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Abstract

This paper introduces and analyzes a weak formulation of the coupling of incompressible Navier-Stokes
equations with the porous media flow equations. Using continuous finite elements in the incompressible
flow region and discontinuous finite elements in the porous medium, a numerical method is proposed.
Existence and uniqueness results under small data condition of the numerical solution are proved. Optimal
a priori error estimates are derived.

1 Introduction

There is an increasing interest in coupling incompressible flow and porous media flow. Applications of such
complex phenomena can be found in geosciences (modeling of the interaction of rivers with groundwater)
and in health sciences (modeling of blood flow and organs). In this work, we consider the coupling of the
nonlinear Navier-Stokes equations with the Darcy equations. Non-homogeneous boundary conditions are
imposed on the boundary of the porous medium. We first prove the well-posedness of a weak formulation.
This generalizes the problem defined in [14] where homogeneous boundary conditions were assumed. We
also propose a numerical scheme that couples the continuous finite element method with the Discontinuous
Galerkin (DG) method. Because of legacy codes, multinumerics approaches are attractive. In addition,
one can take advantage of the benefits of the different methods used in the subdomains. On one hand,
classical finite elements are popular for computational fluid dynamics. On the other hand, the advantages
of DG methods include the flexible use of mesh adaptivity and high order of approximation. The DG
methods we consider here are called primal DG methods and they are variations of interior penalty methods.
These methods encompass the non-symmetric interior penalty Galerkin method [23, 24, 18], the incomplete
interior penalty Galerkin method [8] and the symmetric interior penalty Galerkin method [27, 2]. In [14],
the coupled problem is approximated by totally discontinuous elements. In the linear case of Stokes coupled
with Darcy, there exist in the literature analysis and implementation of several algorithms (a non-exhaustive
list is [10, 9, 20, 25, 21, 22, 11, 16, 5]).

Let Q be a bounded domain in R?, that is subdivided into two disjoint subdomains ; and Q». Let I'io
denote the interface between the subdomains: I';o = 991 N 9Qy. We assume that 'y is a polygonal line.
The flow in €2y is incompressible and characterized by the Navier-Stokes equations:

-V (2,U,D(U1) — plf) + up - Vu1 = fl, in Ql, (1)
V- uy = 01 in Q17 (2)
U = O, on an\Flg = Fl. (3)
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The fluid velocity and pressure in {); are denoted by w; and p; respectively. The coefficient p > 0 is the fluid
viscosity, the function f; is an external force acting on the fluid, I is the identity matrix and the matrix
D(u;) is the stress tensor:

D(wy) = %(vm + V). (1)

The flow in Q9 is of Darcy type. We assume that the boundary I's = 99 \ I'12 is the union of two disjoint
sets I'sp and I'enx on which Dirichlet and Neumann boundary conditions are imposed.

-V -KVpy = [fo, in o, (5)
—KVps = 1wy, in Q, (6)

p2 = ¢gp, onl'ap, (7)
KVp;-ny = gn, onlon. (8)

Similarly, the fluid velocity and pressure in (25 are denoted by us and ps respectively. The function f; is an
external force acting on the fluid, the functions gp and gn are the prescribed value and flux respectively, the
vector mo denotes the unit vector normal to I's and the coefficient K is a symmetric positive definite matrix
uniformly bounded above and below. There exist constants Apin, > 0 and Apax > 0 such that:

ae. € Qo, ApinT - < K- < A\pax® - . (9)

The system of equations (1)-(8) is completed by interface conditions, corresponding to the continuity of the
normal component of velocity, the balance of forces across the interface and the Beaver-Joseph-Saffman law.
More details on the meaning of these conditions can be found in [4, 26, 19, 14]. Let m12 be the unit normal
vector to I'1 directed from 27 to Q5 and let 712 be the unit tangent vector on I'ys.

up -y = up - Mg, (10)

(~20D(w) + ) -+ 3 (- w) = p, (1)

ur -T2 = —2pG(D(ur)naz) - T2 (12)

We point out that in the coupling of the linear equations of Stokes with Darcy, the balance of forces (11)

reduces to:
((—2pD(ur) + prD)mi2) - ni2 = po.

Here in (11), the term %ul -y corresponds to inertial forces and plays an important role in the mathematical
analysis of the coupled problem.

The rest of the paper is as follows. A weak problem is defined and analyzed in Section 2. A multinumerics
approach is proposed in Section 3. Theoretical error estimates are derived in Section 4. Conclusions are
given in the last section.

2 Variational Formulation

Let H*(O) be the usual Sobolev space of order s (see [1]) with norm || - || gs(0y. We first lift the Dirichlet
boundary condition (7). If gp € H'/?(I'ap), there exists a function pp € H' () satisfying:

P = gp, on I'ap, (13)
PD = O, on F12, (14)
|lppllE1(92,) < Collgplla1/2(0yp)s (15)



where () is a constant that only depends on (23. We now define the standard Sobolev spaces:
X; = {171 S (Hl(Ql))Q v =0o0n Fl},
My = L*(),
My = {QQ S Hl(Qg) :q2 =0 on FQD}.
We propose the following variational formulation:

Find u, € Xl,pl S Ml,pg = 2 + PD, with Y2 € MQ, s.t.
Vo € X1,Vq2 € Ma, 2p(D(uy), D(vl))Ql + (w1 - Vg, ’Ul)Ql - (p1, V- 'Ul)Ql

1 1
+(p2 — sur - ug, v - ”12)r12 + 5(“1 “T12, V1 '7'12)F12 — (1 - le;QQ)Fu + (KV¢2, Vga)a,
= (.fla vl%ﬂl + (f?an)QQ - (Kvaaqu)Q2 + (gNaQ2)F2NaV(I1 € Mla (v : Ulan)Ql =0.

(W)

Here, we have used the notation (-,-)o for the L? inner-product on a region O. We recall the usual Cauchy-
Schwarz and Young’s inequalities:

vo,w € L*(0),  |(v,w)o| < [|v]lL20)l|wllL2(0), (16)
) 1
Va,b € R,Y6 >0, ab< §a2 + %bﬂ. (17)

We also recall Poincaré and Korn’s inequalities and trace and Sobolev inequalities: there exist constants P,
C1, Cy, C4 and Py, that only depend on €2y, and Po, C3 that only depend on 5, such that for all v € X,

[vllz2(0,) < PillVollrzn.  [lvlla@) < PallVolzza,) (18)
[Vvll2,) < CillD(v)|220y) » (19)
[vllz2ry) < CollVoll2a,),  vllLar,) < CallVollz2a,) (20)
and for all g € My,
lallz2,) < P2 VallL2(.), (21)
lallz2(ran) < ClIVallL2(0,); (22)

moreover, owing to (9), for all ¢ € H({s):

. 1
m”Kl/zquLQ(Q2) S ||Vq||L2(QQ) S \/m

We first show that the variational formulation and the model problem are equivalent.

1KVl 120 - (23)

Lemma 1. If (u1,p1,p2) € X1 x My x HY(Q2) satisfies (1)-(12), then it is also a solution to problem (W).
The converse is also true.

Proof. Let (u1,p1,p2) € X1 x My x HY(Q3) be a solution to (1)-(12). Multiply (1), (2) and (5) by test
functions v, € X1,q1 € M7 and g2 € Ms respectively and use Green’s theorem and boundary conditions:

2H(D(u1)v D(vl))Ql - (pl, V- vl)Q1 + (U1 -Vuy, vl)Ql

+((—2/LD(U1) +p1I)n127 vl)F12 = (flavl)ﬂu (24)
(V cUL, CI1) =0, (25)
(KVp2,Vaz)a, + (KVps - ni2,q2)r, = (f2,42)0, + (98, @2)rox - (26)



Rewriting v; = (v1 - n12)N12 + (V1 - T12)T12, adding (24) and (26) and using the interface conditions, we
obtain:
1

2u(D(u1), D(v1))a, — (p1,V - v1)a, + (u1 - Vui,v1), + (KVp2, Vg2)a, + (p2 — QUL UL, UL Tllz)F12

1
+E(U1 *T12,01 - T12)Fl2 — (Ul : n12,LI2)F12 = (f1,v)a, + (f2,92)0, + (9N, @2)ron

(v ’ ulaql) =0.

We now define w2 = ps — pp and remark that the trace pa = @2 on I'1a due to (14). We obtain the resulting
equations:

1
2u(D(u1), D(v1))a, — (p1,V - v1)a, + (w1 - Vui,vi)e, + (KV2, Vo), + (92 — SUL UL, L n12)F12

1
+5(U1 “T12,v1 7'12)F12 — (w1 - n12,Q2)F12 = (fr,v1)a, + (f2,92)0, + (9N, @2)ron — (K Vpp, Va2)a,,
(v . Ula(h) = Oa

which correspond to problem (W). Conversely, assume that (w1, p1,p2) is a solution to (W). By choosing
appropriate test functions, we recover the equations (1), (2) and (5) in a distributional sense. First, take
v1 € D(1), 1 = g2 = 0. We recall that for any domain O, the space D(O) is the space of C* functions
with compact support in O (see [1]). We obtain in the sense of distributions:

-V (2,U,D(U1) — plf) + uq - Vu1 = fl' (27)

Second, take ¢; € D(), v1 =0, g2 = 0:
V-u =0. (28)

Third, take g2 € D(Q2), v1 =0, ¢1 = 0:
~V - KV(p2 +pp) = fo. (29)

Next, multiply (27), (29) by functions v; € X1 and g2 € M respectively, use Green’s theorem, add the two
equations and compare with (W):

1 1
(P2 = 5 (w1 u1), 01 mag)ry, — (w1 R, @2)ry, + 5 (W Ta2, 010 Ti2)ri, — (98, 42)ray
= ((—2pD(w1) + prI)niz, v1)r,, + (KVps - ni2,q2)r,, — (KVp2 - 12, q2)ry - (30)

By choosing v1 = 0 and either ga|r,, = 0 or g2|r,, = 0, we recover the Neumann boundary condition (8)
and the interface condition (10). Next, by choosing g2 = 0 and v1 = v1m12 where v; is a smooth function
defined on each curvilinear segment of I'y5 and vanishing in a neighborhood of 9€Q; \ I'12, we recover the
interface condition (11) by noting that ps = @2 on I'12 due to (14). Finally, choosing g2 = 0 and v1 = v1712
where v; is a smooth function defined on each curvilinear segment of I';2 and vanishing in a neighborhood
of 94 \ I'12, we recover the interface condition (12). O

We now prove existence and uniqueness of the weak solution (w1,p1,p2). For this, we restrict the test
functions vy to the subspace of divergence free functions:

Vlz{vleXl, V-v =0}
The variational formulation then becomes:
Find u; € Vi,p2 = 2 + pp, with g2 € Ma, s.t.
Yo, € V1,VYq € Mo, ZM(D(ul), D('vl))Ql + (u1 -Vuy, vl)ﬂl + (cpg — %ul Cup, vy nlz)

(W) 1
+— (-T2, 01 - Ti2) L — (w0 Mg, q2) (KV¢2,Va2)a,
(gNaQQ)

T2

+
= (fl?vl)Ql + (f?qu)QQ - (KVPD7VQQ)92 +

Ton”



Problems (W) and (W) are equivalent in the sense that if (w1, p1, p2) is a solution to (W) then clearly (w1, ps2)

is also a solution to (W). Conversely, if (u1,p2) is a solution to (W), there is a unique p; € M; such that
(u1,p1,p2) is a solution to (W). This result is a consequence of the following inf-sup condition proved in [14].

V v,
inf sup (Vv (121)Ql|

BEML (yy,g5)€ Xy x M (valHiz(Ql) + ||VQ2||L2(92))1/2||CI1||L2(QI)

>06>0.

Therefore, we now focus on the existence and uniqueness of the solution to (W)

2.1 Existence of solution to problem (W)

We use the technique of the Galerkin method. Since the spaces V1 and Ma are separable, let {(wn, tm) }m>1
be a sequence of smooth functions that form a basis of V'; x Ms. Consider the finite dimensional space
Y., = span{(w;, ;) : 1 < i < m} equipped with the inner-product:

((v,9), (w, 1))y =2u(D(v), D(w))a, + (KVq,Vt)o,.
We restrict problem (W) to Y;, and obtain a finite dimensional problem:
Find (wm, om) € Yy, s.t.
V1<i<m, 2u(D(tn), D(wi)) g + (tn - Vm, wi)g + (¢m — 1um U, Wi M2

W) 1 2
+E(um. “T12, W; - 7-12)1“12 = (U - M2, ti)Fu + (KVm, Vti)a,
— (fl, 'wlv)Q1 + (fz,ti)Q2 — (KVpD,Vti)Q2 + (gN’ti)FzN'
We then define a continuous mapping ¥,, : Y;, — Y,
1 1
(\Ijm(v7Q)u(,w7t))Y = QM(D(U)7D(w))Ql+(vVv, W)Ql+(q—§U'U,W'TL12)F12+5(U'7'12,UJ'T12)F12

—(v-mz,t).  + (KVq, Vi), — (fi,w)g, — (f2.1) o, + (KVpD, Vt) o — (9n,1)

Ton”

Clearly a zero of ¥, is a solution to problem (W,,). We will apply a corollary of Brouwer’s fixed point
theorem to conclude that there is at least one zero of ¥,, in a certain ball centered at the origin. For
completeness, the result is recalled below [13].

Lemma 2. Let H be a finite dimensional Hilbert space with inner-product (-,-)g and norm || - ||g. Let F be
a continuous mapping from H into H. Assume there is a constant R such that

Yo € H with |[v|lg =R, (F),v)g > 0.
Then, there exists an element vog € H such that

.F(’Uo) = 07 ||UO||H S R.

Therefore, we evaluate

1 1
(\Ilm(,l% q)? (’07 Q))Y = 2“(‘D(v)a D(v))Ql + (’U' vv7 v)Ql + (q - 51)' v, v le)Fw + E(v Ti12,V" T12)F12

—(v-n2,q) .+ (BVe, Va)a, — (£i.v) g, — (f2,9)q, + (KVPD, Va), — (9v,4)
We remark that for v € V;

Fon”

1
(v-Vvﬂ’)Ql :_§(V‘”a”'”)91 +_(”'"1’”'”)am =



Therefore,

1
(v- Vo, U)Ql +(a— Qv nY nl?)rlz = (v- "12’q)P12 =0,

because v =0 on I'y. We are left with
1
(Y (v,9), (v,9)y = 2u|D®)[|72(0,) + allv: 1ol 72y, + 1 K2Vall72(0,)
_(fIJ U)Ql - (f27Q)Q2 + (KVpD7Vq)QQ - (gNaq)
We now bound the terms in the second line of (31). Using (16), (18), (19) and (17), we obtain

(31)

Fon”

I PC?
(Fi:0)q, < lAillzz@nllvllzzcn) < PrCiI D)l 2@ 1]z < SIID@)2 (0, + 2u1 1£:1Z2 ()
(32)
Similarly, using (16), (21), (23) and (17), we have

1 1
(fo,0)e, < 1||K1/2V(1||2L2(92) + mpgﬂfz”?m(ngy
Using the bounds (15), (16) and (23), we have

1
(KVpD,Vq)Qz < Z||K1/2vq||2L2(QQ) +Cg)\max||gD||fql/2(p2D)~

Finally, using (16), (22), (23) and (17), we obtain

T M—— C3 2
ZHK Vall120,) + mHgNHLz(mN)-

(QN, Q)

Ton

Therefore

(\Ilm(v7 q)v (’U, Q))

1 PiCE P3
> 1 (21D By + 1K a0y ) — (U0 + 3l

2

C
G ||gN||%2<r2N)),

)\mm

50(¥ (v, q), (v,q)), > 0 provided |[(v,q)|ly = ((v,q), (v q)) =Ry with

+CO rnax||gD||H1/2 F2D) +

P2C? P2 o2 1/2
Ro = 2( BLELIA I ) + S Il + CAmasllol sy + 3 By )

Therefore, for any m, there is a solution (@, @) of problem (W,,) satisfying:

||(um7 (Pm)HY S RQ.

We have thus constructed a bounded sequence in the Hilbert space V1 x Ms,. Therefore, there exists a
subsequence, still denoted by {(wm, ©m)}m, that converges weakly to an element (u, ) € V1 x Ms. Using
a standard argument and Sobolev imbeddings, we can pass to the limit in the equation of problem (Wm) as
m tends to infinity. Denoting p = ¢ + pp, we then obtain that (u,p) is a solution to problem (W). Using
the same argument as above, we can show that any solution (u, ) to problem (W) is bounded:

20| D(w) |20,y + 1K 2 Vol 7210, < RE. (33)
This yields the bound:
2| D(w) |20,y + K2 VD720, <RI, (34)
where
RE=RE + 2| K" Vpp||Es(,). (35)



2.2  Uniqueness of solution to problem (V)

Lemma 3. Assume that the data satisfies:
8u? 2P2C? I
CY(P} + 3C3Co)? wo

4P3
1721 + Ki”fzﬂi%m)
2 2 AC3 2 1/2 2
FAC N 991 s 21y + 18] By + 21T 0y
Then problem (W) has a unique weak solution.

Proof. The proof is very similar to the proof of Theorem 2.4 in [14]. We repeat it here for completeness.
Assume that (ul,pl) and (u?,p3) are two solutions of problem (W). Their difference, say (w1, z2), belongs
to the space V' x My and satisfies:

Y(v1,q2) € V1 x Ma, 2u(D(wi), D(v1))q, + (KVz2,Vg2)a, + (w - Vu%,vl)gl
1 1
+(uf - Vwi,v1)q, + a(’wl “T12,01 - T12)ry, + (22 — 5(101 Sup), V1 M)y,
1
—(w1 - Ni12,q2 F12__u1'w17,v1'n12 T — .
( i — 5 i =0
By choosing (v1, ¢2) = (w1, 22) € V1 x Ms and applying Green’s formula and the boundary condition on the
functions of X, this equation becomes

1
2ul|D(w1)|7 20,y + 1K/ *V2a|[72(0,) + gl Ti2lTa )

(36)
1
+ (wi - Vadwi)a, + 5 ((wi - wiuf - n)r, = (ws - )+ ud)ws - mi)r, ) =0,
Applying (18) and (19), the first non-linear term in the second line of (36) is bounded above by
1
w1210 VUil L2, < CfpfﬁHD(wl)H%%m) (VA D(u)l2(0,)) -
Similarly, applying formulas (18)—(20), the second term in the second line of (36) is bounded above by
1
5 ||’l.U1 ||2L4(F12) (HUH|L2(F12) + 2”“%”L2(F12))
1 1
< §CZC2C%W||D('LU1)H%2(QI) (VEID(u1)l| L2 () + 2RI D ()] L2(0,)) -
Hence, using the a priori estimate (34), the second line in (36) is bounded above by
3 3
\/—217 (PZ + 50202) Ril|D(w1)72q,) -
Thus if 3
(2p)** > CF (7342 + 504202) Ri,
then (’UJl,ZQ) = (0,0) O

A straightforward consequence due to Lemma 1 is the existence and uniqueness of a solution to problem
(W).

In the next section, we propose a numerical scheme for solving (1)-(12) that couples the continuous finite
element method with the discontinuous Galerkin method.



3 A Multinumerics Scheme

Let £ be a conforming triangulation of ; and let £ be a general subdivision of {22 consisting of triangular
elements. The mesh £} may contain hanging nodes. As usual, the parameter h denotes the maximum
diameter of the elements. We assume that the resulting mesh £ = £ U £} is regular [6]. In addition, we
assume that the vertices of the polygonal line I'j5 are vertices in the mesh £". However, the meshes £' and
&} do not have to match on the interface I'12. In our numerical scheme, we propose to approximate the
Navier-Stokes velocity and pressure in conforming finite element spaces X ? C X and M} C M, satisfying
the discrete inf-sup condition with (3, independent of h:

. (V- v1,q1)0, |
inf  sup
BEMP o e X [Voil[L20) a1l 2(00)

> B > 0. (37)

Examples of such conforming finite elements are the Crouzeix-Raviart elements [7], the mini elements [3] and
the Taylor-Hood elements [17]. We also propose to approximate the Darcy pressure in totally discontinuous
finite element spaces. In order to define the discontinuous Galerkin method, we introduce further notation.
We denote by I'? the set of interior edges in Q5. To each edge e of &L we associate once and for all a unit
normal vector n.. For e € T'15, we set n. = ni9, i.e. n. is the exterior normal to Q7. If n. points from the
element E' to the element E?, the jump [| and average {} of a function ¢ are given by:

1 1
o] = olgr — plp2, {¢} = §<P|E1 + §‘P|E2-
For an integer k3 > 1, we define
M} ={g € L*(Q); 2lry, =0 and VE €&}, ol € P, (E)},
equipped with the usual DG norm:
1 1/2

Vor € MY, [llgsllle, = ( S IK Vgl By + S mqumiz(e)) . (38)

Ee&h eerh

Lemma 4. Assume that pp € H*11(Qy) is the lift defined in (13)-(15). Then, there exists Pp € ML and
a constant C' independent of h satisfying:

PD = 0, on F12, (39)

llpp — Pollle, < CR™ ||ppllgrra+1(ay)- (40)

In the rest of the text, we denote by C a generic constant independent of h and y, that takes different values
at different places. Next, we define several bilinear forms: ans, bns, cns are the discretizations of the viscous
term, pressure term and nonlinear term respectively in the Navier-Stokes equations; ap is the discretization



of the diffusion term in the Darcy equations; and ~y is the form containing terms related to the interface I'5.

Yo, w € XY, ans(vi, w) = 2u(D(vy), D(w))a,,
Yo, € X0,V € M}, bas(vi,q1) = —(q1, V- v1)a,,

1 1 1
Yz, v, wy € XI, exs(z1, v, w1) = 5(21 Vo, wi)a, — 5(21 -Vwy, v)a, + 5(21 M2, V1 WL)Ty,,
Vaa,ta € MY, ap(ga,ta) = > (KVqa,Via), — > ({KVga - me}[ta]),
Eec&r ecl?
g
+e > ({KVty-ne}ql), + > ﬁ([@]’[tﬂ)e
eEF’zl eEF,zl
1
Vo, wy € XY, VYo, ts € MY, ~(vi,qwi,t2) = (g2, wi - "12)r12 - 5(01 C U1, Wy - nlz)pm
1
+a('U1 " T12, Wi 'T12)F12 — (o1 n12,t2)F12-
In the definition of ap the parameter € yields a symmetric bilinear form if ¢ = —1 and a non-symmetric

bilinear form if € = 0 or ¢ = 1. The parameter o, is a penalty parameter that varies with respect to the edge
in €. We recall that ap is coercive [27, 15]. There exists a constant x > 0 independent of h such that:

Vaz € My, klllaz|ll3, < ap(az, a2). (41)

It has been shown that if e € {—1,0}, property (41) is valid if the penalty parameter is large enough. From
[12], the lower bound for the penalty parameter is:
1 2 3)\?nax
Ve =0E, NOE;, o0.> T’i‘g(kg + 1)(cot 01 + cot Op:2),

min

where 6g: denotes the smallest angle in the triangle E!. We also define the form L:

Vv € XiLv qu € M2hv L(’Ulqu) = (fl) vl)Ql + ('fQ’qz)Qz + (QN7QQ)F2N
=Y (KVpp,Va2)e + > ({KVpp - ne}, [ga])e-
Eegh ecr'h

We can now introduce our numerical scheme: find U; € XiL, P e MJf, P, = &5 + Pp with &5 € ]\42, such
that for all vy € X}, ¢, € My, q1 € My

axs(U1,v1) + bns(vi, Pr) + exs(Uy; Ur, v1) + ap (P2, q2) + (U1, P25 01, ¢2) = L(v1, ¢2), (42)
bns(U,q1) = 0. (43)

We end this section by giving important properties of the discrete spaces and the continuity property of the
bilinear form cys.

Approzimation properties. Assume that (v1,p1, p2) € X1 X My x M; is smooth enough, i.e. v; € HFH1 (),
p1 € H*(Q) and py € H*>11(Qy) for integers ki, k. Then, there exists an approximation (91,51, 52) €
X" % M] x M} such that

IV(v1 — 01) | L200) < ChF w1l grasr(q,)s (44)

Vg1 € My, (V- (v1 —91),q1)0, =0, (45)

lpr — P1llz2(0)) < ChM 211l 751 (0215 (46)

i=0,1, [[V'(p2— P2)llr2(es) < CR*=H 7 Ipall priasr - (47)



It is easy to check that (47) implies
llp2 — P2llla, < Ch*2|[p2| grra+s ay)- (48)
L? bound. There exists a constant C5 > 0 independent of h such that
Var € MY, a2l r2(0,) < Cslllgelllo,- (49)
Trace theorem. There exists a constant Cg > 0 independent of h such that
Vaz € M3, lzllzar.,) < Cslllgalllas - (50)

The proof of (49) is given in Lemma 6.2 of [15] and the proof of (50) is given in Theorem 4.4 of [14]. We
next show that the form cng is continuous.

Lemma 5. There exists a constant C7 such that
Vzi,v1, w1 € X1, ens(z1;vi, wi) < C7||D(21) 2o [[D(v1) [ 220, [ D(w1)[ 22(0,)- (51)

An expression for the constant C7 is

1
Cr = C3(P? + 5cgcj).
Proof. Using (16), we have

1
ens(zi; v, w1) = 5(21 -V, wi)g, — 5(21 -Vwi, v1)q, + 5(21 Mg, V1 - W)y,

IN

1
§||Zl||L4(Ql)(||Vv1||L2(91)||w1||L4(91) + [Vwi|| 200 |1l La(ay))
1
+§||Zl||L2(F12)||v1||L4(F12)||w1||L4(F12)'
Using (18), (20) and (19) we have
1
ens(zizo,w) < (Ph+ §C2Cf)||vzl|\m(m)HV’01HL2(91)||Vw1|\L2(Ql)

1
< CY(Pi+ §Cch)||D(zl)||L2(Ql)HD(vl)Hm(Ql)||D(’w1)||L2(Ql)-

3.1 Consistency

Let (u1,p1,p2) be the solution to (1)-(12) that is smooth enough. Define ¢ = ps — pp. Then, we have for
allv; € XV, qo € Mb, q1 € M

ans(u1,v1) 4 bns(v1,p1) + ens (ur; ur, v1) + ap (@2, g2) + (w1, 92;v1,¢2) = L(v1, ¢2), (52)
sz(Ul, ql) =0. (53)

Proof. Equation (53) is simply obtained by multiplying (2) by ¢; € M7 and integrating over ;. Next, we
multiply (1) by a test function vq € X }f, integrate over €2y and use Green’s theorem. The resulting equation
is exactly (24). Finally, we multiply (5) by a test function g2 € MY, integrate over one element E, apply
Green’s theorem and sum over all elements in £J.

> (KVps, Vo )e— > ({KVpa-ne},[@))e + Y (KVpa - ma2, ¢2)ry, = (f2,¢2), + (98, @2)rs-
Ee&h ecl} e€l'1s

10



Using the splitting ps = w2 + pp, we obtain:

Y (KVe2,Vao)p = Y ((KVer-neh[@)e + ) (KVp2-niz,2)r, (54)
Eec&r eclh e€lo
= (f2r42)0s + (9n,@2)ris — Y (KVpp,Vaa)m + > ({KVpp - e}, [g2))e. (55)
Eegh ecll

We then add (24) and (55), and use the fact that [p2]]. = 0 in L2(e) for all e € T'4.

2:“‘(D(u1)7D(v1))91 - (pla V. v1)91 + (ul : vulavl)ﬂl
+ Y (KVeo,Vao)p — Y ({KVez-ncd @) +¢ Y ({KVar-n.}, [pa))e

Eegl ecl'h ecl'h
+ Z (K'Vp2 - ni2,q2)r,, + ((=2uD(u1) + prl)niz, vi)r,,
ecly2
= (f1.v1)a, + (f2.¢2)2, + (98, @2)r, — > (KVpp, Vaa)z + Y ({KVpp - e}, [g2])e. (56)
Eegh eclh

In this equation, the terms > .., (KVp2 - mi2,q2)r,, + ((=2uD(u1) + p1I)niz, v1)r,, are handled exactly
as in the proof of Lemma 1. We remark that w; € V1 and thus we have

(w1 - Vug,v1)o, = —(u1 - Vo, ur)o, + (81 - N2, v1 - 1)1y,

which yields easily:
(u1 - Vug,v1)o, = ens(ui, ur,vr).

Combining this result with (56), we obtain equation (52). O

3.2 Existence of solution

We now proceed to show that there exists a unique solution to (42)-(43). We define the space of weakly
divergence-free functions:
Vi={vie X} :VYq € M]', bns(vi,q) =0}

We note that U; € V}f so that the scheme reduces to:

Vv € X?,ng € Mg, ans(U1,v1) + bns(vy, Pr) + CNS(Ul; Ulvvl)
+ap(Ps, q2) +v(U1, P2;v1,q2) = L(v1, g2). (57)

Clearly, if (U1, P1, P,) is a solution to (42)-(43), then (U1, P,) is a solution to (57). Conversely, assume that
(U1, P») is a solution to (57). Then, the discrete inf-sup (37) implies that there exists a unique P; € M} such
that (Uq, P, P) is a solution to (42)-(43). Based on this equivalence between the two problems, it suffices
to show that there exists a solution (U, Py) € VI x M} of (57). We will use Lemma 2 and we define the
inner-product on Y = V" x M}

((vlaQZ)v (wlatQ))Yh = 2,LL(_D(’U1), D(wl))gl + Z (KVQ27Vt2)E + Z %([QQL [tQ])e' (58)
Eeg} eel’?

Next define " : Y — Y such that:

(U"(v1,q2), (w1, t2)) . = ans(v1,w1) + exs(vi; v, wi) + ap(ge, t2) + Y(v1, g2; w1, t2) — L(wn, o).

11



Using (41) and the definitions of the bilinear forms, we obtain a lower bound of (¥"(v1,g2), (v1, qg))yh

1
(V" (v1,92), (v1,42))y = 2| D(01)[1 720,y + #lllg2ll1E, + aﬂvl “Ti2ll7a(r,) — L(vi,g2)-

From (16), (17) and (49), we have for any ¢ > 0:

C?
(f2,@2)0, < |||(12|||Q2 5 ||f2||L2 (22)° (59)

-2
Similarly, from (16), (17) and (50), we have for any § > 0:
5 C?
(9n; q2)r;s < §|||Q2|||?z2 + _6||9N||L2 (F12)" (60)

Using a trace theorem [24], (16), (17) and (23), we have for any ¢ > 0:
AI'I'la)(
= Y (K. Vet 3 (Km0 laa))e| < olllaallb, + 225 o sy +- S 3 0l ey (61
Ee&l ecl} Ee&l

Combining the bounds (59), (60), (61) and (32), we obtain:

3p K 1
(V" (v1,42), (v1,42)) yn > < D@17z, + S lllazllie, + Gl lel\%a (T12)

2Amax
K

PiC? 207 202
( —1 £ 117200, + = —= ||f2||L2(Qg) +—= ||9NHL2 (Tan) T 12Dl 7 0y + — Z HPDHH2(E))

Eegh
Therefore, (V" (v1,g2), (v1, qg))yh > 0 provided that ||(v1,¢2)||y» = Ra with

3 K

R = (max(3, 572 (B

B 2y 2 S il
Ee&l
(62)
This concludes the proof of existence of a solution (U1, P) of (57). The same argument can be used to show
that any solution (U1, P2) of (57) is bounded as follows:

C? 202 202
Sy HL2(91)+ 2| f2172 @) T S lgn 2+

2u| DU 720, + I1P2II3, < RS. (63)

3.3 Uniqueness of Solution

Theorem 6. Let R be defined by (62). Under the condition

/>C—3 C,C 64
p? \/—(7)4"' 2CRs (64)

problem (57) admits a unique solution.

Proof. To prove uniqueness, we assume that (U7, Py) and (U3, P#) are two solutions of problem (57), and
let Wi = U} — U? and x» = P} — P},

1
ans(Wi,v1) + exs(Uy, U, v1) — ens(U3, Ui, 1) + ap(x2, @2) + (X2, v1 - 7112)F12 - §(Ui - Uj, v '”12)r12

1 1
+§(U% - U, o1 n12)F12 + 5(W1 " T12, V1 '712)F12 — (W - n12’Q2)r12 =

12



In particular, we choose v; = Wi and ¢z = Xxa2.

ans(Wi, Wi)+ap(x2, x2) + é“ Wi '7—12”%2(]_“12) +ens(Ut, U, Wi) —ens (UL, UY, Wi) + (xa, Wi - 7112)F12
—%(U% Uy, Wi mas) + %(Uf UL, Wi-mas) . — (Whmag, xa) = 0.

Using (41) and rewriting the nonlinear terms as

ens(UY, Uy, W) — exs(UT, Us, Wy) = exs( Wy, Up, Wh) + ens(Us, Wy, Wh),

1
(W1 U, W1 ni2)r,,,

1 1
_i(U{. Ui, Wi-maa) + 5(Uf. UL, Wi - ni2) 5

1
ry = —§(W1 UL, Wi -ni9)r,, —

we obtain

1
20| (W) 720, + slllxallld, + cllw T12l[Z2(r,0)

1 1
+ens(Wh, Up, Wh) + ens (U, Wi, Wi) — §(W1 ‘UL Wi - nig)ry, — §(W1 U3, W1 -ni2)r,, <0.

From Lemma 5, we have
ens(Wi; Uy, Wh) + ens(UT; Wi, Wi) < Crl[D(W 1) || 220 (ID(U) | 2260, + DU || 12(01))-

Similarly, using (20) and (19), we have
1 1 1
§(W1'U%aWl'nlz)rlg+§(W1'U%aWl'nlz)rm < 502020.%”D(W1)”2L2(Ql)(HD(U%)||L2(Ql)+||D(U%)||L2(Q1))-

Combining the two bounds above with (63), we obtain:

(2 — %(\/507 + %

This clearly implies that W = 0 and y2 = 0 if the condition

1
CIC,CD) ID(Wh)[1 720, + SllIx2lllE, + el -m2|[72(r,,) <O

Ro 1
2 > —= (V207 + —
: \/ﬁ( NG

is satisfied. This condition is equivalent to (64). O

CiCyC3)

4 A Priori Error Estimates

Theorem 7. Assume that the solution to problem (W) is smooth enough, i.e. w; € (HMT1(Qy))%, p1 €
H* (Qy) and ps = ©2 + pp with oy € H*11(Qy). Let Ry be defined by (35) and let Ry be defined by (62).
Assume that the data satisfies:

03
u3? > 715(732 + CLCH(Ry + Ry).

Then, there exists a constant C independent of h and p such that

(R1+ R2)?
2

pllD(ur — U720y + w2 = ®ol|[B, + (w1 = Uy) - TrallZ2p,,) < C(1+ L (K73 [

1 1
+C(1+ ;)h%2||902|@1k2+1(92) + C;h%l ||p1||§{k1(91)~
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Proof. Let w1, p1, P2 be approximations to w1, p1, @2 in the spaces X?,Mlh and M2 respectively. Assume
that the error bounds (44), (46) and (47) hold. Let

x1=U—w, &=P—p, &= ¢,
Ci=w — U, M =pL—pi, N2=p2— Pa.
Substracting (52)-(53) from (42)-(43), we obtain the error equations:
Vo, € X'\ Vgo € MY, ans(x1,v1) + ap(&2,q2) + bns(v1,&1) + exs(Us; Uy, 1) — ens (u; ur, vy)
+y(U1, 2301, q2) — (U1, p2;v1,q2) = ans(Cy, v1) + ap(n2, q2) + bns(vi, m1),
vql € Mfa bNS(leql) = bNS(Claql)'
Let v1 = x1,q1 = &1, 92 = &2, then from (41), we have
20 D)1 720,y + KllIEII1R, + ens(Ur; U, xq) — ens(w; ur, x1)
+y (U1, P25 x1,82) — v(u1, 925 X1, 62) < ans(Cy, x1) + ap(m2,§2) + bns (X1, 1) — bns (€1, 61)- (65)

We first expand the terms involving the linear form ~:

1 1 1
VU1, ®2;x1,&2) — (w1, p2; x1,82) = —§(U1 U1, X1 - Mi2)ry, + §(u1 UL, X1 M12)Ty, EHX1 “T1al 22,
1
_E(Cl *T12, X1 7-12)1112 - (772a X1 nl?)Fm + (§2a Cl : nl?)rlz' (66)

The nonlinear terms are rewritten as

1 1
(U1 X1, X1 - m2)ry, + 5 (1 - w, X - ma2)ry,

(u - U1, X1 N2y, = D) 5

1 1
A = —§(U1 U1, X1 " M12)ry, + 3

1 1
_§(U1 ' Clel ' n12)rl2 - §(C1 s UL, X nl?)rlza (67)

and bounded by using (16), (17), (20), (19), (34) and (63)

1
Av < SOIGCEID(X) T 0 (IPU) 200 + 1D (w)] 22(0))
+CIDOx ) 2@ IVEill 2@ (IPU) [ 2, + ([P (w) | L2 0)

H 2 L 3 2 R1+Ro 2
< g||D(X1)||L2(Ql)+§CICQC4 Ner D)1 72¢01)
C('Rl +R2)2
+7u2 IV¢il1Z20)-

The linear terms in (66) are bounded by (16), (17), (20), (19) and (50)
1 1
5(C1 “T12, X1 T12)Tys < @HXl '7'12||2L2(F12) + C||VC1||2L2(91)
I C
(2, X1 12)rss < ZID0G) 220, + ;lllmlll?zga

K
(€2,¢1 - ma2)ry, < g|||§2|||?z2 + C||VC1||2L2(91)-

We rewrite the nonlinear terms involving cng in (65) in a similar way as with the term A; defined in (67).
We obtain a bound by using Lemma 5.

A

ens(Ur; Ur, xp) — ens(uisur, xp) = ens(Uisxa, xa) + ens (X w1, X1)

—ens(U1;€rsx1) — ens(€rs 1, x1)

i Ri1+Ra

(R1 + R2)?
THVQ 1Z2(0,)-

IN

+C
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The term ans(¢q, x1) is simply bounded using Cauchy-Schwarz and Young’s inequalities.

1
ans (€1, x1) < ZIIDXD)720,) + Cul D) Z2(0y)-

The term bns(¢;,&1) vanishes because of property (45). The term ap (72, &2) is bounded using standard DG
techniques (see [24]) and the approximation property (47).

K
an (2, &) < Zll1Eall[3, + Ch? ol 3ptas -

Finally, the term bns(xy,71) is bounded as:

I C
bxs(xq,m) < gHD(X1)||2L2(Ql) + ;”771”%2(91)'

Combining the results above, the error equation (65) becomes:

1 Ri1+ Rso K 1
(M - (505’0205 + C7)W) HD(X1)||2L2(91) + §|||§2|||?22 + EHX1 '7'12||2L2(P12) <C(i+

1 1
+C;|||772|||?22 + Oh* || pa|Fes 1 gy + C;||771||2L2(91)~

Ri + Ro)?
Rt Ro) 19, 2500

The final result is obtained by using the approximation properties (44), (46), (48), a trace theorem and the
inequalities:

ID(ui = U1)|720,) < CID (X720, + CIDEC D720,
[(wr —Uy) - 712l 720, < Cll(X1) - Tr2ll T2y, + CNCL) - Tr2llZz(r,),
llp2 — Po|l[3, < CllI&21[1E, + Cllin2ll[,-

A straight consequence of Lemma 4 and Theorem 7 is a bound on the pressure error.

Corollary 8. Under the assumptions of Theorem 7 and if the function pp belongs to H***T1(Qy), there exists
a constant C independent of h and p such that

Ri + Ro)?
o2~ P, < c+ Bt Re)y

1
h2k1 Hu1||§{k1+1(91) + C(]. + ;)h2k2 ||902quk2+1(92)
1
+CR**2 |pp 341 (0y) + C;h%l P11 781 0y

Theorem 9. Under the assumptions of Theorem 7 and Corollary 8, there exists a constant C' independent
of h such that

Ip1 = Pillz2(0y) < CR* [p1ll e,y + ChF [ual| greasrayy + CRF2 (@2l s tr () + 11PD ] i 1.(0y))-

Proof. Using the same notation as in the proof of Theorem 7, we can rewrite the error equation by taking
q2 = 0:

1
bns(vi, &) = bns(vi,m) +ans(ur —Ur,v1) — §(U1 cuy — Uy -Uy,vr - na2)rg,
1
+ens(uisur,v1) —ens(U; U, v1) + (92 — @2, 01 - na2)rg, + a((ul —U1) - Ti2,01 - T12)Ts-



We now bound all terms in the right-hand side. Cauchy-Schwarz’s inequality yields simply

bxs(vi,m) < ClVoi 2o Imllrz)
ans(u1 — Uy, v1) < Cpl|Voi|[r2(a,)[D(ur — Ui z2a,)-

The nonlinear terms are handled like the term Ay in (67).

1 1 1
5(“1 cuy — Uy -Uy,vr - ma2)ry, §(U1 “X1, V1 M2)ry, + §(X1 UL, V1 M2)Ty,
1 1
—§(U1 “€1,V1 - M2)ry, — §(C1 UL, V1 M2)Ty,
C(Rl —|—R2)
< ———|Vvillezn ID (i)l z20)) + 1IVCillz2(,))s
Vi
ens(ursur,v1) —ens(U;Ur,v1) = ens(Ui;xa,v1) + ens(Xxq; w1, v1)
—ens(Ut; €, v1) — ens(€qsu, v1)
C('Rl +'R2)
< T”vvl||L2(Q1)(||D(X1)||L2(Ql) + IVl z2))-

Finally, the last two terms are bounded as:

(2 — 2,01 - m12)ry, < C(|l€2lll0n + Im2l2200)) VULl L2(021)

1
5((’“1 —Uy) - T12,v1 - T12)ry, < Of(ur — Un) - 712l 20| Voill2(,)-

Therefore, we obtain:
bxs(vi, &) < CO|Voillr2(a,),

with
R1+Ro

NG

+H1€2llles + Im2llz2(ri) + (w1 = Ur) - Ti2llL2(0,)-

O = lImllz2n) + #lD(uwr = Ui)llz2 (o) + (DX llz2 @) + 1IVEillzz@n)

The inf-sup condition (37) then yields
C
€112y < Z-©-

*

Using the approximation results (44), (46), (47) and Theorem 7, we can conclude.

5 Conclusions

We prove existence and uniqueness of the solution under small data condition for the coupled sytem of
Navier-Stokes and Darcy equations. We formulate a method that combines the classical conforming finite
element method for Navier-Stokes with the discontinuous Galerkin method for Darcy. We obtain optimal
error estimates with respect to the mesh size. The meshes on the interface can be non-matching. This is an

attractive feature if one wants to implement the method using a domain decomposition approach.
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