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Abstract.
The goal of this paper is to provide and apply tools to analyze a specific aspect of transient

dynamics not covered by previous theory. The question we address is whether one component of a
perturbed solution to a system of differential equations can overtake the corresponding component
of a reference solution as both converge to a stable node at the origin, given that the perturbed
solution was initially farther away and that both solutions are nonnegative for all time. We call this
phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments
that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable
nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase
space where the possibility of tolerance arises in general systems. However, these general existence
theorems do not yield an assessment of tolerance for specific initial conditions. To address that issue,
we develop some analytical tools to determine if particular perturbed and reference solution initial
conditions will exhibit tolerance.
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1. Introduction. Dynamical systems theory has traditionally focused on asymp-
totic behavior or on invariant manifolds and other structures derived from asymptotic
and local calculations [23, 41]. However, in the last two decades there has been
an increased awareness of the necessity of analyzing transient behavior and associ-
ated effects. The work of researchers in the fields of fluid mechanics [1, 4, 5, 6,
16, 18, 22, 24, 32, 35, 38], meteorology [15, 17, 19, 26], and mathematical ecology
[9, 8, 10, 28, 29, 30, 39] has brought significant insight to this once underappreci-
ated topic. In ecology, for example, the concept of reactivity (transient growth) is
important in understanding any short term (transient) effects of changes made to
an environment rather than only focusing on long term (asymptotic) consequences
[8, 25].

In this work, we study a different aspect of transience in dynamical systems. In
particular, we consider a comparison of the transient dynamics of pairs of trajec-
tories with similar asymptotic behaviors. The motivation for this work arises from
a biological phenomenon in which a reduction is observed in the effect induced by
the application of a substance, due to an earlier exposure to that substance. For
example, administration of a toxin to rodents, at a given reference dose, induces a
reproducible acute inflammatory response featuring a rise in a variety of immune sys-
tem elements followed by a return to near-baseline conditions [2, 11, 34, 40]. If a
small pre-conditioning dose of the toxin is given to an animal prior to the reference
dose then the activation of immune agents by the reference dose is attenuated. This
phenomenon is called tolerance.

A previous study [13] analyzed tolerance in the context of a four dimensional ordi-
nary differential equation (ODE) model of the acute inflammatory response. Within
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the four dimensional ODE model, the origin represents a healthy equilibrium state,
and the abrupt administration of a toxin is represented by a jump of a trajectory to
another point in phase space. Thus, starting from a given initial condition, tolerance
occurs precisely when the sequence of a pre-conditioning dose, a period of ensuing
flow, and a subsequent reference dose leads to a trajectory position that features a
higher initial level of activated immune agents yet from which a lower level of activated
immune agents ensues. From the observation of tolerance in the acute inflammatory
response model, we reasoned that similar tolerance effects should be a general feature
of trajectories generated from different initial conditions by a dynamical system with
negative feedback. Our goal in this work is to provide a framework for the study of
tolerance in ODE systems.

Here, we address two questions regarding tolerance. The first is whether or not
a system will exhibit tolerance at all and the second is whether or not a specific
perturbation from a specific initial condition will yield tolerance in a given system. For
tolerance to occur, the perturbed trajectory must overtake the reference trajectory,
with respect to the distance of one component from the origin. In regard to the first
question, we find that tolerance is a generic property of linear and nonlinear systems
that feature some fairly general properties. We show using geometric arguments that
in systems possessing these properties, for a given reference trajectory, there is some
region of phase space for which initial conditions of the perturbed solution will yield
tolerance. This outcome arises from features of the flow that allow the perturbed
trajectory to take a more rapid route to the origin than that taken by the reference
trajectory, which may result if the perturbed trajectory moves through phase space
faster or if it takes a shorter path to the origin.

In linear systems with distinct real negative eigenvalues, tolerance can be analyzed
by an examination of the geometry of the eigenvectors. In nonlinear systems, tolerance
occurs in systems that are excitable, i.e. where trajectories initially move away from
the origin but eventually return because of negative feedback or inhibition. While
the presence or absence of inhibition can be used to constrain where tolerance may
arise in general systems, in general it does not allow us to determine precisely where
tolerance does or does not occur. To address this question, we demonstrate how
analytical estimates can be made on a case by case basis.

2. Definition of Tolerance. Consider the autonomous ODE system

ẋ = f(x) (2.1)

where x ∈ Rn and f : Rn → Rn is locally Lipschitz. Let xi ∈ R and fi : Rn → R be
the components of x and f respectively.
(A1) Assume that there exists an asymptotically stable fixed point of (2.1) at the

origin (0, 0, · · · , 0) def= 0, the eigenvalues of which are real and negative (to
eliminate spirals and center directions).

Let Γ0 = Rn+ ∩ {x(0)|x(t) → 0 as t→∞} be the basin of attraction of the origin in
the positive n-hyperoctant Rn+ def= [0,∞)n.

Let Γ+
0 = {x(0) ∈ Γ0|x(t) ∈ Rn+ for all t ≥ 0}, namely the collection of tra-

jectories that converge to the origin without leaving the positive n-hyperoctant. Let
φ(t) = (φ1(t), φ2(t), · · · , φn(t)) and ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t)) be two solutions
to the initial value problem of (2.1).
(A2) Assume that φ(t), ψ(t) ∈ Γ+

0 .
(A3) Assume that ψ1(0) ≥ φ1(0).
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Under (A3), ψ(0) ∈ [φ1(0),∞) × [0,∞)n−1; that is, the initial value for the P
solution could lie at any point on or to the right of the hyperplane {x1 = φ1(0)}
in the positive n-hyperoctant. Correspondingly, for any x1 > 0, we define Γx1

0 =
Γ+

0 ∩ [x1,∞)× [0,∞)n−1 to be the subset of Γ+
0 in [x1,∞)× [0,∞)n−1 ⊂ Rn+.

Definition 2.1. Define φ(t) as the reference (R) trajectory or solution.
Definition 2.2. Define ψ(t) as the pre-conditioned or perturbed (P) trajectory

or solution.
We are interested in determining whether or not there exists a time when the

first component of a P trajectory overtakes that of an R trajectory, given that it was
initially behind, as they approach the origin. Our ensuing discussion would apply
equally if we considered any other component instead of the first.

Definition 2.3. The system (2.1) is said to exhibit tolerance for 〈φ(0), ψ(0)〉 if
there exists τ > 0 such that ψ1(τ) < φ1(τ), where 〈· , ·〉 indicates a pair of points.

Definition 2.4. If ψ1(t) ≥ φ1(t) for all t ∈ [0,∞), then (2.1) does not exhibit
tolerance for 〈φ(0), ψ(0)〉.

Remark 1. We will also use the terminology that ψ(0) or ψ produces (or does
not produce) tolerance in (2.1) with respect to φ(0) or φ to mean that Definition 2.3
(Definition 2.4) holds. Figure 2.1 illustrates definitions 2.3 and 2.4 with hypothetical
time courses of the first components of solutions φ(t) and ψ(t) in a two dimensional
example.

Remark 2. Our analysis is restricted to the origin as the fixed point, which is the
biologically relevant choice for tolerance in the immune system. However, a theory of
tolerance could be developed using similar methods for any other choice of fixed point
in the positive hyperoctant. We return to this point in the Discussion.

Fig. 2.1. Illustration of Definitions 2.3 and 2.4. Left (Right) panel: Time course of the first
component x1 of a pre-conditioned (P ) solution, ψ(t), with ψ1(0) = xp, which produces ((does not
produce) tolerance with respect to the reference (R) solution, φ(t), with φ1(0) = xr.

Definition 2.3 refers only to the presence of tolerance at one time point τ > 0 such
that ψ1(τ) < φ1(τ). However, continuity arguments can extend this window from a
single time point to an open interval, (t1, t2), around τ , with ψ1(t1) = φ1(t1). This
observation is stated formally in Proposition 2.5 below.

Proposition 2.5. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance
for 〈φ(0), ψ(0)〉 at τ > 0, then there exists an open neighborhood (t1, t2) around τ
such that ψ1(t̂) < φ1(t̂) for every t̂ ∈ (t1, t2) and ψ1(t1) = φ1(t1). Furthermore,
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f1(ψ(t1)) ≤ f1(φ(t1)).
The window of tolerance can also be extended with respect to φ(0) and ψ(0).
Proposition 2.6. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance for

〈φ(0), ψ(0)〉, then there exists an open ball, Br, of radius r around φ(0) such that if
x ∈ Br(φ(0))∩Γ+

0 and ψ(0) ∈ Γx1
0 , then there exists a corresponding time tk > 0 such

that tolerance is exhibited for 〈x, ψ(0)〉.
Proposition 2.7. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance for

given 〈φ(0), ψ(0)〉, then there exists an open ball, Br̃, of radius r̃ around ψ(0) such
that if x̃ ∈ Br̃(ψ(0)) ∩ Γφ1(0)

0 , then there exists a corresponding time t̃k > 0 such that
tolerance is exhibited for 〈φ(0), x̃〉.

Propositions 2.6 and 2.7 are easily proved by noting that solutions of (2.1) are
continuous and depend continuously on initial conditions. Each time tk or t̃k can also
be extended to an interval of times for which tolerance occurs, by Proposition 2.5.

Remark 3. The above definitions of tolerance are related to the biological setting
that motivated this study through the interpretation of the P trajectory. Consider
a non-negative pre-conditioning solution ρ(t) of (2.1) with initial value ρ(0), with
0 < ρ1(0) ≤ φ1(0) and 0 ≤ ρi(0) for i = 2, · · · , n. The quantity ρ(0) corresponds
to the state of the inflammatory response immediately after administration of a pre-
conditioning dose of toxin. We think of the perturbed trajectory ψ(t) as the solution
of (2.1) with initial value

ψ(0) = ρ(s) + z for some 0 ≤ s <∞, (2.2)

where z ∈ Rn+ corresponds to a second dose of toxin given at time s after pre-
conditioning. If φ(0) = z, which is typical for inflammation experiments, then for
φ(0) and ρ(0), every time s between doses defines a unique initial value for ψ as
defined in equation (2.2), which satisfies (A3). Thus, for a continuum of s values
ranging from 0 to ∞, a curve of possible ψ(0) values is formed, and it is of biological
interest to know which of these ψ(0) lead to tolerance.

3. Tolerance in linear systems. Consider the linear system

ẋ = Ax, (3.1)

where A ∈ Rn×n, x ∈ Rn+, and assumption (A1) applies. To begin our consideration
of tolerance, suppose that A has n distinct eigenvalues λn < λn−1 < . . . < λ2 <
λ1 < 0 and denote an associated set of linear independent eigenvectors by V =
{v1, v2, . . . , vn}. Given a pair of initial conditions φ(0), ψ(0) that satisfy assumptions
(A2) and (A3), each can be expressed as a linear combination of the elements of V .
A key factor in whether or not tolerance occurs in the long term for this pair is the
relative magnitudes of the coefficients of their v1 terms, corresponding to the direction
of slowest decay. That is, let vjk denote the kth component of the jth eigenvector.
Suppose we can rescale so that vji > 0 for all j and write

φi(t)− ψi(t) = (c1 − d1)v1ieλ1t + (c2 − d2)v2ieλ2t + . . .+ (cn − dn)vnieλnt. (3.2)

If c1 − d1 > 0, then for t large enough, say t = Tn, φi(Tn)−ψi(Tn) > 0, implying
tolerance in the ith component, because λ1 is the slowest eigenvalue and v1i > 0. That
is, c1 > d1, together with additional assumptions to ensure that the initial conditions
involved satisfy assumptions (A2) and (A3), is sufficient for eventual tolerance when
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all the vji are nonzero. More generally, tolerance in linear systems is determined by
the relative magnitudes of all components in the eigenvector expansions of the initial
conditions involved, including generalized eigenvectors when the set of eigenvectors is
complete, due to the connection between eigenvectors and rates of decay toward the
origin.

Now, we consider what else can be established about tolerance in linear systems,
beyond this fundamental observation. We will show that under fairly general condi-
tions, if we fix an appropriate R trajectory of system (3.1), then there exists a region,
the location of which can be characterized, such that a P trajectory produces toler-
ance if and only if its initial condition lies in this region. Again, we emphasize that we
will consider tolerance with respect to the first component of solutions, but that all
arguments can be converted directly to apply to tolerance in any other component.

3.1. General tolerance result for linear systems. Recall that Γ0 is the basin
of attraction of 0 in the positive n-hyperoctant Rn+ and that Γ+

0 is the subset of initial
conditions in Γ0 generating trajectories that stay in Rn+ for all t ≥ 0. Analogously,
define Γ1 = {x ∈ Rn : x1 > 0} and Γ+

1 = {x(0) ∈ Γ1 : x(t) ∈ Γ1 for all t ≥ 0}. Also,
for any set Γ ⊂ Rn, we define the translate of the set Ty(Γ) = {x+ y|x ∈ Γ}.

Definition 3.1. Given a matrix A ∈ Rn×n with n distinct eigenvalues, the ith
eigenplane is the (n−1)-dimensional hyperplane spanned by the n−1 eigenvectors that
are not associated with the ith eigenvalue. That is, Ei = sp{v1, · · · , vi−1, vi+1, · · · , vn}
where (λi, vi) are the eigenpairs of A.

Definition 3.2. The ith coordinate hyperplane is the (n − 1)-dimensional hy-
perplane defined by the equation xi = 0.

Theorem 3.3. If
(i) A has n real eigenvalues, λn ≤ λn−1 ≤ . . . ≤ λ1 < 0, with n linearly independent

eigenvectors v1, . . . , vn,
(ii) no eigenplanes coincide with the 1st coordinate hyperplane, and
(iii) Γ+

0 is non-empty,
then (3.1) will exhibit tolerance. More precisely, given an R trajectory x(t) ∈ Rn with
initial condition (x1, . . . , xn) in the interior of Γ+

0 , a P trajectory will exhibit tolerance
with respect to x(t) if and only if its initial condition lies in Γ+

0 ∩ Tφ(0)(Γ1 \ Γ+
1 ), and

moreover, this set is always non-empty.
Proof. For tolerance, we are interested in an R trajectory φ(t), t ≥ 0, φ(0) ∈ Γ+

0

and a P trajectory ψ(t), t ≥ 0,ψ(0) ∈ Γ+
0 such that φ1(0) < ψ1(0). Note that φ̇ = Aφ

and ψ̇ = Aψ since both φ, ψ are trajectories, and hence ξ̇ = Aξ, for ξ = ψ − φ. Since
φ1(0) < ψ1(0), it follows that ξ(0) ∈ Γ1, and for tolerance, we require that there
exists t∗ > 0 with ξ(t∗) /∈ Γ1. Thus, tolerance occurs if and only if ξ(0) ∈ Γ1 \ Γ+

1 .
Considering ξ is equivalent, by linearity, to studying ψ in a coordinate system with
φ(0) at its origin. Under this translation (denoted by Tφ(0)(· )), we see that given any
φ(0) ∈ Γ+

0 , tolerance occurs if and only if ψ(0) ∈ Γ+
0 ∩ Tφ(0)(Γ1 \ Γ+

1 ).
It remains to show that Γ+

0 ∩ Tφ(0)(Γ1 \ Γ+
1 ) is always non-empty. Observe that

each eigensurface Ei of A includes the origin and is invariant under ẋ = Ax. The
n eigensurfaces partition Rn into 2n invariant regions, each with n boundaries. We
will consider the partition P of Γ1 formed from the n eigensurfaces together with
{x1 = 0}, consisting of at least 2n−1 regions, each of which includes the origin on its
boundary, since each bounding hyperplane does.

Note that the x1-nullsurface, defined as the hyperplane N1 that satisfies ẋ1 = 0,
cannot coincide with the hyperplane {x1 = 0} by our assumptions, since that would
imply ẋ1 = cx1 for a constant c, such that E1 would be {x1 = 0}. Hence, N1 partitions
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{x1 = 0} into two components, one with ẋ1 > 0 and one with ẋ1 < 0. There must
exist a region R within the partition P of Γ1 such that one of its boundaries is a part
of {x1 = 0} on which ẋ1 < 0. By construction, the region R is contained in Γ1 \ Γ+

1 .
Now, let φ(0) be in the interior of Γ+

0 . Translate φ(0) to the origin of a new
coordinate system, as previously. Any neighborhood of φ(0) intersects the translates
of all regions in P, including Tφ(0)(R). Hence, Γ+

0 ∩Tφ(0)(R) is a nonempty subset of
Γ+

0 ∩ Tφ(0)(Γ1 \ Γ+
1 ).

Remark 4. Note that the non-empty subset of Γ+
0 ∩Tφ(0)(Γ1 \Γ+

1 ) specified in the
above proof favors points ψ(0) with ψ1(0) − φ1(0) small, since this subset is defined
using the translate of a region with {x1 = 0} as its boundary. After translation, this
region will have {x1 = φ1(0)} as its boundary.

The sets defined here are determined by the eigenstructure of the matrix A. As
noted in the above proof, the eigenplanes Ei of A are each invariant under ẋ = Ax,
and these n eigenplanes partition Rn into 2n regions, each with n boundaries. We can
denote these regions by R1, . . . ,R2n , where the subscripts are assigned arbitrarily.
Any such region Ri such that bd(Ri ∩ Γ1) is entirely contained within

⋃
Ei yields a

corresponding region of no tolerance after translation. That is, Tφ(0)(Ri) ⊂ Tφ(0)(Γ+
1 ),

so ψ(0) ∈ Tφ(0)(Ri) implies no tolerance. Let R′ =
⋃r
i=1Ri denote the union of all

such regions, if any exist, with R′ = φ otherwise. The proof of Theorem 3.3 shows
how the tolerance properties of Tφ(0)(Γ1) \ Tφ(0)(R′) are determined by the vector
field on the 2n−1 faces1 of {x ∈ Rn : x1 = 0}.

We now illustrate the above ideas in two dimensions, where the sets R2+ and
Γ1 are the first quadrant and the right half plane, respectively (see Figure 3.1(a)),
and where the Ei are simply the eigenvectors themselves. In Figure 3.1(b), a specific
eigenstructure is considered and relevant sets are identified. Figure 3.1(c) translates
these sets so that the point φ(0) is the origin of the new axes. Finally, Figure 3.1(d)
marks the regions where tolerance will and will not occur, according to Theorem 3.3.
A second eigenstructure is considered in Figure 3.2(a) with relevant regions identified.
While applying Theorem 3.3 directly, we also look at regions Ri as discussed above
to illustrate how regions of no tolerance can be identified. Figure 3.2(b) shows the
regions where tolerance will and will not occur for this case. A third eigenstructure
is considered in Figures 3.3(a-b), and tolerance regions identified using the same
techniques.

In two dimensions, it is not necessary to use the Ri and R′ to determine tolerance
properties. However, we include them in these examples because these supply the
easiest regions on which to decide tolerance, since it is always the case that there can
be no tolerance on Tφ(0)(R′), and because they bear a relation to the normality of
the matrix A. Normality of A has significant implications for the transient dynamics
of individual trajectories of system (3.1) [37]. If A is normal, then its eigennplanes
are orthogonal, which ensures that R′ is non-empty and represents a significant part
of Γ1. If A is far from normal, then the Ei may be nearly parallel, which also has
implications for the extent of R′.

Finally, these examples illustrate the general point that in R2, given the con-
straints imposed by assumptions (A1), (A2), there is a relation between the location
of R′ and the boundedness of the tolerance region. Specifically, when R′ ⊂ R2+, the
tolerance region is unbounded, while the failure of this condition yields a bounded tol-

1By faces we mean regions separated by sign changes such as {x : x1 = 0, x2 > 0, x3 >
0, · · · , xn > 0}, {x : x1 = 0, x2 < 0, x3 > 0, · · · , xn > 0}, etc.
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Fig. 3.1. In R2, the 2n−1 = 2 “faces” of the set {x = 0} are the positive and negative branches
of the y-axis. R2+ is the first quadrant, and the set Γ1 is the right half plane. (b) A specific eigen
structure is considered in which Γ0 ≡ Γ+

0 ≡ R2+, by positive invariance. The eigenvectors partition
R2 into four regions R1, . . . ,R4, while the eigenvectors and axes partition Γ1 into S1, S2, S3, and
S4, from which we define the sets Γ+

1 := S2 ∪ S3 ∪ S4 (i.e. starting in Γ1, implies staying in Γ1 for

all t ≥ 0) and Γ1 \Γ+
1 := S1. (c) An arbitrary xr ∈ R2+ is chosen and the axes and eigenvectors are

translated (dashed lines) such that xr is now the origin. Correspondingly, translated sets are drawn
and labeled. (d) Tolerance properties are classified using Theorem 3.3, based on possible choices

xp ∈ Γ+
0 ∩ (Γ1)x1 . For xp ∈ Γ+

0 ∩ (Γ+
1 )x1 tolerance does not occur, while for xp ∈ Γ+

0 ∩ (Γ1 \ Γ+
1 )x1

tolerance does occur.

erance region, as can be seen by considering all possible eigenvector configurations in
R2. When A is normal, this condition will always fail and hence a bounded tolerance
region will result. Although nonnormality of A does not guarantee an unbounded tol-
erance region, we still expect some general relationship to hold between the extent of
the tolerance region and the normality of A, which remains to be explored in greater
than 2 dimensions.

3.2. Tolerance in linear planar systems. While Theorem 3.3 is quite general,
it does not complete the theory of tolerance for linear systems. There are several
issues that remain to be addressed, including relating the nature of the tolerance
region to the (non)normality of A, what happens with eigenvalues for which algebraic
multiplicity exceeds geometric multiplicity, and how to estimate the time at which
tolerance occurs. We address the latter two issues in the planar case. We also discuss
how certain parts of this approach can be extended to n dimensions. As noted at
the start of Section 3, tolerance in linear systems is determined by the magnitudes
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Fig. 3.2. (a) A second eigen structure, different from that shown in Figure 3.1, is considered
and the regions R1 · · ·R4 are identified. In this case, R′ ≡ R1. The shaded region is Γ+

0 , which is

identical, in this case, to Γ+
1 . (b) An arbitrary xr ∈ Γ+

0 is chosen and the axes and eigenvectors are
translated (dashed lines) such that xr becomes the origin. Correspondingly, translated sets are drawn

and labeled. As before, tolerance properties are classified using Theorem 3.3. For xp ∈ Γ+
0 ∩ (Γ+

1 )x1

tolerance does not occur, while for xp ∈ Γ+
0 ∩ (Γ1 \ Γ+

1 )x1 tolerance does occur. Note that R1 is

immediately ruled out as a tolerance region because bd(R1 ∩ Γ+
0 ) is entirely contained within

⋃
Ei.

Fig. 3.3. (a) A third distinct eigen structure is considered and regions R1, . . . ,R4 are identified,
with R′ ≡ R1 as in Figure 3.2. The sets Γ+

0 and Γ+
1 are also identified. (b) An arbitrary xr ∈ Γ+

0 is
chosen and the axes and eigenvectors are translated (dashed lines) such that xr becomes the origin.
Correspondingly, translated sets are drawn and labeled. As before, tolerance properties are classified

using Theorem 3.3. For xp ∈ Γ+
0 ∩ (Γ+

1 )x1 tolerance does not occur, while for xp ∈ Γ+
0 ∩ (Γ1 \ Γ+

1 )x1

tolerance does occur. Again, R1 is immediately ruled out as a tolerance region.

of the components of the initial conditions in the direction of slowest eigenvector (or
generalized eigenvector). The analysis done here will correspondingly be intimately
tied to these magnitudes. A geometric representation off this analysis is given in the
Supplementary Materials, along with analysis of necessary and sufficient conditions
for tolerance in the 3D case if c1 < d1 (see equation (3.2).

We consider the linear system (3.1) in two dimensions with eigenvalues λ1 and λ2,
and we adopt the notation φ(0) = (xr, yr), xr ≥ 0, yr ≥ 0 and ψ(0) = (xp, yp), xp ≥
0, yp ≥ 0.

3.2.1. Case 1: λ1 6= λ2. This case is covered by Theorem 3.3 but we will
now take a more explicit approach that yields more concrete tolerance conditions
and a precise time at which tolerance occurs. Without loss of generality, assume
that λ2 < λ1 < 0. Let v, w be eigenvectors corresponding to λ1, λ2, respectively.
Since λ1 and λ2 are distinct, v and w are linearly independent. Thus, any initial
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condition can be uniquely written as a linear combination of v and w. In particular,
(xr, yr) = c1v + c2w = (c1v1 + c2w1, c1v2 + c2w2), with c1, c2 ∈ R. Correspondingly,
the solution φ(t) to the initial value problem (IVP) ẋ = Ax, φ(0) = (xr, yr) is

φ(t) = c1ve
λ1t + c2we

λ2t = (c1v1eλ1t + c2w1e
λ2t, c1v2e

λ1t + c2w2e
λ2t). (3.3)

Similarly, consider the initial condition (xp, yp), which can be uniquely written as
(xp, yp) = d1v+d2w = (d1v1 +d2w1, d1v2 +d2w2), with d1, d2 ∈ R. The solution ψ(t)
to the IVP ẋ = Ax, ψ(0) = (xp, yp) is

ψ(t) = d1ve
λ1t + d2we

λ2t = (d1v1e
λ1t + d2w1e

λ2t, d1v2e
λ1t + d2w2e

λ2t). (3.4)

Since we know xp ≥ xr by (A3), we have that

d1v1 + d2w1 ≥ c1v1 + c2w1. (3.5)

The first component of each eigenvector can be scaled to be positive whenever it is
nonzero. Since λ1 6= λ2, v1 and w1 cannot both be zero for this case. If either v1 or
w1 is zero, then this implies A is a lower triangular matrix and the first component is
decoupled from the others, reducing the problem to the one dimensional case. However
by uniqueness of solutions, tolerance cannot occur in one dimension (i.e. a trajectory
cannot pass another trajectory in one dimension). Hence, tolerance is not possible
when either (a) v1 = 0 and w1 = 1 or (b) v1 = 1 and w1 = 0. Note that these cases
fall outside of the tolerance guarantee given by Theorem 3.3, since Ei coincides with
the 1st coordinate hyperplane for i = 1 or 2 in these cases.

Alternatively, suppose v1 > 0 and w1 > 0. Proposition 3.4 below states necessary
and sufficient conditions on the coefficients of the solutions φ and ψ in order for
tolerance to be exhibited and also specifies the precise time value beyond which it
occurs.

Proposition 3.4. Let (xr, yr), (xp, yp) be given such that (A1), (A2), (A3) hold
and assume that λ2 < λ1 < 0 and that v1 > 0, w1 > 0 for eigenvectors v and w
corresponding to λ1 and λ2, respectively. There exists T1 > 0 such that (3.1) will
exhibit tolerance for all t > T1 if and only if (xr, yr), (xp, yp) are such that c1 > d1

and c2 < d2. Furthermore,

T1 =
ln[(d2 − c2)w1/(c1 − d1)v1]

λ1 − λ2
. (3.6)

Proof. (Necessary Conditions) Assume that c1 ≤ d1. Consider the difference
between φ1(t) and ψ1(t). Using (3.3), (3.4), and (3.5), we have

φ1(t)− ψ1(t) = (c1 − d1)v1eλ1t + (c2 − d2)w1e
λ2t

≤ (c1 − d1)v1(eλ1t − eλ2t).

Since λ2 < λ1 < 0, v1, w1 > 0, and c1 ≤ d1, it follows that φ1(t) − ψ1(t) ≤ 0, which
means that ψ1(t) ≥ φ1(t) for all t ≥ 0. Hence, tolerance cannot be exhibited for
c1 ≤ d1. Similarly, it can be shown that (3.1) cannot exhibit tolerance for c2 ≥ d2.
Thus, c1 > d1 and c2 < d2 are both necessary conditions for tolerance.

(Sufficient Conditions) Assume that c1 > d1 and c2 < d2 both hold. Using (3.3)
and (3.4), we have

φ1(t)− ψ1(t) = (c1 − d1)v1eλ1t + (c2 − d2)w1e
λ2t.

=
(
e(λ1−λ2)tv1 +

c2 − d2

c1 − d1
w1

)
eλ2t(c1 − d1).
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By assumption, (c1 − d1) > 0, (c2 − d2) < 0, and w1 > 0; thus,

eλ2t(c1 − d1) > 0 and
(c2 − d2)
(c1 − d1)

w1 < 0.

Therefore,

φ1(t)− ψ1(t) =
(
e(λ1−λ2)tv1 +

(c2 − d2)
(c1 − d1)

w1

)
eλ2t(c1 − d1) > 0

⇔
(
e(λ1−λ2)tv1 +

(c2 − d2)
(c1 − d1)

w1

)
> 0

⇔ e(λ1−λ2)tv1 >
(d2 − c2)
(c1 − d1)

w1

⇔ t >
ln[(d2 − c2)w1/(c1 − d1)v1]

λ1 − λ2
≡ T1.

This inequality is satisfied by large enough t and T1 gives a lower bound for t such
that φ1(t)− ψ1(t) > 0. Note that T1 > 0 when (d2 − c2)w1/(c1 − d1)v1 > 1, which is
equivalent to the initial conditions assumption (A3) when c1 > d1 and c2 < d2.

3.2.2. Case 2: λ1 = λ2 = λ < 0. In this case, λ has either a one- or two-
dimensional eigenspace. If λ has a two-dimensional eigenspace, then solutions are
linear combinations of the function eλt. Hence, we would arrive at the following:

φ1(t)− ψ1(t) = xre
λt − xpe

λt = (xr − xp)eλt ≤ 0.

Therefore, if A has identical eigenvalues with a complete set of linear independent
eigenvectors, then the situation reduces to the one dimensional case and tolerance
does not occur.

When λ has a one dimensional eigenspace, the analysis is not as straightforward.
In this case, let v be an eigenvector of λ. One solution to (3.1) is x(1)(t) = veλt. A
second solution to (3.1) is x(2)(t) = vteλt + v̄eλt, where v̄ is a generalized eigenvector
satisfying (A − λI)v̄ = v. The initial condition (xr, yr) can be uniquely written as a
linear combination of v and v̄,

(xr, yr) = c1v + c2v̄ = (c1v1 + c2v̄1, c1v2 + c2v̄2),with c1, c2 ∈ R.

The solution φ(t) to the IVP ẋ = Ax, φ(0) = (xr, yr) is

φ(t) = c1ve
λt + c2(vteλt + v̄eλt)

= (c1v1eλt + c2(v1teλt + v̄1e
λt), c1v2eλt + c2(v2teλt + v̄2e

λt)). (3.7)

Similiary, the initial condition, (xp, yp), can be uniquely written as a linear combina-
tion of v and v̄,

(xp, yp) = d1v + d2v̄ = (d1v1 + d2v̄1, d1v2 + d2v̄2),with d1, d2 ∈ R,

and the solution ψ(t) to the IVP ẋ = Ax, ψ(0) = (xp, yp) is

ψ(t) = d1ve
λt + d2(vteλt + v̄eλt)

= (d1v1e
λt + d2(v1teλt + v̄1e

λt), d1v2e
λt + d2(v2teλt + v̄2e

λt)). (3.8)
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The following proposition states the results for this case. We will assume that v1 can
be scaled to be positive when it is nonzero.

Proposition 3.5. Let (xr, yr), (xp, yp) be given such that (A1), (A2), (A3) hold
and assume that λ1 = λ2 = λ < 0. Suppose that λ has a one-dimensional eigenspace.
Let v be an eigenvector of λ and let v̄ be a corresponding generalized eigenvector.
(i) If v1 > 0, then we can choose v̄1 = 0 and (3.1) will exhibit tolerance for

〈(xr, yr), (xp, yp)〉 for all t > T2 ≡ (d1 − c1)/(c2 − d2) if c2 > d2; otherwise,
no tolerance occurs.

(ii) If v1 = 0, then (3.1) will not exhibit tolerance for 〈(xr, yr), (xp, yp)〉.
Proof. Consider the difference between φ1(t) and ψ1(t). Equations (3.7) and (3.8)

yield

φ1(t)− ψ1(t) = ((c1 − d1)v1 + (c2 − d2)v̄1)eλt + (c2 − d2)teλtv1

Assumption (A3) on the initial conditions of φ and ψ implies

0 ≥ (c1 − d1)v1 + (c2 − d2)v̄1. (3.9)

(i) Assume that v1 > 0. Without loss of generality, we can assume that v̄1 = 0. That
is, since v is an eigenvector of A, (A−λI)v = 0. Thus, v̄, which satisfies (A−λI)v̄ = v,
also satisfies (A − λI)(v̄ − av) = v for any scalar a, implying that (v̄ − av) is also
a generalized eigenvector of λ, linearly independent of v. Further, there exists an a
such that (v̄ − av) = [0 b]T , which, for simplicity of notation, can be redefined as v̄.

Therefore, in this case, (3.9) implies that c1 ≤ d1. Moreover, φ1(t) − ψ1(t) =
(c1 − d1 + (c2 − d2)t)v1eλt, so φ1(t) > ψ1(t) requires c2 > d2 and holds for t >
(d1 − c1)/(c2 − d2) ≡ T2.
(ii) Assume that v1 = 0 and, thus, v̄1 6= 0. Then, we have

φ1(t)− ψ1(t) = c2v̄1e
λt − d2v̄1e

λt (3.10)
= (c2 − d2)v̄1eλt. (3.11)

By (3.9) with v1 = 0, (c2 − d2)v̄1 ≤ 0. Thus, (3.11) implies that φ1(t) ≤ ψ1(t) for all
t.

Remark 5. If v̄1 6= 0 is chosen, then the constants c1, c2, d1, d2 change corre-
spondingly. For the new constants, the formula for T2 generalizes to T2 = d1−c1

c2−d2 −
v̄1
v1

and inequality (3.9) replaces the condition c1 ≤ d1.
Propositions 3.4 and 3.5 give analytical conditions for the existence of tolerance

in terms of coefficients of general solutions to (3.1). The existence of tolerance is
determined by projecting (xr, yr) and (xp, yp) onto the eigenvectors. In the case of
distinct eigenvalues, there is a fast eigenvector corresponding to the larger magnitude
eigenvalue and a slow eigenvector corresponding to the smaller magnitude eigenvalue.
Tolerance will exist if the component of the projection of xr along the slow eigen-
vector is larger than the corresponding projection of xp and if the component of the
projection of xr along the fast eigenvector is smaller than that of xp. Thus for any
point (xr, yr) there is a region of tolerance that will be defined by the two eigenvectors
of the flow. The conditions are different in the case of repeated eigenvalues. Exam-
ples of trajectories and tolerance regions for various initial conditions and eigenvector
configurations are shown in Figure 3.4, with each figure linking to an animation of
the given example. [INSERT LINKS FOR LinearEx a Reg3.gif, LinearEx b Reg1.gif,
LinearEx c Reg2.gif, and LinearEx d Reg1.gif)] Compare Figures 3.4(a-c) with Fig-
ures 3.1(d), 3.3(b), 3.2(b), respectively. The complete enumeration of all possible
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Fig. 3.4. Four example eigenvector configurations, initial conditions and trajectories. In each
case, tolerance will occur for 〈(xr, yr), (xp, yp)〉 if and only if (xp, yp) lies in the green region for
(xr, yr). Each figure links to an animation of the given example.

initial conditions and relevant eigenvector configurations is given in the Supplemen-
tary Materials.

Some special cases allow trivial generalization to n-dimensional systems. For
example, if one component of a linear system decouples from the other components
(i.e. the one dimensional tolerance case), then there cannot be tolerance in that
component. Similarly, if a 2× 2 block including the component of interest decouples,
then 2-d analysis can be used, and so on. Alternatively, ifA has n identical eigenvalues,
λn = λn−1 = . . . = λ1 = λ < 0, with a complete set of n linearly independent
eigenvectors, then φi(t) − ψi(t) = (φi(0) − ψi(0))eλt ≤ 0 for all t ≥ 0, such that
tolerance cannot occur. More generally, as noted at the start of Section 3, if A has
n distinct eigenvalues and eigenvectors and equation (3.2) holds, then c1 > d1 is
sufficient for eventual tolerance when all the vji are nonzero, together with additional
restrictions on φ(0), ψ(0) to ensure that assumptions (A2) and (A3) hold. On the
other hand, if c1 ≤ d1 in this case, then tolerance may or may not be possible. For
a 3D system with distinct eigenvalues, if c1 = d1, then the 2D analysis applies, while
necessary and sufficient conditions for tolerance if c1 < d1 are given in part 2 of the
Supplementary Materials.

3.3. Algorithms for locating regions of tolerance. We conclude our linear
analysis by commenting on practical algorithms for identifying tolerance regions or
for determining whether or not tolerance will occur for a particular choice of initial
conditions φ(0), ψ(0). Theorem 3.3 implies that to fully characterize tolerance for
(3.1), we should first find the eigenvectors of A. For a fixed φ(0) ∈ Γ+

0 , recall that
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Γφ1(0)
0 denotes the region from which ψ(0) can be chosen such that (A1), (A2), (A3)

hold. If we can find Γφ1(0)
0 , then we can translate it by taking x1 − φ1(0) for each

x = (x1, . . . , xn) ∈ Γφ1(0)
0 . Tolerance for ψ(0) is determined by the region Ri in which

its translate, say ψ(0)′, lies, with no tolerance for ψ(0)′ ∈ R′ and with tolerance
determined by the vector field on the boundaries of Ri that belong to the coordi-
nate hyperplane {x1 = 0} for ψ(0)′ /∈ R′. It remains for future work to determine
computationally efficient algorithms for making this assessment.

A non-optimal but more explicit algorithm can be derived by attempting to lo-
cate a maximum of (φ1(t) − ψ1(t)) at which this difference is positive. (A related
approach can be used to obtain necessary and sufficient conditions for tolerance for
linear systems in R3, as shown in the supplementary materials.) Since there are two
possible inequality relationships (≤ and >) between cj and dj for every j = 1 . . . n
in equation (3.2), there are 2n possible sets of coefficient relationships, each having
n inequalities. Thus, one could set up 2n linear programming problems each with n
constraints made up of sets of possible coefficient inequalities. For instance, given a
4×4 matrix A and an initial condition φ(0) = (xr, yr) (and hence coefficients c1, c2, c3,
and c4), one linear programming problem to solve would be:

maximize (φ1(t)− ψ1(t))
subject to: c1 <= d1, c2 <= d2, c3 > d3, and c4 > d4.

Under these constraints, if values for d1, d2, d3, and d4 can be found such that (φ1(t)−
ψ1(t)) has a maximum at which it is positive, then a region of tolerance has been found
with respect to φ(0) = (xr, yr). Then, systematically, the other sets of inequalities
can be checked. In fact, we can avoid checking the one inequality set that has cj ≤ dj
for all j = 1 . . . n, since this implies no tolerance, from equation (3.2).

4. General systems. A natural question to ask is, how effective is linear anal-
ysis for assessing tolerance in general systems? Just as linearization about a critical
point tells us nothing about global properties of a flow in many nonlinear systems,
linear analysis of tolerance based on linearization about the origin is not always a
useful approach to tolerance. For example, tolerance in the first component can occur
for the system

ẋ = −x− xy,
ẏ = x− 2y,

yet the first component of the system obtained by linearizing about the origin decou-
ples, and linear theory predicts no tolerance.

Is there another way to exploit linearization? As in the linear case, the eigen-
values and eigenvectors obtained from the linearization of a nonlinear system about
an asymptotically stable node determine how trajectories approach the node asymp-
totically. The difficulty in the nonlinear case is that, even if an initial condition is
expressed as a linear combination of these eigenvectors, the relative magnitudes of
the components associated with different eigenvectors is not preserved under the flow.
Theoretically, the dynamics of a nonlinear system with an asymptotically stable node
can be characterized in terms of a fiber structure through which trajectories are slaved
to counterparts on invariant manifolds, in this case associated with negative eigen-
values of different magnitudes and their corresponding eigenspaces [20, 21]. However,
although it is known that this fiber structure exists, there is no means to calculate
how an arbitrary point is situated with respect to the fiber system, and other ideas
are needed to make the analysis of tolerance for nonlinear systems practical.
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An alternative to linearization about a node would be to linearize about an initial
condition of an R trajectory. If linearization yields distinct negative real eigenvalues
and the conditions for Theorem 3.3 hold, then a corresponding tolerance region suffi-
ciently close to the R trajectory will exist. On the other hand, linearization may yield
complex eigenvalues and hence be inconclusive, or nonlinearity may cause or prevent
tolerance away from a neighborhood of the R trajectory in ways that linearization
cannot predict.

Hence, an analysis of tolerance in fully nonlinear systems is required. In this
section, we demonstrate that tolerance can occur generically provided that trajectories
satisfy a geometric property called excitability. The existence of excitability in turn
depends on a property of the dynamics called inhibition where the increase of some
components enhances the rate of approach towards the origin in the first component.
However, given the presence of inhibition in general, an analytical estimate is required
to address whether or not a given pair of reference and perturbed trajectory initial
conditions will lead to tolerance.

4.1. Geometric analysis of tolerance: excitability. Consider the general
system (2.1), ẋ = f(x), for x ∈ Rn. We start with a simple proposition.

Proposition 4.1. Assume (A1), (A2), and (A3). Given 〈φ(0), ψ(0)〉, assume
φ1(t) and ψ1(t) → 0 monotonically as t→∞. If there exists t̂ > 0 such that φ(−t̂) =
ψ(0), then (2.1) does not exhibit tolerance for 〈φ(0), ψ(0)〉.

This proposition follows immediately from the group property of flows2 and is
another explanation for why tolerance is ruled out in one dimensional systems. How-
ever, this property also allows the possibility of tolerance in higher dimensions if the
reference trajectory does not approach the origin monotonically. In particular, the
first components of solutions generated by two initial conditions on the same trajec-
tory may exchange order, depending on the geometry of the trajectory. We now focus
on a situation where the reference trajectory φ is what we call a k-excitable trajectory
as represented, for example, in the left panel of Figure 4.1. We make this concept
precise with the following definition.

Definition 4.2. Assume that (A1), (A2), and (A3) hold for system (2.1). Fix
a positive integer k. The trajectory φ(t) is k-excitable if there exist times tei, where
te0 = 0 < te1 < te2 < . . . < te2k−1 , such that
(a) φ1(tei) > φ1(0) for all i > 0,
(b) {

f1(φ(t)) > 0, t ∈ [te0 , te1) and (te2i , te2i+1), i ∈ {1, 2, . . . , k − 1},

f1(φ(t)) < 0, t ∈ (te2i+1 , te2(i+1)), i ∈ {0, 1, . . . , k − 2}, or t > te2k−1 .

The trajectory φ(t) is excitable if it is 1-excitable.
Excitable trajectories are those that transiently grow (in one component) prior

to approaching 0 and can be related to the amplification of a perturbation known
as reactivity [28], a common feature in various models [7, 9, 10, 27, 28, 30]. In the
context of acute inflammation, an excitable trajectory represents the initial activation
of the immune system by a stimulus followed by a relaxation to a stable baseline state
[13].

Proposition 4.3. Assume (A1), (A2), and (A3) hold for system (2.1). If φ(t) is
a k-excitable trajectory, then system (2.1) exhibits tolerance for all 〈φ(0), ψ(0)〉 such
that ψ(0) = φ(t̂), for some 0 < t̂ ≤ te1.

2If φt(x) denotes the flow/trajectory generated by evolving a differential equation from initial
point x for time t, the group property of flows is defined as φt+s(x) = φt(φs(x)).
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The proof again follows from the group action of flows and the observation that
φ1(te2k−1) > φ1(te2k−1 + t̂) = ψ1(te2k−1). For points on the outgoing branch of an
excitable trajectory, those further away from the origin are “ahead” of those that
are closer. By propositions 2.6 and 2.7, we note that the two initial conditions need
not be exactly on the same trajectory. Hence, there is a “tube” around the outgoing
branch of an k-excitable trajectory in which tolerance can exist. The regions for which
tolerance exist can be computed more explicitly in a planar system.

4.1.1. Planar excitable systems. Now we look at the implication of an ex-
citable trajectory in two dimensions, again using the notation

ẋ = f(x, y),

ẏ = g(x, y).
(4.1)

Remark 6. We add the following condition on ẏ = g(x, y) to Definition 4.2:
(c) g(φ1(t), φ2(t)) > 0 for t ∈ [0, te2k−1 ]. Although not necessary for our approach,
this assumption clarifies the presentation to follow.

Below, we define a set T such that tolerance with respect to (xr, yr) occurs when-
ever (xp, yp) ∈ T , when φ(t) is a k-excitable trajectory.

Definition 4.4. For a k-excitable trajectory φ, define tr > 0 to be the first
positive time where φ1(tr) = xr, which exists since φ is k-excitable and continuous,
under (A1) and (A2). Note also that φ1(t) > φ1(tr) = xr for all t ∈ (0, tr) by
definition of an k-excitable trajectory.

Definition 4.5. Assume that φ is an k-excitable trajectory. In terms of tr,
define G = {(x, y)|(x, y) = φ(t) for t ∈ (0, tr]}. Further, define the line segment L =
{(x, y) : x = xr, y ∈ (yr, φ2(tr)]} and define the region S (see Figure 4.1) as the union
of L and the interior of the region bounded by G and L. Finally, let T = G ∪ S.

Definition 4.6. Define M = maxt≥0{φ1(t)}, which exists by (A1), (A2), and
the continuity of φ. Let tm > 0 (tM > 0) be the minimal (maximal) positive time such
that φ1(t) = M .

Proposition 4.7. Let φ(0) = (xr, yr) and (xp, yp) be given. Suppose that (A1),
(A2), and (A3) hold and that φ is an k-excitable trajectory. Under these conditions,
T is a non-empty set. Moreover, if (xp, yp) ∈ T , then (4.1) will exhibit tolerance for
〈(xr, yr), (xp, yp)〉.

Proof. By the assumptions, a region T = G ∪ S as defined above is non-empty.
We divide the proof into two parts since T is defined as the union of two sets.

Part 1: Suppose ψ(0) = (xp, yp) ∈ G. This implies that ψ(0) = (xp, yp) = φ(τ),
for some τ > 0. Recall that φ1(t) < M for all nonnegative t > tM . It follows
that ψ1(tM ) = φ1(tM + τ) < M = φ1(tM ). Thus, (4.1) exhibits tolerance for
〈(xr, yr), (xp, yp)〉 ∈ G at time tM .

Part 2: Suppose (xp, yp) ∈ S. We first consider the case where xp > xr and
define tp = mint>0{t : ψ1(t) = xr}, such that ψ(t) ∈ S for all t ∈ [0, tp]. If tp ≥ tr
then since tr > tM ≥ tm, tm ∈ (0, tp). Hence, ψ1(tm) < M = φ1(tm) and tolerance
is exhibited at tm. Now, if 0 < tp < tr, then it is possible that ψ1(tm) > M (see
bottom panel of Figure 4.1). However, from the definition of tr, φ1(tp) > φ1(tr) =
xr = ψ1(tp) and tolerance is exhibited at tp. Now, consider the special case that
xp = xr. If f(xp, yp) > 0 then tp can be defined and the analysis proceeds as above.
If f(xp, yp) < 0, then there exists ε > 0 such that ψ1(ε) < xr and φ1(ε) > xr. Thus,
φ1(ε) > ψ1(ε) and tolerance occurs at ε.
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Figure 4.1 illustrates Proposition 4.7 in both phase space (left panel) and with
time courses (right panel). Notice that if we consider the special case when (xr, yr) =
(xr, 0) for a k-excitable trajectory, then uniqueness of solutions is sufficient to guar-
antee tolerance.

Fig. 4.1. Illustration of Proposition 4.7 in the case that φ is k-excitable. P trajectories with
initial conditions in region S exhibit tolerance. Left Panel: A 2-excitable R trajectory, φ(t), initial
condition, (xr, yr) (black) and two example P trajectories, ψ(t), with corresponding initial conditions
(xp, yp) ∈ S (red). The maximum value in the x-direction for φ(t) is marked with a vertical blue
line and denoted by M . Additionally, note that G = {φ(t)|t ∈ (0, tr]} (not labeled) is the section of
the graph of φ(t) that forms a portion of the boundary of region S and that L = {(x, y) : x = xr, y ∈
(yr, φ2(tr)]} (not labeled) is the vertical line segment which forms the remaining boundary of the S.
Right Panel: Time courses of both φ1(t) (black) and ψ1(t) (red). Time tp is where ψ1 first takes on
the value xr and tM is the time when φ1(t) last attains its maximal value.

If more constraints are imposed on the vector field f then the region that guar-
antees tolerance can be immediately expanded to include the strip above T in Γxr0 .
To be precise, we introduce the following definition.

Definition 4.8. Define T̂ by the set

T̂ = ((xr,M)× (φ2(tM ),∞) \ T ) ∩ Γxr0 . (4.2)

Proposition 4.9. Assume (A1), (A2), (A3), and that φ is an k-excitable tra-
jectory with φ(0) = (xr, yr). If f(x, y) ≤ 0 for all (x, y) ∈ T̂ , then for (xp, yp) ∈ T̂ ,
(4.1) will exhibit tolerance.

Proof. If (xp, yp) ∈ T̂ and f ≤ 0, then ψ1(t) ≤ xp < φ1(tM ) for t ≥ 0. Thus,
φ1(tM ) > ψ1(tM ). Hence, (4.1) exhibits tolerance for (xp, yp) ∈ T̂ at time tM .
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4.2. Inhibition. In the previous section we found specific conditions under
which tolerance would occur for individual points or regions defined by the shape
of the reference trajectory R. Now, we introduce the concept of inhibition, which is
based on the vector field, rather than on a particular trajectory. Inhibition allows us
to characterize whether or not certain special regions in phase space at least admit the
possibility of tolerance and will also be used in the next subsection in an analytical
approach to tolerance for individual trajectories.

The term inhibition, which is often associated with negative feedback, is widely
used in the context of mathematical models of biological systems to refer to the
suppression of one quantity by another. However, the use of this term, while intuitive
and heuristically understood, is not always mathematically precise. Hence, we give a
precise definition of what we mean by inhibition. Subsequently, we prove two results
relating to inhibition and tolerance.

Definition 4.10. Given Ω ⊆ Rn+, we say xi, i 6= 1, inhibits x1 in Ω, and Ω
is a region of inhibition with respect to xi for (2.1), if f(x1, . . . , xi = u, xi+1, . . . ) ≤
f(x1, . . . , xi = v, xi+1, . . . ) if u > v (i.e. f1(x) is a monotone decreasing function of
xi everywhere in Ω ).

Remark 7. Note that the sign of f1(x) is not specified in Definition 4.10. Thus,
when xi inhibits x, it may either slow the growth of x1 or speed up its decay.

Remark 8. A region of inhibition must be present for a k-excitable trajectory to
exist.

Remark 9. More than one component xj can inhibit x1 and the regions of
inhibition need not be contiguous.

A key first observation that follows from the definition of inhibition is that there
is always the possibility of tolerance when xi inhibits x1, as long as the perturbed
trajectory samples larger xi values than the reference trajectory. In the context of the
inflammatory response, a preconditioning dose can cause an above normal amplifica-
tion of anti-inflammatory mediators which can inhibit the response to inflammatory
stimuli significantly enough to cause tolerance. We formalize this observation by stat-
ing two further definitions and two results that follow from these definitions, which
establish the necessity of a region of inhibition and of certain relative positions of the
perturbed and reference trajectories for tolerance to occur.

Definition 4.11. The trajectory ψ is bounded below by the trajectory φ in the
xi direction if φi(s1) < ψi(s2) whenever φ1(s1) = ψ1(s2) for any s1, s2 > 0, not
necessarily equal. For brevity, we say ψ is bounded below by φ in xi.

Proposition 4.12. Assume that (A1), (A2), and (A3) hold and that ψ is bounded
below by φ in xi for each i > 1. If (2.1) exhibits tolerance for a given pair 〈φ(0), ψ(0)〉,
then there exist a region of inhibition with respect to xi, call it Ωi, for some i and a
time s ∈ R+ such that ψ(s) ∈ Ωi or φ(s) ∈ Ωi.

Definition 4.13. The trajectory of ψ is bounded above by the trajectory of φ in
the xi direction if φi(s1) > ψi(s2) whenever φ1(s1) = ψ1(s2) for any s1, s2 > 0, not
necessarily equal. For brevity, we say ψ is bounded above by φ in xi.

Proposition 4.14. Assume that (A1), (A2), and (A3) hold. For given 〈φ(0), ψ(0)〉,
if the graph of ψ is bounded above by the graph of φ in xi for each i > 1, and there ex-
ists Ω that is a region of inhibition with respect to xi for all i > 1 with φ(t), ψ(t) ⊂ Ω
for all t ≥ 0, then (2.1) cannot exhibit tolerance for 〈φ(0), ψ(0)〉.

Proposition 4.12 states that the existence of a region of inhibition is necessary
for tolerance to occur when the P trajectory, ψ, is bounded below in all components
i > 1 by the R trajectory, φ, while Proposition 4.14 states that for tolerance to be
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a possibility for a P trajectory ψ that is bounded above in all components i > 1 by
the R trajectory φ, it is necessary that at least one of φ, ψ lies outside of a region of
inhibition with respect to at least one component at some time. Note that we do not
need to worry about φ but not ψ being excitable here, because φ, ψ are contained in a
region of inhibition with respect to xi for all i > 1. These results can be quite useful
in low-dimensional systems. In higher dimensions, as more components interact, the
assumptions involved become more restrictive and hence less likely to be satisfied.

4.3. Time interval estimates. To obtain more precise conditions for the exis-
tence of tolerance, direct estimates regarding specific trajectories of (2.1) are necessary.
Here, we show how to derive estimates in the two dimensional plane for upper and
lower bounds on the amount of time it takes for the relevant trajectories to reach
a specified x-value xf that is crossed by both trajectories, φ(t) and ψ(t). We again
adopt the two dimensional notation of section 3.2. If an (xp, yp) can be found such
that ψ(t) takes a shorter time interval to reach xf than φ(t), then tolerance exists for
that (xp, yp). To do this, we will use the x-isoclines, which we now define.

Definition 4.15. The x-isoclines of (2.1) are the family of curves (or level sets),
parametrized by a parameter C ∈ R, each defined by f(x, y) = C.

A nullcline, for instance, is an isocline for which C = 0. The vector field points
in the positive (negative) x-direction when C is positive (negative).

Remark 10. We may define y-isoclines analogously to x-isoclines. Since we do
not consider these, we will drop the x- and just use isocline to refer to the x-isoclines
here.

Now, consider the ODE (2.1) and assume that (A1), (A2), and (A3) hold. Sup-
pose that there is a positive integer n for which the graph of φ can be decom-
posed into a union of n graph segments such that the y component of the graph
is single valued with respect to x on each. This assumption holds, for example,
when φ is m-excitable for some m. Let xi, i ∈ {1, . . . , n + 1} be the n + 1 termi-
nal points of the n segments, defined by x1 = xr, xi = φ1(tiφ), for i = 2, . . . , n,
where tiφ = inft>ti−1

φ
{t : f(φ1(t), φ2(t)) = 0} with t1φ = 0, and xn+1 = xf . Let

tn+1
φ = inft>tnφ{t : φ1(t) = xf}. The total time to traverse the trajectory from xr to
xf is then given by tφ =

∑n
i=1 ∆tiφ, where ∆tiφ = ti+1

φ − tiφ.
On each graph segment we can express the graph of φ as a function y = vi(x),

where vi is defined on the interval xi ≤ x ≤ xi+1, i ∈ {1, . . . , n}. We can compute ∆ti
for each segment directly by integrating the first equation of (2.1) along the graph
segment defined by y = vi(x), i.e. ẋ = f(x, vi(x)), to obtain

tφ =
n∑
i=1

∫ xi+1

xi

du

f(u, vi(u))
. (4.3)

A similar construction can give tψ, with initial x-coordinate xp. Tolerance then implies
tψ < tφ. In general, it is not possible to obtain vi in closed form, but depending on
the structure of f , estimates can be made to obtain various bounds for tφ and tψ.

For example, with respect to (2.1), consider the family of x-isoclines f(x, y) = C,
where C ∈ R. Let ciφ = supt∈[tiφ,t

i+1
φ ){|f(φ1(t), φ2(t))|}, i.e. the largest magnitude iso-

cline through which the trajectory φ passes on the segment [xiφ, x
i+1
φ ]. Then from (4.3)

we obtain tφ ≥
∑n
i=1 |x

i+1
φ −xiφ|/ciφ. Likewise, let ciψ = inft∈[tiψ,t

i+1
ψ ){|f(ψ1(t), ψ2(t))|},

i.e. the smallest magnitude isocline through which the trajectory ψ(t) passes on the
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segment [xiψ, x
i+1
ψ ], yielding tψ ≤

∑n
i=1 |x

i+1
ψ − xiψ|/ciψ. Thus, if

n∑
i=1

|xi+1
ψ − xiψ|
ciψ

<
n∑
i=1

|xi+1
φ − xiφ|
ciφ

, (4.4)

then tψ < tφ, which implies tolerance.
We can use condition (4.4) to show, for example, that if ψ(t) is bounded below

by an m-excitable trajectory φ(t), and φ(t) and ψ(t) both lie in a region of inhibition,
then the region on which tolerance is guaranteed to occur can be expanded from
that defined in Proposition 4.9. As an example, suppose that φ(t) is an excitable
trajectory. We can then divide φ into two segments. In the first segment φ1(t) and
φ2(t) are increasing, and in the second φ1(t) is decreasing. By continuity and (A1),
φ2(t) must first increase and then decrease on the second segment. The end point
of the first segment is xM = maxt>0 φ1(t). Define xf as the x-value where φ2(t) is
maximal and let φ2(t) = yf at this point. Since φ(t) belongs to a region of inhibition,
the largest magnitude isocline through which the first segment of φ(t) passes is given
by c1φ = f(xr, yr) = Cr. On the second segment, the largest magnitude isocline passes
through φ(t) when φ2(t) is maximal. Thus c2φ = |f(xf , yf )| = Cf > 0.

Fig. 4.2. Illustration for time interval estimates.

Now, using Figure 4.2 as a reference, consider a trajectory ψ(t) such that f < 0
along the trajectory, so there is only one segment and it is bounded below by the line
y = yf . Thus, c1ψ = Cψ > Cf , and tolerance is observed if

|xf − xp|
Cψ

<
|xM − xr|

Cr
+
|xf − xM |

Cf
. (4.5)

If we consider an excitable trajectory, then xp > xf , xM > xr, and xM > xf . Taking
these inequalities in (4.5) gives the tolerance condition

xp < xM +
Cψ − Cf
Cf

(xM − xf ) +
Cψ
Cr

(xM − xr) def= x̂M . (4.6)

Since Cψ > Cf , (4.6) implies that x̂M > xM , which expands the region obtained from
Proposition 4.9. We note that Cψ is a function of yp, so (4.6) defines a region R such
that if (xp, yp) ∈ R, then tolerance occurs in (2.1).
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4.4. Examples. In the examples below, we illustrate the ideas introduced in
the previous subsection. We consider examples within the class of negative feedback
mechanisms appearing naturally in biological models, such as our earlier model of
the acute inflammatory response [13], selected based on the types of isoclines they
generate. The examples selected provide a progressive increase in isocline complexity,
while specific coefficients in each were chosen for ease of presentation. In each figure,
regions are labeled with the following conventions: T (green) or T̂ (light green) as
in Definitions 4.5 and 4.8 (on pages 15 and 16), where tolerance is guaranteed; PT
(light blue) for possible tolerance region; NT (gray) for a no tolerance region.

Example 1. Consider the system given by

ẋ = f(x, y) = x2/(1 + y)− x
ẏ = g(x, y) = x2 − y/2. (4.7)

The 1/(1 + y) term is typical of the damping effect of anti-inflammatory mediators
in inflammation models. Note that (0, 0) is a stable node for (4.7). The isoclines for
this system are the family of curves given by the equation

y =
x2 − x− C

x+ C
(4.8)

for C ∈ R. Figure 4.3 shows a subset of the isoclines for C ∈ [−4.0, 50] shown in
increments of 0.5 for those above the C = 0 isocline and in increments of 1.0 for those
below.

Fig. 4.3. Isoclines for Example 1 defined by Equations 4.8 for C ∈ [−4.0, 50].

For each C < 0, the corresponding isocline has a local minimum at x = −2C and
a vertical asymptote at x = −C. Direct differentiation of f in (4.7) yields fy < 0,
or equivalently, from (4.8), dy/dC < 0, for all (x, y) in the first quadrant. Thus,
the entire first quadrant is a region of inhibition. We will consider several different
initial conditions (xr, yr) for φ(t) in this example: (a) (xr, yr) = (4.0, 0.0), C = 12;
(b) (xr, yr) = (4.0, 3.0), C = 0; (c) (xr, yr) = (4.0, 10.0), C = −28

11 . If x and y are
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Fig. 4.4. Isoclines and various initial values (xr, yr) for Example 1. (a) For (xr, yr) = (4, 0),

tolerance is guaranteed for (xp, yp) in regions T and T̂ . Tolerance is possible but not guaranteed for
(xp, yp) in region PT . (b) For (xr, yr) = (4, 3), tolerance is possible but not guaranteed for (xp, yp)
in region PT . (c) For (xr, yr) = (4, 10), tolerance is not possible for (xp, yp) in region NT and
possible but not guaranteed for (xp, yp) in region PT .

mediators in the inflammatory response, these initial conditions would correspond to
possible mediator levels at the start of a tolerance experiment.

Figure 4.4(a) gives the regions where tolerance can occur for initial condition (a).
By Proposition 4.7, any (xp, yp) ∈ T will produce tolerance. Furthermore, define
G as the part of the boundary of T for which x ∈ [xr,∞), as in Definition 4.5. By
Proposition 2.7, for each (xp, yp) ∈ G, there exists an open ball, Br̃, of radius r̃ around
(xp, yp) such that (x̃k, ỹk) ∈ Br̃ ∩ Γxr(0,0) produces tolerance with respect to (4.0, 0).
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Region T̂ is inhibitory (f < 0). Thus, by Proposition 4.9, any (xp, yp) ∈ T̂ will produce
tolerance. Tolerance is also possible, although not guaranteed, for (xp, yp) ∈ PT . In
this case, for ψ1(t) > M def= maxt≥0{φ1(t)}, ψ(t) is bounded below by φ(t) and there
is inhibition. For ψ1(t) < M , which is possible for small yp, ψ(t) will eventually
be bounded below by φ(t) and hence tolerance is again possible. The following link
supplies four separate animations that illustrate the presence or absence of tolerance
in Example 1(a) using various choices of ψ(0) from the different regions shown in
Figure 4.4(a). Each animation displays both phase space trajectories of φ and ψ and
time courses of φ1(t) and ψ1(t) in a side-by-side comparison. [INSERT LINKS FOR
EX1a T Animation.gif, EX1a That Animation.gif, EX1a PT tol Animation.gif, and
EX1a PT notol Animation.gif.]

Now consider initial condition (b). Note that if yr is increased with xr fixed, the
regions T and T̂ shrink. Finally, when yr reaches 3.0, corresponding to initial condition
(b), these regions disappear; see Figure 4.4(b). For this example, if xp = xr = 4.0,
then for all (xp, yp) ∈ PT , the corresponding graph of ψ is or will eventually be
bounded below by the graph of φ. Since the graph of ψ lies in R2+ and R2+ is a
region of inhibition, Proposition 4.12 implies that it is possible that tolerance can be
exhibited by any (xp, yp) ∈ PT , although, as in the previous case, tolerance is not
guaranteed.

For initial condition (c), there is the possibility of tolerance for all (xr, yr) and
(xp, yp) since the entire first quadrant is a region of inhibition, except when xr ≤
xp < maxt≥0 φ̂1(t) and ψ is bounded above by φ, as illustrated in the light blue re-
gion PT in Figure 4.4(c). However, by Proposition 4.14 and Proposition 4.1, there
cannot be tolerance for (xp, yp) ∈ NT . The following link provides three animations
for Example 1(c) with ψ(0) chosen from the different regions shown in Figure 4.4(c).
As before, each animation shows phase space and time courses in a side-by-side com-
parison. [LINK TO EX1C NT notol Animation.gif, EX1C PT tol Animation.gif, and
EX1C PT notol Animation.gif]

We now use time interval estimates to expand the region that guarantees toler-
ance. Consider initial value (a). We choose (xf , yf ) such that yf = maxt≥0 φ2(t) (as
labeled on Figure 4.4(a)). We note that the extremal points of φ(t), (xM , yM ) and
(xf , yf ), are on the x-nullcline and y-nullcline respectively so that yM = xM − 1 and
yf = 2x2

f from (4.7). Given that initial value (a) results in an excitable trajectory,
we can apply (4.6) with Cr = 12 and Cψ = Cf = |x2

f/(1 + 2x2
f ) − xf |. This then

establishes a bound on x̂M , such that tolerance occurs for xr < xp < x̂M , in terms
of the initial value and extremal points of the reference trajectory φ(t). For example,
rough bounds on xf and xM can be obtained from a visual inspection of φ(t). From
Fig 4.4, we can propose 2 < xf < 3, leading to 1.55 < Cf < 2.53, and 4.5 < xM < 5,
with x̂M = xM +(Cf/Cr)(xM −xr) from (4.6) with Cψ = Cf . More stringent bounds
can be obtained by performing numerical integration using interval arithmetic. More-
over, as yp increases, Cψ increases while Cf remains fixed, such that tolerance can be
guaranteed for larger xp, given larger yp.

In fact, example 1 is simple enough that we can obtain more precise estimates
on tφ and tψ, as defined in Section 4.3. Let tφ (similarly, tψ) be the time of passage
from φ1 = xr (ψ1 = xp) to φ1 = xf (ψ1 = xf ). φ(t) can be represented by two
segments. Denote the graph of φ for t ∈ [0, tφ] by (u, vi(u)), i = 1, 2 on the two
segments. tφ is given by (4.3), with (xφ)1 = xr, (xφ)2 = xM and (xφ)3 = xf , where
xM = maxt>0 φ1(t). Recall that in this example, the entire first quadrant is a region
of inhibition. Our approach is to estimate the time intervals by setting vi(u) to a
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constant in (4.3) and then integrating to obtain tφ > ∆(yr, xr, xM ) + ∆(yf , xM , xf ),
where

∆(w, a, b) =
∫ b

a

du

u2/(1 + w)− u
= log

|1 + w − b|
|1 + w − a|

+ log
a

b
. (4.9)

Next, we compute tψ for the trajectory ψ(t) with initial condition (xp, yp), ending
at (xf , yf ). Now, consider those (xp, yp) such that xp > xr and yp > yf . Since
the y-nullcline is the curve y = 2x2, by uniqueness of solutions to (4.7), the latter
condition ensures that ψ2(t) > yf for all t such that ψ1(t) > xf . By the continuity
of ∆(w, xf , xp) in w, tψ = ∆(yψ, xp, xf ) for some yψ > yf . Thus, for the tolerance
condition tψ < tφ to hold, it is sufficient that

∆(yr, xr, xM ) + ∆(yf , xM , xf ) > ∆(yψ, xp, xf ). (4.10)

If xp = xM , then the observation that ∆(yf , xM , xf ) > ∆(yψ, xM , xf ) implies that
(4.10) holds, and hence tolerance occurs, as expected from Proposition 4.9. For xp >
xM , writing ∆(yψ, xp, xf ) = ∆(yψ, xp, xM ) + ∆(yψ, xM , xf ) shows immediately that
the upper bound for tolerance can be extended from xM to some xp > xM .

Assuming that both sides of (4.10) are positive, as in Figure 4.4, condition (4.10)
can be expressed as

xr(1− xf + yf )(xM − 1− yr)
(1− xM + yf )(xr − 1− yr)

>
(1 + yψ − xf )xp

1 + yψ − xp
. (4.11)

Condition (4.11) still depends on yψ, which can be estimated under the assumption
that yψ > ψ2(tψ) (which holds, for example, if g < 0 along ψ(t) from t = 0 to
t = tψ). Formally integrating the second equation of (4.7) gives ψ2(tψ) = ype

−tψ/2 +∫ tψ
0
e−(tψ−t′)/2x2dt′. On the trajectory ψ(t), xf ≤ x ≤ xp, hence ψ2(tψ) > ype

−tψ/2 +∫ tψ
0
e−(tψ−t′)/2x2

fdt
′ = yf + (yp − yf )e−tψ/2, where we have used yf = 2x2

f . Now
tψ = ∆(yψ, xp, xf ) < ∆(yf , xp, xf ). Therefore, yψ > ψ2(tψ) > yb, where

yb = yf + (yp − yf ) exp[−∆(yf , xp, xf )/2], (4.12)

and yb is an affine function of yp. Note that the right hand side of (4.11) is a monotonic
decreasing function of yψ. Hence, (4.11) is guaranteed to hold if

xr(1− xf + yf )(xM − 1− yr)
(1− xM + yf )(xr − 1− yr)

>
(1 + yb − xf )xp

1 + yb − xp
, (4.13)

which is a condition on tolerance for the initial value (xp, yp) of ψ(t) in terms of the
initial value and extremal points of the reference trajectory φ(t).

To conclude, note that condition (4.13) is also applicable for initial condition (b)
or (c). In those cases, set xM = xr. Alternatively, if we choose an initial condition
(xr, yr) on φ(t) that is closer to the origin than (xM , yM ), then the analogous condition
for tolerance after the time t such that φ(t) = (xf , yf ), with xf < xr, simplifies to
the direct comparison ∆(yf , xr, xf ) > ∆(yψ, xp, xf ). This inequality can be rewritten
similarly to (4.13), with the same right hand side and a simplified left hand side.

Remark 11. If yp is increased for fixed xp, then yψ increases, such that the right
hand side of (4.11) decreases. Thus, the larger yp is, the more likely it is that (4.11)
is satisfied.
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Example 2. Let ẏ = rx− y, r > 0 and consider the following general equations
as possibilities for ẋ = f(x, y):

ẋ = f(x, y) =
axn

1 + bym
− cx (4.14)

ẋ = f(x, y) = g(x)− bym (4.15)
ẋ = f(x, y) = g(x)− bxym, (4.16)

where a, b, c > 0, n,m ∈ Z+ and g(0) = 0. Equations of the form (4.14) arise in
models describing the inflammatory response [33, 13, 12], in which anti-inflammatory
agents (y) can mitigate the production or activation of various quantities, includ-
ing phagocytes that in turn produce anti-inflammatories. Equations (4.15,4.16) are
activator-inhibitor systems if g′(0) > 0 and may arise in other biological settings [14].
Each of the above equations models has fy < 0 in the first quadrant, implying that
the entire first quadrant is a region of inhibition. Assuming parameters are chosen
so that (0, 0) is an asymptotically stable fixed point, results will be completely analo-
gous to those in Example 1. More diverse possibilities arise when fy ≥ 0 on at least a
subset of the first quadrant. For example, suppose that f(x, y) is the product of two
inhibitory terms, such as

f(x, y) = (ax+ by)(
cx

1 + dy
+ h),

with b < 0 and a, c, d > 0. Indeed,

sgn(fy) = sgn(cx(b− adx) + bh(1 + dy)2).

If h > 0, then fy < 0 for all (x, y) ∈ R2+, as in the previous example. If, however,
h < 0, then fy changes signs in R2+.

Example 3. Consider the nonlinear system:

ẋ = f(x, y) = x
(

1+y2

1−y+y2 − 19
10

)
ẏ = g(x, y) = x− y

}
(4.17)

The isoclines for this system are the family of curves given by the equations

y(1) =
1
2

(
19x+ 10C +

√
37x2 − 340xC − 300C2

)
9x+ 10C

, (4.18)

y(2) =
1
2

(
19x+ 10C −

√
37x2 − 340xC − 300C2

)
9x+ 10C

, (4.19)

where C ∈ R. In Figure 4.5, the isoclines are drawn in increments of 0.1 for values of
C ∈ [−1.2, 0] and in increments of 0.01 for C ∈ [0, 1]. For C ∈ [0, 1], the two curves
defined by equations (4.18) and (4.19) together form a continuous curve. The black
line, y = 1, in the figure emphasizes the two parts, with equation (4.18) forming the
curves above and equation (4.19) forming those beneath.

A saddle exists near (0.7176, 0.7176). The stable manifold of this saddle point
forms a boundary for the basin of attraction of (0, 0), Γ(0,0). The blue shaded region in
Figure 4.5 shows the subset of Γ(0,0) in the first quadrant. A third fixed point (stable
spiral, not labeled) in the first quadrant is located near (1.3935, 1.3935), outside of
Γ(0,0). This third fixed point could be interpreted as an ‘unhealthy’ outcome of an
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Fig. 4.5. Isoclines for Example 3, drawn for various values of C ∈ (−1.2, 1).

immune response, with the stable manifold forming a boundary between it and the
‘healthy’ stable fixed point corresponding to (0, 0). The x-nullclines (C = 0) are
marked (red) to help delineate where the speeds associated with the isoclines (i.e. ẋ)
are positive or negative.

We define four disjoint subregions (see Figure 4.5) of the basin of attraction of
(0, 0) in the first quadrant, as follows. 1) α: above (and including) the top component
of the C = 0 isocline, 2) β: below the top component of the C = 0 isocline and above
(and including) the line y = 1, 3) γ: below the line y = 1 and above (and including)
the bottom component of the C = 0 isocline, and 4) δ: below the bottom component of
the C = 0 isocline. These subregions are relevant because C varies nonmonotonically
in y. If looked at separately, subregions α and β are both regions of inhibition and
subregions γ and δ are not regions of inhibition. However, additional complications
may arise if φ and ψ are not in the same subregion on some time interval.

Figure 4.6 shows one specific solution, φ(t) with φ(0) = (0.5, 0.5), that will be
considered for this example. As usual, we consider points (xp, yp) that lie on or to
the right of the line {x = xr}. For (xp, yp) ∈ PT1 \ φ̂, ψ will be bounded above by
φ. From Proposition 4.14, since there are no regions of inhibition that contain both
ψ(t) and φ(t) for all t ≥ 0, (xp, yp) might produce tolerance. It is clear that tolerance
occurs if xp = 0.5 and 0 ≤ yp < yr. In particular, tolerance occurs if (xp, yp) = (0.5, 0).
Tolerance does not occur if (xp, yp) lies on φ̂, by Proposition 4.1, so tolerance does not
occur if (xp, yp) = (1, 0). Thus, there exists a unique x̂p ∈ (0.5, 1) and a continuous
curve connecting (0.5, 0.5) to (x̂p, 0) such that tolerance occurs for all (x, p) in PT1

below this curve and does not occur in PT1 above this curve. Time interval estimates
are necessary to prove that tolerance occurs or does not occur for specific choices of
(xp, yp) in PT1.

For (xp, yp) ∈ NT , φ ⊂ δ and ψ will be bounded below by φ. Note that γ is not
a region of inhibition and that β, although a region of inhibition by itself, has f > 0,
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Fig. 4.6. Tolerance in example 3. The orange curve, denoted as φ̂, is the curve of points
obtained by integrating φ(t) backwards in time from t = 0 to t ≈ −1.75, at which time it intersects
the x-axis at x̂ ≈ 1.0. PT1 is the lower light blue region together with the boundaries made by the
line segment {(x, y)|x = 0.5, 0 ≤ y ≤ 0.5}, the orange curve φ̂, and the x-axis. NT is the gray region,

defined as NT def
= Γxr

(0,0)
\ (α∪PT1). PT2 is the upper light blue region defined as PT2

def
= Γxr

(0,0)
∩α.

such that no tolerance can occur before ψ enters δ. But δ is not a region of inhibition,
and hence from Proposition 4.12, any (xp, yp) ∈ NT does not produce tolerance.

For (xp, yp) ∈ PT2, since C < 0 in PT2, it is possible that tolerance will occur
before ψ leaves α. Alternatively, suppose that this does not happen. After ψ leaves
α, it enters β, γ, and finally δ as it converges toward (0, 0). In theory, tolerance could
occur after ψ enters δ. However, ψ is bounded below by φ and δ is not a region of
inhibition. Hence, as in Case 2, Proposition 4.12 implies that tolerance will not occur.
In summary, if φ(0) ∈ δ and (xp, yp) ∈ PT2, then either tolerance occurs before ψ
leaves α or it does not occur at all.

Using the same nonlinear system given by (4.17), consider an alternative choice
for (xr, yr), namely one in α. Such a choice demonstrates some additional complexities
that can arise in this type of example. Now, φ passes through regions where f < 0,
then f > 0, and finally f < 0 again as it converges to (0, 0). In terms of inflammation,
this corresponds to an initial decrease in the inflammatory variable, (x), followed by a
transient increase in the response before the final, decreasing approach to the baseline
level. For different ψ trajectories, either bounded above or below by φ (see Figure
4.7), there are different time intervals when tolerance cannot occur or might possibly
occur, which can be inferred from the isoclines.

In the particular example shown, for the ψ that is bounded below by φ, tolerance
cannot be ruled out in any region. On the other hand, for the ψ that is bounded
above by φ, tolerance is only possible after ψ enters δ. The following link provides
access to two animations for Example 3 using φ(0) = (0.5, 2) in Region PT2 and two
choices of ψ(0) also in Region PT2, similar to those shown in Figure 4.7: [INSERT
LINK FOR EX3 PT2 tol Animation.gif and EX3 PT2 notol Animation.gif]
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Fig. 4.7. Nonmonotonic convergence to (0, 0) in Example 3.

5. Discussion. Our consideration of tolerance serves as an example of how dy-
namical systems questions can arise from biological phenomena and adds to the on-
going efforts to characterize transient dynamics. The concept of tolerance, which we
studied numerically from a dynamical systems perspective in our previous work [13],
has not received previous analytical treatment. However, related research that ad-
dresses transient effects has been done in the fields of fluid mechanics, mathematical
ecology and meteorology, where many of the ideas and techniques developed by Tre-
fethen, Schmid, Farrell and collaborators have been used [38, 37, 35, 19]. Specifically,
this body of work addresses many questions about how solutions approach equilibria
in the case where the matrices or operators describing the time evolution of a system
are nonnormal.

We initiated our analysis of tolerance under assumptions representative of typical
experimental preconditioning protocols used in the study of the acute inflammatory
response [13, 3, 31, 36, 42]. However, in this paper, we present a generalized analysis,
allowing relatively general choices of initial conditions for the reference and perturbed
trajectories, since the ideas of inhibition and tolerance, as we have defined them, are
themselves quite general. The goal of this analysis is to use information about the ini-
tial conditions of the R and P trajectories and the vector field to determine a priori if
the associated trajectories will or will not exhibit tolerance. In tolerance experiments,
by applying the challenge dose to the preconditioning trajectory at different times,
an experimentalist could generate a continuous curve of possible initial conditions for
what we call the P trajectory, as described in Remark 3, and our analysis aims to
consider all such initial conditions, to fully characterize the possibility of tolerance
within a given experimental set-up.

We find that tolerance is actually quite natural for linear and nonlinear systems
satisfying certain general conditions. The intuitive idea of tolerance is that a system’s
vector field sets up different directions in phase space that are associated with different
rates of contraction to an asymptotically stable node. An initial condition that is
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dominated by components in strongly contracting directions may yield a trajectory
that approaches the node faster than another trajectory that is initially closer but
has larger components in weakly contracting directions. These geometric ideas can
be exploited most directly in linear systems, where the relative magnitudes of these
components can be obtained by expressing an initial condition as a linear combination
of eigenvectors and generalized eigenvectors. In the linear case, we have also gone
beyond these ideas to prove that, given that there are trajectories that remain in
the positive hyperoctant as they approach a stable node at the origin, a region of
tolerance will exist, relative to a given admissible reference trajectory, as long as the
matrix specifying the flow has a complete set of eigenvectors and satisfies a genericity
condition. We find it somewhat unexpected that tolerance is so ubiquitous here.
Indeed, given that tolerance sufficiently close to a reference trajectory is determined by
linearization about that trajectory, and that this linearization will yield a complete set
of distinct, negative real eigenvalues for a significant class of systems, tolerance is quite
widespread, at least for small perturbations. In the nonlinear case, we have discussed
how tolerance arises in systems that are excitable, namely those for which trajectories
may exhibit a strong initial flow away from the equilibrium followed by a decay back
to the stable fixed point. The existence of excitability in turn is contingent on the
presence of inhibition, through which growth in one component prevents growth, or
enhances decay, in another component; inhibition also influences tolerance in systems
that are not excitable.

Although we obtain general results on the existence of tolerance for linear systems
and the possibility of tolerance when inhibition is present, the knowledge that there
exists a region of initial conditions that yield or may yield tolerance does not neces-
sarily translate to knowledge about the extent of this region or about tolerance for
a specific pair of reference and perturbed trajectory starting points. We have noted
that when the matrix associated with a linear system is normal, a significant region
of possible perturbed trajectory initial conditions will not yield tolerance, and in fact
normal matrices yield bounded tolerance regions in R2. Hopefully, future work can
exploit the large body of work on transient dynamics and (non)normality (cf. [37]) to
illuminate how the properties of a nonnormal matrix constrain the tolerance regions
of the associated linear system. To specifically assess tolerance for a given initial
condition pair, analytical methods are necessary. Our analytical approach is based
on direct estimation of times of passage resulting from the isocline structure of the
vector field, which must be made on a case by case basis, as we illustrate.

Our work only considers tolerance for orbits approaching the origin. For a fixed
point not at the origin, the concept of tolerance could be generalized to include initial
conditions such that ψ1(0) is less than φ1(0), but ψ1(0) is farther away from the
fixed point in the x1-direction than is φ1(0). If the fixed point was at (1,1) for
instance, with φ1(0) = (1.5, 1) and ψ1(0) = (0, 0.5), then ψ1(0) would be farther away
from the fixed point in the x1-direction, but ψ1(0) < φ1(0) would hold, which is not
permitted in the set-up we consider. This situation could be addressed by comparing
the distance of each trajectory from the fixed point, with respect to the component
deemed relevant for tolerance. Additionally, it may be of interest to generalize the
concept and analysis of tolerance to allow for complex eigenvalues for fixed points in
the interior of the positive hyperoctant, as these are likely to be important in certain
biological settings. Finally, a more complete connection between linear and nonlinear
systems is currently lacking. Specifically, this paper does not explicitly provide a link
between approaches to tolerance analysis for general systems, such as those presented
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in Section 4, and the tolerance regions predicted to exist from linearization about a
reference trajectory, when such predictions can be made.
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