
Discontinuous Galerkin and Mimetic Finite Difference Methods for
Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Konstantin Lipnikov∗ Danail Vassilev† Ivan Yotov†

Abstract

We study locally mass conservative approximations of coupled Darcy and Stokes flows on polygonal
and polyhedral meshes. The discontinuous Galerkin (DG) finite element method is used in the Stokes
region and the mimetic finite difference method is used in the Darcy region. DG finite element spaces
are defined on polygonal and polyhedral grids by introducing lifting operators mapping mimetic degrees
of freedom to functional spaces. Optimal convergence estimates for the numerical scheme are derived.
Results from computational experiments supporting the theory are presented.

1 Introduction

Coupled Stokes-Darcy flows occur in various physical processes of significant importance. Blood motion in
the vessels, the interaction of ground and surface water, and engineering filtration problems are just a few
examples that involve such flows. Our model consists of a fluid whose motion is governed by the Stokes
equation and a porous medium saturated by the same fluid, in which the Darcy’s law is valid. The two
equations are coupled through transmission conditions that must be satisfied on the interface between the
free fluid region and the porous medium region. These conditions are continuity of flux and normal stress,
as well as slip with friction condition for the Stokes velocity known as the Beavers-Joseph-Saffman law
[5, 48]. In this paper, we consider the surface-subsurface water flow as an application of the model.

There are number of stable and convergent numerical methods developed for the coupled Stokes-Darcy
flow system, see e.g., [34, 19, 39, 45, 24, 25, 54, 41]. Often it is of interest to study contaminant transport
in such flows, which necessitates employing numerical schemes that conserve mass locally. In this paper
we use the discontinuous Galerkin (DG) and the mimetic finite difference (MFD) methods to discretize the
Stokes and Darcy equations, respectively. Both methods are locally mass conservative. We consider very
general polygonal or polyhedral grids, as they allow for modeling complicated geometries with relatively
few degrees of freedom.

The local mass conservation property of the DG method stems from the fact that discontinuous functions
are used to approximate the solution on a given mesh. The original DG method was introduced in the early
seventies for solving the neutron transport equation [43, 33]. Since that time, several DG schemes have been
introduced, including the Bassy-Rebay method [4], the interior penalty Galerkin methods [2, 18, 44, 53], the
Oden-Babuška-Baumann method [42], and the local discontinuous Galerkin (LDG) method [15]. A unifying
DG framework for elliptic problems is studied in [3]. DG methods have been used to solve a wide range of
problems, including compressible [4] and incompressible [38, 27, 45] fluid flows, magneto-hydrodynamics
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[52], and contaminant transport [18]. In [51], the LDG method is employed for transport coupled with
Stokes-Darcy flows.

The MFD method is a relatively new discretization technique originating from the support-operator al-
gorithms [49, 31]. The method has been successfully applied to problems of continuum mechanics [40],
electromagnetics [30], linear diffusion [31, 36], and recently fluid dynamics [6, 7]. The goal of the MFD
discretization is to incorporate in the numerical model the mathematical and physical principles (conserva-
tion laws, solution symmetries) of the underlying system. This is achieved by approximating the differential
operators in the governing equations by discrete operators that satisfy discrete versions of the fundamental
identities of vector and tensor calculus. The MFD method can handle polygonal in 2-D and polyhedral in
3-D meshes with curved boundaries and possibly degenerate cells, which are well-suited to represent the
irregular features of the porous medium.

For simplicial and quadrilateral meshes, an equivalence between the MFD method and the lowest order
Raviart-Thomas MFE method has been established in [8] and [9], respectively. For polyhedral meshes, a
relationship between the MFD method and the multipoint flux approximation (MPFA) has been studied in
[37]. A strong connection between the MFD family of methods and a family of the gradient-type finite
volume methods [22] and the mixed-finite volume methods [20] has been established in [21].

In this paper, we formulate the DG method on polygonal or polyhedral meshes by using one of the
MFD tools, a lifting operator from mimetic degrees of freedom to a functional space. In particular, constant
flux values on each edge (or face) of an element are extended into a piecewise linear function inside the
element. This allows us to formulate a DG-MFD method for coupled Stokes-Darcy flows on polygonal or
polyhedral meshes. The method is heterogeneous in the sense that discrete mimetic degrees of freedom in
the Darcy domain are coupled with piecewise polynomial finite element spaces in the Stokes region. The
meshes from the two regions may be non-matching on the interface and the continuity of flux condition is
imposed through a Lagrange multiplier space. This space is defined on an interface mesh that is the trace
of the mesh of the Darcy region and it is also used to approximate the normal stress on the interface. A
global inf-sup condition is established that implies the well-posedness of the coupled scheme. For this we
construct an interpolant in the space of DG-MFD velocities with weakly continuous normal components.
We also establish optimal order convergence for the approximate velocity and pressure fields. Numerical
calculations in 2-D are presented to support the theory.

The paper outline is as follows. In Section 2 we formulate the coupled problem. Its discretization is
presented in Section 3. In Section 4 we construct some interpolants that will be used in the analysis of the
method. Section 5 deals with the well-posedness of the method. Error estimates are derived in Section 6. In
Section 7, we discuss some implementation details and provide results from computational tests that verify
the theoretical error bounds.

2 The coupled Stokes-Darcy problem

The following model describes flow of incompressible fluid from a domain Ω1 across an interface ΓI , into
a porous medium domain Ω2. We assume that both Ω1 and Ω2 are Lipschitz polyhedral domains in <d,
d = 2, 3, separated by a simply connected interface ΓI (see Fig. 1). Let

Γk = ∂Ωk \ ΓI , k = 1, 2,

and nk be the exterior unit normal vector to ∂Ωk. We denote the fluid velocity in domain Ωk by uk, the fluid
viscosity by µ, and the pressure by pk. The stress tensor is given by

T1 = −p1I+ 2µD(u1), D(u1) =
1

2
(∇u1 +∇uT

1 ).
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Figure 1: A 2-D model of the coupled Stokes-Darcy flow.

Flow in the Stokes domain is governed by the conservation of momentum and mass laws. Considering
no slip boundary conditions for simplicity, we have

−divT1 = f1, ∇ · u1 = 0 in Ω1,

u1 = 0 on Γ1.
(2.1)

Flow in the Darcy domain is governed by Darcy’s law and the conservation of mass law:

u2 = −K∇p2, ∇ · u2 = f2 in Ω2,

u2 · n2 = 0 on Γ2,
(2.2)

where for simplicity we assume no-flow boundary conditions. In the above, K is a uniformly positive
definite and bounded full tensor representing the rock permeability divided by the fluid viscosity.

The above problems are coupled across ΓI through three interface conditions representing mass conser-
vation, balance of normal stress, and the Beavers-Joseph-Saffman law [5, 48]:

u1 · n1 = −u2 · n2, (2.3)

(T1n1) · n1 = −p2, (2.4)

u1 · τ j = −2Gj(D(u1)n1) · τ j , j = 1, · · · , d− 1, (2.5)

where τ j , j = 1, · · · , d− 1, is an orthonormal system of tangential vectors on ΓI . Condition (2.5) models
slip with friction, where Gj = (µKτ j) · τ j/α and α > 0 is an experimentally determined friction constant.
Existence of a unique weak solution to the coupled problem (2.1)–(2.5) is shown in [34].

3 Coupling of two discretization methods

In this section we describe coupling of two discretization methods, the discontinuous Galerkin (DG) method
in the Stokes domain and the mimetic finite difference (MFD) method in the Darcy domain.

3.1 Admissible meshes

Let Ωh
k be a partition of Ωk, k = 1, 2 into polygonal in 2-D and polyhedral in 3-D elements E with diameter

hE . The meshes may be non-matching on the interface ΓI . Let hk = maxE∈Ωh
k
hE . Hereafter, we shall use
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the term face, denoted by e, for both a face in 3-D and an edge in 2-D. We will denote edges in 3-D by `.
Let xE , xe, and x` be the centroids of element E, face e, and edge `, respectively. Let |E| be the volume of
E and |e| be the area of face e. Let C denote a generic constant independent of hE and E. We assume that
partitions Ωh

k are shape-regular in the following sense.

Definition 3.1 The polygonal (polyhedral) partition Ωh
k is shape-regular if

• Each element E has at most N? faces, where N? is independent of h1 and h2.

• Each element E is star-shaped with respect to a ball of radius ρ?hE centered at point xE , where ρ?

is independent of h1 and h2. Moreover, each face e of E and each edge ` of E in 3-D is star-shaped
with respect to a ball of radius ρ?hE centered at the point xe and x`, respectively. Thus,

C hdE ≤ |E| ≤ hdE , C hd−1
E ≤ |e| ≤ hd−1

E . (3.1)

Note that meshes with non-convex elements may be shape-regular in this sense.
Let Eh

k be the set of interior faces of Ωh
k . For every face e, we define a unit normal vector ne that will

be fixed once and for all. If e belongs to Γk, we choose the outward normal to Ωk. If e belongs to ΓI , we
choose the outward normal to Ω2. Let nE be the outward unit normal vector to E, so that χe

E ≡ ne · nE is
either 1 or -1.

3.2 Discretization in the Stokes domain

Let D be a domain in <d and W s,p(D), s ≥ 0, p ≥ 1, be the usual Sobolev space [1] with a norm ‖ · ‖s,p,D
and a seminorm | · |s,p,D. The norm and seminorm in the Hilbert space Hs(D) ≡ W s,2(D) are denoted by
‖ · ‖s,D and | · |s,D, respectively. The Euclidean norm of algebraic vectors is denoted by ‖ · ‖, i.e. without a
subscript.

We extend the formulation in [27, 45] on simplicial elements to general polyhedra. Let X1 and Q1 be
Sobolev spaces for the velocity and pressure, respectively, in the Stokes domain:

X1 = {v1 ∈ (L2(Ω1))
d : v1|E ∈ (W 2,3/2(E))d ∀E ∈ Ωh

1 ,v1 = 0 on Γ1},

Q1 = {q1 ∈ L2(Ω1) : q1|E ∈ W 1,3/2(E) ∀E ∈ Ωh
1}.

The functions in X1 and Q1 have double valued traces on the interior element faces. The trace inequality
and the Sobolev imbedding theorem imply the q1|e ∈ L2(e). For a function w, we define its average {w}e
and its jump [w]e across an interior face e ∈ Eh

1 as follows:

{w}e =
1

2
w|E1 +

1

2
w|E2 , [w]e = w|E1 − w|E2 ,

where E1 and E2 are two elements that share face e and such that ne is directed from E1 to E2. For e ∈ ∂Ωh
1 ,

the average and the jump are equal to the value of w.
We introduce the norms

|‖v1|‖20,Ω1
=
∑
E∈Ωh

1

‖v1‖20,E ,

‖v1‖2X1
= |‖∇v1|‖20,Ω1

+
∑

e∈Eh
1 ∪Γ1

σe
he

‖[v1]‖20,e +
∑
e∈ΓI

d−1∑
j=1

µ

Gj
‖v1 · τ j‖20,e,

‖q1‖Q1 = ‖q1‖0,Ω1 ,
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where σe > 0 is a parameter that is a constant on e. The DG method is based on the bilinear forms
a1 : X1 ×X1 → < and b1 : X1 ×Q1 → < defined as follows:

a1(u1, v1) = 2µ
∑
E∈Ωh

1

∫
E
D(u1) : D(v1) dx+

∑
e∈Eh

1 ∪Γ1

σe
he

∫
e
[u1] · [v1] ds

−2µ
∑

e∈Eh
1 ∪Γ1

∫
e
{D(u1)}ne · [v1] ds+ 2µε

∑
e∈Eh

1 ∪Γ1

∫
e
{D(v1)}ne · [u1] ds

+
∑
e∈ΓI

d−1∑
j=1

µ

Gj

∫
e
(u1 · τ j)(v1 · τ j) ds, ∀u1,v1 ∈ X1

b1(v, q) = −
∑
E∈Ωh

1

∫
E
q1 divv1 dx+

∑
e∈Eh

1 ∪Γ1

∫
e
{q1}[v1] · ne ds, ∀v1 ∈ X1,∀q1 ∈ Q1.

The jump term involving σe is added for stabilization. We assume that for all faces e

σe ≥ σ0 > 0, (3.2)

where σ0 is chosen to be sufficiently large according to Lemma 5.3 in order to guarantee the coercivity
of a(·, ·) . The parameter ε controls the symmetry of the bilinear form and takes value −1, 0 or 1 for the
symmetric interior penalty Galerkin (SIPG) [2, 53], the incomplete interior penalty Galerkin (IIPG) [18],
and the non-symmetric interior penalty Galerkin (NIPG) [42, 44] methods, respectively.

Following closely the 2-D proof in Lemma 2.5 of [45], we obtain the following result.

Lemma 3.1 The solution (u, p) = (u1,u2; p1, p2) to (2.1)–(2.3) satisfies

a1(u1, v1) + b1(v1, p1) +

∫
ΓI

p2v1 · n1 ds =

∫
Ω1

f1 · v1 dx, ∀v1 ∈ X1, (3.3)

b1(u1, q1) = 0, ∀q1 ∈ Q1. (3.4)

The case of simplicial elements has been studied extensively in the literature. Let Pr denote the space
of polynomials of degree at most r. The DG discrete spaces Xh

1 and Qh
1 for the velocity and pressure,

respectively, are defined as

Xh
1 = {vh

1 : vh
1 |E ∈ (Pr(E))d ∀E ∈ Ωh

1},
Qh

1 = {qh1 : qh1 |E ∈ Pr−1(E) ∀E ∈ Ωh
1}.

We consider the cases r = 1, 2, 3 in 2-D and r = 1 in 3-D.
To develop a lowest order (r = 1) DG method for general polyhedra, we follow the mimetic approach

and consider a lifting operator from degrees of freedom defined on mesh faces to a functional space. For
every element E and every face e of E, we associate d degrees of freedom (a vector in <d) representing the
mean velocity on e:

Ve
1,E =

1

|e|

∫
e
v1 ds.

Let Xh
1,MFD be the vector space with the above degrees of freedom. For a vector V1 ∈ Xh

1,MFD, let V1,E

be its restriction to element E.
On each E, we define a lifting operator R1,E acting on a vector V1,E and returning a function in

(H1(E))d. We impose the following two properties on the lifting operator:
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(L1) The mean value of the lifted function on faces e of E is equal to the prescribed degrees of freedom:

1

|e|

∫
e
R1,E(V1,E) ds = Ve

1,E .

(L2) The lifting operator is exact for linear functions. More precisely, if VL
1,E is the vector of face mean

values of a linear function vL
1 , then

R1,E(V
L
1,E) = vL

1 .

Using the elemental lifting operators R1,E , we define the following finite element spaces:

Xh
1,LIFT = {vh : vh|E = R1,E(V1,E), ∀E ∈ Ωh

1 , ∀V1,E ∈ Xh
1,MFD(E)},

Qh
1,LIFT = {qh : qh|E ∈ P0(E), ∀E ∈ Ωh

1}.

When E is a tetrahedron, the lifting operator can be chosen to be the lowest order Crouzeix-Raviart
finite element [17]. In this case, the DG spaces Xh

1 ×Qh
1 coincide with Xh

1,LIFT ×Qh
1,LIFT . A constructive

method for building a lifting operator for a polyhedron E is presented in Section 4.
The spaces Xh

1,LIFT × Qh
1,LIFT are new DG spaces for Stokes on polygons or polyhedra. To keep the

notation simple, for the rest of the paper we will denote the DG spaces for both simplicial and polyhedral
elements by Xh

1 ×Qh
1 ,

Remark 3.1 Due to property (L1), the DG spaces on polygons and polyhedra defined above have continu-
ous fluxes. This is desirable when the computed Stokes flow field is coupled with a transport equation.

We are now ready to formulate the DG method in Ω1. Given an approximation λ̄h of p2 on ΓI (to be
defined later), the DG solution on Ω1, (uh

1 , p
h
1) ∈ Xh

1 ×Qh
1 , satisfies

a1(u
h
1 , v

h
1 ) + b1(v

h
1 , p

h
1) +

∫
ΓI

λ̄hvh
1 · n1 ds =

∫
Ω1

f1 · vh
1 dx, ∀vh

1 ∈ Xh
1 , (3.5)

b1(u
h
1 , q

h
1 ) = 0, ∀qh1 ∈ Qh

1 . (3.6)

3.3 Discretization in the Darcy domain

Let X2 and Q2 be the Sobolev spaces for the velocity and pressure in Ω2, respectively, defined as follows:

X2 = {v2 ∈ (Ls(Ω2))
d, s > 2: divv2 ∈ L2(Ω2),v2 · n2 = 0 on Γ2}, Q2 = L2(Ω2).

We introduce the following L2-norms:

‖v2‖X2 = ‖v2‖0,Ω2 , ‖q2‖Q2 = ‖q2‖0,Ω2 .

It is easy to see that the solution to (2.1)–(2.5) satisfies∫
Ω2

K−1u2 · v2 dx−
∫
Ω2

p2 divv2 dx+

∫
ΓI

p2v2 · n2 ds = 0, ∀v2 ∈ X2, (3.7)∫
Ω2

q2 divu2 dx =

∫
Ω2

f2 q2 dx, ∀q2 ∈ Q2. (3.8)

Note that the boundary integral in (3.7) is well defined if p2 ∈ H1(Ω2).
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We use the mimetic finite difference method [13, 14] to define discrete forms of (3.7)–(3.8). The first
step in the MFD method is the definition of degrees of freedom. For each face e in Ωh

2 , we prescribe one
degree of freedom V e

2 representing the average flux across e. Let Xh
2 be the vector space with these degrees

of freedom. The dimension of Xh
2 is equal to the number of faces in Ωh

2 .
For any v2 ∈ X2, we define its interpolant vI

2 ∈ Xh
2 by

(vI
2)

e =
1

|e|

∫
e
v2 · ne ds. (3.9)

Lemma 2.1 in [37] guarantees the existence of this integral for every v2 ∈ X2.
For any V2 ∈ Xh

2 , let V2,E denote the vector of degrees of freedom associated only with an element E.
We denote its component associated with face e by V e

2,E .
To approximate the pressure, on each element E ∈ Ωh

2 , we introduce one degree of freedom P2,E

representing the average pressure on E. Let Qh
2 be the vector space with these degrees of freedom. The

dimension of Qh
2 is equal to the number of elements in Ωh

2 . For any p2 ∈ Q2, we define its interpolant
pI2 ∈ Qh

2 by

(pI2)E =
1

|E|

∫
E
p2 dx. (3.10)

We also need to define a discrete mimetic space for the approximation of the pressure on the interface ΓI .
This space will also serve the role of a Lagrange multiplier space for imposing the continuity of normal flux
across ΓI . For each face e ∈ Γh

I = Ωh
2 |ΓI

we introduce one degree of freedom λe representing the average
pressure on e. Let Λh

I be the vector space with these degrees of freedom. Note also that Λh
I = Xh

2 |ΓI
and its

dimension is equal to the number of faces of ΓI .
The second step in the MFD method is to equip the discrete spaces Qh

2 , Xh
2 , and Λh

I with inner products.
The inner product in the space Qh

2 is relatively simple:

[P,Q]Qh
2
=
∑
E∈Ωh

2

|E| PE QE , ∀P,Q ∈ Qh
2 . (3.11)

This inner product can be viewed as a mid-point quadrature rule for L2-product of two scalar functions. The
inner product in Xh

2 can be defined formally as

[U, V]Xh
2
= UT M2V, ∀U,V ∈ Xh

2 , (3.12)

where M2 is a symmetric positive definite matrix. It can be viewed as a quadrature rule for the K−1-
weighted L2-product of two vector functions. The mass matrix M2 is assembled from element matrices
M2,E :

UT M2V =
∑
E∈Ωh

2

UT
E M2,E VE .

The symmetric and positive definite matrix M2,E induces the local inner product

[UE , VE ]Xh
2 ,E

= UT
E M2,E VE . (3.13)

The construction of matrix M2,E for a general element E is at the heart of the mimetic method [14]. The
inner product in Λh

I is defined as

〈λ, µ〉Λh
I
=
∑
e∈Γh

I

λe µe |e|, ∀λ,µ ∈ Λh
I . (3.14)
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Since V|ΓI
∈ Λh

I for every V ∈ Xh
2 , (3.14) can also be used to define 〈V, µ〉Λh

I
:

〈V, µ〉Λh
I
=
∑
e∈Γh

I

V e µe |e|, ∀V ∈ X2
h, µ ∈ Λh

I .

The third step in the mimetic method is discretization of the gradient and divergence operators. The
degrees of freedom have been selected to provide a simple approximation of the divergence operator. The
Gauss divergence theorem naturally leads to the following formula:

(DIVV)E =
1

|E|
∑
e⊂∂E

χe
E V e

E |e|. (3.15)

We have a useful commutative property of the interpolants:

(DIV vI)E =
1

|E|

∫
∂E

v · nE ds =
1

|E|

∫
E
divv dx = (divv)IE , ∀v ∈ X2. (3.16)

The discrete gradient operator must be a discretization of the continuous operator −K∇. To provide a
compatible discretization, the mimetic method derives this discrete operator from a discrete Gauss-Green
formula:

[U, GRAD (P,λ)]Xh
2
= [DIVU, P]Qh

2
− 〈U, λ〉Λh

I
∀U ∈ Xh

2 , P ∈ Qh
2 , λ ∈ Λh

I .

This equation mimics the continuous Gauss-Green formula∫
Ω2

u ·K−1(−K∇p) dx =

∫
Ω2

p divudx−
∫
ΓI

pu · ndx, ∀u ∈ X2, p ∈ H1(Ω2).

Non-homogeneous velocity boundary conditions would require additional terms that represent non-zero
boundary terms in the continuous Gauss-Green formula [29].

The construction of an admissible matrix M2,E is based on the consistency condition (see [14] for
details). Let KE be the mean value of K on element E. Then, we require

[V, (−KE∇pl)I ]Xh
2 ,E

= [DIVV, (pl)I ]Qh
2 ,E

−
∑
e∈∂E

χe
E V e

E

∫
e
pl ds, ∀pl ∈ P1(E). (3.17)

The introduced inner products define the following norms:

|‖P2|‖2Qh
2
= [P2, P2]Qh

2
and |‖V2|‖2Xh

2
= [V2, V2]Xh

2
.

Lemma 3.2 ([14]) . Under assumptions of Definition 3.1, there exists the local inner product (3.13) such
that

1

C
|E| ‖VE‖2 ≤ [VE , VE ]Xh

2 ,E
≤ C |E| ‖VE‖2, (3.18)

where the constant C depends only on shape regularity of the auxiliary partition of E.

In the following, for consistency between the DG and the mimetic notations, we will denote a vector
V2 ∈ Xh

2 by vh
2 , a vector Q2 ∈ Qh

2 by qh2 , and a vector λ ∈ Λh
I by λh. Given an approximation λh ∈ Λh

I of
p2 on ΓI , the mimetic approximation of (3.7)–(3.8) reads: Find (uh

2 , p
h
2) ∈ Xh

2 ×Qh
2 such that

a2(u
h
2 , v

h
2 ) + b2(v

h
2 , p

h
2) + 〈vh

2 , λ
h〉Λh

I
= 0, ∀vh

2 ∈ Xh
2 , (3.19)

b2(u
h
2 , q

h
2 ) = −[f I

2 , q
h
2 ]Qh

2
, ∀qh2 ∈ Qh

2 , (3.20)

where
a2(u

h
2 ,v

h
2 ) = [uh

2 , v
h
2 ]Xh

2
and b2(v

h
2 , q

h
2 ) = −[DIV vh

2 , q
h
2 ]Qh

2
.
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3.4 Discrete formulation of the coupled problem

In the previous two subsections we presented partially coupled discretizations for the Stokes and the Darcy
regions, (3.5)–(3.6) and (3.19)–(3.20), respectively. The approximations λ̄h and λh of p2 on interface ΓI

are appeared in (3.5) and (3.19), respectively. We impose the continuity of normal stress condition (2.4) by
taking λ̄h to be the piecewise constant function on Γh

I satisfying

λ̄h|e = (λh)e, ∀e ∈ Γh
I .

We impose the continuity of the flux (2.3) in a weak sense, using Λh
I as the Lagrange multiplier space.

The weak continuity is embedded in the definition of the global velocity space. More precisely, let Xh =
Xh

1 ×Xh
2 , Qh = Qh

1 ×Qh
2 , and

V h =
{
vh ∈ Xh :

∫
ΓI

vh
1 · n1 µ̄

h ds+ 〈vh
2 , µ

h〉Λh
I
= 0, ∀µh ∈ Λh

I

}
. (3.21)

We also define the composite bilinear forms

a(uh, vh) = a1(u
h
1 , v

h
1 ) + a2(u

h
2 , v

h
2 ), ∀uh, vh ∈ Xh,

b(vh, qh) = b1(v
h
1 , q

h
1 ) + b2(v

h
2 , q

h
2 ), ∀vh ∈ Xh, qh ∈ Qh.

The weak formulation of the coupled problem is: find the pair (uh, ph) ∈ V h ×Qh such that

a(uh, vh) + b(vh, ph) =

∫
Ω1

f1 · vh
1 dx, ∀vh ∈ V h, (3.22)

b(uh, qh) = −[f I
2 , q

h
2 ]Qh

2
, ∀qh ∈ Qh. (3.23)

Remark 3.2 We used a lifting operator from degrees of freedom to a functional space to define the DG
spaces for the Stokes domain. A similar lifting operator can be used to define the MFD method in the Darcy
domain as a finite element method.

4 Trace inequalities and interpolation results

Throughout this article, we use a few well known inequalities. The Young inequality reads:

ab ≤ ε

2
a2 +

1

2ε
b2, a, b ≥ 0, ε > 0. (4.1)

A number of trace inequalities utilized in [45] on triangular meshes can be extended to polyhedral meshes
using the auxiliary partition of an element E into shape-regular simplices. In particular, for any face e of
element E, we have

‖φ‖20,e ≤ C
(
h−1
E ‖φ‖20,E + hE |φ|21,E

)
, ∀φ ∈ H1(E), (4.2)

and its immediate consequence

‖∇φ · ne‖20,e ≤ C
(
h−1
E ‖φ‖21,E + hE |φ|22,E

)
, ∀φ ∈ H2(E). (4.3)

For polynomial functions, we have the trace inequality

‖∇φ · ne‖0,e ≤ Ch
−1/2
E |φ|1,E , ∀φ ∈ Pr(E). (4.4)

For φ ∈ (Hs(E))2, 0 ≤ s ≤ 1, with divφ ∈ L2(E) we use Lemma 3.1 from [37] that gives

‖φ · ne‖2s− 1
2
,e
≤ C

(
h−1
E ‖φ‖20,E + h2s−1

E ‖φ‖2s,E + hE‖divφ‖20,E
)
. (4.5)

The proof of the following lemma gives a constructive way for building a lifting operator.
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Lemma 4.1 For every element E ∈ Ω1
h, there exists a lifting operator R1,E satisfying (L1) and (L2) such

that
|R1,E(V1,E)|2m,E ≤ Chd−2m

E ‖V1,E‖2, ∀V1,E , (4.6)

where m = 0, 1. Moreover, the lifted function satisfies the trace inequality (4.4) for every face e of E.

Proof. We consider an auxiliary partition of element E into simplexes. For every face e of E, we connect
its centroid xe with its vertices. This splits boundary ∂E into pieces tk that are triangles in 3-D or segments
in 2-D. The auxiliary simplicial partition is obtained by connecting the centroid xE with the points xe and
the vertices of E. Due to the mesh assumptions in Definition 3.1, this is a shape regular partition.

We construct a continuous piecewise linear lifting function R1,E(V1,E). Property (L1) gives the fol-
lowing system of linear equations for the values of R1,E(V1,E) at the nodes of the auxiliary partition on
∂E:

∀e ∈ ∂E,
1

d

∑
tk∈e

|tk|
d∑

i=1

(R1,E(V1,E))(a
i
k) = |e|Ve

1,E ,

where aik are the vertices of tk. Since the unknowns associated with vertices xe are not connected to
each other and their number is equal to the number of equations, the matrix of this system has a full rank.
Therefore, there exists a family of solutions, where the unknowns corresponding to the element centroid xE

and the vertices of E are free parameters.
We populate the free parameters by the values of a vector linear function L(x) that minimizes the

quadratic functional ∑
e∈E

∣∣L(xe)−Ve
1,E

∣∣2 .
This defines a continuous piecewise linear function R1,E(V1,E)(x). Property (L1) is satisfied by construc-

tion. Property (L2) also holds, since, if Ve
1,E =

1

|e|

∫
e
vL
1 ds for a linear vector vL

1 , then L(x) = vL
1 is the

minimizer of quadratic functional. The latter follows from the fact that for all faces e

vL
1 (xe) =

1

|e|

∫
e
vL
1 ds = Ve

1,E .

The shape regularity of E implies that the free parameters are bounded by C‖V1,E‖. The shape regularity
of tk and e implies that |e|/|tk| ≤ C. Thus, the values of the lifted function at points xe are bounded by the
same norm. We have

‖R1,E(V1,E)‖20,E ≤ C hdE max
x∈E

|R1,E(V1,E)(x)|2 ≤ C hdE ‖V1,E‖2.

The estimate for the gradient of the lifted function follows from the inverse inequality and the shape regu-
larity of the auxiliary partition.

Finally, the shape regularity of the auxiliary partition implies that the trace inequality (4.4) holds for
every tk and hence for every face e. This proves the assertion of the lemma. 2

Lemma 4.2 Let v1 ∈ (H1(Ω1))
d. There exists an interpolant π1

h : (H1(Ω1))
d → Xh

1 such that

b1(π
1
h(v1)− v1, q

h) = 0, ∀qh ∈ Qh
1 , (4.7)∫

e
[πh

1v1] ·w ds = 0, ∀w ∈ (Pr−1(e))
d, (4.8)

10



for every face e ∈ Eh
1 ∪ Γ1, and

|‖πh
1 (v1)|‖1,Ω1 ≤ C‖v1‖1,Ω1 . (4.9)

The interpolant has optimal approximation properties for v1 ∈ (Hs(Ω1))
d, 1 ≤ s ≤ r + 1:

|πh
1 (v1)− v1|m,E ≤ Chs−m

E |v1|s, δ(E), m = 0, 1, (4.10)

where either δ(E) is the union of E with all its closest neighbors in the case of simplices or δ(E) = E in
the case of the lifted DG spaces on polygons and polyhedra.

Furthermore, the following estimates hold for v1 ∈ (Hs(Ω1))
d, 1 ≤ s ≤ r + 1:

‖π1
h(v1)− v1‖X1 ≤ Chs−1

1 |v1|s,Ω1 , (4.11)

‖π1
h(v1)‖X1 ≤ C‖v1‖1,Ω1 . (4.12)

Proof. On triangles for r = 1, 2, 3 and tetrahedra for r = 1 the existence of such an interpolant is shown
in [17, 23, 16, 44, 45].

It remains to consider the case of polygonal and polyhedral meshes with r = 1. Let v1 ∈ (H1(Ω1))
d

and let V1 be the corresponding vector of degrees of freedom. We introduce the interpolant πh
1 such that

πh
1 (v1) = R1(V1). Then, for every qh ∈ Qh

1 , lifting property (L1) gives

b1(π
h
1 (v1)− v1, q

h) =
∑
E∈Ωh

1

qE

∫
∂E

(R1,E(V1,E)− v1) · nE ds = 0. (4.13)

Due to lifting property (L1), we immediately get condition (4.8) with w ∈ (P0(e))
d.

To show (4.9), let vc
1 be the L2-orthogonal projection of v1 onto the space of piecewise constant func-

tions on Ωh
1 . Then, we have

‖vc
1‖0,E ≤ ‖v1 − vc

1‖0,E + ‖v1‖0,E ≤ ChE |v1|1,E + ‖v1‖0,E ≤ C‖v1‖1,E .

For every element E, the triangle inequality and lifting properties (L2) and (4.6) give

‖πh
1 (v1)‖20,E ≤ 2 ‖πh

1 (v1 − vc
1)‖20,E + 2 ‖vc

1‖0,E

≤ C

(
|E|

∑
e∈∂E

(
1

|e|

∫
e
|v1 − vc

1|ds
)2

+ ‖v1‖21,E

)
.

Applying the trace inequality (4.2) to each component of v1 and using the standard approximation property
of the L2-projection, we bound each of the edge integrals:(∫

e
|v1 − vc

1|ds
)2

≤ |e|
∫
e
|v1 − vc

1|2 ds

≤ C|e|
(
h−1
E ‖v1 − vc

1‖20,E + hE |v|21,E
)
≤ C|e|hE |v|21,E .

(4.14)

Combining the last two inequalities and using the shape regularity of E (3.1), we get

‖πh
1 (v1)‖20,E ≤ C

(
hE |E|
|e|

|v|21,E + ‖v‖21,E
)

≤ C‖v‖21,E .

To bound the H1-seminorm of πh
1 (v1), we use (4.6) to obtain

|πh
1 (v1)− vc

1|21,E ≤ Chd−2
E ‖V1,E −Vc

1,E‖2 ≤ Chd−2
E

∑
e∈∂E

(
1

|e|

∫
e
|v1 − vc

1|ds
)2

,
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where Vc
1,E is the vector of degrees of freedom for the constant function vc

1. Combining the above inequality
with (4.14), and using the shape regularity of E (3.1), we conclude that |πh

1 (v1)|1,E ≤ C|v1|1,E , which
completes the proof of (4.9).

Since (L2) implies that πh
1 is exact for all linear functions on E, an application of the Bramble-Hilbert

lemma [11] gives (4.10).
It remains to show (4.11) and (4.12). Note that (L1) implies that for all faces e of E∫

e
(πh

1v1 − v1) ds = 0, ∀v1 ∈ (H1(E))d.

Therefore we can employ Lemma 3.9 of [44] to conclude that

‖π1
h(v1)− v1‖X1 ≤ C|‖∇(π1

h(v1)− v1)|‖0,Ω1 ,

which, combined with (4.10), implies (4.11). The continuity bound (4.12) follows from the triangle inequal-
ity, (4.11), and the bound ‖v1‖X1 ≤ C‖v1‖1,Ω1 . This proves the assertion of the lemma. 2

5 Stability and well-posedness of the discrete problem

In this section we prove a discrete inf-sup condition and show that the discrete problem (3.22)–(3.23) has a
unique solution. Let X = X1 ×X2 and Q = Q1 ×Q2. We introduce the composite norms

‖qh‖2
Qh = ‖qh1‖20,Ω1

+ ‖qh2‖Qh
2
, ∀qh = (qh1 , q

h
2 ) ∈ Qh,

‖vh‖2
Xh = ‖vh

1‖2X1
+ |‖vh

2 |‖2div, ∀vh = (vh
1 ,v

h
2 ) ∈ Xh,

where
|‖vh

2 |‖2div = |‖vh
2 |‖2Xh

2
+ |‖DIV vh

2 |‖2Qh
2
, ∀vh

2 ∈ Xh
2 .

Lemma 5.1 Let v ∈ (H1(Ω))d and vi = v|Ωi , i = 1, 2. Then, there exists an operator πh : X ∩
(H1(Ω))d → V h, πh(v) = (πh

1 (v1), π
h
2 (v2)), such that

b(πh(v)− v, qh) = 0, ∀qh ∈ Qh, (5.1)

and
‖πh

1 (v1)‖X1 ≤ C‖v1‖1,Ω1 , |‖πh
2 (v2)|‖Xh

2
≤ C‖v‖1,Ω. (5.2)

Proof. Let πh
1 be the operator defined in Lemma 4.2. The property (4.7) gives (5.1) for any qh = (qh1 , 0).

Due to (4.12), we get automatically the first inequality in (5.2). To construct πh
2 (v2), we solve the following

boundary value problem:
∆ϕ = 0 in Ω2,

∇ϕ · n2 = 0 on Γ2,

∇ϕ · n2 = (v − πh
1 (v1)) · n1 on ΓI ,

(5.3)

and define πh
2 (v2) = vI

2 + (∇ϕ)I . By elliptic regularity [35],

‖∇ϕ‖Hθ(Ω2) ≤ C‖(v − πh
1 (v1)) · n1‖Hθ−1/2(ΓI)

, 0 ≤ θ ≤ 1/2. (5.4)

For all qh2 ∈ Qh
2 , using definition of πh

2 and the commutative property (3.16), we get

b2(π
h
2 (v)− vI

2, q
h
2 ) = b2((∇ϕ)I , qh2 ) = −[DIV (∇ϕ)I , qh2 ]Qh

2
= −[(∇ · ∇ϕ)I , qh2 ]Qh

2
= 0.
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To prove the second inequality in (5.2), we start with the triangle inequality

|‖πh
2 (v)|‖Xh

2
≤ |‖vI

2|‖Xh
2
+ |‖(∇ϕ)I |‖Xh

2
(5.5)

and bound every term. From the stability estimate (3.18), the trace inequality (4.2), and the shape regularity
estimates (3.1), we obtain

|‖vI
2|‖2Xh

2
= [vI

2, v
I
2]Xh

2
≤ C

∑
E∈Ωh

2

|E|
∑
e⊂∂E

∣∣(vI
2)

e
E

∣∣2
≤ C

∑
E∈Ωh

2

∑
e⊂∂E

|E|
|e|
(
h−1
E ‖v2‖20,E + hE |v2|21,E

)
≤ C

∑
E∈Ωh

2

(
‖v2‖20,E + h2E |v2|21,E

)
≤ C‖v2‖21,Ω2

.

(5.6)

Using the same arguments plus inequality (4.5) with s = 1/2, we get

|‖(∇ϕ)I |‖2
Xh

2
≤ C

∑
E∈Ωh

2

|E|
∑
e⊂∂E

(
1

|e|

∫
e
∇ϕ · ne ds

)2

≤ C
∑
E∈Ωh

2

∑
e⊂∂E

|E|
|e|

(
h−1
E ‖∇ϕ‖20,E + ‖∇ϕ‖21

2
,E

)
≤ C

(
‖∇ϕ‖20,Ω2

+ h2‖∇ϕ‖21
2
,Ω2

)
.

(5.7)

To bound the first and the second term on the right hand side in (5.7) we apply (5.4) with θ = 0 and θ = 1/2,
respectively:

|‖(∇ϕ)I |‖2
Xh

2
≤ C

(
‖(v1 − πh

1 (v1)) · n1‖2− 1
2
,ΓI

+ h2‖(v1 − πh
1 (v1)) · n1‖20,ΓI

)
≤ C ‖(v1 − πh

1 (v1)) · n1‖20,ΓI
.

(5.8)

Using the trace inequality (4.2) for every e ∈ Γh
I and the approximation result (4.10), we have that

‖(v1 − πh
1 (v1)) · n1‖L2(e) ≤ C

(
h
−1/2
E ‖v1 − πh

1 (v1)‖0,E + h
1/2
E |v1 − πh

1 (v1)|1,E
)

≤ Ch
s−1/2
E |v1|s,δ(E), 1 ≤ s ≤ r + 1.

(5.9)

Thus,
|‖(∇ϕ)I |‖Xh

2
≤ Ch

s−1/2
1 ‖v1‖s,Ω1 , 1 ≤ s ≤ r + 1. (5.10)

Combining (5.5) with estimates (5.6) and (5.10), we conclude that |‖πh
2 (v)|‖Xh

2
≤ C‖v‖1,Ω.

It remains to show that πh(v) ∈ V h. Let µh ∈ Λh
I . From definition of the inner product (3.14), definition

of the interpolant (3.9), the boundary conditions in (5.3), and the regularity assumption v ∈ (H1(Ω))d, it
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follows that

〈πh
2v, µ

h〉Λh
I
= 〈vI

2, µ
h〉Λh

I
+ 〈(∇ϕ)I , µh〉Λh

I

=
∑
e∈Γh

I

(µh)e
∫
e
v2 · n2 ds+

∑
e∈Γh

I

(µh)e
∫
e
∇ϕ · n2 ds

=

∫
ΓI

v2 · n2 µ
h ds+

∫
ΓI

v1 · n1 µ
h ds−

∫
ΓI

πh
1 (v1) · n1 µ

h ds

= −
∫
ΓI

πh
1 (v1) · n1 µ

h ds.

Therefore πh(v) ∈ V h. This proves the assertion of the lemma. 2

Lemma 5.2 There exists a positive constant β such that

inf
qh∈Qh

sup
vh∈V h

b1(v
h
1 , q

h
1 ) + b2(v

h
2 , q

h
2 )

‖vh‖Xh ‖qh‖Qh

≥ β. (5.11)

Proof. For a given qh ∈ Qh, let us define w ∈ L2(Ω) by

w = (w1, w2), where w1 = −qh1 and w2|E = −(qh2 )E , ∀E ∈ Ωh
2 .

Note that wI
2 = −qh2 and ‖w2‖0,Ω2 = |‖qh2 |‖Qh

2
. We can construct construct v ∈ (H1(Ω))d [26] for which

divv = w and ‖v‖1,Ω ≤ C‖w‖0,Ω. (5.12)

Let πh(v) = (πh
1 (v1), π

h
2 (v2)) be the interpolant constructed in Lemma 5.1. Using (5.1) and the commu-

tative property (3.16), we get

b1(π
h
1 (v1), q

h
1 ) + b2(π

h
2 (v2), q

h
2 ) = b1(v1, q

h
1 ) + b2(v

I
2, q

h
2 )

= −
∫
Ω1

(divv1) q
h
1 dx− [DIV vI

2, q
h
2 ]Qh

2

= ‖qh1‖20,Ω1
+ |‖qh2 |‖2Qh

2
= ‖qh‖2Qh .

(5.13)

The definition of πh
2 and (3.16) imply that

DIV (πh
2 (v)) = DIV (vI

2 + (∇ϕ)I) = (divv2)
I + (∇ · ∇ϕ)I = −qh2 .

Using estimate (5.2) from Lemma (5.1), we bound πh(v):

‖πh(v)‖2X = ‖πh
1 (v1)‖2X1

+ |‖πh
2 (v2)|‖2Xh

2
+ |‖DIV (πh

2 (v2))|‖2Qh
2

≤ C
(
‖v‖21,Ω + |‖qh2 |‖2Qh

2

)
≤ C

(
‖qh1‖20,Ω + |‖qh2 |‖2Qh

2

)
≤ C‖qh‖2Q.

(5.14)

Combining (5.13) and (5.14) yields

b1(π
h
1 (v1), q

h
1 ) + b2(π

h
2 (v2), q

h
2 ) ≥ C‖πh(v)‖X ‖qh‖Q, (5.15)

which proves the assertion of the lemma. 2

To prove that the method is well-posed we need the coercivity property established in the next lemma.
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Lemma 5.3 Assuming (3.2), there exists a positive constant αc dependent on σ0 but independent of h1 such
that

a1(v
h
1 ,v

h
1 ) ≥ αc‖vh

1‖Xh
1
, ∀vh

1 ∈ Xh
1 . (5.16)

Proof. Let vh
1 ∈ Xh

1 . From the definition of a1(·, ·) we have

a1(v
h
1 ,v

h
1 ) = 2µ

∑
E∈Ωh

1

∫
E

D(vh
1 ) : D(vh

1 ) dx+
∑

e∈Eh
1 ∪Γ1

σe
he

∫
e

[vh
1 ] · [vh

1 ] ds

− 2µ(1− ε)
∑

e∈Eh
1 ∪Γ1

∫
e

{D(vh
1 ) ne} · [vh

1 ] ds+
∑
e∈ΓI

d−1∑
j=1

µ

Gj

∫
e

(vh
1 · τ j)(v

h
1 · τ j) ds.

Since vh
1 is continuous and piecewise linear on a shape regular auxiliary partition of E, the following Korn’s

holds [10]:

|‖∇vh
1 |‖20,Ω1

≤ K0

|‖D(vh
1 )|‖20,Ω1

+
∑

e∈Eh
1 ∪Γ1

1

he
‖[vh

1 ]‖20,e

 , ∀vh
1 ∈ Xh

1 . (5.17)

Thus,

a1(v
h
1 ,v

h
1 ) ≥

2µ

K0
|‖vh

1 |‖21,Ω1
+

∑
e∈Eh

f ∪Γ1

σe − 2µ

he
‖[vh

1 ]‖20,e

− 2µ(1− ε)
∑

e∈Eh
1 ∪Γ1

∫
e

{D(vh
1 ) ne} · [vh

1 ] ds+
∑
e∈ΓI

d−1∑
j=1

µ

Gj
‖vh

1 · τ j‖20,e.

Clearly, the coercivity property holds when ε = 1 and σ0 = 2µ/α for some 0 < α < 1. To address the case
when ε = −1 or 0, we use the trace inequality (4.4) and the Young’s inequality (4.1) to estimate the third
term. Let Ee be the element with face e. Then,∣∣∣ ∫

e

{D(vh
1 ) ne} · [vh

1 ] ds
∣∣∣ ≤ C1‖∇vh

1‖Ee‖[vh
1 ]‖0,Ee ≤ C2

2C3
‖∇vh

1‖20,Ee +
C2C3

2he
‖[vh

1 ]‖20,e.

Then,

a1(v
h
1 ,v

h
1 ) ≥ µ

(
2

K0
− C2(1− ε)

C3

)
|‖vh

1 |‖21,Ω1

+ (σe − µ(2 + C2C3(1− ε)))
∑

e∈Eh
1 ∪Γ1

‖[vh
1 ]‖20,e
he

+
∑
e∈ΓI

d−1∑
j=1

µ

Gj
‖vh

1 · τ j‖20,e.

Setting C3 = 2K0C2 ensures that the first term is positive for both ε = 0 and ε = −1. Then to control the
second term it is sufficient to choose σ0 = 2µ(1 + C2C3)/α = 2µ(1 + 2K0C

2
2 )/α for some 0 < α < 1. 2

Theorem 5.1 The problem (3.22)–(3.23) has a unique solution.

Proof. It is sufficient to show that solution of the homogeneous problem (3.22)–(3.23) is zero. By choosing
vh = uh and qh = ph we get

a1(u
h
1 , u

h
1) + a2(u

h
2 , u

h
2) = 0,

which combined with (5.16) and (3.18) implies that uh = 0. The remainder of (3.22) together with the
inf-sup condition (5.11) imply that ph = 0. 2
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6 Error analysis

Let the pair (u, p) be the solution to (2.1)–(2.3) and let ui = u|Ωi , i = 1, 2. We define functions ũ ∈ V h

and p̃ ∈ Qh as follows:

ũ = (ũ1, ũ2) = (πh
1 (u1), π

h
2 (u2)), p̃ = (p̃1, p̃2),

where πh is the operator introduced in Lemma (5.1), p̃2 = pI2 ∈ Qh
2 is the interpolant of p2 introduced in

(3.10) and p̃1 is the L2-projection of p1:∫
E
(p̃1 − p1) q1 dx = 0, ∀q1 ∈ Pr−1(E), ∀E ∈ Ωh

1 . (6.1)

For any p1 ∈ Hs(Ω1) we have the approximation result:

‖p1 − p̃1‖m,E ≤ Chs−m
E |p1|s,E , m = 0, 1, 1 ≤ s ≤ r. (6.2)

We also need the following approximation result [11]: for any φ ∈ Hs(E), 1 ≤ s ≤ 2, there exists a
linear function φ1

E such that

‖φ− φ1
E‖m,E ≤ Chs−m

E |φ|s,E , m = 0, 1. (6.3)

Applying (4.2) to φ− φ1
E and using (6.3), we obtain the estimate for face e:

‖φ− φ1
E‖20,e ≤ C h2s−1

E |φ|2s,E . (6.4)

Similarly, (4.2) and (4.10) imply that

‖u1 − ũ1‖20,e ≤ C h2s−1
E |u1|2s,δ(E), 1 ≤ s ≤ r + 1. (6.5)

Let K be a piecewise constant tensor equal to KE on element E. Recall that KE is the mean of value
of K on E. We assume that K ∈ (W 1,∞(E))d×d, ∀E ∈ Ωh

2 , and that maxE∈Ωh
2
‖K‖1,∞,E is uniformly

bounded independent of h2, where ||K||1,∞,E = max1≤i,j≤d ||Ki,j ||W 1,∞(E). From Taylor’s theorem it
follows that

max
x∈E

|Kij(x)−KE,ij | ≤ ChE ‖Kij‖W 1,∞(E). (6.6)

6.1 Error equation

Subtracting the variational equations (3.3)–(3.4) from the discrete equation (3.22)–(3.23), we obtain

a1(u
h
1 − u1, v

h
1 ) + b1(v

h
1 , p

h
1 − p1)−

∑
e∈Γh

I

∫
e
p2 v

h
1 · n1 ds

+ a2(u
h
2 ,v

h
2 ) + b2(v

h
2 , p

h
2) = 0, ∀vh ∈ V h,

b1(u
h
1 − u1, q

h
1 ) + b2(u

h
2 , q

h
2 ) = −[f I

2 , q
h
2 ]Qh

2
, ∀qh ∈ Qh.

(6.7)

If we take qh1 = 0 in the second equation, we recover the weak form of the mass balance equation for the
Darcy region (3.20). Using this, plus adding and subtracting ũ1, p̃1, and uI

2 in the appropriate terms of (6.7),
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we obtain

a1(u
h
1 − ũ1, v

h
1 ) + b1(v

h
1 , p

h
1 − p̃1) + a2(u

h
2 − uI

2,v
h
2 ) + b2(v

h
2 , p

h
2)

= a1(u1 − ũ1, v
h
1 ) + b1(v

h
1 , p1 − p̃1)

+
∑
e∈Γh

I

∫
e
p2v

h
1 · n1 ds− a2(u

I
2,v

h
2 ), ∀vh ∈ V h,

b1(u
h
1 − ũ1, q

h
1 ) = b1(u1 − ũ1, q

h
1 ), ∀qh ∈ Qh.

(6.8)

6.2 Velocity estimate

Theorem 6.1 Let (u, p) be the solution to (2.1)–(2.5) and (uh, ph) be the solution to (3.22)–(3.23). Fur-
thermore, let u1 ∈ (Hr+1(Ω1))

d, p1 ∈ Hr(Ω1), u2 ∈ (H1(Ω2))
d, and p2 ∈ H2(Ω2). Then, the following

error bound holds
|‖uh

1 − u1|‖X1 + |‖uh
2 − uI

2|‖Xh
2
≤ C (ε1 + ε2) , (6.9)

where
ε1 = hr1 (|u1|r+1,Ω1 + |p1|r,Ω1)

ε2 = h2 (|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2) + h
1/2
2

(
h2h

−1/2
1 + h

1/2
1

)
‖p2‖1,Ω2 .

Proof. We choose the test functions in (6.8) to be vh = uh − ũ and qh = ph − p̃. The definition of
πh
1 (u1) implies that the right-hand side of the second equation in (6.8) is zero:

b1(u
h
1 − ũ1, p

h
1 − p̃1) = 0.

Using the commutative property (3.16) and (5.3) we conclude that

DIV (uh
2 − ũ2) = DIV (uh

2 − uI
2 − (∇ϕ)I)

= DIV uh
2 − (divu2)

I − (∇ · ∇ϕ)I = f I
2 − f I

2 − 0 = 0.

Plugging the last two results in the first equation of (6.8), we eliminate the terms in the left-hand side that
contain the bilinear forms b1 and b2. Using the definition of ũ2, we break the third term in the left-hand side
into three pieces:

a1(u
h
1 − ũ1,u

h
1 − ũ1) + a2(u

h
2 − uI

2, u
h
2 − uI

2) =

a1(u1 − ũ1, u
h
1 − ũ1) + b1(u

h
1 − ũ1, p1 − p̃1)

+
∑
e∈Γh

I

∫
e
p2(u

h
1 − ũ1) · n1 ds− a2(u

I
2,u

h
2 − uI

2) + a2(u
I
2, (∇ϕ)I)

+ a2(u
h
2 − uI

2, (∇ϕ)I) ≡ T1 + T2 + T3 + T4 + T5 + T6.

(6.10)
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To bound T1, we follow the analysis of a similar term in [45]. We expand it as follows:

a1(u1 − ũ1, u
h
1 − ũ1) =2µ

∑
E∈Ωh

1

∫
E
D(u1 − ũ1) : D(uh

1 − ũ1) dx

− 2µ
∑

e∈Eh
1 ∪Γh

1

∫
e
{D(u1 − ũ1)}ne · [uh

1 − ũ1] ds

+ 2µε
∑

e∈Eh
1 ∪Γh

1

∫
e
{D(uh

1 − ũ1)}ne · [u1 − ũ1] ds

+
∑

e∈Eh
1 ∪Γh

1

σe
he

∫
e
[u1 − ũ1] · [uh

1 − ũ1] ds

+
∑
e∈Γh

I

d−1∑
j=1

µ

Gj

∫
e

(u1 − ũ1) · τ j (u
h
1 − ũ1) · τ j ds

≡ T11 + T12 + T13 + T14 + T15.

(6.11)

To estimate T11, we apply the Cauchy-Schwarz inequality, the Young inequality (4.1), and the approximation
property (4.11):

|T11| ≤ 2µ
∑
E∈Ω1

h

‖∇(u1 − ũ1)‖0,E ‖∇(uh
1 − ũ1)‖0,E

≤ C |‖∇(u1 − ũ1)|‖20,Ω1
+

1

8
|‖∇(uh

1 − ũ1)|‖20,Ω1

≤ C h2r1 |u1|2r+1,Ω1
+

1

8
|‖∇(uh

1 − ũ1)|‖20,Ω1
.

(6.12)

To bound T12, we introduce the Lagrange interpolant Lh(u1) of degree r satisfying

|u1 − Lh(u1)|m,E ≤ C hs−m
E |u1|s,E , 2 ≤ s ≤ r + 1, m = 0, 1, 2. (6.13)

Let δ(e) be the union of elements having the face e. We split split T12 in two pieces T a
12 and T b

12 by adding
and subtracting Lh(u1) inside the average factor {·}. Using the Cauchy-Schwarz inequality, the Young
inequality (4.1), the trace inequality (4.4), and (6.13), we obtain

|T a
12| =

∣∣∣ ∑
e∈Eh

1 ∪Γh
1

∫
e
{D(Lh(u1)− ũ1)}ne · [uh

1 − ũ1] ds
∣∣∣

≤
∑

e∈Eh
1 ∪Γh

1

h
1/2
e

σ
1/2
e

‖{D(Lh(u1)− ũ1)}ne‖0,e
σ
1/2
e

h
1/2
e

‖[uh
1 − ũ1]‖0,e

≤ C
∑

e∈Eh
1 ∪Γh

1

|Lh(u1)− ũ1|21,δ(e) +
1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e

≤ Ch2r1 |u1|2r+1,Ω1
+

1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e .

(6.14)
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The other term is estimated similarly using the trace inequality (4.3):

|T b
12| =

∣∣∣ ∑
e∈Eh

1 ∪Γh
1

∫
e
{D(u1 − Lh(u1))}ne · [uh

1 − ũ1] ds
∣∣∣

≤ C
∑

e∈Eh
1 ∪Γh

1

he
σe

(
h−1
e |u1 − Lh(u1)|21,δ(e) + he |u1 − Lh(u1)|22,δ(e)

)

+
1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e

≤ C h2r1 |u1|2r+1,Ω1
+

1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e.

(6.15)

We conclude that
|T12| ≤ C h2r1 |u1|2r+1,Ω1

+
1

4

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e. (6.16)

For simplicial meshes, the third term in (6.11) is zero, T13 = 0, due to the continuity of u1 and the property
(4.8). For polygonal and polyhedral meshes, we use the Cauchy-Schwarz inequality, the Young inequality
(4.1), the trace inequality (4.4), and approximation result (6.5) to obtain

|T13| ≤ 2µ
∑

e∈Eh
1 ∪Γh

1

‖D(uh
1 − ũ1) · ne‖0,e‖[u1 − ũ1]‖0,e

≤ 2µ
∑

e∈Eh
1 ∪Γh

1

(he
C

‖D(uh
1 − ũ1) · ne‖20,e +

C

he
‖[u1 − ũ1]‖20,e

)
≤ 1

8
|‖∇(uh

1 − ũ1)|‖20,Ω1
+ Ch2E |u1|22,Ω1

.

The fourth term is estimated applying the Cauchy-Schwarz inequality, the approximation property (4.10),
and the trace inequality (4.2):

|T14| ≤ C
∑

e∈Eh
1 ∪Γh

1

σe
he

‖u1 − ũ1‖20,e +
1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e

≤ C h2r1 |u1|2r+1,Ω1
+

1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

‖[uh
1 − ũ1]‖20,e.

(6.17)

Using the same arguments, we bound the fifth term:

|T15| ≤
∑
e∈Γh

I

d−1∑
j=1

µ

Gj
‖u1 − ũ1‖0,e ‖(uh

1 − ũ1) · τ‖0,e

≤ C h2r1 |u1|2r+1,Ω1
+
∑
e∈Γh

I

d−1∑
j=1

µ

2Gj
‖(uh

1 − ũ1) · τ‖20,e.

(6.18)
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To handle the term T2, we use the property (6.1) of the L2-projection p̃1:

b1(u
h
1 − ũ1, p1 − p̃1) = −

∑
E∈Ωh

1

∫
E
(p1 − p̃1) div (u

h
1 − ũ1) dx

+
∑

e∈Eh
1 ∪Γh

1

∫
{p1 − p̃1}[uh

1 − ũ1] · ne ds

=
∑

e∈Eh
1 ∪Γh

1

∫
{p1 − p̃1}[uh

1 − ũ1] · ne ds.

(6.19)

Thus, using the trace inequality (4.2) and the property (6.2) of the L2 projection p̃1, we get

|T2| ≤ C h2r1 |p1|2r,Ω1
+

1

8

∑
e∈Eh

1 ∪Γh
1

σe
he

∫
e
[uh

1 − ũ1]
2 ds. (6.20)

For the remaining terms in the error equation (6.10) we use arguments developed for the analysis of
mimetic discretizations of elliptic equations [12, 37]. We use the piecewise constant tensor K defined at the
beginning of this section.

Let p12 be a discontinuous piecewise linear function defined on Ωh
2 such that (6.3) holds on every element

E ∈ Ωh
2 . Then, adding and subtracting K∇p12, we obtain

T4 = a2((u2 +K∇p12)
I , uI

2 − uh
2)− a2((K∇p12)

I , uI
2 − uh

2) ≡ T41 + T42. (6.21)

Applying the Cauchy-Schwarz inequality, the stability assumption (3.18), and the trace inequality (4.2), we
get

|T41| ≤ |‖(u2 +K∇p12)
I |‖Xh

2
|‖uh

2 − uI
2|‖Xh

2

≤ C
( ∑

E∈Ωh
2

|E|
∑
e⊂∂E

∣∣∣ 1|e|
∫
e
(u2 +K∇p12) · ne ds

∣∣∣2)1/2 |‖uh
2 − uI

2|‖Xh
2

≤ C
( ∑

E∈Ωh
2

[
‖u2 +K∇p12‖20,E + h2E |u2|21,E

] )1/2
|‖uh

2 − uI
2|‖Xh

2
.

(6.22)

Using the triangle inequality and then estimates (6.6) and (6.3), we obtain

‖u2 +K∇p12‖20,E ≤ ‖K∇(p2 − p12)‖0,E + ‖(K−K)∇p12‖0,E

≤ C
(
hE |p2|2,E + hE ‖∇p12‖0,E

)
≤ ChE

(
|p2|2,E + ‖∇p2‖0,E + ‖∇(p2 − p12)‖0,E

)
≤ ChE (|p2|2,E + |p2|1,E) .

Combining the two last inequalities and applying the Young inequality (4.1), we get

|T41| ≤ C h22

(
|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2

)2
+

1

8
|‖uh

2 − uI
2|‖2Xh

2
. (6.23)
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The consistency condition (3.17) and continuity of p2 allow us to rewrite T42 as follows:

T42 =
∑
E∈Ωh

2

∑
e⊂∂E

χe
E (uh

2 − uI
2)

e
E

∫
e
p12,E ds

=
∑
E∈Ωh

2

∑
e⊂∂E

χe
E (uh

2 − uI
2)

e
E

∫
e
(p12,E − p2) ds+

∑
e∈Γh

I

χe
E (uh

2 − uI
2)

e
E

∫
e
p2 ds

≡ T a
42 + T b

42.

(6.24)

We estimate T a
42 using (6.4) and the stability property (3.18):

|T a
42| ≤

∑
E∈Ωh

2

∑
e⊂∂E

|e|1/2 |(uh
2 − uI

2)
e
E | ‖p12,E − p2‖0,e

≤ C
∑

E⊂Ωh
2

hE

(
|E|

∑
e⊂∂E

|(uh
2 − uI

2)
e
E |2
)1/2

|p2|2,E

≤ C h2 |p|2,Ω2 |‖uh
2 − uI

2|‖Xh
2
≤ C h22 |p|22,Ω2

+
1

8
|‖uh

2 − uI
2|‖2Xh

2
.

(6.25)

The term T b
42 will be combined with other terms later. Now we proceed with the fifth term in the error

equation. Adding and subtracting K∇p12, we get

T5 = a2((u2 +K∇p12)
I , (∇ϕ)I)− a2((K∇p12)

I , (∇ϕ)I) ≡ T51 + T52. (6.26)

The term T51 is similar to T41; therefore, we use the same approach to bound it:

|T51| ≤ C h2

(
|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2

)
|‖(∇ϕ)I |‖Xh

2
.

Using estimate (5.10), we conclude that

|T51| ≤ C h2h1

(
|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2

)
|u1|3/2,Ω1

. (6.27)

For the term T52, we apply estimate (6.4) and the consistency condition (3.17):

T52 = −
∑
E∈Ωh

2

∑
e⊂∂E

χe
E ((∇ϕ)I)eE

∫
e
p12,E ds

=
∑
E∈Ωh

2

∑
e⊂∂E

χe
E ((∇ϕ)I)eE

∫
e
(p2 − p12,E) ds−

∑
e∈Γh

I

χe
E ((∇ϕ)I)eE

∫
e
p2 ds

≡ T a
52 + T b

52.

(6.28)

To estimate T a
52, we repeat arguments used for terms T a

42 and T51. We obtain

|T a
52| ≤ C h2 |p|2,Ω2 |‖(∇ϕ)I |‖Xh

2
≤ C h2 h1 |p|2,Ω2 |u1|3/2,Ω1

. (6.29)

The term T b
52 will be combined with other terms later.

The sixth term in the error equation is bounded using the Cauchy-Schwarz inequality and estimate
(5.10):

|T6| ≤ |‖uh
2 − uI

2|‖Xh
2
|‖(∇ϕ)I |‖Xh

2
≤ 1

8
|‖uh

2 − uI
2|‖2Xh

2
+ C h21 |u1|23/2,Ω1

. (6.30)
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Finally, the third term in the error equation (6.10) is combined with T b
42 and T b

52. Let p∗2 ∈ Λh
I such that

(p∗2)
e is the L2-projection of p2 on P0(e) and let p̄∗2 be the piecewise constant function on Γh

I satisfying

p̄∗2|e = (p∗2)
e, ∀e ∈ Γh

I .

Because uh − ũh ∈ V h, ∫
ΓI

p̄∗2(u
h
1 − ũ1) · n1 ds+ 〈p∗2,uh

2 − ũ2〉Λh
I
= 0.

Using the above equation, the definition of operator πh
2 and the property of the L2 projection, we obtain

T3 + T b
42 + T b

52 =
∑
e∈Γh

I

∫
e

p2(u
h
1 − ũ1) · n1 ds+ χe

E (uh
2 − uI

2 − (∇ϕ)I)eE

∫
e

p2 ds


=
∑
e∈Γh

I

∫
e

p2(u
h
1 − ũ1) · n1 ds+ (uh

2 − ũ2)
e
E

∫
e

p2 ds


=
∑
e∈Γh

I

∫
e

(p2 − p̄∗2)(u
h
1 − ũ1) · n1 ds+ (uh

2 − ũ2)
e
E

∫
e

(p2 − (p∗2)
e) ds


=
∑
e∈Γh

I

∫
e

(p2 − p̄∗2)(u
h
1 − ũ1) · n1 ds.

For each face e ∈ Γh
I we define ce to be the L2-projection of uh − ũ on P0(e). Let us assume that

e = Ee
2

⋂⋃ne
i=1E

e
1,i , where Ee

2 ∈ Ωh
2 , and Ee

1,i ∈ Ωh
1 for i = 1, ..., ne. Using the orthogonality and

approximation properties of the L2-projection, and the trace inequality (4.2), we obtain

|T3 + T b
42 + T b

52| =
∑
e∈Γh

I

∫
e

(p2 − p̄∗2|e)(uh
1 − ũ1 − ce) · n1 ds

≤ C
∑
e∈Γh

I

h
1/2
2 ‖p2‖1,Ee

2

ne∑
i=1

(
h
−1/2
1 ‖uh

1 − ũ1 − ce‖0,Ee
1,i

+ h
1/2
1 |uh

1 − ũ1|1,Ee
1,i

)
≤ C

∑
e∈Γh

I

h
1/2
2 ‖p2‖1,Ee

2

ne∑
i=1

(h∗ h
−1/2
1 + h

1/2
1 ) |uh

1 − ũ1|1,Ee
1,i

≤ Ch2

(
h∗h

−1/2
1 + h

1/2
1

)2
‖p2‖21,Ω2

+
1

8
|‖∇(uh

1 − ũ1)|‖20,Ω1
,

(6.31)

where
h∗ = max(h1, h2).

If h∗ = h1, then the terms h∗h
−1/2
1 and h

1/2
1 can be combined. Otherwise, we have the extra term

h2h
−1/2
1 . Collecting the estimates of all terms in the right hand side of error equation (6.10), using co-

ercivity Lemma 5.3, then the triangle inequality ‖uh
1 − u1‖X1 ≤ ‖uh

1 − ũ1‖X1 + ‖ũ1 − u1‖X1 , and finally
the interpolant property (4.11), we prove the assertion of the theorem. 2
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6.3 Pressure Estimates

Theorem 6.2 Under the assumptions of Theorem 6.1, the following error bound holds:

‖ph − p‖Qh ≤ C(ε1 + ε2) (6.32)

where
ε1 = hr1 (|p1|r,Ω1 + |u1|r+1,Ω1) ,

ε2 = h2 (|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2) + h
1/2
2

(
h2h

−1/2
1 + h

1/2
1

)
‖p2‖1,Ω2 .

Proof. Taking qh = (ph1 − p̃1, p
h
2 − p̃2) in the inf-sup condition (5.11), we get

‖ph − p̃‖Q ≤ 1

β
sup

vh∈V h

b1(v
h
1 , p

h
1 − p̃1) + b2(v

h
2 , p

h
2 − p̃2)

‖vh‖Xh

. (6.33)

From (6.8), we get

b1(v
h
1 , p

h
1 − p̃1) + b2(v

h
2 , p

h
2 − p̃2) = a1(u1 − uh

1 , v
h
1 ) + b1(v

h
1 , p1 − p̃1)

+
∑
e∈Γh

I

∫
e
p2 v

h
1 · n1 ds− a2(u

h
2 , v

h
2 )− b2(v

h
2 , p̃2)

≡ J1 + J2 + J3 + J4 + J5.

By adding and subtracting terms, and using the consistency condition (3.17), we obtain

J4 + J5 = −a2((u2 +K∇p12)
I , vh

2 ) + a2((K∇p12)
I , vh

2 )

+ [DIV vh
2 , (p2 − p12)

I ]Qh
2
+ [DIV vh

2 , (p
1
2)

I ]Qh
2
− a2(u

h
2 − uI

2, v
h
2 )

= −a2((u2 +K∇p12)
I , vh

2 ) +
∑
e⊂∂E

χe
E(v

h
2 )

e
E

∫
e
p12 ds

+ [DIV vh
2 , (p2 − p12)

I ]Qh
2
− a2(u

h
2 − uI

2, v
h
2 )

= J6 + J7 + J8 + J9.

(6.34)

Thus, we need to estimate seven terms. We expand J1 as follows:

J1 = a1(u1 − uh
1 , v

h
1 ) =2µ

∑
E∈Ωh

1

∫
E
D(u1 − uh

1) : D(vh
1 ) dx

− 2µ
∑

e∈Eh
1 ∪Γh

1

∫
e
{D(u1 − uh

1)}ne · [vh
1 ] ds

+ 2µε
∑

e∈Eh
1 ∪Γh

1

∫
e
{D(vh

1 )}ne · [u1 − uh
1 ] ds

+
∑

e∈Eh
1 ∪Γh

1

σe
he

∫
e
[u1 − uh

1 ] · [vh
1 ] ds

+
∑
e∈Γh

I

d−1∑
j=1

µ

Gj

∫
e
(u1 − uh

1) · τ vh
1 · τ ds

= J11 + J12 + J13 + J14 + J15.

(6.35)
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From Cauchy-Schwarz inequality, we immediately get bounds for three terms:

|J11 + J14 + J15| ≤ C ‖u1 − uh
1‖X1 ‖vh

1‖X1 . (6.36)

We bound J12 by taking similar approach as the one used for T12,

|J12| ≤ C
∑

e∈Eh
1 ∪Γh

1

(
he
σe

)1/2

‖∇(u1 − uh
1)‖0,e

(
σe
he

)1/2

‖[vh
1 ]‖0,e

≤ C
( ∑

e∈Eh
1 ∪Γh

1

he
σe

(
‖∇(u1 − ũ1)‖20,e + ‖∇(ũ1 − uh

1)‖20,e
))1/2

‖vh
1‖X1

≤ C
(
h2r1 |u1|2r+1,Ω1

+ ‖ũ1 − uh
1‖2X1

)1/2
‖vh

1‖X1 .

(6.37)

To bound the term J13, we use the trace inequality (4.4), and shape regularity of element Ee having face e:

|J13| ≤ C
∑

e∈Eh
1 ∪Γh

1

‖{D(vh
1 )}ne‖0,e ‖[u1 − uh

1 ]‖0,e

≤ C
∑

e∈Eh
1 ∪Γh

1

h
−1/2
Ee

(
he
σe

)1/2

‖∇vh
1‖0,Ee

(
σe
he

)1/2

‖[u1 − uh
1 ]‖0,e

≤ C‖vh
1‖Xh

1
‖u1 − uh

1‖X1 .

(6.38)

We proceed with J2 by applying the trace inequality (4.2) and the property (6.2) of the L2 projection:

|J2| = |b1(vh
1 , p1 − p̃1)| =

∣∣∣ ∑
e∈Eh

1 ∪Γh
1

∫
e
{p1 − p̃1} [vh

1 ] · ne ds
∣∣∣

≤
∑

e∈Eh
1 ∪Γh

1

(
he
σe

)1/2

‖{p1 − p̃1}‖0,e
(
σe
he

)1/2

‖vh
1‖0,e

≤ Chr1|p|r,Ω1 ‖vh
1‖X1 .

(6.39)

By combining J3 with J7 and repeating the steps we followed to bound T3 and T42, we get

|J3 + J7| ≤ C
(
h2 |p2|2,Ω2 |‖vh

2 |‖Xh
2
+ h

1/2
2

(
h2h

−1/2
1 + h

1/2
1

)
‖p2‖1,Ω2 |‖∇vh

1 |‖0,Ω1

)
.

Since J6 is similar to T51, we can write:

|J6| ≤ C h2 (|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2) |‖vh
2 |‖Xh

2
. (6.40)

The term J8 is estimated by using Cauchy-Schwartz inequality and the approximation properties (6.3):

|J8| ≤ C h22 |‖vh
2 |‖div |p2|2,Ω2 . (6.41)

Next, for the term J9, using Cauchy-Schwarz inequality and the velocity estimates, we find that

|J9| ≤ C
(
h1(|u1|2,Ω1 + |p1|1,Ω1) + h2(|p2|1,Ω2 + |p2|2,Ω2 + |u2|1,Ω2)

+ h
1/2
2

(
h2h

−1/2
1 + h

1/2
1

)
‖p2‖1,Ω1

)
|‖vh

2 |‖Xh
2
.

(6.42)

Combining all the bounds and dividing by ‖vh‖X yields the assertion of the theorem. 2
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7 Numerical experiments

7.1 Implementation details

The global velocity space V h, which embeds the interface continuity constraint, is not convenient for a
computer program. Instead, the continuity constraints on the velocity are imposed weakly and additional
variables, the Lagrange multipliers are added to the system.

Efficient solution of Darcy’s law uses the hybridization procedure that is the standard in numerical
method for mixed discretizations. We relax flux continuity condition on all mesh faces in the Darcy re-
gion. Two flux degrees of freedom U e

2,E1
and U e

2,E2
are prescribed to every interior face e and the explicit

continuity condition
U e
2,E1

+ U e
2,E2

= 0

is added to the system. The new system is algebraically equivalent to the original system; however, it has
a special structure that allows to eliminate efficiently the primary pressure and velocity unknowns in the
Darcy region.

Each continuity constraint results in one Lagrange multiplier. We collect the Lagrange multipliers in a
single vector L = (λe1 , ..., λeJ ), where J is the number of the mesh edges in Ωh

2 .
Let us define the block-diagonal matrix M2 = diag{M2,E1 , . . . ,M2,EN

} and the velocity continuity
matrix C2 = diag{|e1|, ..., |eJ |}. Let A1 and B1 be the matrices associated with the bilinear forms a1(·, ·)
and b1(·, ·), respectively. The matrix associated with the interface term is denoted by C1. The matrix
equations are 

A1 B1 0 0 C1

BT
1 0 0 0 0

0 0 M2 B2 C2

0 0 BT
2 0 0

CT
1 0 CT

2 0 0




U1

P1

U2

P2

L

 =


F1

0

0

−F2

0

 , (7.1)

where F2 is a vector of size N consisting of the cell averages of the source term.
The first pair of equations is the matrix form of discrete Stokes problem. The second pair of equations

represents elemental equations for the Darcy region. The last block equation represents continuity of Darcy
velocities and no-slip boundary conditions.

The matrix of system (7.1) is symmetric. The hybridization procedure results in the block-diagonal
matrix B2 with as many blocks as the number of elements in Ωh

2 . Thus, the unknowns U2 and P2 may be
easily eliminated. Changing the order of remaining unknowns, we get the following saddle point problem: A1 C1 B1

CT
1 −A2 0

BT
1 0 0


 U1

L

P1

 =

 F1

G2

0

 , (7.2)

where
A2 = CT

2 (M−1
2 −M−1

2 B2 (B
T
2 M

−1
2 B2)

−1BT
2 M

−1
2 )C2

is a symmetric positive definite (SPD) matrix. This matrix is a special approximation of the elliptic operator
in the Darcy region. Note, that only M−1

2 is used in the above formula which suggests its direct calculation
as described in [14].

25



Block-diagonal preconditioners for saddle point problems are discussed in [32, 47]. A proper candidate
for a preconditioner in our case could be

H =

 A1 0 0

0 A2 0

0 0 S

 , (7.3)

where S is a suitable diagonal matrix. The analysis needed to guarantee that H results in mesh independent
convergence of Krylov space based iterative methods is beyond the scope of this article. The inversion of
A1 and A2 can be performed by using one V-cycle of the algebraic multigrid [50].

7.2 Three test problems

We present three computer experiments, the first two of which confirm the convergence of the method.
The third test demonstrates the ability of the method to be applied to surface-subsurface flow problems
with realistic geometries. In the first two tests the computational domain is Ω = Ω1 ∩ Ω2, where Ω1 =
[0, 1]× [12 , 1] and Ω2 = [0, 1]× [0, 12 ]. In the Stokes equation the stress tensor is taken to be

T(u1, p1) = −p1I+ µ∇u1.

It is easy to show that the theoretical analysis from the previous sections still applies with this choice of
T(u1, p1). Each convergence test uses a manufactured solution that satisfies the coupled system (2.1)-(2.3)
with Dirichlet boundary conditions on ∂Ω. We consider the scalar permeability field K = KI. To test the
convergence of the method, we solve the problem on a sequence of grids with decreasing maximum element
size, using both structured and unstructured grids. We use triangles with piecewise linear velocities in the
Stokes region and polygons (rectangles if structured) in the Darcy region. The grids are chosen to match on
the interface. The unstructured grids are not nested - they are generated independently on each level. The
structured grids are obtained by first partitioning Ω into rectangles and then dividing each rectangle in Ω1

along its diagonal into two triangles.
In Test 1, the normal velocity is continuous, but the tangential velocity is discontinuous, across the

interface:

u1 =

 (2− x)(1.5− y)(y − ξ)

−y3

3
+

y2

2
(ξ + 1.5)− 1.5ξy − 0.5 + sin(ωx)

 ,

u2 =

[
ω cos(ωx)y
χ(y + 0.5) + sin(ωx)

]
,

p1 = −sin(ωx) + χ

2K
+ µ(0.5− ξ) + cos(πy), p2 = − χ

K

(y + 0.5)2

2
− sin(ωx)y

K
,

where

µ = 0.1, K = 1, α0 = 0.5, G =

√
µK

α0
, ξ =

1−G

2(1 +G)
, χ =

−30ξ − 17

48
, ω = 6.

In Test 2 the velocity field is chosen to be smooth across the interface:

u1 = u2 =

[
sin( x

G + ω)ey/G

− cos( x
G + ω)ey/G

]
,

p1 = (
G

K
− µ

G
) cos(

x

G
+ ω)e1/(2G) + y − 0.5, p2 =

G

K
cos(

x

G
+ ω)ey/G,
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Figure 2: Test 1: computed solution (left) and error (right) on a mesh with h1 = 0.0662, h2 = 0.0530.

Table 1: Numerical errors and convergence rates for Test 1 on unstructured grids.
Stokes region:

elements h1 ‖u1 − uh
1‖1,Ω1 rate ‖p1 − ph1‖0,Ω1 rate

44 0.2170 6.5442e-01 1.4657e-01
164 0.1330 3.5368e-01 1.26 8.7418e-02 1.06
652 0.0662 1.8798e-01 0.91 5.5335e-02 0.66

2468 0.0363 9.8347e-02 1.08 2.9591e-02 1.04
Darcy region:

elements h2 |‖uI
2 − uh

2 |‖Xh
2

rate |‖pI2 − ph2 |‖Qh
2

rate

32 0.2489 1.4530e-01 2.1906e-02
128 0.1111 5.3651e-02 1.24 5.3156e-03 1.76
512 0.0530 2.4535e-02 1.06 1.2140e-03 2.00

2048 0.0259 1.1917e-02 1.01 2.9045e-04 2.00

where ω = 1.05 and µ, K, α0, G are the same as in the Test 1.
The computed solution along with the associated numerical error on the third level of unstructured grids

for the two tests are plotted in Figure 2 and Figure 3, respectively. The convergence rates based on the
unstructured grids are reported in Table 1 and Table 3, respectively. The convergence rates based on the
structured grids are reported in Table 2 and Table 4, respectively. These experimental results verify the
theoretically predicted convergence rate of order one. The slight discrepancy in the convergence rate for the
pressure in the Stokes region when the coupled problem is solved on unstructured grids may be attributed
to different shape regularity constants of the unstructured triangular meshes. Table 1 and Table 3 show
superconvergence of the pressure in Ω2. Table 2 and Table 4 show superconvergence of both the velocity
and the pressure in Ω2 when a rectangular mesh is used in the porous medium. It is well known that the
MFD and the MFE methods for the Darcy equation alone are superconvergent on rectangular grids [9, 46].
Investigation of the similar behavior for the coupled Stokes-Darcy problem is a possible topic of future
work.
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Table 2: Numerical errors and convergence rates for Test 1 on structured grids.
Stokes region:

elements h1 ‖u1 − uh
1‖1,Ω1 rate ‖p1 − ph1‖0,Ω1 rate

36 0.2357 8.4380e-01 2.8244e-01
100 0.1414 5.0922e-01 0.99 1.7391e-01 0.95
576 0.0589 2.1303e-01 1.00 7.3116e-02 0.99

2304 0.0295 1.0664e-01 1.00 3.6566e-02 1.00
Darcy region:

elements h2 |‖uI
2 − uh

2 |‖Xh
2

rate |‖pI2 − ph2 |‖Qh
2

rate

18 0.2357 7.2054e-02 8.8162e-03
50 0.1414 2.6670e-02 1.95 3.2124e-03 1.98

288 0.0589 4.6994e-03 1.98 5.5936e-04 2.00
1152 0.0295 1.1785e-03 2.00 1.3966e-04 2.01
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Figure 3: Test 2: computed solution (left) and the associated error (right) on a mesh with h1 = 0.0662, h2 =
0.0530.

Table 3: Numerical errors and convergence rates for Test 2 on unstructured grids.
Stokes region:

elements h1 ‖u1 − uh
1‖1,Ω1 rate ‖p− ph1‖0,Ω1 rate

44 0.2170 5.4501e-01 1.5488e-01
164 0.1330 2.9432e-01 1.26 6.5413e-02 1.76
652 0.0662 1.4152e-01 1.05 4.1093e-02 0.67

2468 0.0363 7.2480e-02 1.11 2.3073e-02 0.96
Darcy region:

elements h2 |‖uI
2 − uh

2 |‖Xh
2

rate |‖pI2 − ph2 |‖Qh
2

rate

32 0.2489 5.9883e-02 2.1452e-03
128 0.1111 2.0731e-02 1.32 5.2424e-04 1.75
512 0.0530 9.6960e-03 1.03 1.2789e-04 1.91

2048 0.0259 4.8383e-03 0.98 3.4431e-05 1.83
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Table 4: Numerical errors and convergence rates for Test 2 on structured grids.
Stokes region:

elements h1 ‖u1 − uh
1‖1,Ω1 rate ‖p1 − ph1‖0,Ω1 rate

36 0.2357 6.0192e-01 1.6431e-01
100 0.1414 3.6005e-01 1.01 1.1073e-01 0.77
576 0.0589 1.4896e-01 1.01 5.1783e-02 0.87

2304 0.0295 7.4275e-02 1.01 2.7083e-02 0.94
Darcy region:

elements h2 |‖uI
2 − uh

2 |‖Xh
2

rate |‖pI2 − ph2 |‖Qh
2

rate

18 0.2357 3.2312e-02 3.0839e-03
50 0.1414 1.2691e-02 1.83 1.1787e-03 1.88

288 0.0589 2.4612e-03 1.87 2.0925e-04 1.97
1152 0.0295 6.5882e-04 1.91 5.2467e-05 2.00
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Figure 4: Test 3: Computational domain and mesh (h1 = 0.0566, h2 = 0.0556).

In Test 3, we present a more realistic model of coupled surface and subsurface flows. The flow domain
is decomposed into two subdomains as shown on Figure 4. The top half represents a lake or a slow flowing
river (the Stokes region) and the bottom half represents an aquifer (the Darcy region). The surface fluid
flows from left to right, with a parabolic inflow condition on the left boundary, no flow on the top, and zero
stress on the right (outflow) boundary. No flow condition is imposed on the left and right boundaries of the
aquifer. The pressure is specified on the bottom to simulate gravity. The permeability of the porous media is
heterogeneous and is shown in Figure 5 (right). The computed pressure and velocity are shown in Figure 5
(left). As expected, the pressure and the tangential velocity are discontinuous across the interface, while
the normal velocity is continuous. After the surface fluid enters the aquifer, it does not move as fast in the
tangential direction, but percolates toward the bottom.
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Figure 5: Test 3: computed solution (left) and permeability field (right).

Conclusion

We presented and analyzed a locally mass conservative discretization scheme for the coupled Stokes-Darcy
flow problem, using the DG method and the MFD method to approximate the Stokes and Darcy equations,
respectively. Traditional DG schemes employ simplicial meshes. In our approach by constructing lifting
operators mapping from MFD degrees of freedom to functional spaces, we view the DG method as a MFD
method, which enables us to formulate the discretization scheme in the entire domain on polygonal or
polyhedral meshes. The meshes in the two regions do not have to match on the interface ΓI and may have
elements that are non-convex. To impose continuity of the normal fluxes across the interface ΓI we defined
a Lagrange multiplier space on a mesh, which was assumed to be the trace of Ωh

2 on ΓI . It is also possible
to remove the latter assumption and use mortars instead [28]. We derived optimal error estimates, which we
verified by carrying out computer experiments. On unstructured meshes we observed superconvergence of
the Darcy pressure while on structured meshes we obtain superconvergence for both the pressure and the
velocity in the Darcy region. Our last numerical test demonstrated the capability of the method to be applied
to problems with realistic geometries. In order to take full advantage of the method, it is crucial to solve
the algebraic saddle point problem (7.2) efficiently, which is a motivation to develop and study a suitable
preconditioning technique as the one proposed in Section 7.1.
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