
SUPPLEMENTARY MATERIALS: COMPETITION BETWEEN
TRANSIENTS IN THE RATE OF APPROACH TO A FIXED POINT
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1. Eigenvector Configurations and Regions of Tolerance in the Planar
Linear Case. Consider the linear system

ẋ = Ax, (1.1)

where A ∈M2×2, x ∈ R2+ = [0,∞)× [0,∞). We will assume as in the main text:

(A1) Assume that there exists an asymptotically stable fixed point of (1.1) at the
origin (0, 0), the eigenvalues of which are real and negative (to eliminate
spirals and center directions).

From (A1) the basin of attraction of (0, 0) is the entire space. Let Γ0 = R2+, the
positive quadrant. Let Γ+

0 = {x(0) ∈ Γ0|x(t) ∈ R2+ for all t ≥ 0}, namely the
collection of trajectories that converge to the origin without leaving R2+. Let φ(t) =
(φ1(t), φ2(t)) and ψ(t) = (ψ1(t), ψ2(t)) be two solutions to the initial value problem
of (1.1).
(A2) Assume that φ(t), ψ(t) ∈ Γ+

0 .
(A3) Assume that ψ1(0) ≥ φ1(0).

We consider eigenvector configurations that accommodate solutions that satisfy
the nonnegativity requirement (A2). There are four such configurations, and each is
displayed in a panel of Figure 1.1. For each configuration, we subdivide the positive
quadrant into regions and then, for (xr, yr) in each region, determine precisely which
locations for (xp, yp) will lead to tolerance and which will not. The results for all the
eigenvector configurations shown in Figure 1.1 are summarized in Table 1.1 and are
illustrated in the figures referenced in the table. We now explain how to identify the
regions of tolerance given an initial condition (xr, yr), using eigenvector configuration
(a) seen in the top left panel of Figure 1.1 as an example.

For eigenvector configuration (a), there are three regions in which to consider
initial conditions:

• REGION 1a: (xr, yr) on the x-axis
• REGION 2a: (xr, yr) in the first quadrant below the slow eigenvector v

and above the x-axis
• REGION 3a: (xr, yr) in the first quadrant above the eigenvector v

REGION 1a: First, we look at the case when the initial condition is on the
x-axis. In the top left panel of Figure 1.2, an arbitrary point on the x-axis is shown
in the context of eigenvector configuration (a), with lines drawn (portions dashed),
showing the addition of scalar multiples of the two eigenvectors to attain the point
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Fig. 1.1. Regions of initial conditions (xr, yr) in the first quadrant for relevant eigenvector
configurations, (a)-(d). Note that we label the slow eigenvector v with one arrow and the fast
eigenvector w with two arrows. In (d), a configuration when v̄1 = 0 is shown. The figure displays
two regions of interest for the configuration, depending on the sign of v̄2. For v̄2 > 0, the entire
first quadrant is relevant. When v̄2 < 0, only the slice of the first quadrant between the x-axis and
v is relevant.

(xr, yr).We refer to these lines as the c1-line and c2-line. In this case, they divide
the first quadrant into three different subregions. We consider the portions of these
regions that lie to the right of the line x = xr, as shown in the top right panel of
Figure 1.2.

Recall from Section 3.1 of the main text that the P trajectory’s initial condition
(xp, yp) was expressed as (xp, yp) = d1v + d2w. For all (xp, yp) in a given subregion,
there is a corresponding relationship between d1, d2 and c1, c2. Using this relationship,
we determine if there exists a region where the criteria c1 > d1 and c2 < d2 of
Proposition 3.4 (in the main text) and the initial condition criterion (xp ≥ xr) are all
satisfied. For any (xp, yp) in such a region, tolerance will occur, while for (xp, yp) not
in such a region, tolerance will not occur. In fact, for eigenvector configuration (a),
if (xr, yr) is on the x-axis, then there are no subregions in the first quadrant where
both c1 > d1 and c2 < d2 hold. In particular, in I1a, c1 < d1 and c2 > d2, and in
II1a, c1 < d1 and c2 < d2; see Figure 1.2. Thus, there exist no (xp, yp) that produce
tolerance.

Next, consider an initial condition (xr, yr) in REGION 2a. The middle left
panel of Figure 1.2 shows an arbitrary point in this region, with lines drawn (portions
dashed), showing the addition of the two eigenvectors to attain the point (xr, yr).
The middle right panel of Figure 1.2 shows the subregions formed in the first quad-
rant by the c1-line and c2-line. Note again that these subregions only include points
to the right of the line x = xr. In general, we follow the convention of truncating
these subregions to ensure that (A3) is satisfied. In this case, if (xp, yp) /∈ I2a, then
the conditions of Proposition 4.1 fail and tolerance will not occur. In contrast, for
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Eigenvector
Configuration:

If (xr, yr) is
in Region:

Then, tolerance
is produced by
(xp, yp) in:

Figure
Reference:

(a) Figure 1.1a

1a None Figure 1.2
(top)

2a Region I2a Figure 1.2
(middle)

3a Region I3a Figure 1.2
(bottom)

(b) Figure 1.1b

1b Region I1b Figure 1.3
(top)

2b Region I2b Figure 1.3
(middle)

3b Region I3b Figure 1.3
(bottom)

(c) Figure 1.1c
1c Region I1c Figure 1.4

(top)

2c Region I2c Figure 1.4
(bottom)

(d) Figure 1.1d 1d if (v̄2 > 0) Region I1d Figure 1.5
(top)

2d if (v̄2 < 0) Region I2d Figure 1.5
(bottom)

Table 1.1
Summary of tolerance results for eigenvector configurations shown in Figure 1.1

(xp, yp) ∈ I2a, we have that c1 > d1 and c2 < d2, satisfying the conditions of Propo-
sition 4.1. Hence, for eigenvector configuration (a), if (xr, yr) is in the first quadrant
below the slow eigenvector v (but not on the x-axis), then tolerance will be exhibited
precisely for all (xp, yp) in the green region labeled I2a.

The same strategy demonstrated above can be applied to Region 3a as well as
Regions 1b-3b and 1c-2c in eigenvector configurations (b) (Figure 1.1(b)) and (c)
(Figure 1.1(c)), respectively. As before, in each case, the c1-line, c2-line, and the line
x = xr partition the first quadrant into subregions, as shown in Figures 1.2-1.4. In
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general, green subregions are tolerance regions, where both c1 > d1 and c2 < d2,
satisfying Proposition 4.1. Nontolerance subregions are shaded red or blue, where red
subregions denote the area where c1 < d1 and c2 > d2 and blue subregions denote the
area where c1 < d1 and c2 < d2.

Fig. 1.2. Left Side: Eigenvector configuration (a) with an arbitrary initial condition (xr, yr)
labeled in Region 1a-3a. Right Side: The first quadrant partitioned into several different subregions
by the line x = xr and the c1-and c2-lines associated with the point (xr, yr) = c1v+c2w lying in one
of the initial regions 1a-3a. Nontolerance subregions are shaded red or blue, where red subregions
denote the area where c1 < d1 and c2 > d2 and blue subregions denote the area where c1 < d1 and
c2 < d2.
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To finish our analysis, we examine eigenvector configuration (d), shown in Figure
1.1(d), corresponding to Case 2 in Section 3.1 of the main text. Because v̄ is a
generalized eigenvector, we can choose the first component, v̄1, to be zero, as noted
in the main text, in the proof of Proposition 3.5. However, the sign of v̄2 may be
negative or positive. In each case, there is one relevant region in which to consider
initial conditions to explore the existence of tolerance: (xr, yr) in the first quadrant
if v̄2 > 0 (Region 1d) or in the first quadrant below v if v̄2 < 0 (Region 2d). The
conditions for tolerance to exist are different from those of eigenvector configurations
(a)-(c), so we handle this case separately. The conclusion regarding tolerance for this
case was given by Proposition 3.5 (in the main text), which shows that it is necessary
and sufficient that c1 ≤ d1 and c2 > d2 for (A3) to hold and tolerance to be exhibited
in (1.1). These conditions are satisfied precisely for those (xp, yp) in I1d (if v̄2 > 0)
and in I2d (if v̄2 < 0). These are the green subregions labeled in the top and bottom
right panels of Figure 1.5, whereas the blue subregions indicate where c2 ≤ d2.

2. Proof of Tolerance in 3D Linear Case. Here we formulate conditions for
the existence of tolerance in a three dimensional linear system, given by

ẋ = Ax, (2.1)

where A ∈ M3×3, x ∈ R3+ = [0,∞) × [0,∞) × [0,∞). Throughout this section,
we will assume, similarly to before:

(A1) (0, 0, 0) is an asymptotically stable fixed point of (2.1), the eigenvalues of which
are real and negative.

(A2) Assume that φ(t), ψ(t) ∈ Γ+
0 .

(A3) Assume that ψ1(0) ≥ φ1(0).
Assume that A has three distinct negative eigenvalues (and hence, three linearly

independent eigenvectors). Without loss of generality assume

λ3 < λ2 < λ1 < 0 and let V = {v1, v2, v3}

be the set of linearly independent eigenvectors, so that (λi, vi) is an eigenpair. We
may write

φ1(t) = c1v11e
λ1t + c2v21e

λ2t + c3v31e
λ3t and

ψ1(t) = d1v11e
λ1t + d2v21e

λ2t + d3v31e
λ3t,

where vi1 is the first component of the ith eigenvector. We assume each vi1,
i = 1, 2, 3, is nonzero; otherwise, the problem reduces to a dimension less than three.
Consequently, without loss of generality, we may arrange to have vi1 > 0 for i = 1, 2, 3.
Consider the difference

φ1(t)− ψ1(t) = (c1 − d1)v11eλ1t + (c2 − d2)v21eλ2t + (c3 − d3)v31eλ3t. (2.2)

In Section 3.1 of the main text, based on inspection of equation (3.11), we es-
tablished that c1 − d1 > 0 was a sufficient condition for eventual tolerance. Now, we
consider the case in three dimensions when c1 ≤ d1. Obviously, if c2 ≤ d2 and c3 ≤ d3
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as well, then there will be no tolerance, since φ1(t) − ψ1(t) ≤ 0 for all t ≥ 0 in such
a case. Also note that if c1 = d1, then the 3-D case reduces to the 2-D case. So, for
the 3-D case, we explore what happens when c1 < d1, with at least one ci > di for
i = 2, 3. Factoring out eλ1t from the right hand side of (2.2) gives

φ1(t)− ψ1(t) = eλ1t [v11(c1 − d1) + v21(c2 − d2)e(λ2−λ1)t

+ v31(c3 − d3)e(λ3−λ1)t
]
. (2.3)

Note that φ1(t)− ψ1(t) > 0 if and only if

φ1(t)− ψ1(t)
eλ1t

> 0. (2.4)

Hence, we attempt to find out when there exists a maximum for the left hand
side of (2.4), over t ∈ [0,∞), for which (2.4) holds. Note that φ1(0) − ψ1(0) < 0, by
assumption (A3), that φ1(t)− ψ1(t) → 0 as t→∞, and that (φ1(t)− ψ1(t))/eλ1t →
v11(c1 − d1) < 0 as t→∞. Now, we take the derivative of the left hand side of (2.4)
with respect to t (denoted by ′) to obtain

[
φ1(t)− ψ1(t)

eλ1t

]′
= v21(λ2 − λ1)(c2 − d2)e(λ2−λ1)t + v31(λ3 − λ1)(c3 − d3)e(λ3−λ1)t.

At most, there is one unique solution, say at t = t̂, where
[
φ1(t)−ψ1(t)

eλ1t

]′
= 0. Specifi-

cally,

−λ2 − λ1

λ3 − λ1
v21e

(λ2−λ1)t̂(c2 − d2) = v31e
(λ3−λ1)t̂(c3 − d3). (2.5)

Using (2.5) we can now rewrite (2.3):

φ1(t̂)− ψ1(t̂)
eλ1 t̂

= v11(c1 − d1) + v21(c2 − d2)e(λ2−λ1)t̂

[
1− λ2 − λ1

λ3 − λ1

]
. (2.6)

Thus, if t̂ satisfies the inequality

v21(c2 − d2)e(λ2−λ1)t̂

[
1− λ2 − λ1

λ3 − λ1

]
> −v11(c1 − d1) (2.7)

and assumption (A3) is satisfied, then tolerance is exhibited at t̂.

From (2.5), t̂ satisfies

−
(
λ2 − λ1

λ3 − λ1

) (
v21
v31

) (
c2 − d2

c3 − d3

)
= e(λ3−λ2)t̂,

implying that
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t̂ =
ln

[
−

(
λ2−λ1
λ3−λ1

) (
v21
v31

) (
c2−d2
c3−d3

)]
λ3 − λ2

≡ T3. (2.8)

Note that T3 > 0 when

0 < −
(
λ2 − λ1

λ3 − λ1

) (
v21
v31

) (
c2 − d2

c3 − d3

)
< 1, (2.9)

since (λ3 − λ2) (the denominator of (2.8)) is negative. Further note

−λ2 − λ1

λ3 − λ1
< 0 and

v21
v31

> 0,

implying c2−d2
c3−d3 < 0 is needed in order for T3 to be positive and further implying that

either

(A) c2 − d2 < 0 and c3 − d3 > 0, or
(B) c2 − d2 > 0 and c3 − d3 < 0.

If c2 − d2 < 0 then φ1(t̂)−ψ1(t̂)

eλ1 t̂ < 0, (see (2.6)), implying no tolerance. Thus, the only
hope of tolerance at T3 in the case where c1 < d1 is if c2 − d2 > 0, which is case B
above, giving that c3 − d3 < 0 is also necessary. In summary,

Proposition 2.1. Assume (A1), (A2), (A3), λ3 < λ2 < λ1 < 0, vi1 > 0 for
i = 1, 2, 3 of eigenvectors vi, and c1 < d1. There exists a time value, T3 > 0 at which
(2.1) produces tolerance if and only if

(i) T3 is given by

T3 =
ln

[
−

(
λ2−λ1
λ3−λ1

) (
v21
v31

) (
c2−d2
c3−d3

)]
λ3 − λ2

,

(ii) c2 − d2 > 0 and c3 − d3 < 0, and
(iii) T3 satisfies (2.7):

v21(c2−d2)
[
−

(
λ2 − λ1

λ3 − λ1

) (
v21
v31

) (
c2 − d2

c3 − d3

)]λ2−λ1
λ3−λ2

[
1− λ2 − λ1

λ3 − λ1

]
> −v11(c1−d1)

Proof. Let the assumptions in the statement of Proposition 2.1 be given.
(Sufficiency) Assume (i), (ii), and (iii) above. Then, the calculations prior to the
statement of the proposition show sufficiency for tolerance to occur at T3.

(Necessity) Assume there exists an S > 0 such that (2.1) produces tolerance. Then

φ1(S)− ψ1(S) > 0 implying that

φ1(S)− ψ1(S)
eλ1S

> 0.
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Consequently, since

1. φ1(t)−ψ1(t)
eλ1t is continuous and differentiable on [0,∞),

2. φ1(t)−ψ1(t)
eλ1t

∣∣∣
t=0

< 0, and

3. limt→∞
φ1(t)−ψ1(t)

eλ1t < 0

there exists a T ∗ > 0 such that[
φ1(t)− ψ1(t)

eλ1t

]′∣∣∣∣∣
t=T∗

= 0

(′ ≡ derivative with respect to t) and

φ1(T ∗)− ψ1(T ∗)
eλ1T∗

> 0. (2.10)

Moreover,

φ1(T ∗)− ψ1(T ∗)
eλ1T∗

≥ φ1(S)− ψ1(S)
eλ1S

.

The only solution of [
φ1(t)− ψ1(t)

eλ1t

]′
= 0

is at

t = T ∗ = ln
[
−

(
λ2 − λ1

λ3 − λ1

) (
v21
v31

) (
c2 − d2

c3 − d3

)]
λ3 − λ2,

which is the formula for T3 given by (i). Since T3 = T ∗ > 0, (2.9) holds, implying (ii)
must hold. In addition, since T3 = T ∗, (2.10) gives

φ1(T3)− ψ1(T3)
eλ1T3

> 0,

implying that (iii) (i.e. (2.7)) holds for t̂ = T3.

Hence, we have found necessary and sufficient conditions for the existence of tol-
erance in a three dimensional linear system in the case when c1 < d1.
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Fig. 1.3. Left Side: Eigenvector configuration (b) with an arbitrary initial condition (xr, yr)
labeled in Regions 1b-3b. Right Side: The first quadrant partitioned into several different regions by
the line x = xr and the c1-and c2-lines associated with the point (xr, yr) = c1v + c2w lying in one
of the initial regions 1b-3b. Nontolerance subregions are shaded red or blue, where red subregions
denote the area where c1 < d1 and c2 > d2 and blue subregions denote the area where c1 < d1 and
c2 < d2.
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Fig. 1.4. Left Side: Eigenvector configuration (c) with an arbitrary initial condition (xr, yr)
labeled in Regions 1c-2c. Right Side: The first quadrant partitioned into several different regions by
the line x = xr and the c1-and c2-lines associated with the point (xr, yr) = c1v + c2w lying in one
of the initial regions 1c-2c. Nontolerance subregions are shaded red or blue, where red subregions
denote the area where c1 < d1 and c2 > d2 and blue subregions denote the area where c1 < d1 and
c2 < d2.
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Fig. 1.5. Top Left Panel: Eigenvector configuration (d) with an arbitrary initial condition
(xr, yr) labeled in Region 1d (i.e. the first quadrant), which is the relevant region when v̄2 > 0. Top
Right Panel: The first quadrant of eigenvector configuration (d) partitioned into four subregions by
the line x = xr and the c1- and c2-lines associated with the point (xr, yr) = c1v + c2v̄ lying in
Region 1d, when v̄2 > 0. Bottom Left Panel: Eigenvector configuration (d) with an arbitrary initial
condition (xr, yr) labeled in Region 2d, which is the relevant region when v̄2 < 0. Bottom Right
Panel: Similar to the top right panel, except now the point (xr, yr) = c1v + c2v̄ is in Region 2d, the
relevant region when v̄2 < 0. Tolerance conditions ( c1 ≤ d1 and c2 > d2 ) are satisfied precisely for
those (xp, yp) in I1d (if v̄2 > 0) and in I2d (if v̄2 < 0). These are the green subregions labeled in the
top and bottom right panels, whereas the blue subregions indicate where c2 ≤ d2.


