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Abstract. Dynamical systems studies of differential equations often focus on the behavior of so-
lutions near critical points and on invariant manifolds, to elucidate the organization of the associated
flow. In addition, effective methods, such as the use of Poincaré maps and phase resetting curves,
have been developed for the study of periodic orbits. However, the analysis of transient dynamics
associated with solutions on their way to an attracting fixed point has not received much rigorous
attention. This paper introduces methods for the study of such transient dynamics. In particular, we
focus on the analysis of whether one component of a solution to a system of differential equations can
overtake the corresponding component of a reference solution, given that both solutions approach
the same stable node. We call this phenomenon tolerance, which derives from a certain biological
effect. Here, we establish certain general conditions, based on the initial conditions associated with
the two solutions and the properties of the vector field, that guarantee that tolerance does or does
not occur in two-dimensional systems. We illustrate these conditions in particular examples, and we
derive and demonstrate additional techniques that can be used on a case by case basis to check for
tolerance. Finally, we give a full rigorous analysis of tolerance in two-dimensional linear systems.
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1. Introduction. Relative to asymptotic behavior, transients have received lit-
tle attention in the study of nonlinear dynamical systems. For example, how the rate
of approach to a stable fixed point, away from the asymptotic limit, is affected by
the choice of initial conditions within the basin of attraction of that fixed point has
not to our knowledge been well characterized. In this work, we consider a comparison
of the transient dynamics of pairs of trajectories with similar asymptotic behaviors.
The motivation for this work arises from a biological phenomenon known as tolerance,
which refers to a reduction in the effect induced by the application of a substance,
due to an earlier exposure to that substance. For example, administration of a toxin
to rodents, at a given reference dose, induces a reproducible acute inflammatory re-
sponse featuring a rise in a variety of immune system elements followed by a return
to near-baseline conditions [1, 4, 11, 13]. If a small pre-conditioning dose of the toxin
is given to an animal prior to the reference dose then the activation of immune agents
by the reference dose is attenuated. This phenomenon is called tolerance.

A previous study [5] analyzed tolerance in the context of a four dimensional ordi-
nary differential equation (ODE) model of the acute inflammatory response. Within
the four dimensional ODE model, the origin represents a healthy equilibrium state,
and the abrupt administration of a toxin is represented by a jump of a trajectory to
another point in phase space. Thus, starting from a given initial condition, tolerance
occurs precisely when the sequence of a pre-conditioning dose, a period of ensuing
flow, and a subsequent reference dose leads to a trajectory position that is different
from the one attained by direct administration of the reference dose, and from which
a lower level of activated immune agents ensues. From the observation of tolerance
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in the acute inflammatory response model, we reasoned that similar tolerance effects
should be a general feature of trajectories generated from different initial conditions
by a dynamical system with negative feedback. Little analysis has been done on tran-
sient effects such as tolerance, compared to the major emphasis in dynamical systems
research on invariant manifolds and other structures derived from asymptotic and
local calculations [8, 14].

Our goal in this work is to provide a framework for the study of tolerance in
ODE systems. Specifically, we focus on trajectories converging to an asymptotically
stable node. Overall, we are interested in necessary and sufficient conditions for
tolerance, as we formally define it in Section 2. In a one-dimensional or scalar ODE,
uniqueness of solutions prevents tolerance from occurring. Thus, we examine tolerance
in two-dimensional ODE systems, using geometrical approaches. The general two-
dimensional nonlinear case, which is treated in Section 3, poses challenges, since
exact analytical solutions are generally not available. However, through the use of
isoclines and the concept of inhibition, we give some general results on conditions
when tolerance can or cannot occur and we develop an approach to the derivation
of more precise results for particular models. Specific examples are used here to
illustrate this approach. In Section 4, we take advantage of analytical solutions to
provide a complete analysis of tolerance in two-dimensional linear systems. We finish
with conclusions and a brief discussion of related work in Section 5.

2. Preliminaries.

2.1. Definitions and assumptions. In this section we present our assumptions
and give the precise mathematical definition that we use for tolerance. Consider the
autonomous ODE system {

ẋ = f(x, y)
ẏ = g(x, y), (2.1)

where x, y ∈ R, and f, g are locally Lipschitz.

(A1) Assume that there exists a stable fixed point of (2.1), the eigenvalues of which
are real and negative (to eliminate spirals and centers). Without loss of
generality, we will take (0, 0) as the given stable fixed point of (2.1).

Let Γ+
(0,0) be the basin of attraction of (0, 0) in the first quadrant, R2+ def= [0,∞)×

[0,∞):

Γ+
(0,0) = R2+ ∩ {(x, y)|(x, y) · t→ (0, 0) as t→∞},

where the notation (x, y) · t is the image of the point (x, y) under the flow of (2.1) for
time t. The set of points, {(x, y) · t|t ≥ 0}, is the solution curve or trajectory of the
initial value problem with initial value (x, y). This set is also referred to as the graph
of the solution.

Let φ(t) = (φ1(t), φ2(t)) and ψ(t) = (ψ1(t), ψ2(t)) be two solutions to the initial
value problem of (2.1) with initial values

φ(0) = (xr, yr), xr > 0, yr ≥ 0 (2.2)

and

ψ(0) = (xp, yp), xp > 0, yp ≥ 0. (2.3)
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(A2) Assume that both components of φ(t) and ψ(t) are nonnegative for all t ≥ 0
and that (xr, yr) and (xp, yp) ∈ Γ+

(0,0).

(A3) Assume that xr and xp are chosen such that xp ≥ xr.

Definition 2.1. Define φ(t) as the reference (R) trajectory or solution.

Definition 2.2. Define ψ(t) as the pre-conditioned or perturbed (P) trajectory
or solution.

Essentially, we are interested in determining whether or not there exists a time
when the first component of a P trajectory overtakes that of an R trajectory, given
that it was initially behind, as they approach the origin. Our ensuing discussion would
apply equally if we considered the second component instead of the first.

Definition 2.3. The system (2.1) is said to exhibit tolerance for 〈(xr, yr), (xp, yp)〉
if there exists τ > 0 such that ψ1(τ) < φ1(τ).

Definition 2.4. If ψ1(t) ≥ φ1(t) for all t ∈ [0,∞), then (2.1) does not exhibit
tolerance for 〈(xr, yr), (xp, yp)〉.

Remark 1. We will also use the terminology that (xp, yp) or ψ produces (or
does not produce) tolerance in (2.1) with respect to (xr, yr) or φ to mean that Defini-
tion 2.3 (Definition 2.4) holds. Figure 2.1 illustrates definitions 2.3 and 2.4 with time
courses of the first component of solutions φ(t) and ψ(t) for a given 〈(xr, yr), (xp, yp)〉.

Fig. 2.1. Illustration of Definitions 2.3 and 2.4. Left (Right) panel: Time course of the first
component of a pre-conditioned (P) solution, ψ(t), with initial condition (xp, yp), which produces
(does not produce) tolerance with respect to the reference (R) solution, φ(t), with initial condition
(xr, yr).

Remark 2. Under (A3), ψ(0) def= (xp, yp) ∈ [xr,∞) × [0,∞); that is, the initial
value for the P solution could lie at any point on or to the right of the line x = xr in
the first quadrant. Correspondingly, we define Γxr(0,0) to be the basin of attraction of
(0, 0) in [xr,∞)× [0,∞) ⊂ R2+:

Γxr(0,0) = Γ+
(0,0) ∩ [xr,∞)× [0,∞).
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Remark 3. The above definitions of tolerance are related to the biological setting
that motivated this study through the interpretation of the P trajectory. Consider a
non-negative pre-conditioning solution ρ(t) = (ρ1(t), ρ2(t)) of (2.1) with initial value

ρ(0) = (xρ, yρ), 0 < xρ ≤ xr, 0 ≤ yρ ≤ yr.

We then interpret the pre-conditioned solution ψ(t) = (ψ1(t), ψ2(t)) as the solution of
(2.1) with initial value

ψ(0) = (xp(s), yp(s)) def= ρ(s) + (xh, yh) for some 0 ≤ s <∞, (2.4)

where (xh, yh) ∈ R2+. If (xh, yh) = (xr, yr), which is typical for inflammation exper-
iments, then for fixed φ(0) = (xr, yr) and ρ(0) = (xρ, yρ), every s defines a unique
initial value for ψ that satisfies (A3), namely (xp(s), yp(s)) as defined in equation
(2.4). Thus, for a continuum of s values ranging from 0 to ∞, a curve of possible
(xp, yp) values is formed, and it is of biological interest to know which of these (xp, yp)
lead to tolerance.

2.2. Properties of tolerance. Definition 2.3 refers only to the presence of toler-
ance at one time point τ > 0 such that ψ1(τ) < φ1(τ). However, continuity arguments
can extend this window from a single time point to an open interval, (t1, t2), around
τ , with ψ1(t1) = φ1(t1). This observation is stated formally in Proposition 2.5 below
and will be important in Section 3. Figure 2.2 illustrates Proposition 2.5 with time
courses of relevant solutions.

Proposition 2.5. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance for
〈(xr, yr), (xp, yp)〉 at τ > 0, then there exists an open neighborhood (t1, t2) around
τ such that ψ1(t̂) < φ1(t̂) for every t̂ ∈ (t1, t2) and ψ1(t1) = φ1(t1). Furthermore,
f(ψ(t1)) ≤ f(φ(t1)).

Fig. 2.2. Time courses illustrating Proposition 2.5. Note that in this example, t2 could be
chosen to be any t > τ .

The window of tolerance can also be extended with respect to (xr, yr) and (xp, yp).

Proposition 2.6. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance for
〈(xr, yr), (xp, yp)〉, then there exists an open ball, Br, of radius r around (xr, yr) such



COMPETITION IN RATE OF APPROACH TO A FIXED POINT 5

that if (xk, yk) ∈ Br((xr, yr)) ∩ Γ+
(0,0), then there exists a corresponding time tk > 0

such that tolerance is exhibited for 〈(xk, yk), (xp, yp)〉.

Proposition 2.7. Assume (A1), (A2), and (A3). If (2.1) exhibits tolerance
for given 〈(xr, yr), (xp, yp)〉, then there exists an open ball, Br̃, of radius r̃ around
(xp, yp) such that if (x̃k, ỹk) ∈ Br̃((xp, yp)) ∩ Γxr(0,0), then there exists a corresponding
time t̃k > 0 such that tolerance is exhibited for 〈(xr, yr), (x̃k, ỹk)〉.

Propositions 2.6 and 2.7 are easily proved by noting that solutions of (2.1) are
continuous and depend continuously on initial conditions. Each time tk or t̃k can also
be extended to an interval of times for which tolerance occurs, by Proposition 2.5.

3. Conditions for the existence of tolerance. In this section, we progres-
sively build up a collection of ideas that are useful for determining the set of initial
conditions for P for which tolerance can be guaranteed to occur or not to occur. In
particular, in subsection 3.1, we present a basic result on a general situation in which
tolerance can be guaranteed to occur. In subsection 3.2, we introduce some concepts
that are useful for refining the results from subsection 3.1 and we discuss their im-
mediate consequences for tolerance. We harness these ideas in subsection 3.3, where
we set up a general approach that can be used to move beyond the results from sub-
sections 3.1 and 3.2 in particular systems, and we illustrate this approach in several
examples in subsection 3.4.

3.1. Basic conditions. In this subsection, we consider specific conditions on
the initial values of P and R for which tolerance can or cannot occur. We first con-
sider conditions in which tolerance can occur when solutions φ(t) and ψ(t) of system
(2.1), as defined in Section 2.1, are subsets of the same solution curve.

Proposition 3.1. Assume (A1), (A2), and (A3). Given 〈(xr, yr), (xp, yp)〉, as-
sume φ1(t) and ψ1(t) → 0 monotonically as t → ∞. If there exists t̂ > 0 such that
φ(−t̂) = (xp, yp), (2.1) does not exhibit tolerance for 〈(xr, yr), (xp, yp)〉.

This proposition follows immediately from the group property of flows and is the
reason why tolerance is ruled out in one dimensional systems. Next, we focus on a
situation where the reference trajectory φ is what we call an excitable trajectory as
represented, for example, in the left panel of Figure 3.1. We make this precise in
terms of the graph of φ, given by

graph(φ) = {(x, y) = (xr, yr) · t : t ≥ 0} , (3.1)

with the following definition.

Definition 3.2. Assume that (A1), (A2), and (A3) hold. Fix a positive integer
n. The trajectory φ(t) is n-excitable if there exist times te0 = 0, te1 , . . . , te2n−1 > 0
such that
(a) φ1(tei) > xr for all i > 0,
(b) g(φ1(t), φ2(t)) > 0 for t ∈ [0, te2n−1 ], and
(c) {

f(φ1(t), φ2(t)) > 0, t ∈ [te0 , te1) and (te2i , te2i+1), i ∈ {1, 2, . . . , n− 1},

f(φ1(t), φ2(t)) < 0, t ∈ (te2i+1 , te2(i+1)), i ∈ {0, 1, . . . , n− 2}, or t > te2n−1 .

The trajectory φ(t) is excitable if it is 1-excitable.
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Excitable trajectories are common in various biological models. In the context
of acute inflammation, an excitable trajectory represents the initial activation of the
immune system by a stimulus followed by a relaxation to a stable baseline state.

Remark 4. Condition (b) on g in Definition 3.2 is not necessary for our ap-
proach, but this assumption clarifies the presentation to follow.

Below, we define a set T such that tolerance with respect to (xr, yr) occurs when-
ever (xp, yp) ∈ T , when φ(t) is an n-excitable trajectory.

Definition 3.3. For an n-excitable trajectory φ, define tr > 0 to be the first
positive time where φ1(tr) = xr, which exists since φ is n-excitable and continuous
(and by (A1) and (A2)). Note also that φ1(t) > φ1(tr) = xr for all t ∈ (0, tr) by
definition of an n-excitable trajectory.

Definition 3.4. Now, in terms of tr, define G to be the set of points (x, y) 6=
(xr, yr) on the graph of φ for t ∈ (0, tr]:

G = {(x, y)|(x, y) = φ(t) for t ∈ (0, tr]} . (3.2)

Definition 3.5. Assume that φ is an n-excitable trajectory. Define L to be the
line segment L = {x : x = xr, y ∈ (yr, φ2(tr)]} and define the region S (see Figure
3.1) as the union of L and the interior of the region bounded by G and L.

Definition 3.6. Define T as the union of G and S as defined above,

T = G ∪ S. (3.3)

Definition 3.7. Define M = maxt≥0{φ1(t)}, which exists by (A1), (A2), and
the continuity of φ. Let tm > 0 (tM > 0) be the minimal (maximal) positive time such
that φ1(t) = M .

Proposition 3.8. Let φ(0) = (xr, yr) and let (xp, yp) be given. Suppose that
(A1), (A2), and (A3) hold and that φ is an n-excitable trajectory. Under these condi-
tions, T is a non-empty set. Moreover, if (xp, yp) ∈ T , then (2.1) will exhibit tolerance
for 〈(xr, yr), (xp, yp)〉.

Proof. By the assumptions, a region T = G∪S as defined above exists. We divide
the proof into two parts since T is defined as the union of two sets.

Part 1: Suppose ψ(0) = (xp, yp) ∈ G. This implies that ψ(0) = (xp, yp) = φ(τ),
for some τ > 0. Again, φ1(t) < M for all nonnegative t > tM . It follows that ψ1(tM ) =
φ1(tM + τ) < M = φ1(tM ). Thus, (2.1) exhibits tolerance for 〈(xr, yr), (xp, yp)〉 ∈ G
at time tM .

Part 2: Suppose (xp, yp) ∈ S. We first consider the case where xp > xr and define
tp = mint>0{t : ψ1(t) = xr} such that ψ(t) ∈ S for all t ∈ [0, tp]. If tp ≥ tr then since
tr > tM ≥ tm, tm ∈ (0, tp). Hence, ψ1(tm) < M = φ1(tm) and tolerance is exhibited
at tm. Now, if 0 < tp < tr, then it is possible that ψ1(tm) > M (see bottom panel
of Figure 3.1). However, from the definition of tr, φ1(tp) > φ1(tr) = xr = ψ1(tp)
and tolerance is exhibited at tp. Now, consider the special case that xp = xr. If
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f(xp, yp) > 0 then one of the above two cases holds. If f(xp, yp) < 0, then there exists
ε > 0 such that ψ1(ε) < xr and φ1(ε) > xr. Thus, φ(ε) > ψ(ε) and tolerance occurs
at ε.

Figure 3.1 illustrates Proposition 3.8 in both phase space (left panel) and with
time courses (right panel). Notice that if we consider the special case when (xr, yr)
of an n-excitable trajectory is on the x-axis, then uniqueness of solutions is sufficient
to guarantee tolerance.

Fig. 3.1. Illustration of Proposition 3.8 in the case that φ is n-excitable. P trajectories with
initial conditions in region S exhibit tolerance. Left Panel: A 2-excitable R trajectory, φ(t), initial
condition, (xr, yr) (black) and two example P trajectories, ψ(t), initial condition (xp, yp) ∈ S (red).
The maximum value in the x-direction for φ(t) is marked with a vertical blue line and denoted by
M . Right Panel: Time courses of both φ1(t) (black) and ψ1(t) (red). Time tp is where ψ1 first takes
on the value xr and tM is time when φ1(t) last attains its maximal value.

If more constraints are imposed on the vector field f then the region that guar-
antees tolerance can be immediately expanded to include the strip above T in Γxr(0,0).
To be precise, we introduce the following definition.

Definition 3.9. Define T̂ by the set

T̂ = ((xr,M)× (φ2(tM ),∞) \ T ) ∩ Γxr(0,0). (3.4)

Proposition 3.10. Assume (A1), (A2), (A3), and that φ is an n-excitable tra-
jectory with φ(0) = (xr, yr). If f ≤ 0 in T̂ , then for (xp, yp) ∈ T̂ , (2.1) will exhibit
tolerance.
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Proof. For (xp, yp) ∈ T̂ and f ≤ 0, it follows from the assumptions that ψ1(t) ≤
xp < φ1(tM ) for t ≥ 0. Thus, φ1(tM ) > ψ1(tM ). Hence, (2.1) exhibits tolerance for
〈(xr, yr), (xp, yp) ∈ T̂ > at time tM .

3.2. Isoclines and Inhibition. In the previous section we found generic con-
ditions under which tolerance would occur. However, the initial conditions resulting
in tolerance were confined to a small region of the available basin of attraction. Nu-
merical experiments in various examples suggest that the region for tolerance is often
larger. Here, we introduce new concepts that enable us to expand the regions on
which we can show that tolerance is possible or guaranteed.

Consider the ODE (2.1) and assume (A1), (A2), and (A3) hold.

Definition 3.11. The x-isoclines of (2.1) are the family of curves (or level
sets), parametrized by a parameter C ∈ R, each defined by f(x, y) = C.

A nullcline, for instance, is an isocline for which C = 0. The vector field points
in the positive (negative) x-direction when C is positive (negative).

Remark 5. We may define y-isoclines analogously to x-isoclines. Since we do not
consider these, we will drop the x- and just use isocline to refer to the x-isoclines here.

We now introduce the concept of inhibition. Inhibition is a widely used term,
especially in the context of mathematical models of biological systems, for the sup-
pression of one quantity by another. However, the use of this term, while intuitive
and heuristically understood, is not always mathematically precise. Hence, we give a
precise definition of inhibition. Subsequently, we prove two results relating to inhibi-
tion and tolerance.

Definition 3.12. Given Ω ⊆ R2+, y inhibits x in Ω, and Ω is a region of inhi-
bition for (2.1), if f(x, y) is a monotone decreasing function of y in Ω.

Remark 6. Note that the sign of f(x, y) is not specified in Definition 3.12. Thus,
when y inhibits x, it may either slow the growth of x or speed up its decay.

A key first observation that follows from the definition of inhibition is that there
is always the possibility of tolerance when y inhibits x, as long as the perturbed tra-
jectory samples larger y values than the reference trajectory. We now formalize this
observation by stating two further definitions and proving two preliminary results,
which establish the necessity of a region of inhibition and of certain relative positions
of the perturbed and reference trajectories, respectively, for tolerance to exist.

Definition 3.13. The graph of ψ is bounded below by the graph of φ if φ2(s1) <
ψ2(s2) whenever φ1(s1) = ψ1(s2) for any s1, s2 > 0, not necessarily equal. For brevity,
we say ψ is bounded below by φ.

Proposition 3.14. Assume that (A1), (A2), and (A3) hold and that ψ is
bounded below by φ. If (2.1) exhibits tolerance for a given pair 〈(xr, yr), (xp, yp)〉,
then there exist a region of inhibition Ω and s1, s2 ∈ R+ such that ψ1(s1) = φ1(s2)
with ψ(s1), φ(s2) ∈ Ω.
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Proof. Assume that tolerance exists for 〈(xr, yr), (xp, yp)〉 but y does not inhibit
x in any region Ω that contains points (ψ1(s1), ψ2(s1)) and (φ1(s2), φ2(s2)) where
ψ1(s1) = φ1(s2) and s1, s2 ∈ R+. Given tolerance, it follows from Proposition 2.5
that there exists t∗ such that ψ1(t∗) = φ1(t∗) and ψ1(t̂) < φ1(t̂) for all t̂ ∈ (t∗, t∗ + δ)
for some δ > 0. Thus, f(ψ(t∗)) ≤ f(φ(t∗)). Since the graph of ψ is bounded be-
low by the graph of φ, we have that at t∗, ψ2(t∗) > φ2(t∗). Our assumption that
y does not inhibit x in any region Ω containing the points ψ(t∗) and φ(t∗) implies
f(ψ(t∗)) > f(φ(t∗)), which is a contradiction. Hence, if ψ is bounded below by φ, and
(2.1) exhibits tolerance for 〈(xr, yr), (xp, yp)〉, there must exist a region of inhibition
Ω and s1, s2 ∈ R+, such that ψ1(s1) = φ1(s2) and ψ(s1), φ(s2) ∈ Ω.

Remark 7. Note that Propositions 3.10 and 3.14 together imply that for an n-
excitable trajectory to exist there must exist a region of inhibition.

Proposition 3.14 states that a region of inhibition is necessary for tolerance to oc-
cur when the P trajectory, ψ(t), is bounded below by the R trajectory, φ(t). However,
for ψ bounded above by φ, inhibition can be a detriment to the presence of tolerance
under certain conditions. First, we define what it means for ψ to be bounded above
by φ.

Definition 3.15. The graph of ψ is bounded above by the graph of φ if φ2(s1) >
ψ2(s2) whenever φ1(s1) = ψ1(s2) for any s1, s2 > 0, not necessarily equal. For brevity,
we say ψ is bounded above by φ.

Proposition 3.16. Assume that (A1), (A2), and (A3) hold. For 〈(xr, yr), (xp, yp)〉
such that xp > M , if the graph of ψ is bounded above by the graph of φ, and y inhibits
x in a region Ω such that φ(t), ψ(t) ⊂ Ω for all t ≥ 0, then (2.1) cannot exhibit
tolerance for 〈(xr, yr), (xp, yp)〉.

Proof. The proof is analogous to that of Proposition 3.14. If xp > maxt≥0 φ(t),
then tolerance requires f(ψ(t∗)) < f(φ(t∗)) for some t∗ such that ψ1(t∗) = φ1(t∗), but
this cannot occur in a region where y inhibits x, given that ψ is bounded above by φ.

Thus, Proposition 3.16 states that in order for tolerance to be a possibility for
a P trajectory ψ that is bounded above by the R trajectory φ, for initial condition
ψ1(0) > M , it is necessary that there exists at least one pair, s1, s2 ∈ R+, such that
ψ1(s1) = φ1(s2) and ψ(s1), φ(s2) do not belong to a region of inhibition.

Propositions 3.8, 3.10, 3.14, and 3.16 suggest a strategy for evaluating whether
or not tolerance may occur in a particular system for given R and P trajectories with
initial values φ(0) = (xr, yr) and ψ(0) = (xp, yp), under assumptions (A1), (A2), and
(A3). First, if φ is an n-excitable trajectory, then by Proposition 3.8, tolerance occurs
for all (xp, yp) ∈ T (see Definition 3.6 and Figure 3.1 ). If in addition f ≤ 0 in T̂ ,
then by Proposition 3.10 tolerance occurs for all (xp, yp) ∈ T̂ (see Definition 3.9).
Next, we identify the regions of inhibition for system (2.1). If it can be established
that the trajectory ψ emanating from an initial condition (xp, yp) is bounded below
by φ but does not pass through a region of inhibition, then tolerance cannot occur
(see Proposition 3.14). Similarly, if xp > M , ψ is bounded above by φ, and ψ, φ are
contained in a region of inhibition, then tolerance cannot occur (see Proposition 3.16).
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If fy < 0 on all of R2+, then the possibility of tolerance exists for all (xp, yp) such
that ψ is bounded below by φ.

3.3. Time interval estimates. To obtain more precise conditions for the exis-
tence of tolerance, direct estimates regarding specific trajectories of (2.1) are necessary.
Here, we show how to derive estimates for upper and lower bounds on the amount of
time it takes for the relevant trajectories to reach a specified x-value xf that is crossed
by both trajectories, φ(t) and ψ(t). If an (xp, yp) can be found such that ψ(t) takes
a shorter time interval to reach xf than φ(t), then tolerance exists for that (xp, yp).

Assume that there is a positive integer n for which the graph of φ can be de-
composed into a union of n graph segments such that the y component of the graph
is single valued with respect to x on each. This assumption holds, for example,
when φ is m-excitable for some m. Let xi, i ∈ {1, . . . , n + 1} be the n + 1 termi-
nal points of the n segments, defined by x1 = xr, xi = φ1(tiφ), for i = 2, . . . , n,
where tiφ = inft>ti−1

φ
{t : f(φ1(t), φ2(t)) = 0} with t1φ = 0, and xn+1 = xf . Let

tn+1
φ = inft>tnφ{t : φ1(t) = xf}. The total time to traverse the trajectory from xr to
xf is then given by tφ =

∑n
i=1 ∆tiφ, where ∆tiφ = ti+1

φ − tiφ.
On each graph segment we can express the graph of φ as a function y = vi(x),

where vi is defined on the interval xi ≤ x ≤ xi+1, i ∈ {1, . . . , n}. We can compute ∆ti
for each segment directly by integrating the first equation of (2.1) along the graph
segment defined by y = vi(x), i.e. ẋ = f(x, vi(x)), to obtain

tφ =
n∑
i=1

∫ xi+1

xi

du

f(u, vi(u))
. (3.5)

A similar construction can give tψ, with initial x-coordinate xp. Tolerance then implies
tψ < tφ. In general, it is not possible to obtain vi in closed form, but depending on
the structure of f , estimates can be made to obtain various bounds for tφ and tψ.

For example, with respect to (2.1), consider the family of x-isoclines f(x, y) = C,
where C ∈ R. Let ciφ = supt∈[tiφ,t

i+1
φ ){|f(φ1(t), φ2(t))|}, i.e. the largest magnitude iso-

cline through which the trajectory φ passes on the segment [xiφ, x
i+1
φ ]. Then from (3.5)

we obtain tφ ≥
∑n
i=1 |x

i+1
φ −xiφ|/ciφ. Likewise, let ciψ = inft∈[tiψ,t

i+1
ψ ){|f(ψ1(t), ψ2(t))|},

i.e. the smallest magnitude isocline through which the trajectory ψ(t) passes on the
segment [xiψ, x

i+1
ψ ], yielding tψ ≤

∑n
i=1 |x

i+1
ψ − xiψ|/ciψ. Thus, if

n∑
i=1

|xi+1
ψ − xiψ|
ciψ

<
n∑
i=1

|xi+1
φ − xiφ|
ciφ

, (3.6)

then tψ < tφ, which implies tolerance.
We can use condition (3.6) to show, for example, that if ψ(t) is bounded below

by an m-excitable trajectory φ(t), and φ(t) and ψ(t) both lie in a region of inhibition,
then the region on which tolerance is guaranteed to occur can be expanded from
that defined in Proposition 3.10. As an example, suppose that φ(t) is an excitable
trajectory. We can then divide φ into two segments. In the first segment φ1(t) and
φ2(t) are increasing, and in the second φ1(t) is decreasing. By continuity and (A1),
φ2(t) must first increase and then decrease on the second segment. The end point
of the first segment is xM = maxt>0 φ1(t). Define xf as the x-value where φ2(t) is
maximal and let φ2(t) = yf at this point. Since φ(t) belongs to a region of inhibition,
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the largest magnitude isocline through which the first segment of φ(t) passes is given
by c1φ = f(xr, yr) = Cr. On the second segment, the largest magnitude isocline passes
through φ(t) when φ2(t) is maximal. Thus c2φ = |f(xf , yf )| = Cf > 0.

Fig. 3.2. Illustration for time interval estimates.

Now, using Figure 3.2 as a reference, consider a trajectory ψ(t) such that f < 0
along the trajectory, so there is only one segment and it is bounded below by the line
y = yf . Thus, c1ψ = Cψ > Cf , and tolerance is observed if

|xf − xp|
Cψ

<
|xM − xr|

Cr
+
|xf − xM |

Cf
. (3.7)

If we consider an excitable trajectory, then xp > xf , xM > xr, and xM > xf . Taking
these inequalities in (3.7) gives the tolerance condition

xp < xM +
Cψ − Cf
Cf

(xM − xf ) +
Cψ
Cr

(xM − xr) def= x̂M . (3.8)

Since Cψ > Cf , (3.8) implies that x̂M > xM , which expands the region obtained from
Proposition 3.10. We note that Cψ is a function of yp, so (3.8) defines a region R such
that if (xp, yp) ∈ R, then tolerance occurs in (2.1).

3.4. Examples. In the examples below, we illustrate the ideas introduced in the
previous subsection.

Example 3.17. Consider the system given by

ẋ = f(x, y) = x2

1+y − x

ẏ = g(x, y) = x2 − y
2

}
. (3.9)

Note that (0, 0) is a stable node for (3.9). The isoclines for this system are the family
of curves given by the equation

y =
x2 − x− C

x+ C
(3.10)
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for C ∈ R. Figure 3.3 shows a subset of the isoclines for C ∈ [−4.0, 50] shown in
increments of 0.5 for those above the C = 0 isocline and in increments of 1.0 for those
below.

Fig. 3.3. Isoclines for Example 3.17 defined by Equations 3.10 for C ∈ [−4.0, 50].

For each C < 0, the corresponding isocline has a local minimum at x = −2C and
a vertical asymptote at x = −C. Direct differentiation of f in (3.9) yields fy < 0, or
equivalently, from (3.10), dy/dC < 0, for all (x, y) in the first quadrant. Thus, the
entire first quadrant is a region of inhibition. We will consider several different initial
conditions (xr, yr) for φ(t) in this example:

(a) (xr, yr) = (4.0, 0.0),
(b) (xr, yr) = (4.0, 3.0),
(c) (xr, yr) = (4.0, 10.0).

For initial condition (a), Figure 3.4(a) displays the following features:

• φ(t) is the curve shown in black for initial condition φ(0) = (xr, yr) = (4.0, 0).
• R1 is the green region union the boundary of φ(t) and is defined in the same

manner as the region T , in Definition 3.6. R1 is bounded to the left by
{x = xr}, in accordance with (A3), and to the right by {x = xM}.

• R2 (the light blue region) is the strip in Γxr(0,0), lying above R1, sharing its
bounds on x.

• R3 (the yellow region) is the complement of R1 ∪ R2 with respect to Γxr(0,0),

namely R3
def= Γxr(0,0)\(R1 ∪R2).

Case 1(a): (xp, yp) ∈ R1. By Proposition 3.8, any (xp, yp) ∈ R1 will produce
tolerance. Furthermore, define G = {(x, y)|(x, y) = graph(φ) ∩ [xr,∞)× (0,∞)}. By
Proposition 2.7, for each (xp, yp) ∈ G, there exists an open ball, Br̃, of radius r̃ around
(xp, yp) such that (x̃k, ỹk) ∈ Br̃ ∩ Γxr(0,0) produces tolerance with respect to (4.0, 0).
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Fig. 3.4. Isoclines and various initial values (xr, yr) for Example 3.17 a, b, and c.

Case 2(a): (xp, yp) ∈ R2. Region R2 is a region of inhibition in which f < 0.
Thus, by Proposition 3.10, any (xp, yp) ∈ R2 will produce tolerance.

Case 3(a): (xp, yp) ∈ R3. In this case, for ψ1(t) > M def= maxt≥0{φ1(t)}, ψ(t)
is bounded below by φ(t) and the presence of a region of inhibition makes tolerance
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Fig. 3.5. Animations for Example 3.17(a), showing the presence or absence of tolerance with
respect to φ(0) = (4, 0) for differing choices of ψ(0). φ(0) is denoted by the large red dot and ψ(0) is
denoted by the smaller blue dot. Given φ(0) = (4.0, 0), ψ(0) = (4.5, 5) ∈ R1 produces tolerance (Top
Left), ψ(0) = (4.5, 20) ∈ R2 produces tolerance (Top Right), ψ(0) = (6, 10) ∈ R3 produces tolerance
(Bottom Left), and ψ(0) = (7, 1) ∈ R3 does not produce tolerance (Bottom Right).

possible (Proposition 2.7). For ψ1(t) < M , which is possible for small yp, ψ(t) will
eventually be bounded below by φ(t) and hence tolerance is again possible.

Figure 3.5 contains links to four separate animations that illustrate the presence
or absence of tolerance in Example 3.17(a) using various choices of ψ(0) from the
different regions shown in Figure 3.4(a). Each animation displays both phase space
trajectories of φ and ψ and time courses of φ1(t) and ψ1(t) in a side-by-side compar-
ison.

If yr is increased with xr fixed, the regions R1 and R2 shrink. Finally, when yr
reaches 3.0, corresponding to initial condition (b), these regions disappear. Figure
3.4(b) displays the following features:
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• φ(t) is the curve shown in black for initial condition φ(0) = (xr, yr) =
(4.0, 3.0).

• The orange curve, denoted as φ̂, is the curve of points obtained by integrating
φ(t) backwards in time from t = 0 to t ≈ −1.0, at which time it intersects
the x-axis at x̂ ≈ 3.4.

• R is the yellow region defined to be Γxr(0,0) \ (4.0, 3.0).
For this example, if xp = xr = 4.0, then for all (xp, yp) ∈ R, the corresponding graph
of ψ is or will eventually be bounded below by the graph of φ. Since the graph of ψ lies
in R2+ and R2+ is a region of inhibition, Proposition 3.14 implies that it is possible
that tolerance can be exhibited by any (xp, yp) ∈ R, although, as in the previous case,
tolerance is not guaranteed (see Figure 3.4(b)).

For yr > 3.0, the situation is qualitatively similar to that shown in Figure 3.4(c)
for initial condition (c), (xr, yr) = (4.0, 10.0). Figure 3.4(c) displays the following
features:

• φ(t) is the curve shown in black for initial condition φ(0) = (xr, yr) =
(4.0, 10.0).

• The orange curve, denoted as φ̂, is the curve of points obtained by integrating
φ(t) backwards in time from t = 0 to t ≈ −.58, at which time it intersects
the x-axis at x̂ ≈ 4.0.

• R1 is the orange region union its boundaries: (1) φ̂(t) and (2) the line segment
{(x, y)|x = xr, y ∈ [0, 10]}.

• R2 is the yellow region defined to be the complement of R1 with respect to
Γxr(0,0), namely R2 = Γxr(0,0) \R1.

Case 1(c): (xp, yp) ∈ R1. Using Proposition 3.16 and Proposition 3.1, (xp, yp) ∈
R1 cannot produce tolerance with respect to (xr, yr) = (4.0, 10.0).

Case 2(c): (xp, yp) ∈ R2. For all (xp, yp) ∈ R2, the corresponding graph of ψ is
or will eventually be bounded below by the graph of φ. Again, tolerance is possible
but not guaranteed.

In summary of initial condition (c), given that the entire first quadrant is a region
of inhibition, there is the possibility of tolerance for all (xr, yr) and (xp, yp) except
when xr ≤ xp < maxt≥0 φ̂1(t) and ψ is bounded above by φ, as illustrated in the
orange region R1 in Figure 3.4(c). Figure 3.6 links to three animations for Example
3.17(c) with ψ(0) chosen from the different regions shown in Figure 3.4(c). As be-
fore, each animation shows phase space and time courses in a side-by-side comparison.

We now use time interval estimates to expand the region that guarantees toler-
ance. Consider initial value (a). We choose (xf , yf ) such that yf = maxt≥0 φ2(t). We
note that the extremal points of φ(t), (xM , yM ) and (xf , yf ), are on the x-nullcline
and y-nullcline respectively so that yM = xM − 1 and yf = 2x2

f . Given that initial
value (a) results in an excitable trajectory, we can apply (3.8) with Cr = 12 and
Cψ = Cf = |x2

f/(1 + 2x2
f ) − xf |. This then establishes a bound on x̂M , such that

tolerance occurs for xr < xp < x̂M , in terms of the initial value and extremal points
of the reference trajectory φ(t). For example, rough bounds on xf and xM can be
obtained from a visual inspection of φ(t). From Fig 3.4, we can propose 2 < xf < 3,
leading to 1.55 < Cf < 2.53, and 4.5 < xM < 5, with x̂M = xM + (Cf/Cr)(xM − xr)
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Fig. 3.6. Animations for Example 3.17(c), showing the presence or absence of tolerance with
respect to φ(0) = (4, 10) for differing choices of ψ(0). φ(0) is denoted by the large red dot and ψ(0)
is denoted by the smaller blue dot. Given φ(0) = (4, 10), ψ(0) = (4.2, 2) ∈ R1 does not produce
tolerance (Left), ψ(0) = (5, 25) ∈ R2 produces tolerance (Middle), and ψ(0) = (6, 5) ∈ R2 does not
produce tolerance (Right).

from (3.8) with Cψ = Cf . More stringent bounds can be obtained by performing nu-
merical integration using interval arithmetic. Moreover, as yp increases, Cψ increases
while Cf remains fixed, such that tolerance can be guaranteed for larger xp, given
larger yp.

In fact, example 3.17 is simple enough that we can obtain more precise estimates
on tφ and tψ, as defined in Section 3.3. Let tφ (similarly, tψ) be the time of passage
from φ1 = xr (ψ1 = xp) to φ1 = xf (ψ1 = xf ). φ(t) can be represented by two
segments. Denote the graph of φ for t ∈ [0, tφ] by (u, vi(u)), i = 1, 2 on the two
segments. tφ is given by (3.5), with x1

φ = xr, x2
φ = xM and x3

φ = xf , where xM =
maxt>0 φ1(t). Recall that in this example, the entire first quadrant is a region of
inhibition. Our approach is to estimate the time intervals by setting vi(u) to a constant
in (3.5) and then integrating to obtain tφ > ∆(yr, xr, xM ) + ∆(yf , xM , xf ), where

∆(w, a, b) =
∫ b

a

du

u2/(1 + w)− u
= log

|1 + w − b|
|1 + w − a|

+ log
a

b
. (3.11)

Next, we compute tψ for the trajectory ψ(t) with initial condition (xp, yp) and
ending at (xf , yf ). Now, consider those (xp, yp) such that xp > xr and yp > yf . Since
the y-nullcline is the curve y = 2x2, by uniqueness of solutions to (3.9), the latter
condition ensures that ψ2(t) > yf for all t such that ψ1(t) > xf . By the continuity
of ∆(w, xf , xp) in w, tψ = ∆(yψ, xp, xf ) for some yψ > yf . Thus, for the tolerance
condition tψ < tφ to hold, it is sufficient that

∆(yr, xr, xM ) + ∆(yf , xM , xf ) > ∆(yψ, xp, xf ). (3.12)

If xp = xM , then the observation that ∆(yf , xM , xf ) > ∆(yψ, xM , xf ) implies that
(3.12) holds, and hence tolerance occurs, as expected from Proposition 3.10. For
xp > xM , writing ∆(yψ, xp, xf ) = ∆(yψ, xp, xM ) + ∆(yψ, xM , xf ) shows immediately
that the upper bound for tolerance can be extended from xM to some xp > xM .

Assuming that both sides are positive, as in Figure 3.4, condition (3.12) can be
expressed as

xr(1− xf + yf )(xM − 1− yr)
(1− xM + yf )(xr − 1− yr)

>
(1 + yψ − xf )xp

1 + yψ − xp
. (3.13)
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Condition (3.13) still depends on yψ, which can be estimated under the assumption
that yψ ≥ ψ2(tψ) (which holds, for example, if g < 0 along ψ(t) from t = 0 to
t = tψ). Formally integrating the second equation of (3.9) gives ψ2(tψ) = ype

−tψ/2 +∫ tψ
0
e−(tψ−t′)/2x2dt′. On the trajectory ψ(t), xf ≤ x ≤ xp, hence ψ2(tψ) > ype

−tψ/2 +∫ tψ
0
e−(tψ−t′)/2x2

fdt
′ = yf + (yp − yf )e−tψ/2, where we have used yf = 2x2

f . Now
tψ = ∆(yψ, xp, xf ) < ∆(yf , xp, xf ). Therefore, yψ > ψ2(tψ) > yb, where

yb = yf + (yp − yf ) exp[−∆(yf , xp, xf )/2], (3.14)

and yb is an affine function of yp. Note that the right hand side of (3.13) is a monotonic
decreasing function of yψ. Hence, (3.13) is guaranteed to hold if

xr(1− xf + yf )(xM − 1− yr)
(1− xM + yf )(xr − 1− yr)

>
(1 + yb − xf )xp

1 + yb − xp
, (3.15)

which is a condition on tolerance for the initial value (xp, yp) of ψ(t) in terms of the
initial value and extremal points of the reference trajectory φ(t). Finally, we note
that condition (3.15) is also applicable for initial condition (b) or (c). In those cases,
set xM = xr.

Remark 8. If yp is increased for fixed xp, then yψ increases, such that the right
hand side of (3.13) decreases. Thus, the larger yp is, the more likely it is that (3.13)
is satisfied.

Example 3.18. Let ẏ = rx−y, r > 0 and consider the following general equations
as possibilities for ẋ = f(x, y):

ẋ = f(x, y) =
axn

1 + by
− cx (3.16)

ẋ = f(x, y) = ax− byn (3.17)

ẋ = f(x, y) =
axn

1 + bym
− cx, (3.18)

where a, b, c > 0, n,m ∈ Z+ and x, y ≥ 0.

Each of the above equations models inhibition of x by y, with fy < 0 in the first
quadrant, implying that the entire first quadrant is a region of inhibition. Assuming
parameters are chosen so that (0, 0) is a stable fixed point, results will be completely
analogous to those in Example 3.17.

More diverse possibilities arise when fy ≥ 0 on at least a subset of the first
quadrant. For example, suppose that f(x, y) is the product of two inhibitory terms,
such as

f(x, y) = (ax+ by)(
cx

1 + dy
+ h),

with b < 0 and a, c, d > 0. Indeed,

sgn(fy) = sgn(cx(b− adx) + bh(1 + dy)2).

If h > 0, then fy < 0 for all (x, y) ∈ R2+, as in the previous example. If, however,
h < 0, then fy changes signs in R2+.
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Example 3.19. Consider the nonlinear system

ẋ = f(x, y) = (.5x− y)
(

0.1x
1+y − 1

)
ẏ = g(x, y) = 0.4x− y,

}
. (3.19)

with (0, 0) as a stable node. The isoclines for this system are the family of curves
given by the equations:

y(1) =
3
10
x− 1

2
+

1
2
C +

1
10

√
4x2 + 20x+ 30xC + 25 + 50C + 25C2, (3.20)

y(2) =
3
10
x− 1

2
+

1
2
C − 1

10

√
4x2 + 20x+ 30xC + 25 + 50C + 25C2, (3.21)

where C ∈ R. In Figure 3.7, the isoclines are drawn for various values of C ∈
[−2.5, 5.0], in increments of 0.25. For each C ∈ R, the two curves defined by equations
(3.20) and (3.21) together form a continuous curve. A thick black curve in the figure
emphasizes the two parts, with equation (3.20) forming the curves above and equation
(3.21) forming those beneath. The equation of this curve, which looks linear in the
first quadrant, is given by y = −1 + .2236

√
x(x+ 2).

The portion of the first quadrant containing the top portions of the isoclines is not
a region of inhibition, since for fixed x, f is an increasing function of y there. However,
the portion of the first quadrant containing the bottom portions of the isoclines is a
region of inhibition, since f is a decreasing function of y there. The curves given by
the portion of the x-nullcline (C = 0) in the first quadrant are marked (red) to help
delineate where the speed of the isoclines (i.e. ẋ) is positive or negative.

Fig. 3.7. Isoclines for Example 3.19, drawn for various values of C1 ∈ (−2.5, 5), in increments
of 0.25. The thick black line marks the boundary of the region of inhibition.

Figure 3.8 shows a specific solution, φ(t), that will be considered for this example.
The following features appear in Figure 3.8:

• φ(t) is the curve shown in black for initial condition φ(0) = (xr, yr) = (2, 0.5).
• The orange curve, denoted as φ̂, is the curve of points obtained by integrating
φ(t) backwards in time from t = 0 to t ≈ −0.85, at which time it intersects
the x-axis at x̂ ≈ 2.5.
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Fig. 3.8. Top: For Example 3.19, possible (xp, yp) points fall in one of two regions: R2, the
green area plus its boundaries and R1, the complement of R2 with respect to Γxr

(0,0)
. Bottom: A

close up of region R2.

• Let R2 be the region shown in green together with the boundaries made by
(1) the line segment {(x, y)|x = 2, 0 ≤ y < 0.5}, (2) the orange curve, φ̂, and
(3) the x-axis.

• Define the regionR1 to be the complement ofR2 in Γxr(0,0), namelyR1
def=Γxr(0,0)\R2.

Recall that every point (xp, yp) will lie on or to the right of the line x = xr, by
(A3). The regions R1 and R2 are formed so that for (xp, yp) ∈ R1, ψ will be bounded
below by φ and for (xp, yp) ∈ R2 \ φ̂, ψ will be bounded above by φ. The graph of φ̂,
in orange, creates a natural boundary (by uniqueness of solutions) between different
classes of solutions ψ(t).
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Fig. 3.9. Animations for Example 3.19, showing the presence or absence of tolerance with
respect to φ(0) = (2, 0.5) for differing choices of ψ(0). φ(0) is denoted by the large red dot and
ψ(0) is denoted by the smaller blue dot. Given φ(0) = (2, 0.5), ψ(0) = (5, 1) ∈ R1 does not produce
tolerance (Left), ψ(0) = (2, 0) ∈ R2 produces tolerance (Middle), and ψ(0) = (2.2, 0.2) ∈ R2 does
not produce tolerance (Right).

Case 1: Let (xp, yp) ∈ R1. Then, ψ will be bounded below by φ. Note that the
graph of φ never enters the region of inhibition. Thus, any (xp, yp) ∈ R1 does not
produce tolerance with respect to (xr, yr) by Proposition 3.14.

Case 2: Let (xp, yp) ∈ R2 \ φ̂. The resulting ψ will be bounded above by φ. Thus,
from Proposition 3.16, since there are no regions of inhibition that contain both ψ(t)
and φ(t) for all t ≥ 0, tolerance may occur for (xp, yp). However, if (xp, yp) lies on
the orange curve φ̂, then ψ(t) and φ(t) are subsets of the same larger solution curve
of the vector field (3.19) and both φ1(t) and ψ1(t) → 0 monotonically as t → ∞.
By Proposition 3.1, therefore, (xp, yp) will not produce tolerance. In addition, by
continuity, there exists an open ball, B, around each (xp, yp) ∈ φ̂, such that (x̃b, ỹb)
will not produce tolerance for all (x̃b, ỹb) ∈ B. Thus, the set of points which might
produce tolerance is a strict subset of region R2. This set can be characterized more
extensively by two different arguments.

First, it is clear that tolerance occurs if (xp, yp) = (2.0, 0), since f(2, 0) <
f(2, 0.5) < 0 (see the animation associated with the middle panel of Figure 3.9).
Thus, tolerance occurs for all (xp, yp) in a ball around (2, 0), intersected with Γxr=2

(0,0) .
The speed f(xp, 0) becomes monotonically less negative as xp increases toward 2.5,
and tolerance does not occur for (xp, yp) = (2.5, 0) by Proposition 3.1. Thus, toler-
ance occurs for (xp, 0) for all xp ∈ [2, x̄p) for some x̄p ∈ (2, 2.5). Similarly, f(2, yp)
becomes monotonically less negative as yp increases from 0, where tolerance occurs,
to 0.5, where it does not. Hence, tolerance occurs for (2, yp) for all yp ∈ [0, ȳp) for
some ȳp ∈ (0, 0.5). Therefore, there is a continuous curve connecting (x̄p, 0) to (2, ȳp),
call it CT , such that tolerance occurs exactly when (xp, yp) is in the interior of the
region bounded by {x = 2}, {y = 0}, and CT .

Second, to definitively establish that tolerance occurs for some specific (xp, yp) ∈
R2, time interval estimates for specific trajectories must be made, as done in Example
3.17. Figure 3.9 provides links to three animations for Example 3.19 using various
choices of ψ(0) from the different regions shown in Figure 3.8.
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Example 3.20. Consider the nonlinear system:

ẋ = f(x, y) = x
(

1+y2

1−y+y2 − 1.9
)

ẏ = g(x, y) = x− y

}
(3.22)

The isoclines for this system are the family of curves given by the equations

y(1) =
.5

(
19x+ 10C +

√
37x2 − 340xC − 300C2

)
9x+ 10C

, (3.23)

y(2) =
.5

(
19x+ 10C −

√
37x2 − 340xC − 300C2

)
9x+ 10C

, (3.24)

where C ∈ R. In Figure 3.10, the isoclines are drawn in increments of 0.1 for values
of C ∈ [−1.2, 0] and in increments of 0.01 for C ∈ [0, 1]. For C ∈ [0, 1], the two curves
defined by equations (3.23) and (3.24) together form a continuous curve. The black
line, y = 1, in the figure emphasizes the two parts, with equation (3.23) forming the
curves above and equation (3.24) forming those beneath.

Fig. 3.10. Isoclines for Example 3.20, drawn for various values of C ∈ (−1.2, 1).

A saddle exists at (0.72, 0.72). The stable manifold of this saddle point forms a
boundary for the basin of attraction of (0, 0), Γ(0,0). The blue shaded region in Figure
3.10 shows the subset of Γ(0,0) in the first quadrant. A third fixed point (stable spiral,
not labeled) in the first quadrant is located at (1.4, 1.4), outside of Γ(0,0). The x-
nullclines (C = 0) are marked (red) to help delineate where the speeds associated
with the isoclines (i.e. ẋ) are positive or negative.

We define several disjoint subregions (see Figure 3.10) of the basin of attraction
of (0, 0) in the first quadrant, as follows:

• α - above (and including) the top component of the C = 0 isocline,
• β - below the top component of the C = 0 isocline and above (and including)

the line y = 1,
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• γ - below the line y = 1 and above (and including) the bottom component of
the C = 0 isocline, and

• δ - below the bottom component of the C = 0 isocline.

These subregions are relevant because C varies nonmonotonically in y for this
example and are defined to assist with identifying regions of inhibition. If looked at
separately, subregions α and β are both regions of inhibition and subregions γ and δ
are not regions of inhibition. However, additional complications may arise if φ and ψ
are not in the same subregion on some time interval.

Fig. 3.11. Top: For Example 3.20, possible (xp, yp) points fall in one of three regions: R1, the
red area plus its boundaries, R2, the magenta region, and R3, the yellow region.

Figure 3.11 shows one specific solution, φ(t) with φ(0) = (0.5, 0.5), that will be
considered for this example. The following features are also a part of Figure 3.11:

• The orange curve, denoted as φ̂, is the curve of points obtained by integrating
φ(t) backwards in time from t = 0 to t ≈ −1.75, at which time it intersects
the x-axis at x̂ ≈ 1.0.

• R1 is the region shown in red together with the boundaries made by (1) the
line segment {(x, y)|x = 0.5, 0 ≤ y ≤ 0.5}, (2) the orange curve φ̂, and (3)
the x-axis.

• R2 is the region shown in magenta, defined as R2
def= Γxr(0,0) \ (α ∪R1).

• R3 is the region shown in yellow to be R3
def= Γxr(0,0) ∩ α.

As usual, we consider points (xp, yp) that lie on or to the right of the line {x = xr}.
The region R1 is formed so that for (xp, yp) ∈ R1 \ φ̂, ψ will be bounded above by φ.
For (xp, yp) ∈ R2 ∪ R3, ψ will be bounded below by φ. The graph of φ̂, in orange,
creates a natural boundary (by uniqueness of solutions) for ψ(t), as in the previous
example.
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Case 1: Let (xp, yp) ∈ R1 \ φ̂. Then, ψ will be bounded above by φ. Thus,
from Proposition 3.16, since there are no regions of inhibition that contain both ψ(t)
and φ(t) for all t ≥ 0, (xp, yp) might produce tolerance. This case is very similar to
that considered in the previous example. Indeed, it is clear that tolerance occurs if
(xp, yp) = (0.5, 0), while tolerance does not occur if (xp, yp) lies on φ̂, by Proposition
3.1. Again, there will be a continuous curve connecting {(x, y) : x = 0.5, 0 ≤ y ≤ 0.5}
to {(x, y) : 0.5 ≤ x ≤ 1, y = 0} such that tolerance occurs for all (x, p) in R1 below
this curve and does not occur in R1 above this curve. Time interval estimates are nec-
essary to prove that tolerance occurs or does not occur for specific choices of (xp, yp)
in R1.

Case 2: Let (xp, yp) ∈ R2. Then, φ ⊂ δ and ψ will be bounded below by φ. Note
that γ is not a region of inhibition and that β, although a region of inhibition by
itself, has f > 0, such that no tolerance can occur before ψ enters δ. But δ is not
a region of inhibition, and hence from Proposition 3.14, any (xp, yp) ∈ R2 does not
produce tolerance with respect to (xr, yr).

Case 3: Let (xp, yp) ∈ R3. Since C < 0 in R3, it is possible in this case that
tolerance will occur before ψ leaves α. Alternatively, suppose that this does not
happen. After ψ leaves α, it enters β, γ, and finally δ as it converges toward (0, 0).
In theory, tolerance could occur after ψ enters δ. However, ψ is bounded below by
φ and δ is not a region of inhibition. Hence, as in Case 2, Proposition 3.14 implies
that tolerance will not occur. In summary, if φ(0) ∈ δ and (xp, yp) ∈ R3, then either
tolerance occurs before ψ leaves α or it does not occur at all.

Fig. 3.12. Nonmonotonic convergence to (0, 0) in Example 3.20.

Using the same nonlinear system given by (3.22), consider an alternative choice for
(xr, yr), namely one in α. Such a choice demonstrates some additional complexities
that can arise in this type of example. Now, φ passes through regions where f <
0, then f > 0, and finally f < 0 again as it converges to (0, 0). For different ψ
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Fig. 3.13. Animations for Example 3.20, using an alternative choice for φ(0), namely in region
α, as shown in Figure 3.12. The presence or absence of tolerance with respect to φ(0) = (0.5, 2)
is shown for differing choices of ψ(0) in Region R3. φ(0) is denoted by the large red dot and ψ(0)
is denoted by the smaller blue dot. Given φ(0) = (0.5, 2), ψ(0) = (0.7, 4) ∈ R3 produces tolerance
(Left) and ψ(0) = (0.7, 3) ∈ R3 does not produces tolerance (Right).

trajectories, either bounded above or below by φ (see Figure 3.12), there are different
time intervals when tolerance cannot occur or might possibly occur, which can be
inferred from the isoclines.

In the particular example shown, for the ψ that is bounded below by φ, toler-
ance cannot be ruled out in any region. In particular, let xM denote the x-value
where φ intersects the x-nullcline branch that forms the boundary between γ and δ.
If ψ1(t) < xM when φ passes from α to β, then tolerance is guaranteed to occur.
On the other hand, for the ψ that is bounded above by φ, tolerance is only possible
after ψ enters δ. Figure 3.13 provides links for two animations for Example 3.20 using
φ(0) = (0.5, 2) in Region R3 and two choices of ψ(0) also in Region R3, similar to
those shown in Figure 3.12.

4. Tolerance in Linear ODE systems. The previous sections have established
that it is sometimes difficult to make precise general statements about tolerance.
However, in the case of linear systems, we can fully characterize the occurrence of
tolerance for equation (2.1). In this section, we derive a complete set of necessary and
sufficient conditions for the existence of tolerance in 2D linear ODE systems.

Consider the linear system

ẋ = Ax, (4.1)

where A ∈M2x2, x ∈ R2+ = [0,∞)×[0,∞). Throughout this section, we will assume
as before that:
(A1) (0, 0) is a stable fixed point of (4.1), the eigenvalues of which are real and

negative.
(A2) φ(t) and ψ(t) are nonnegative for all t ≥ 0 and both (xr, yr) and (xp, yp) lie in

the basin of attraction for (0, 0) in the first quadrant, Γ+
(0,0).

(A3) xp ≥ xr.
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Let λ1 and λ2 be the real, negative eigenvalues of A. To arrive at necessary and
sufficient conditions for the existence of tolerance, there are two cases that must be
considered. The first case is that A has distinct eigenvalues, λ1 6= λ2. The other case
is that A has identical eigenvalues, λ1 = λ2

def= λ < 0. For each of these cases, there
are subcases to consider as well.

4.1. Case 1: λ1 6= λ2. For this case, where λ1 and λ2 are distinct, negative
eigenvalues of A, assume without loss of generality that λ2 < λ1 < 0. Let v be an
eigenvector corresponding to λ1, and let w be an eigenvector corresponding to λ2.
Since λ1 and λ2 are distinct, v and w are linearly independent. Thus, any initial
condition can be uniquely written as a linear combination of v and w. In particular,
(xr, yr) = c1v+ c2w = (c1v1 + c2w1, c1v2 + c2w2), with c1, c2 ∈ R. Then, the solution
φ(t) to the initial value problem (IVP) ẋ = Ax, φ(0) = (xr, yr) is

φ(t) = c1ve
λ1t + c2we

λ2t = (c1v1eλ1t + c2w1e
λ2t, c1v2e

λ1t + c2w2e
λ2t). (4.2)

Similarly, consider the initial condition (xp, yp), which can be uniquely written as
(xp, yp) = d1v+d2w = (d1v1 +d2w1, d1v2 +d2w2), with d1, d2 ∈ R. The solution ψ(t)
to the IVP ẋ = Ax, ψ(0) = (xp, yp) is

ψ(t) = d1ve
λ1t + d2we

λ2t = (d1v1e
λ1t + d2w1e

λ2t, d1v2e
λ1t + d2w2e

λ2t). (4.3)

Since we know xp ≥ xr by (A3), we have that

d1v1 + d2w1 ≥ c1v1 + c2w1. (4.4)

We will consider three subcases for Case 1: (a) v1 = 0 and w1 = 1 (b) v1 = 1 and
w1 = 0 and (c) v1 = w1 = 1.

4.1.1. Case 1a: v1 = 0 and w1 = 1. For this case, (4.4) becomes

d2 ≥ c2. (4.5)

Consider the difference between φ1(t) and ψ1(t). Using equations (4.2) and (4.3) as
well as v1 = 0 and w1 = 1, we have

φ1(t)− ψ1(t) = (c2 − d2)eλ2t.

By (4.5), we have that (c2 − d2) ≤ 0. Thus, because eλ2t > 0 for all t ≥ 0, we have
that φ1(t)− ψ1(t) ≤ 0 for all t ≥ 0. Therefore, the following result has been shown.

Proposition 4.1. Assume (A1), (A2), (A3) and that λ2 < λ1 < 0. Given
〈(xr, yr), (xp, yp)〉, if v1 = 0 and w1 = 1 for eigenvectors v and w of λ1 and λ2,
respectively, then ẋ = Ax does not exhibit tolerance for 〈(xr, yr), (xp, yp)〉.

4.1.2. Case 1b: v1 = 1 and w1 = 0. For this second subcase of Case 1, (4.4)
becomes

d1 ≥ c1. (4.6)

Using equations (4.2) and (4.3) as well as v1 = 1 and w1 = 0, we have

φ1(t)− ψ1(t) = (c1 − d1)eλ1t.
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By (4.6), we have that (c1 − d1) ≤ 0. Thus, we conclude φ1(t) − ψ1(t) ≤ 0 for all
t ≥ 0, and the following result has been shown.

Proposition 4.2. Assume (A1), (A2), (A3) and that λ2 < λ1 < 0. Given
〈(xr, yr), (xp, yp)〉, if v1 = 1 and w1 = 0 for eigenvectors v and w of λ1 and λ2,
respectively, then ẋ = Ax does not exhibit tolerance for 〈(xr, yr), (xp, yp)〉.

4.1.3. Case 1c: v1 = w1 = 1. Unlike Cases 1a and 1b, tolerance is a possibility
in case 1c. Proposition 4.3 below states necessary and sufficient conditions on the
coefficients of the solutions φ and ψ in order for tolerance to be exhibited and also
specifies the precise time value beyond which tolerance is exhibited, when it occurs.

Proposition 4.3. Assume (A1), (A2), (A3), λ2 < λ1 < 0, and v1 = w1 = 1 for
eigenvectors v and w of λ1 and λ2, respectively. Given 〈(xr, yr), (xp, yp)〉, then there
exists T > 0 such that (4.1) will exhibit tolerance for all t > T if and only if c1 > d1

and c2 < d2. Furthermore,

T =
ln[(d2 − c2)/(c1 − d1)]

λ1 − λ2
. (4.7)

Proof. Necessary Conditions. Assume that c1 ≤ d1. Since v1 = w1 = 1, we may
rewrite (4.4) as

d1 + d2 ≥ c1 + c2. (4.8)

Consider the difference between φ1(t) and ψ1(t). Using (4.2), (4.3), v1 = w1 = 1, and
(4.8), we have

φ1(t)− ψ1(t) = (c1 − d1)eλ1t + (c2 − d2)eλ2t

≤ (c1 − d1)eλ1t + (d1 − c1)eλ2t

= (c1 − d1)(eλ1t − eλ2t).

Since λ2 < λ1 < 0 and c1 ≤ d1, it follows that φ1(t) − ψ1(t) ≤ 0, which means
that ψ1(t) ≥ φ1(t) for all t ≥ 0. Hence, tolerance cannot be exhibited for c1 ≤ d1.
Similarly, it can be shown that (4.1) cannot exhibit tolerance for c2 ≥ d2. Thus,
c1 > d1 and c2 < d2 are both necessary conditions for tolerance.

Sufficient Conditions. Assume that c1 > d1 and c2 < d2 both hold. Using (4.2),
(4.3), and v1 = w1 = 1, we have

φ1(t)− ψ1(t) = (c1 − d1)eλ1t + (c2 − d2)eλ2t.

=
(
e(λ1−λ2)t +

c2 − d2

c1 − d1

)
eλ2t(c1 − d1).

By assumption, (c1 − d1) > 0 and (c2 − d2) < 0, and thus

eλ2t(c1 − d1) > 0 and
(c2 − d2)
(c1 − d1)

< 0.
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Therefore,

φ1(t)− ψ1(t) =
(
e(λ1−λ2)t +

(c2 − d2)
(c1 − d1)

)
eλ2t(c1 − d1) > 0

⇔
(
e(λ1−λ2)t +

(c2 − d2)
(c1 − d1)

)
> 0

⇔ e(λ1−λ2)t >
(d2 − c2)
(c1 − d1)

⇔ t >
ln[(d2 − c2)/(c1 − d1)]

(λ1 − λ2)

4.2. Case 2: λ1 = λ2 = λ < 0. In this case, λ has either a one- or two-
dimensional eigenspace. Thus, two subcases need to be considered.

4.2.1. Case 2a: λ1 = λ2 = λ < 0 and λ has a two-dimensional eigenspace.
For this case, λ is an eigenvalue of A with multiplicity two for which two linearly in-
dependent eigenvectors can be found. Let v and w be linear independent eigenvectors
of λ. Then, any initial condition can be uniquely written as a linear combination
of v and w. For the initial condition (xr, yr), we may write (xr, yr) = c1v + c2w =
(c1v1 + c2w1, c1v2 + c2w2), with c1, c2 ∈ R. Thus, the solution, φ(t), to the IVP
ẋ = Ax, φ(0) = (xr, yr) is

φ(t) = c1ve
λt + c2we

λt = (c1v1 + c2w1, c1v2 + c2w2)eλt = (xreλt, yreλt). (4.9)

Similarly, consider the initial condition (xp, yp), which may also uniquely be written
as (xp, yp) = d1v + d2w = (d1v1 + d2w1, d1v2 + d2w2), with d1, d2 ∈ R. The solution
ψ(t) to the IVP ẋ = Ax, ψ(0) = (xp, yp) is

ψ(t) = d1ve
λt + d2we

λt = (d1v1 + d2w1, d1v2 + d2w2)eλt = (xpeλt, ypeλt). (4.10)

Consider the difference between φ1(t) and ψ1(t). Using (4.9), (4.10), (A3) and
the fact that eλt > 0 for all t ≥ 0 we have that :

φ1(t)− ψ1(t) = xre
λt − xpe

λt = (xr − xp)eλt ≤ 0.

Thus, ψ1(t) ≥ φ1(t) for all t ≥ 0, and the following has been shown:
Proposition 4.4. Assume (A1), (A2), (A3) and that λ1 = λ2 = λ < 0. Given

〈(xr, yr), (xp, yp)〉, if λ has two linearly independent eigenvectors, then ẋ = Ax cannot
exhibit tolerance for (xr, yr).

4.2.2. Case 2b: λ1 = λ2 = λ < 0 and λ has a one-dimensional eigenspace.
In this case, let v be an eigenvector of λ. One solution to (4.1) is x(1)(t) = veλt. A
second solution to (4.1) is x(2)(t) = vteλt + v̄eλt, where v̄ is a generalized eigenvector
satisfying (A − λI)v̄ = v. The initial condition (xr, yr) can be uniquely written as a
linear combination of v and v̄,

(xr, yr) = c1v + c2v̄ = (c1v1 + c2v̄1, c1v2 + c2v̄2),with c1, c2 ∈ R.

The solution φ(t) to the IVP ẋ = Ax, φ(0) = (xr, yr) is

φ(t) = c1ve
λt + c2(vteλt + v̄eλt)

= (c1v1eλt + c2(v1teλt + v̄1e
λt), c1v2eλt + c2(v2teλt + v̄2e

λt)). (4.11)
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Similiary, the initial condition, (xp, yp), can be uniquely written as a linear combina-
tion of v and v̄,

(xp, yp) = d1v + d2v̄ = (d1v1 + d2v̄1, d1v2 + d2v̄2),with d1, d2 ∈ R,

and the solution ψ(t) to the IVP ẋ = Ax, ψ(0) = (xp, yp) is

ψ(t) = d1ve
λt + d2(vteλt + v̄eλt)

= (d1v1e
λt + d2(v1teλt + v̄1e

λt), d1v2e
λt + d2(v2teλt + v̄2e

λt)). (4.12)

The following proposition, given without the details of its proof, states the result
for this case.

Proposition 4.5. Let 〈(xr, yr), (xp, yp)〉. Assume (A1), (A2), (A3), and that
λ1 = λ2 = λ < 0. Suppose that λ has a one-dimensional eigenspace. Let v be an
eigenvector of λ and let v̄ be a corresponding generalized eigenvector.
(i) If v1 = 1 and v̄1 = 0, then there exists T > 0 such that (4.1) will exhibit tolerance

for 〈(xr, yr), (xp, yp)〉 for all t > T if and only if c1 ≤ d1 and c2 > d2 both
hold. Furthermore,

T =
d1 − c1
c2 − d2

, (4.13)

and the difference between φ1(t) and ψ1(t) at t > T will be less than or equal
to (c2 − d2)teλt. Therefore, max

t>T

{
(c2 − d2)teλt

}
= d2−c2

λe , which occurs at

t = −1
λ , is the greatest degree of tolerance that is possible.

(ii) If v̄1 6= 0, then (4.1) will not exhibit tolerance for 〈(xr, yr), (xp, yp)〉.

4.3. Eigenvector Configurations and Regions of Tolerance. Of the cases
discussed above, only Cases 1c and 2b yield the possibility of tolerance. The results
stated above give analytical conditions for the existence of tolerance in terms of coef-
ficients of general solutions to (2.1). We find that these results are more useful when
they are recast geometrically. To achieve this reformulation, we consider eigenvec-
tor configurations (EVC) that accommodate solutions that satisfy the nonnegativity
requirement (A2). Each such configuration is displayed in Figure 4.1. For each con-
figuration, we subdivide the positive quadrant into regions and then, for (xr, yr) in
each region, determine precisely which locations for (xp, yp) will lead to tolerance and
which will not. The results for all the eigenvector configurations shown in 4.1 are
summarized in Table 4.1 and are illustrated in the figures referenced in the table.

4.3.1. Eigenvector Configuration (a). For eigenvector configuration (a), seen
in the top left panel of Figure 4.1, there are three regions in which to consider initial
conditions:

• REGION 1a: (xr, yr) on the x-axis
• REGION 2a: (xr, yr) in the first quadrant below the weak eigenvector v

and above the x-axis
• REGION 3a: (xr, yr) in the first quadrant above the eigenvector v
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Fig. 4.1. Regions of interest in the first quadrant for four relevant eigenvector configurations.
Note that we label the weak eigenvector v with one arrow and the strong eigenvector w with two
arrows.

Now, we explain how to identify the regions of tolerance given an initial condition
(xr, yr), using Regions 1a and 2a as examples.

REGION 1a: First, we look at the case when the initial condition is on the
x-axis. In the top left panel of Figure 4.3, an arbitrary point on the x-axis is shown
in the context of eigenvector configuration (a), with lines drawn (portions dashed),
showing the addition of scalar multiples of the two eigenvectors to attain the point
(xr, yr). We refer to these lines as the c1-line and c2-line. In this case, they divide
the first quadrant into three different subregions, as shown in the top right panel of
Figure 4.3.

Recall that the P trajectory’s initial condition (xp, yp) was expressed as (xp, yp) =
d1v + d2w. For all (xp, yp) in a given subregion, there is a corresponding relationship
between d1, d2 and c1, c2. Using this relationship, we determine if there exists a region
where the criteria c1 > d1 and c2 < d2 of Proposition 4.3 and the initial condition
criterion (xp ≥ xr) are all satisfied. For any (xp, yp) in such a region, tolerance will
occur, while for (xp, yp) not in such a region, tolerance will not occur .

In fact, for eigenvector configuration (a), if (xr, yr) is on the x-axis, then there
are no subregions in the first quadrant where both d1 < c1 and d2 > c2 hold. In
particular, in I1a, d1 < c1 and d2 < c2; in II1a, d1 > c1 and d2 < c2; and in III1a,
d1 > c1 and d2 > c2. Thus, there exist no (xp, yp) that produce tolerance.

REGION 2a: Let (xr, yr) be in the first quadrant below the weak eigenvector
v (but not on the x-axis) in eigenvector configuration (a). The middle left panel
of Figure 4.3 shows an arbitrary point in this region, with lines drawn (portions
dashed), showing the addition of the two eigenvectors to attain the point (xr, yr). The
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Eigenvector
Configuration:

If (xr, yr) is
in Region:

Then, tolerance
is produced by
(xp, yp) in:

Figure
Reference:

(a) Figure 4.1a

1a None Figure 4.3
(top)

2a Region IV2a Figure 4.3
(middle)

3a Region IV3a Figure 4.3
(bottom)

(b) Figure 4.1b

1b Region I1b Figure 4.2
(top)

2b Region I2b Figure 4.2
(middle)

3b Region II3b Figure 4.2
(bottom)

(c) Figure 4.1c
1c Region IV1c Figure 4.4

(top)

2c Region IV2c Figure 4.4
(bottom)

(d) Figure 4.1d 1d Region IV1d Figure 4.5

Table 4.1
Summary of tolerance results for eigenvector configurations shown in Figure 4.1

middle right panel of Figure 4.3 shows the four subregions formed in the first quadrant
by the c1-line and c2-line. Note that region IV2a only includes points satisfying
x ≥ xr. In general, we follow the convention of truncating those subregions that
satisfy Proposition 4.3 to ensure that (A3) is satisfied.

In this case, if (xp, yp) /∈ IV2a, then the conditions of Proposition 4.3 fail and
tolerance will not occur. In contrast, for (xp, yp) ∈ IV2a, we have that xp ≥ xr and
that d1 < c1 and d2 > c2, such that all of the conditions of Proposition 4.3 hold.
Hence, for eigenvector configuration (a), if (xr, yr) is in the first quadrant below the
weak eigenvector v (but not on the x-axis), then tolerance will be exhibited precisely
for all (xp, yp) ∈ IV2a.
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REGION 3a: Similarly to the case of Region 2a, the c1-line and c2-line partition
the first quadrant into four subregions, as shown in Figure 4.3. The conditions for
tolerance only hold in subregion IV3a, which has been truncated to include only points
satisfying x ≥ xr.

Fig. 4.2. Left Side: Eigenvector configuration (b) with an arbitrary initial condition (xr, yr)
labeled in Regions 1b-3b. Right Side: The first quadrant partitioned into several different regions by
the c1-and c2-lines associated with the point (xr, yr) = c1v + c2w lying in one of the initial regions
1b-3b.
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Fig. 4.3. Left Side: Eigenvector configuration (a) with an arbitrary initial condition (xr, yr)
labeled in Region 1a-3a. Right Side: The first quadrant partitioned into several different subregions
by the c1-and c2-lines associated with the point (xr, yr) = c1v+c2w lying in one of the initial regions
1a-3a.

4.3.2. Eigenvector Configuration (b). For eigenvector configuration (b), seen
in the top right panel of Figure 4.1, there are three regions in which to consider initial
conditions:

• REGION 1b: (xc, yc) on the x-axis
• REGION 2b: (xc, yc) in the first quadrant below the weak eigenvector v

and above the x-axis
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• REGION 3b: (xc, yc) in the first quadrant above the weak eigenvector v
and below the strong eigenvector w.

The results for each region are summarized in Table 4.1 and shown in Figure 4.2.

Fig. 4.4. Left Side: Eigenvector configuration (c) with an arbitrary initial condition (xr, yr)
labeled in Regions 1c-2c. Right Side: The first quadrant partitioned into several different regions by
the c1-and c2-lines associated with the point (xr, yr) = c1v + c2w lying in one of the initial regions
1c-2c.

4.3.3. Eigenvector Configuration (c). For eigenvector configuration (c), seen
in the bottom left panel of Figure 4.1, there are two regions in which to consider
initial conditions:

• REGION 1c: (xr, yr) in the first quadrant below the weak eigenvector v
and above the strong eigenvector w

• REGION 2c: (xr, yr) in the first quadrant above both eigenvectors
Table 4.1 along with Figure 4.4 summarize the conclusions about tolerance for the
regions in eigenvector configuration (c).

4.3.4. Eigenvector Configuration (d). To finish our analysis, we examine
eigenvector configuration (d), seen in the bottom right panel of Figure 4.1. There
is only one region in which to consider initial conditions to explore the existence of
tolerance.

• REGION 1d: (xr, yr) in the first quadrant above v
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Fig. 4.5. Left Panel: Eigenvector configuration (d) with an arbitrary initial condition (xr, yr)
labeled in Region 1d. Right Panel: The first quadrant of eigenvector configuration (d) partitioned
into four subregions by the c1- and c2-lines associated with the point (xr, yr) = c1v + c2v̄ lying in
Region 1d.

The conclusion regarding tolerance for this case (Case 2b) was given by Proposition
4.5, which shows that it is necessary and sufficient that v̄1 = 0, c1 ≤ d1, and c2 > d2

for tolerance to be exhibited in (4.1). In the left panel of Figure 4.5 an arbitrary
point in Region 1d is shown in the context of eigenvector configuration (d), with lines
drawn (portions dashed), showing the addition of scalar multiples of the eigenvector
v and the generalized eigenvector, v̄, to attain the point (xr, yr). Since v̄1 = 0 was
assumed, the blue line along the y-axis represents v̄.

The conditions c1 ≤ d1 and c2 > d2 are satisfied precisely for those (xp, yp) ∈
IV1d, the region labeled in the right panel of Figure 4.5. Moreover, xp ≥ xr in this
region as well. Hence, tolerance will be produced by any (xp, yp) ∈ IV1d, when (xr, yr)
is in Region 1d under eigenvector configuration (d).

5. Discussion and Conclusions. Our consideration of tolerance serves as an
example of how dynamical systems questions can arise from biological phenomena.
We initiated our analysis of tolerance under assumptions representative of typical
experimental preconditioning protocols used in the study of the acute inflammatory
response [5, 2, 9, 12, 16]. However, in this paper, we present a generalized analysis,
allowing relatively general choices of initial conditions for the reference and perturbed
trajectories, since the ideas of inhibition and tolerance, as we have defined them, are
themselves quite general. The goal of this analysis is to use information about the ini-
tial conditions of the R and P trajectories and the vector field to determine a priori if
the associated trajectories will or will not exhibit tolerance. In tolerance experiments,
by applying the challenge dose to the preconditioning trajectory at different times,
an experimentalist could generate a continuous curve of possible initial conditions for
what we call the P trajectory, and our analysis aims to consider all such initial con-
ditions, to fully characterize the possibility of tolerance within a given experimental
set-up.

In the context of two-dimensional nonlinear systems of ODE, it can be difficult
to make general statements specifying conditions under which tolerance will be guar-
anteed to occur. However, our work provides several fundamental statements about
configurations of the initial condition (xp, yp) for the P trajectory, relative to the R
trajectory, that will or will not lead to tolerance. For example, in Section 3.1 we have
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characterized the case when the R trajectory is n-excitable, showing that there always
exists a subset of the basin of attraction where tolerance is guaranteed to occur for all
(xp, yp) in the subset. Excitable trajectories are common in systems describing vari-
ous biological constructs and the idea of tolerance may be important to the ensuing
analysis of such systems. By using isoclines and the concept of inhibition, we also
present a framework in Section 3.2 that can be used to derive specific conditions under
which tolerance can be ruled out or guaranteed in particular examples. Techniques
such as time interval estimates in Section 3.3 exploit these ideas to achieve a closer
examination of transient behavior in the absence of an analytical solution.

In the linear case, we have fully characterized the conditions under which tolerance
will or will not occur. A graphical view of the phase plane immediately reveals points
(xp, yp) that produce tolerance relative to a given (xr, yr). For example, Figures 4.3-
4.5 show regions of (xp, yp) (marked in green and labeled) in which tolerance will be
exhibited. Interestingly, some of the tolerance regions shown have infinite area (see
Figures 4.2, 4.4, and 4.5). Considering points (xp, yp) in the first quadrant and to
the right of the vertical line x = xr, we see that in most cases (for instance, see the
panels in Figure 4.2), the farther xp is from xr, the higher the yp value needs to be in
order for (xp, yp) to fall in the green tolerance region. (As shown using time interval
estimates this is also true in nonlinear systems.) Correspondingly, for some (xp, yp)
in a tolerance region, tolerance might only occur in the asymptotic limit, which may
not be of interest in applications, especially considering that the degree or magnitude
of tolerance produced is negligible by then. In other examples (for instance, see the
middle and bottom panels of Figure 4.3), the y-value needs to be sufficiently low for
tolerance to occur, although there is a limit on how low it can be because of the
non-negativity requirement on y.

The issue of tolerance, as defined in this work, does not appear to have received
previous analytical treatment. Research has been done on isochronicity, which con-
siders whether multiple phenomena occur within the same interval of time [10, 6]. For
instance, in [10], Sabatini defines a critical point classified as a center to be isochronous
if every nontrivial cycle within a neighborhood of the critical point has the same pe-
riod. Although Sabatini noted that the definition of isochronicity does not require
proximity to a critical point, his work and other previous research appears to have
been restricted to locating isochronous sections of autonomous differential systems
that are oscillatory in nature [10, 6, 7]. While tolerance is a natural extension of
isochronicity, in that it can be cast in terms of a comparison of the relative passage
times of trajectories between sections, previous work has not, to our knowledge, made
such comparisons between trajectories converging to a stable node, as we have done
here.

Another related area of study is the consideration of phase response curves (PRCs),
as are commonly used in the analysis of neuronal systems. PRCs are calculated to
determine how instantaneous perturbations shift the phase of a periodic oscillation.
Although the assumption of intrinsic oscillatory behavior distinguishes the use of
PRCs from the tolerance phenomenon that we consider, a relation between the two
emerges if one thinks of an instantaneous perturbation as a preconditioning event
and considers how the subsequent dynamics, during a specific window of time, com-
pares to the unperturbed oscillation. Depending on where the perturbation occurs
in the oscillation cycle, the occurrence of a stereotyped event, such as a peak, can
be advanced or delayed relative to the unperturbed case, and the former could be
considered as a form of tolerance, in that it would represent a speeding up of the
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event of interest. Figure 5.1 illustrates an example of such a phase advance, using the
Morris-Lecar model. In theory, isoclines could be used to predict whether perturba-
tions in a given system speed up or advance an oscillation. Past work has pointed
out that PRCs corresponding to infinitesimal perturbations are intimately related to
isochrons, or curves of constant asymptotic phase [15], but these are different than
isoclines. Indeed, analysis developed previously for PRCs (see e.g. [3] for a review)
sheds little light on tolerance under the assumptions that we consider, since there
is no intrinsic oscillation involved here. Note that the absence of an oscillation is
quite characteristic of the types of models that motivated this work (e.g. [5]), since
perturbations typically lead to a non-oscillatory decay to a healthy critical point or
approach to one or more unhealthy, perhaps lethal, critical points.

Fig. 5.1. Tolerance in the voltage equation of the Morris-Lecar model seen during a specific
comparison time window.

The work presented here looks exclusively at two dimensional ODE systems. Some
of the results and techniques considered do not naturally extend to higher dimensions,
unfortunately. In [5] it was shown that the presence and magnitude of tolerance in
a four dimensional ODE model of the acute inflammatory response depended not
only on inhibition but also on the relative levels of the variable being inhibited when
various doses of endotoxin were administered, through various feedback effects in the
system. In the 2D linear case, the relationship between the level of the inhibitory
variable and the relative level of the inhibited variable is most clearly seen. Refining
the results for the 2D nonlinear case and extending the results for both linear and
nonlinear systems to dimensions greater than two remains to be done. The present
work, however, yields new and potentially useful insight into the behavior of transients
away from the critical points to which they eventually converge, in the context of some
types ODE systems that commonly arise in models of biological systems.
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