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1 Introduction

In PDE theory, Harmonic Analysis enters in a fundamental way through the
basic estimate valid for f € C§°(R™), which states,

n
ij=1

This estimate is really a statement of the LP boundedness of the Riesz
transforms, and thus (1) is a consequence of the multiplier theorems of
Marcinkiewicz and Hormander-Mikhlin, [15]. More sophisticated variants of
(1) can be proved by relying on the square function [15] and [14]. In particular
(1) leads to a-priori W?2? estimates for solutions of

0% f
axiaxj

< e(n,p) [|Afll Lo gny » for 1 <p < oo. (1)
L (Rn)

Au = f, for f € LP. (2)

Knowledge of ¢(p,n) allows one to perform a perturbation of (2) and study

- ij 0%u B
> )i = ! Q

as was done by Cordes [4], where A = (a%) is bounded, measurable, elliptic
and close to the identity in a sense made precise by Cordes. The availability of
the estimates of Alexandrov-Bakelman-Pucci and the Krylov-Safonov theory
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[7] allows one to obtain estimates for (3) in full generality without relying on
a perturbation argument. See also [12].

Our focus here will be to study the CR analog of (3). Since at this moment
in time there is no suitable Alexandrov-Bakelman-Pucci estimate for the CR
analog of (3) we will be seeking a perturbation approach based on an analog
of (1) on a CR manifold. Our main interest is the case p = 2 in (1). In this
case a simple integration by parts suffices to prove (1) in R™. We easily see
that for f € C§°(R™) we have

n 82f 2
Z 0x;0x;

i,j=1 L2(R")

2
= [1AflIz2n) - (4)

In the case of (1) on a CR manifold a result has been recently obtained by
Domokos-Manfredi [6] in the Heisenberg group. The proof in [6] makes uses
of the harmonic analysis techniques in the Heisenberg group developed by
Strichartz [16] that will not apply to studying such inequalities for the Hessian
on a general CR manifold, although other nilpotent groups of step 2 can be
treated similarly [5].

Instead we shall proceed by integration by parts and use of the Bochner
technique. A Bochner identity on a CR manifold was obtained by Greenleaf
[8] and will play an important role in our computations.

We now turn to our setup. We consider a smooth orientable manifold
M2+l Let V be a vector sub-bundle of the complexified tangent bundle
CT M. We say that V is a CR bundle if

yNny ={0}, [V,V] CV, and dimcV = n. (5)

A manifold equipped with a sub-bundle satisfying (5) will be called a CR
manifold. See the book by Treves [18]. Consider the sub-bundle

H=Re(V®V). (6)

H is a 2n-dimensional vector sub-bundle of the tangent bundle T M. We as-
sume that the real line bundle H+ C T*M, where T*M is the cotangent
bundle, has a smooth non-vanishing global section. This is a choice of a non-
vanishing 1-form 6 on M and (M,6) is said to define a pseudo-hermitian
structure. M is then called a pseudo-hermitian manifold. Associated to 6 we
have the Levi form Ly given by

Lo(V,W) = —idd(V ANW), for VW € V. (7)

We shall assume that Ly is definite and orient € by requiring that Ly is
positive definite. In this case, we say that M is strongly pseudo-convex. We
shall always assume that M is strongly pseudo-convex.

On a manifold M that carries a pseudo-hermitian structure, or a pseudo-
hermitian manifold, there is a unique vector field T, transverse to H defined
in (6) with the properties
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0(T)=1 and dO(T,-)=0. (8)

T is also called the Reeb vector field. The volume element on M is given by
dV =0 A (dO)". 9)

A complex valued 1-form 7 is said to be of type (1,0) if n(W) = 0 for all
W eV, and of type (0,1) if n(W) =0 for all W € V.

An admissible co-frame on an open subset of M is a collection of (1,0)
forms {0%,...,0% ...,6"} that locally form a basis for V* and such that
6%(T) = 0 for 1 < a < n. We set §% = 0. We then have that {6,0% 6%}
locally form a basis of the complex co-vectors, and the dual basis are the
complex vector fields {T', Z,, Zo}. For f € C%(M) we set

Tf=fo. Zaf=fa, Zaf=fs (10)

We note that in the sequel all our functions f will be real valued.
If follows from (5), (7), and (8) that we can express

do = ih,z 0% A 0P, (11)

The hermitian matrix (h,3) is called the Levi matrix.
On pseudo-hermitian manifolds Webster [19] has defined a connection,

with connection forms w? and torsion forms 75 = Ag,0%, with structure
relations
do® =0 NP + 0 AT, Wo5 + Wia = dh,g (12)
and
Aap = Aga. (13)

Webster defines a curvature form
H B = dw —w)l A w

where we have used the Einstein summation convention. Furthermore in [19]
it is shown that

H = Ryj3,50" N 6° + other terms.

Contracting two indices using the Levi matrix (h,z) we get

R.5=h"" Ropo- (14)
The Webster-Ricci tensor Ric(V, V) for V € V is then defined as
Ric(V,V) = Ro3°2P, for V = 0,3"Z,. (15)

The torsion tensor is defined for V € V as follows
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Tor(V,V) =i (Az52°2s — Aapa®a”). (16)

In [19], Prop. (2.2), Webster proves that the torsion vanishes if L preserves
H, where L7 is the Lie derivative. In particular if M is a hypersurface in C**!
given by the defining function p

Imz, 1 = p(z,2), z2=1(21,22,...,2n) (17)

then Webster’s hypothesis is fulfilled and the torsion tensor vanishes on M.
Thus for the standard CR structure on the sphere $?"*! and on the Heisen-
berg group the torsion vanishes.

Our main focus will be the sub-Laplacian A;. We define the complex
horizontal gradient V;, and A, as follows:

Vof = faZas (18)

Abf:Zfa&+f&a- (19)

When n = 1 we will need to frame our results in terms of the CR Paneitz
operator. Define the Kohn Laplacian O, by

Op = Ay +4T. (20)
Then the CR Paneitz operator Py is defined by
Pof = (D0 + 00s) f = 2(Q + Q) f, (21)

where
Qf = 2i (A" f1).
See [10] and [9] for further details.
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2 The Main Theorem

Theorem 1. Let M?™t! be a strictly pseudo-convex pseudo-hermitian mani-
fold. When M is non compact assume that f € C§°(M). When M is compact
with OM = 0 we may assume f € C(M). When f is real valued and n > 2
we have

S [ sl titusl+ [ (rict 3 1or)(@or,vur) < U2 augp. (22)
a,B

When n = 1 assume that the CR Paneitz operator Py > 0. For f € C§°(M)
we then have

[t il + [ (rie-S1or) urvin < 3] s @)

Proof. We begin by noting the Bochner identity established by Greenleaf,
Lemma 3 in [§]:

380 (I90) = S asl? + 1fupl? + Re (Vof, T340 (24)
a,f
i (Ric ns QTOY) (VorV0) 45" (fafao — fafao)

where for V,;W € V we use the notation (V,W) = Ly(V,W) and |V| =
(V,V)'/2, Using the fact that f € C$°(M) or if 9M = @, M is compact,
integrate (24) over M using the volume (9) to get

/MZ [fasl® + 1fapl + (Ric+ 2 2Tor) (Vof, Vo f) (25)
o,
) aJad — JaJa0) = — ) A .
+z/M;<f Fat — fuf0) /MRe(vbf Vo(2sf))

Integration by parts in the term on the right yields (see (5.4) in [8])

—/M Re(Vuf, Vi(Asf)) = %/M |ApfI?. (26)

Combining (25) and (26) we get
-2
/ Z |fa6|2 + \fa5|2 +/ <Ric+ i 5 Tor) (Vo f, Vo f) (27)
Mg M

; 1
+ z/Mza: (fafao = fafao) = 5 /M |Abf|2.
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To handle the third integral in the left-hand side, we use Lemmas 4 and 5 of
[8] (valid for real functions) according to which we have

[ S Uetoo —fudao) = % [ (S (5ol = fusl?) = Bit¥us, 95).

o,
(28)
and

. 4

z/Mza:(fafao ~fufa) == [ | > fool (29)
[
+ /M Tor(be, be)

Applying the Cauchy-Schwarz inequality to the the first term in the right-hand
side of (29) we get

i/M za:(fafao — fafao) = — 4/1\4% I (30)

1
+*/ Ay fI?
nJm

+ /M Tor(Vyf, Vi f).

Multiply (28) by 1 — ¢ and (30) by ¢, 0 < ¢ < 1, and where ¢ will eventually
be chosen to be 1/(n + 1), and add to get

(1fagl® = [fasl?) (31)

i S Ufatao —fufeo) 2
a ; ) /M Ric(Vyf, Vi f)

e / e
w2577

+ %/M |ApfI? JrC/M Tor(Vy f, Vi f).

-2

We now insert (31) into (27) and simplify. We have



Hessian bounds 7

<1 - 2(171_6)> /M Ric(V,f, Vo f) +

<(”22) +C> /M Tor(Vof, Vof) +

(1+2(1n_c)—4c) [v;%faﬁ|2+ (32)

-2 sl < (5-5) [ 1ane,
n M n M

Let ¢ =1/(n+1). Then (32) becomes

(1) [, 5 s ) + f (e G1o0) . 00n)] 39

< (n 1) <n+2>/ A2,
n+1 2n M
Since n > 2, n — 1 > 0 and we can cancel the factor Z—H from both sides to
get (22).
We now establish (23) using some results by Li-Luk [11] and [9]. When
n = 1, identity (27) becomes

J el gl [ (R S7or) (927.94) (34)
M M

i [ (fofi=fur) = [ 14
By (3.8) in [11] we have

z‘/M Goufr — forf1) = — /M 5.

Moreover, by (3.6) in [11] we also have
i(frof1 — fiof1) = i (forf1 — for 1) + Tor(Vef, Vi f)

and combining the last two identities we get

i/M (frofi — fiof1) = —/M 13+ /M Tor(Vy f, Vi f). (35)

Substituting (35) into (34) we obtain

[inPaifup s [ (mier gro)@rvin - [ 7 o)
M M M

1/ 9
== Ay f|7
2 M|
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Next, we use (3.4) in [9],

1
2 = 2 T - = - f.
/Mfo—/M|Abf| +2/MT0 (Vo f, Vi f) 2/Mpof f (37)

Finally, substitute (37) into (36) and simplify to get

[P i+ [ (e 31or) (@ur. vt + 5 [ Ror-s

_3 2
=5 [ 1A

‘We now wish to make some remarks about our theorem:

Assuming Py > 0 we obtain (23). O

(a) It is shown in [6] that on the Heisenberg group the constant (n+2)/2n
is sharp. Since the Heisenberg group is a pseudo-hermitian manifold with
Ric = 0 and Tor = 0, we easily conclude our theorem is sharp and contains
the result proved in [6].

(b) We notice that when we consider manifolds such that Ric+(n/2)Tor >
0, then for n > 2, in general we have the strict inequality

n+2
E |fapl? + | fapl® < |Apf|?.
2n
wp /M M

On the Heisenberg group Ric = 0, Tor = 0 and the constant (n + 2)/2n is
achieved by a function with fast decay [6]. Thus, the Heisenberg group is, in a
sense, extremal for inequality (22) in Theorem 1. A similar remark holds for
inequality (23).

(c) The hypothesis on the Paneitz operator in the case n = 1 in our
theorem is satisfied on manifolds with zero torsion. A result from [2] shows
that if the torsion vanishes the Paneitz operator is non-negative.

(d) We note that Chiu [9] shows how to perturb the standard pseudo-
hermitian structure in S? to get a structure with non-zero torsion, for which
Py > 0 and Ric — (3/2)Tor > 1. To get such a structure, let § be the contact
form associated to the standard structure on S®. Fix g a smooth function on
S3. For € > 0 consider

6 = e*9, where f =€ sin(g). (38)
€

Since the sign of the Paneitz operator is a CR invariant and 6 has zero torsion
we conclude by [2] that the CR Paneitz operator P, associated to 6 satisfies
Py > 0. Furthermore following the computation in Lemma (4.7) of [9], we
easily have for small € that
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e — § —2f
Ric 210r2(2+()(6))e >1>0.

Thus, the hypothesis of the case n = 1 in our theorem are met, and for such
(M, 0) we have, for f € C®°(M) the estimate

3
[P s iPav <3 [ japar
M M

(e) Compact pseudo-hermitian 3-manifolds with negative Webster curva-
ture may be constructed by considering the co-sphere bundle of a compact
Riemann surface of genus g, g > 2. Such a construction is given in [3].

3 Applications to PDE

For applications to subelliptic PDE it is helpful to re-state our main result
Theorem 1 in its real version. We set

Xi = RQ(ZZ) and XiJrn = Im(Zl)

for i =1,2...,n. The real horizontal gradient of a function is the vector field

2n

X(f) = Z Xi(f)X;.

Its sublaplacian is given by
2n
Axf = XiXi(f),
i=1
and the horizontal second derivatives are the 2n x 2n matrix
Xf = (X, X;(f)).

For f real we have the following relationships

Vof = X(f) +i (Z Xi(f)Xign — Xi+n(f)Xi> ;

Apf =2A4x%f,

and
D fasl® + 1 fapl? = 2D 1XX ()P =212 .
a,f

.3
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Theorem 2. Let M?"+! be a strictly pseudo-convex pseudo-hermitian mani-
fold. When M is non compact assume that f € C§°(M). When M is compact
with OM = () we may assume f € C°(M). When f is real valued and n > 2
we have

/M\X2f|2+/M%(Ric+gTor) (Vof, Vo f) < 2 /|A P (39)

When n = 1 assume that the CR Paneitz operator Py > 0. For f € C§°(M)
we then have

/M |%2f|2 + /M % <RZC - Z)TOT') (be, be) < 3/M|Axf|2 (40)

Let A(z) = (a;5(z)) a 2n x 2n matrix. Consider the second order linear oper-
ator in non-divergence form

2n
Au(z) =Y ai(@) Xi Xju(), (41)
i,j=1

where coefficients a,;(x) are bounded measurable functions in a domain {2 C
M?"+1 Cordes [4] and Talenti [17] identified the optimal condition expressing
how far A can be from the identity and still be able to understand (41)
as a perturbation of the case A(z) = I,, when the operator is just the
sublaplacian. This is the so called Cordes condition that roughly says that all
eigenvalues of A must cluster around a single value.

Definition 1. ([4],[17], [6]) We say that A satisfies the Cordes condition K. o
if there exists € € (0,1] and o > 0 such that

2n 2n 2
% Z = ﬁ (Z aii(@) (42)

i=1
for a. e. x € £2.

Let ¢, = (”+2) for n > 2 and ¢; = 3 the constants in the right-hand sides of
Theorem 2. We can now adapt the proof of Theorem 2.1 in [6] to get

Theorem 3. Let M?"T! be a strictly pseudo-convex pseudo-hermitian man-
ifold such that Ric + %Tor >0ifn>2 and Ric— %Tor >0i4fn=1. Let

0<e<1,0>0 such that v = /(1 —€)cy, < 1 and A satisfies the Cordes
condition K¢ 5. Then for all u € C§°(£2) we have the a-priori estimate

2 1
%%l e <41+ = n T lolle<llAullez, (43)

||A(9C)H2 Z%_ a2.(x)

1,j=1"1j

where
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Proof. We start from formula (2.7) in [6] which gives

/ | Axu(z) — o(z) Au(z)]? de < (1 — 5)/ |Xu|*dx.
7 2

We now apply Theorem 2 to get
/ | Azxu(z) — a(z)Au(z)]? dz < (1 — E)cn/|Axf|2.
0 0

The theorem then follows as in [6]. O

Remark: The hypothesis of Theorem 2, n > 2, can be weakened to assume
only a bound from below

Ric + gTor > K, with K >0

to obtain estimates of the type

242 (N+2) 2 2
[ < CE agrp ok [ g (49)

A similar remark applies to the case n = 1.

We finish this paper by indicating how the a priori estimate of Theorem
3 can be used to prove regularity for p-harmonic functions in the Heisenberg
group H"when p is close to 2. We follow [6], where full details can be found.
Recall that, for 1 < p < oo, a p-harmonic function v in a domain 2 C H"™ is
a function in the horizontal Sobolev space

Wyt (£2) = {u: £ R such that u, Xu € L, (2)}

loc

such that

2n
> X (|XuP Xju) =0, in 2 (45)
i=1

in the weak sense. That is, for all ¢ € C5°(f2) we have

/Q |.’£u(x)|p*2(.’£u(x), Xp(z)dx = 0. (46)

Assume for the moment that w is a smooth solution of (45). We can then
differentiate to obtain

2n
Z aij X; Xju =0, in 92 (47)

1,j=1

where
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Xiu(z) X u(z)
| Xu(z)[?

A calculation shows that this matrix satisfies the Cordes condition (42) pre-
cisely when

b2 (n—m/4n2+4n—3 n+n\/4n2—|—4n—3>

2n2 4+2n—2 ’ 2n2 +2n—2

aij(z) =i + (p — 2)

(48)

In the case n = 1 this simplifies to

p—2¢€ <1_\/5 1+\/5>.

2 2

We then deduce a priori estimates for X2u from Theorem 3. To apply the
Cordes machinery to functions that are only in lee’p we need to know that
the second derivatives X¥2u exist. This is done in the Euclidean case by a
standard difference quotient argument applied to a regularized p-Laplacian.
In the Heisenberg case this would correspond to proving that solutions to

2n p—f
> X ((1 + |36u|2> Xiu> =0 (49)
=1 m

are smooth. Contrary to the Euclidean case (where solutions to the regularized
p-Laplacian are C*°-smooth) in the subelliptic case this is known only for
p € [2,¢(n)) where ¢(n) =4 for n = 1,2, and lim, .« ¢(n) = 2 (see [13].) The
final result will combine the limitations given by (48) and c(n).

Theorem 4. (Theorem 8.1 in [6]) For
n+nv4an? +4n — 3

2<p<?2
=P + 2n2 +2n—2

we have that p-harmonic functions in the Heisenberg group H™ are in W;?OC(_Q)

At least in the one-dimensional case ' one can also go below p = 2. See
Theorem 3.2 in [6]. We also note that when p is away from 2, for example
p > 4 nothing is known regarding the regularity of solutions to (45) or its reg-
ularized version (49) unless we assume a priori that the length of the gradient
is bounded below and above

1
O<M§|36u|§M<oo.

See [1] and [13].
Acknowledgement. S.C. supported in part by NSF Award DMS-0600971. J.J.M. sup-

ported in part by NSF award DMS-0500983. S.C. wishes to thank Shri S. Devananda
and Shri Raghavendra for encouragement in a difficult moment.



Hessian bounds 13
References

1. Capogna, L., Regularity of quasi-linear equations in the Heisenberg group.
Comm. Pure Appl. Math. 50 (1997), no. 9, 867-889.

2. Chang, S.C., Cheng, J.H., Chiu, H.L., A fourth order Q-curvature flow on a CR
3-manifold, to appear in Indiana Math. J.,
http://arxiv.org/abs/math.DG/0510494.

3. Chern, S. S., Hamilton, R. S., On Riemannian metrics adapted to three-
dimensional contact manifolds. With an appendix by Alan Weinstein. Lecture
Notes in Math., 1111, Workshop Bonn 1984 (Bonn, 1984), 279-308, Springer,
Berlin, 1985.

4. Cordes, H.O., Zero order a-priori estimates for solutions of elliptic differential
equations, Proceedings of Symposia in Pure Mathematics IV (1961).

5. Domokos, A., Fanciullo, M.S., On the best constant for the Friedrichs-Knapp-
Stein inequality in free nilpotent Lie groups of step two and applications to
subelliptic PDE, The Journal of Geometric Analysis, 17(2007), 245-252.

6. Domokos, A., Manfredi, J.J., Subelliptic Cordes estimates. Proc. Amer. Math.
Soc. 133 (2005), no. 4, 1047-1056.

7. Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second or-
der. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin,
2001.

8. Greenleaf, A., The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian
manifold. Comm. Partial Differential Equations 10 (1985), no. 2, 191-217.

9. Chiu, H.L., The sharp lower bound for the first positive eigenvalue of the sub-
laplacian on a pseudohermitian 3-manifold, Ann. Global Anal. Geom. 30 (2006),
no. 1, 81-96.

10. Lee, J.M., The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer.
Math. Soc. 296 (1986), no. 1, 411-429.

11. Li, S.Y., Luk, H.S., The sharp lower bound for the first positive eigenvalue of
a sub-Laplacian on a pseudo-Hermitian manifold. Proc. Amer. Math. Soc. 132
(2004), no. 3, 789-798.

12. Lin, F.H., Second derivative LP-estimates for elliptic equations of nondivergent
type. Proc. Amer. Math. Soc. 96 (1986), no. 3, 447-451

13. Manfredi, J.J., Mingione, G., Regularity Results for Quasilinear Elliptic Equa-
tions in the Heisenberg Group, to appear in Mathematische Annalen, 2007.

14. Segovia, C., On the area function of Lusin, Studia Math. 33 1969 311-343.

15. Stein, E.; Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.

16. Strichartz, R.S., Harmonic analysis and Radon transforms on the Heisenberg
group, J. Funct. Analysis, 96(1991), 350-406. .

17. Talenti, G., Sopra una classe di equazioni ellittiche a coefficienti misurabili.
(Italian) Ann. Mat. Pura Appl. (4) 69, 1965, 285-304

18. Treves, F., Hypo-analytic structures. Local theory, Princeton Mathematical Se-
ries, 40. Princeton University Press, Princeton, NJ, 1992.

19. Webster, S. M., Pseudo-Hermitian structures on a real hypersurface, J. Differ-
ential Geom. 13 (1978), no. 1, 25-41.



