

)
, (4.1)
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or in terms of ReN

〈εα,N(w)〉 ≤ U3
N

LN

(
24 + 18N +

1
ReN

(1 +
α2

L2
N

)
)
. (4.2)

Proof. The first of two key bounds is obtained by time averaging the energy
equality of Proposition 3.1. From the expression for εα,N in (3.3)

〈εα,N〉 = ν〈(∇w,∇w)DN
〉 = 〈(f, w(t))DN

〉 = 〈(f, w(t))DN
〉.

The Cauchy-Schwarz inequality and Corollary 3.2 imply the following expression.

〈 εα,N〉 ≤ FNUN (4.3)

This expression will be used later.
Next, time averaging the model (1.2) gives

〈 ∂
∂t
w〉[0,T ] − 〈DN (w)× (∇× w)〉[0,T ] − ν4〈w〉[0,T ] +∇〈Q〉[0,T ] = 〈f〉[0,T ]

Taking the weighted inner product of the averaged model with the f , which is
divergence-free because f is assumed divergence-free, yields

(f, f)DN = (f, 〈 ∂
∂t
w〉[0,T ])DN − (f, 〈DNw × (∇× w)〉[0,T ])DN + ν(∇f,∇〈w〉[0,T ])DN .

(4.4)
Each term is considered separately below.

Time derivative term. The first term on the right of (4.4) vanishes because
Eα,N is bounded by Corollary 3.2.

Viscous term. The viscous term in (4.4) satisfies

ν(∇f,∇〈w〉[0,T ])DN
= ν(A1/2∇f,∇〈A−1/2w〉[0,T ])DN

≤ ν‖A1/2∇f‖DN
‖∇〈A−1/2w〉[0,T ]‖DN

≤
√
ν‖A1/2∇f‖2DN

√
εα,0(〈w〉[0,T ])DN .

Further,

‖A1/2∇f‖2DN
= (A1/2∇f,A1/2∇f)DN

= (∇f,A∇f)DN

= ‖∇f‖2DN
+ α2‖∆f‖2DN

≤ F
2

N

L2
+ α2F

2

N

L4

In summary,

ν(∇f,∇〈w〉[0,T ]) ≤
√√√√ν

(
F

2

L2
+ α2

F
2

L4

)√
εα,N(〈w〉[0,T ])

10



Convection term. The discussion below provides estimates of the convection
term in terms of FU2

N/LN . Eliminating gradients from the estimate requires appli-
cation of Lemma 2.4. Because the notation is intricate and because these estimates
do not depend on temporal averaging, it will be delayed until the final step.

Using (2.1), DN is written as DN = A − A(I − A−1)N+1 so that the convection
term can be decomposed in the following way.

(f,DNw×(∇×w))DN
= (f, w×(∇×w))DN

−(f, (I−A−1)N+1w×(∇×w))DN
(4.5)

We consider the second term first. Estimating this term requires repeated appli-
cation of Lemmas 2.2 and 2.4. Begin by writing

(f, (I −A−1)N+1w× (∇×w))DN
= (f, (A− I)N+1(A−1)N+1w× (∇×w))DN

. (4.6)

Temporarily denoting w̃ = (A−1)N+1w, or w = AN+1w̃, and φn = (−α24)nw̃ =
(−α24)n(A−1)N+1w, (4.6) can be rewritten using the binomial theorem.

(f, (I −A−1)N+1w × (∇× w))DN
= (f, (−α24)N+1w̃ × (∇×AN+1w̃))DN

=
N+1∑
n=0

(
N + 1
n

) (
f, (−α24)N−n+1φn × (∇× φn)

)
DN

. (4.7)

Each of the terms, denoted Tn, in the sum can be estimated using Lemma 2.4.

Tn =
(
f, (−α24)N−n+1φn × (∇× φn)

)
DN

= (+α2)N−n+1
N−n+1∑

k=1

[ (
f,∇ · [(curl2N−2n+2−kφn)(curlkφn)]

)
DN

+

(
f, [(curlkφn)(curl2N−2n+2−kφn)]

)
DN

]

− (α2)N−n+1
(
f,∇ · [(curlN−n+1φn)(curlN−n+1φn)

])
DN

− (α2)N−n+1
(
f,∇S)

DN

where S = 1
2 |curlNφn|2 −

∑N
k=1(curl2N−kφn) · (curlkφn) is the scalar from Lemma

2.4. Integrating by parts in each inner product and noticing that the term involving
S is trivial because f is divergence-free, yields the following expression.

Tn = (+α2)N−n+1
N−n+1∑

k=1

[ (∇f, [(curl2N−2n+2−kφn)(curlkφn)]
)
DN

+

(∇f, [(curlkφn)(curl2N−2n+2−kφn)]
)
DN

]

− (α2)N−n+1
(∇f, [(curlN−n+1φn)(curlN−n+1φn)]

)
DN

11



To see how to estimate these terms, write, for example, with ` and m integers,
(∇f, [(curl`φn) (curlmφn)])DN

=
∫
∇f ·DN

(
(curl`φn)(curlmφn)

)

=
∫
D

1/2
N ∇f ·D1/2

N

(
(curl`φn)(curlmφn)

)

≤
∥∥∥D1/2

N ∇f
∥∥∥
∞

∑

i,j

∫
|D1/2

N (curl`φn)i(curlmφn)j |

≤ 9
∥∥∥D1/2

N ∇f
∥∥∥
∞

∥∥curl`φn

∥∥
DN

‖curlmφn‖

and ‖·‖ ≤ ‖·‖DN
, so that

|Tn| ≤ 18(α2)N−n+1
∥∥∥DN

1/2∇f
∥∥∥
∞

N−n+1∑

k=1

∥∥curl2N−2n+2−kφn

∥∥
DN

∥∥curlkφn

∥∥
DN

where a factor of two arises because there is one term when k = N−n+1 and two terms
otherwise. Distributing α into the sum and recalling that φn = (−α24)n(A−1)N+1w
and 4w = −curl2w, since w is divergence-free, produces the two expressions
∥∥(α curl)2N−2n+2−kφn

∥∥
DN

=
∥∥(α curl)2N−2n+2−k(A−1)N+1−n(−α24A−1)nw

∥∥
DN

,
∥∥(α curl)kφn

∥∥
DN

=
∥∥(α curl)k(A−1)N+1−n(−α24A−1)nw

∥∥
DN

.

Applying Lemma 2.2 to each of these expressions yields the estimate

|Tn| ≤ 18(N + 1− n)
∥∥∥DN

1/2∇f
∥∥∥
∞

(
1
2

)N+1−n

‖w‖2DN
. (4.8)

Combining (4.8) and (4.7) yields the estimate

|(f, (I −A−1)N+1w × (∇× w))DN
| ≤ 18(N + 1)

∥∥∥DN
1/2∇f

∥∥∥
∞
‖w‖2DN

,

since the sum of the binomial coefficients is a power of 2.
The first term in (4.5) is similarly estimated1 as

|(f, w × (∇× w))DN
| ≤ 3

∥∥∥DN
1/2∇f

∥∥∥
∞
‖w‖2DN

so that the convection term can be estimated as

|(f,DNw × (∇× w))DN | ≤ 3(1 + 6(N + 1))
∥∥∥DN

1/2∇f
∥∥∥
∞
‖w‖2DN

Finally, taking time averages yields the following estimate.

|(f, 〈DNw × (∇× w)〉[0,T ])DN
| ≤ 3(1 + 6(N + 1))

F

LN
U2

N (4.9)

1For a 3×3 matrix M and vector v, |Mijvivj | ≤ ‖M‖∞
P

i,j |vi| |vj | ≤ ‖M‖∞ (1/2)
P

i,j(|vi|2 +

|vj |2) ≤ 3 ‖M‖∞ ‖v‖2.
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Estimates of the viscous and convection terms can be put into (4.4). Taking the
limit superior as T →∞ of both sides gives

(f, f)DN
≤ 3(1 + 6(N + 1)

FN

LN
U2 +

√√√√ν

(
F

2

N

L2
N

+ α2
F

2

N

L4
N

)√
εα,N(〈w〉) . (4.10)

To interchange the time averaging and square roots, the generalized triangle inequality
gives

‖∇〈w〉‖2DN
≤ 〈‖∇w‖2DN

〉 , and ‖4〈w〉‖2DN
≤ 〈‖4w‖2DN

〉. (4.11)

so that
√
εα,N(〈w〉) ≤ √〈εα,N(w)〉. The definitions of FN and L yield ν

∥∥∇f∥∥2

DN
≤

ν
F

2
N

L2
N

, and να2
∥∥4f

∥∥2

DN
≤ να2 F

2
N

L4
N

.
Using these bounds in (4.10) gives

(f, f)DN ≤ 3(1 + 6(N + 1))
FN

LN
U2

N +

√√√√ν

(
F

2

N

L2
N

+ α2
F

2

N

L4
N

)√
〈εα,N(w)〉 .

Noting that

(f, f)DN =
∥∥f

∥∥2

DN
+ α2

∥∥∇f
∥∥2

DN

≥
∥∥f

∥∥2

DN
= F

2

N

so that F
2

N can replace the expression (f, f)DN
on the left, yields

F
2

N ≤ 3(1 + 6(N + 1))
FN

LN
U2

N +

√√√√ν

(
F

2

N

L2
N

+ α2
F

2

N

L4
N

)√
〈εα,N(w)〉 . (4.12)

Dividing (4.12) through by FN , multiplying by UN and inserting the first basic esti-
mate (4.3) 〈εα,N(w)〉 ≤ FNUN on the left side gives

〈εα,N(w)〉 ≤ FNUN

≤ 3(1 + 6(N + 1))
1
LN

U3
N + UN

√
ν

(
1
L2

N

+ α2
1
L4

N

)√
〈εα,N(w)〉 (4.13)

Thus, by Young’s inequality

〈εα,N(w)〉 ≤ 6
1 + 6(N + 1)

LN
U3

N + U2
Nν

(
1
L2

N

+ α2 1
L4

N

)
(4.14)

and Theorem 4.1 is proved.
Remark 4.1. (4.12) and (4.14) can be combined to relate FN to UN .

FN ≤ 2
U2

N

LN

(
(18N + 21) +

1
ReN

(1 +
α2

L2
N

)
)
. (4.15)
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5. Bounds on helicity dissipation rates. This section considers bounds on
the time averaged helicity dissipation rate for the NS-alpha-deconvolution family. The
keys that make the proof work are the fact that the solution and its derivatives are
bounded in time and the estimate (4.15).

Foias, Holm and Titi [FHT01] present helicity conservation for NS-alpha and
[R08], [MR08] discuss the helicity balance equation (5.1) in the deconvolution case.
This equation is the direct consequence of taking the L2 inner product of the model
equation (1.2) with the vorticity ∇×w and taking account of the vector identity (2.8).

1
2
H(w)(T ) +

∫ T

0

ν(∇× w,∇× (∇× w))dt =
1
2
H(w0) +

∫ T

0

(∇× f, w)dt. (5.1)

The second term is thus the helicity dissipation rate, given by

γ(w) := ν(∇× w,∇× (∇× w)). (5.2)

Dividing (5.1) by T → ∞ will yield an estimate for 〈γ〉 if H(w) and w are
bounded in time. A careful reading of the proof of Theorem 3 in Foias, Holm and
Titi, [FHT02], where the quantity k2(t) is uniformly bounded for large time, shows
uniform boundedness in time of w and ∇ × w, and hence helicity, for the NS-alpha
case. These bounds are extended to the N > 0 case in [MS08], with the following
result.

Proposition 5.1. For all N = 0, 1, . . . , solutions w to (1.2) with α > 0, with
sufficiently smooth forcing, and with finite initial energy and helicity have helicity
bounded uniformly in time.

We are now in a position to present the main theorem in this section.
Theorem 5.2. If w is a solution of (1.2) for some fixed N ≥ 0 and α > 0,

| 〈γ(w)〉 | ≤ 2(1 +
α2

L2
N

)
(

(18N + 21) +
1

ReN
(1 +

α2

L2
N

)
)
U3

N

L2
N

. (5.3)

Proof. Divide the helicity balance relation (5.1) by T → ∞. Because helicity is
bounded, both helicity terms drop out, leaving

lim
T→∞

1
T

∫ T

0

γ(w)(t)dt = lim
T→∞

1
T

∫ T

0

(∇× f, w)dt.

We will employ the estimate (4.15). To do so write (∇× f, w) = (∇× f,Aw) =
(∇×f, w)−α2(∇×4f, w), and recall that the L2 norm is dominated by the weighted
norm. Hence

| 〈(∇× f, w)〉 | ≤ (
∥∥∇× f

∥∥
DN

+ α2
∥∥∇×4f

∥∥
DN

) ‖w‖DN

so that

| 〈γ(w)〉 | ≤ FN

LN
UN (1 +

α2

L2
N

).

Inserting the bound (4.15) yields (5.3).
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6. Conclusions. Similarity theories of cascades in homogeneous, isotropic tur-
bulence are based on several assumptions which have yet to be verified directly from
the NSE. Nevertheless, the predictions of these theories have been observed in many
turbulent flows in nature. As analytic understanding advances, many of these predic-
tions have also been proven directly from the Navier-Stokes equations.

The correctness of the predictions of turbulence models, however, can be unclear
and simulations based on those models can be even more so. We have considered the
energy and helicity dissipation rates of general solutions of the NS-alpha-deconvolution
models. Rigorous upper bounds of the time averaged energy and helicity dissipation
rates are derived which agree with those proven for energy for the NSE and estimated
by similarity theories in homogeneous, isotropic turbulence. This analysis is based
on a rigorous understanding of physical integral invariants of flow models and their
corresponding dissipation rates. It gives important analytic insight into the reliability
of models and the predictions coming from them. NS-alpha-deconvolution models
have a systematic mathematical derivation which is reflected in their high accuracy,
exact conservation (ν = 0) of helicity and a model energy and the verified correctness
of their predictions of time averaged energy and helicity dissipation rates (ν > 0).
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