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Abstract

This paper formulates and analyzes a weak solution to the coupling of time-dependent Navier-Stokes
flow with Darcy flow under certain boundary conditions, one of them being the Beaver-Joseph-Saffman
law on the interface. Existence and a priori estimates for the weak solution are shown under additional
regularity assumptions. We introduce a fully discrete scheme with the unknowns being the Navier-Stokes
velocity, pressure and the Darcy pressure. The scheme we propose is based on a finite element method
in space and a Crank-Nicolson discretization in time where we obtain the solution at the first time step
using a first order backward Euler method. Convergence of the scheme is obtained and optimal error
estimates with respect to the mesh size are derived.
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1 Introduction

This work follows a series of papers on the coupling of surface flow with subsurface flow. The domain is
divided into two subdomains: in the surface region, flow is characterized by the time-dependent Navier-
Stokes equations and in the subsurface region, flow is characterized by the Darcy equations. The coupling of
the two types of flow is accomplished through interface conditions. In this work, we define a weak solution and
show its existence and uniqueness. We propose a numerical scheme that is second order in time and optimal
in space. The underlying space discretization is the classical finite element method. The weak problem
of a similar coupling is analyzed in [4], in which an interface problem with Steklov-Poincaré operators is
formulated. In [9, 14], we analyze the steady-state problem of Navier-Stokes coupled with Darcy. We show
well-posedness of the weak problem and convergence of the numerical algorithms. If the nonlinearity is
removed from the Navier-Stokes equations, we obtain the coupling of Stokes and Darcy. This problem has
been extensively studied in the literature. The reader can refer to [17, 12] for the analysis of the weak solution
and to [21, 6, 11, 10, 20, 16, 2, 19] for a variety of numerical schemes.

We denote by 2 C R? a bounded domain decomposed into two disjoint domains €; and Q. The fluid velocity
and pressure in {27 are denoted by uw and p; respectively. The deformation tensor is

D(u) = %(Vu + (Vu)T).

The flow in ©; over the time interval (0,7) is characterized by the time-dependent Navier-Stokes equations:

ou .
E—V-@uD(u)—plI)—&-u-Vu:fl inQ; x (0,7, (1.1)
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V-u=0 inQ x(0,7). (1.2)

The fluid pressure in €9 is denoted by p2. The flow in 23 over the time interval (0,7) is characterized by
the Darcy equation:
-V Kvpg = fg in Qg X (07T). (1.3)

The coefficients in the equations are p > 0 the fluid viscosity, f; a body force acting on ©; x [0,T], K a
positive definite symmetric matrix corresponding to the permeability of Q23 and f2 a body force acting on
Qg x [0, T]. The system of equations is completed by an initial condition © = ug at time ¢ = 0, and a set of
boundary conditions. Let 0€2; denote the boundary of €2; with exterior unit normal ng,, let I'ia = 9Q; NN
and let T'; = 9Q;\I'12 for ¢« = 1,2. We decompose the boundary I's = T'sp U oy and we assume that
|F2D| > 0.

u=0onTy x (0,7T), (1.4)
P2 = 0 on FQD X (07T)7 (].5)
Kvpg NnQ, = 0 on FQN X (O,T) (].6)

Let nmi2 be equal to ng, on I'12 and let 712 be the tangential unit vector to I'y12. We assume continuity of
the normal component of velocity across the interface:

u-Nnij2 = —Kvpg *MNi2. (17)

We assume that the Beaver-Joseph-Saffman law holds [5, 22] with a positive constant G > 0 (usually obtained
from experimental data.)
u-T12 = —2/,LG(D(u)n12) +T12. (18)

Finally, we write the balance of forces across the interface by writing

((—2pD(u) + p1I)ni2) - nig + %(u -u) = ps. (1.9)

The balance of forces includes the inertial forces. In [14], this new interface condition was considered in the
steady-state coupling of Navier-Stokes with Darcy.

2 Weak Formulation

We define the following Sobolev spaces using the notation in [1]
X ={ve H'(?)*:v=0o0nT,},

M, = L*(Q1),
My = {q € Hl(QQ) tq = 0 on FQD}.

In general, if Z is a Banach space, then the space L2(0,T; Z) denotes the space of square-integrable functions

from [0,7] into Z. It is a Banach space with the norm (fOT | - I%dt)'/2. For any domain O, we denote by
(v,w)e the L? inner-product of two functions v,w defined on O. We now define a form ~ that takes into
account the interface conditions as follows:

1 1
Vue X, Vpe My, ~(u,piv,q)={p-— 5(“ “u),v - ni2)ry, + a(’u “T12,V - T12)Ty, — (U - M2, Q)1y,-

Consequently, we observe that

N =

1
(v, ¢v,9) = —(5(v-v),v-nu2)r, + Flv- T120|72(r)- (2.1)



We propose the following weak formulation: Find (u, p1,p2) € (L2(0,T; X)NH(0,T; L*(Q1)?)) x L?(0, T; M1)x
L?(0,T; Ms) such that

¥(v,q) € X x Ma, (G w)a, +2u(D(u), D(v))o, + (u- Vu,v)a, — (p1,V - v)a, + (KVp2,Va)a,

(Q) +’Y('U/,p2; v, Q) = (flvv)fh + (an Q)Qm
VQeMlv (vu7Q)Ql 207
Vv e X, (u(0),v)q, = (up,v)q,-

Lemma 2.1. Assume that
Ffi € L*(0,T; L*(1)?), fo € L*(0,T; L*(Q)), K € L™(Q5)**2, (2.2)
and K is uniformly bounded and positive definite in Qo: there exist Amin, Amaz > 0 such that
)\mm|3:|2 <Kz -z< /\mam|a:|2a.e x € . (2.3)
In addition, letug € L?(Q1)2. Then any solution (u,p1,p2) € (L*(0,T; X)NH(0,T; L*(Q1))?)x L2(0, T; My)x
L2(0,T; Ms) of (1.1)-(1.9) is also a solution to (Q). Conversely any solution to (Q) satisfies (1.1)-(1.9).

Proof. First, we prove that if (u, p1,p2) € (L*(0,T; X)N H(0,T; L*(Q1)?)) x L*(0,T; My) x L?(0,T; Ms) is
a solution to (1.1)-(1.9), then it satisfies problem (@Q). Indeed, let v € X. Then taking the scalar product of
(1.1) with v € X over §; yields

ou

(Ea U)Q1 - (V ’ (Q,UD(U') _p11)7v)§21 + (u’ ' V’U,,’U)Ql = (flvv)fh'

Applying Green’s formula to the second term and using the duality pairing (-, ), we obtain

(88_1;7'0)01 + (2,LLD(’U,), V'U)fh - (ph A 'U)Ql + <(—2,U,D(U) —|—p1])’nQ1,'l)>an + (’U, ’ vu’?”)ﬂl = (fl) U)Ql'

Since D(u) is a symmetric tensor, we have

(D(u), Vo)o, = (D(u), D(v))g,. (2.4)

This and the assumption that v =0 on I'; gives

(86_1;) U)Ql + (2IU'D(U)’ vv)91 - (pla V- U)Q1 + <(_2UD(U) +p11)n12, U>F12 + (u Vu, v)Q1 = (flv v)fh' (25)

Now let g € Ms. Taking the scalar product of (1.3) with ¢ over Q9 yields
(=V - KVp2,q)a, = (f2,9)0,-
After applying Green’s formula with the boundary condition (1.6) and the fact that ng, = —n12, we get
(KVp2,Vq)a, + ((KVp2) - n12,q)r,, = (f2,q)0,- (2.6)

Adding (2.5) and (2.6) yields

ou
(E’fv)ﬂl + (Q/LD(U), D(U))Ql + (U : VU71))91 + (KVP% vq)ﬂz - (pla V. 1))91
+<(_2/“LD(U') +p1I)n127 v>F12 + <(Kvp2) ‘Mg, Q>F12 = (fla U)Ql + (f?v Q)Q2' (27)
We write v as a sum of its normal and tangential components, i.e.,

v = (v -ni2)ni+ (v T12)T12.



From [14], we have

((2uD(u) = prI)nia) - iz € L*(T12),
ZN(D(U)’I’ZH) - T12 € L4(F12).

So we can write
(=2uD(u) + p1I)niz,v)r,, = ((—2pD(u) + p1I)niz) - 12, v - na2)r,, + (((=2pD(u))n12) - T12,v - T12)r,, -

Then by (1.8) and (1.9),

1 1
(=2pD(u) + p1I)ni2,v)r,, = (p2 — 5 (w-u), v -ni2)r, + =(u-Ti2,v - Ti2)r,,.

2 G
By (1.7), we also have
(KVp2) - ni12,q)r,, = —(u- 112, q)ry,-
So (2.7) becomes,
Ju
(Ea U)Ql+(2/1’D(u)a D(v))91 +(u'vu’7 v)91+(Kvp2; V(])Q2_(p1a V'U)Ql +7(uap2; v, Q) = (flv v)91+(f27 Q)Q2'

Now let ¢ € M; and multiply (1.2) by ¢ and integrate over Q1 to get (V - u,¢)q, = 0 which completes the
weak formulation (Q). Conversely, assume that (u,p1,p2) € (L*(0,T; X)NH(0,T; L*(Q1))? x L2(0, T; M;) x
L?(0,T; My) is a solution of (Q). As u(t) € X and p2(t) € Mz, by definition of the spaces, equations (1.4)
and (1.5) are satisfied immediately. The assumption (V -u, q)q, = 0 for all ¢ € M; gives (1.2). To get (1.1),
let v € D(21)? and ¢ = 0. We recall that D(£2;) is the space of smooth functions with compact support.
With this choice of (v, ¢), the first equation in (Q) becomes

ou
(E —2uV - D(u) +u - Vu+ Vp1,v)a, = (f1,v)0;.
Therefore in the sense of distributions on {21
ou
E—2uV-D(u)+u-Vu+Vp1 =f. (2.8)

which gives (1.1). Next, letting v = 0 and ¢ € D(Qs) in (Q) yields

—(V - KVp2,q)a, = (f2, ))a.-
So in the distributional sense on 25, we have
-V - KVpy = fo. (2.9)
which gives (1.3). Taking the scalar product of (2.8) with v € X yields

ou

(570)91 - (2lu'v ’ D(u), 'U)Q1 + (u - Vu, 'U)Q1 + (VPlvv)fh = (flvv)fh'

By Green’s formula, we have
ou
(Ea U)Ql =+ (2:U'D(u)7 V’U)Ql =+ (uV'u,, 'U)Ql - (pla v'”)fh =+ <(_2ILLD(U) +p11)n§21 ) v>8§21 = (flv v)Q1 . (210)

Multiplying (2.9) by ¢ € M5 and integrating over Qs gives

(_v - KVpo, Q)Q2 = (f27 Q)Q2'



As g € H'(Q3) by Green’s formula, we have

(Kvp27 VQ)QQ - <(Kvp2) . nQQ’Q>QQ = (f2) Q)Qg (211)
Adding (2.10) and (2.11) and using (2.4) gives
0
(8_1;71’)91 + (Q/JJD(U), D(U))Ql + (U : V’LL7’U)Q1 - (ph V- v)Ql + (KVpg, Vq)QQ

+{(=2uD(u) + prI)ng,, v)oa, + (—(KVp2) - na,, o, = (F1,v)a, + (f2,0)0,-
Comparing this with (Q), we end up with

1 1
V(v,q) € X x My, (p2— E(U W),V M12)ry, + E(u “T12,V - T12)Ty, — (U - N2, ¢)ry,
= {(—2uD(u) + p1I)ng,,v)oq, + (—(KVp2) - na,, q)oq,- (2.12)

Letting v = 0 in (2.12)
(u s M2, Q)Fm = <Kvp2 : anvQ>8Qg . (213)
Choosing ¢ =0 on I'13 and as ¢ =0 on I'sp
<Kvp2 . anaQ>F2N = O
which implies (1.6), i.e., KVps - ng, = 0 on I'yy.
Hence, since ng, = —n12 on I'12 and ¢ = 0 on I'sp, equation (2.13) becomes
(w-mi2,q)r,, = —(KVp2-ni2,q)r,, Vg€ M.
Therefore we obtain (1.7). Next, we take ¢ = 0 in (2.12):

1 1
Vwe X, ((p2— 5(“ ‘u))ngp + a(u " T12)T12,)r, = ((=2pD(u) + prI)ni, v)r,,. (2.14)
Thus we have 1 1
(—2pD(u) +p1I)ni2 = (p2 — 5(“ u))ngg + a(u “T12)T12. (2.15)

in the sense of distributions on I';5. We obtain immediately:

1
((=2uD(u) + prl)niz) - T12 = p2 — 5 (u - T12),

el

and

((=2puD(u) + p1I)niz) - nis = pa — %(u ‘).

i.e., (1.8) and (1.9).

3 Existence and uniqueness of weak solution

We start this section by recalling Poincaré, Sobolev and trace inequalities. We use the notation |v|g1(q,) =

Vvl 12(q,), which is a norm for X. There exist constants P, Co, C1, Cy, C4 which only depend on € such
that for all v € X,

[vllz201) < Prlvla ), I0llzage) < Calvlm @, [vla @) < CilD@) |l 2(qy), (3.1)



[Vl z2(ris) < Colvlmoy)s [[V[Lar,) < Calvla,)- (3.2)
There exist constants P, and C’o that only depend on Q5 such that for all ¢ € My
lgllz2@0) < Palalar @)y lallL2ri) < Colalar ,)- (3.3)

In addition, from the assumption (2.3), we have

———|K2Vq| 1200 < lalm () < K2Vl L2(0,)- (3.4)

\% maw V mzn

Now denote by Y the product space Y = X x M equipped with the norm
V(w.q) €Y, |(v,q)ly = 2ulD®)[Z2q,) + IIK?Va|Z2q,)) "
and the associated scalar product
V(v,q), (w,r) €Y, ((v,9),(W,r))y =2u(D(v), D(w))a, + (KVg, Vr)q,
Because of (3.1) and (3.4) the norm ||(+,-)||y is equivalent to the following product norm

V(w.aq) €Y, |(v.a)ll = (v, + lalin )"
o (Y,||(-,-)]ly) is a Hilbert space. Define the space of divergence free functions by
V={veX:V-v=0in 0},

and the associated subspace W of Y by W = V x M;. The space W is also a Hilbert space with the
norm and scalar product of Y. Restricting the test functions v to V' in (Q), we obtain a second variational
formulation: Find (u,p2) € (L*(0,T; V)N HY(0,T; L?(Q1)?) x L?(0,T; M2) such that

Y(v.q) € W, (G, v)a, +2u(D(u), D(v))e, + (u- Vu,v)a, + (KVp2, Va)a, +7(u,p2;v,q)

(P) :(flvv)91+(f2aq)927
Yo eV, (u(0),v)q, = (uo, v)q,.

Clearly if (u,p1,p2) is a solution to (@), then (u,p2) is a solution to (P). We will now show existence of a
solution to problem (P) using the Galerkin method. The spaces V' and M> are separable Hilbert spaces as they
are closed subspaces of separable Hilbert spaces H!(2;)? and H'(Q2). So we can find a basis {w;, r; }i>1 of W
such that w; € V N H?(Q1)? and r; € My N H?(Q2). Fix m € N and let W, = span{(w;,r;),i = 1,...,m}.
Denote by 7, the orthogonal projection of V' onto span{w;,i = 1,...,m}. Then a Galerkin approximation
to problem (P) is the finite-dimensional problem (P,,) defined as: Find (wm,pm) € L*(0,T;W,,) with
w,, € HY(0,T; L?(21)?) such that

V1i<i<m, (8:;—{", wi)Ql + 2U(D(u7n)a D(wl))Ql + (um -V, wi)fh + (KVPWH vri)fb
(Pm) Y (Wi, P Wi, i) = (F1, wi)o, + (f2,7i) 00
V1 S ] S m, (um(0)7w1)§21 = (7T7nu07wi)§21-
We want to show the existence of a unique solution to (P,,) and also a uniform bound for the solution. We
look for a solution (w,, pm) of the form

m m

U () (2) = up(x,t) = Za}n(t)wj (), pm(t)(x) =pm(z,t) = Zb}”(t)rj (z).

j=1 j=1

where we wish to select a* and b}* so that (P,) is satisfied. With these w,, and py,, problem (F;,) becomes

vi<i<m, Z 7% (Wi Wi)a, +2MZG (w;), D(w;))o, + Y Y afai(w; - Vwy, w;)g,

j=1 j=1k=1



m m 1 m m
+ Y UKV, Vo, + ) b7 (rj, wi - naz)ry, — 3 D alap (wy - wy,w; - mas)ry,
j=1 j=1 j=1k=1
1 m m
ta D al(wj Tz wi Ty, — Y al (W) mag, i), = (F1,wi)a, + (f2.7i)a,,
j=1 Jj=1

m
V1<i<m, Za}”(())(wj,wi)gl = (TmUo, ;)0 -
j=1

We rewrite the system in matrix form and define the following mass and stiffness matrices:

M = ((wj, wi)o, )1<ij<m, A= Cu(D(w;), D(wi))o, )i<ij<m, A2 = ((KVr;, Vri)o,)1<ij<m,
1
B = ((rj,w; - m2)r,,)i<ij<m, C= 5((103' S T12, Wi - T12)T10)1<i,j<m,
. . 1
Vi<i<m, N;=(aijr)i<jr<m, with oar=(w;- - Vw, wi)a, — <(w; - wi,w; ni2)r,,.

2
We thus obtain a first order nonhomogeneous nonlinear system of ordinary differential equations

Mfli—‘; + (A1 +C)a+Bb=g(a),

Ab—Bla=g,, (3.5)
Ma(0) = g3.
where
af’ by
a= : , b= : ,
U bin
and the right hand side vectors are
(f1,w1)o, —Nia-a (f2, 1), (Tm o, 1),
gi(a) = : , 8= : , 8= :
(f1:wm)o, —Nna-a (f2:7m), (Tm o, Wim ),

As the w;’s are linearly independent, the Gram matrix M is invertible and positive definite. The matrix Ao
is also invertible as the r;’s are linearly independent. Thus we can solve for b in (3.5) as b= A; (BT a+g,),
substitute this expression in the first equation and multiply by the inverse of M:

{ da 4 M~'(A1 +C+BA;'B")a=M"'(g,(a) - BA}'g,),

a(0) =M 'g,. (36)

By Caratheodory’s theorem [8], this system has a maximal solution a defined on some interval [0,¢,,]. We
will show a priori bounds on the solution. This will imply that ¢, = T.
Once the solution a is obtained, we have a unique solution b= A; ' (B%a + g,).

Choosing w; = u,, and r; = p,, in (BPy,) yields,

Oup,
(7o), + 20D, D))o, + (2t Vit i), + (K Vi, Vo),

+ V(Umapm;umapm) = (fla um)Ql + (f27pm)92' (37)

Observe that V(um, - wm) = Vi, - Uy + U - Vg, = 24, - Vg, By Green’s theorem

(v Um, U - um)Ql - —(’U,m, v(um : um))Ql + (um TNQ, Um - um)an



= =2(Um, Um - V)0, + (Um - TQ,, Um - Um)oQ, -
for all w,,, € V. Therefore as V - u,, =0 and u,, = 0 on I'y,

1
(um; U, * vum)Ql - i(um *MN2, U * um)Flg-

From (2.1) and (3.7), we obtain

1d 1
§E|\Um||2L2(Ql) + 20 D(wm) 172,y + ||K1/2me||2L2(92) + E”“m T2l e,

= (flvum)91 + (f27pm)92
The terms on the right-hand side are bounded using Cauchy-Schwarz’s inequality and the inequalities (3.1)-
(3.4)
(Froum)or + (fospm)a. < (Ifillezn Prlumlmr ) + | f2llL2(@0) P2lpml a 9) »
< ||f 22 L D(wm) 2 (0) + 1 f2ll Qz)PzﬁﬂK 2P L2
1202||f1HL2 Q1) +N||D(“m)||L2 (1) + 2 >\ Hf2HL2 (Q2) QHKl/QvaHLz (Q2)

\/\/\

min

Therefore, we obtain

1d .
2 dtHum||L2 Ql) + /’L||D(u7n)||L2(Q1) + _||K1/2me||L2 92) + ||u,,n . T12||%2(F12)
1 1 P}
< EP C]?”fl”%ﬂ(ﬂl 2 )\min Hf2||L2 92) (38)

Multiplying (3.8) by 2 and integrating from 0 to ¢, we conclude that

lwm ()2 (0,) < Ce, (3.9)
with ,
1 P.

Ce = (lluoll72(q,) t3 P1 CEIF 12002000y + )\—2‘”fQH%Q(O,T;L?(Qz)))l/Z' (3.10)

Again multiplying (3.8) by 2 and 1ntegrat1ng this time from 0 to 7" we obtain ||(wm, pm)||L2(0,7;v) < Ce. This
a priori bound implies existence of a solution to (3.6) on the interval (0,7). We summarize what we have so
far by the following theorem:

Theorem 3.1. Under the assumptions of Lemma 2.1 there exists a solution (W, pm) € W, to the problem
(Py) satisfying

sup |[um (t)l|L2(0) + [ (@m: Pl 2 0,757) < Ce (3.11)
te[0,T

where C, is the constant independent of m defined explicitly by (3.10).
We now pass to the limit to obtain a solution for the problem (P). The sequence {(Wm,Pm)}men is

bounded in L?(0,T, W). Since W is a Hilbert space, it is reflexive and so is L?(0, 7, W). Hence we can find
a subsequence still denoted by {(@m,Pm)}men and a pair (u,ps2) € L%(0,T; W) such that

WUy, — uw  weakly in  L*(0,T; V), (3.12)
Ppm — p2 weakly in  L?(0,T; Ma). (3.13)

Also by Banach-Alaoglu Theorem [18] since {t,, }men is bounded in L>°(0,T; L?(£21)?), there exists a further
subsequence, still denoted by {w, }men such that for some u* € L>(0,T; L*(Q1)?)

U, — u* in weak™ topology of L(0,T; L*()?), (3.14)



ie.,

/T(um(t) —u*(t),v(t))q,dt — 0, VYve L'Y0,T;L*(Q)?) D L*(0,T; L*(Q1)?). (3.15)
0
By (3.12), we have
/T<um(t) —au(t),v(t))q,dt — 0, Yve L*0,T;V') > L*0,T;L*(91)?) (3.16)
0
which implies .
/ (i (£) — w(t), v(E))oydt — 0, Vo € LX(0,T: L2(Q1)?) (3.17)
0

Therefore comparing (3.15) and (3.17)
T
Yo e POTA)). [ (ult) w0, 0(t)a, 0.
0

So
w=u"* € L*0,T;V)N L=(0,T; L*(2)?). (3.18)

To pass to the limit in (P,,) with the subsequence we extracted consider ¥ : [0,7] — R such that U(T") =0
and ¥ € C'[0,7]. Multiply the first term in the first equation in (P,,) by ¥(¢) and integrate from 0 to 7T
Apply integration by parts

T T
/ (ul (£), w0, )0, W ()t = — / (s (£), w0, )0, U (£)dt + (2t (8), 05) g, T ()T
0 0

T
- / (i (1), w5 ), W/ (2)elt — (14 (0), 2 ), (0).

So the first equation in (Py,) becomes (as un (0) = Ty, uo)

T T
- / (o (), W' (£ )0, dt — (Tetho, w5), (0) + 2 / (D (W), (1) D(w;))or, dt

T T
+/ (um (t) - Vun,(t), U () w;)q, dt +/ (KVpn(t),¥(t)Vr;)a,dt
0 0

1

T T
+‘/O (pm(t) — 5(’U,m(t) . Um(t))7 \Ij(t)wj . ’I’I,]_2)]_“12dt + éA (’U,m(t) *T12, \If(t)wl . T12)]_“12dt

T T T
- / (o (8) - P12, (E)r) st = / (Fr(6), W (s )y i+ / (falt), W(t)rs) U (1)t
0 0 0

By (3.14), (3.17), (3.18) and as u,,(0) = mnug — ug strongly in L2(£2;), letting m — oo, for all j € {1,...,m}
we can replace u,, and p,, with w and py in the linear terms and 7,,(0) with wo. For the nonlinear terms
and the interface terms observe that by Sobolev imbeddings for any 1 < s < oo, we can extract another
subsequence (wy,, pr,) such that for any 1 < s < 0o

Wy, — w strongly in - L2(0,T; L*(94)?), (3.19)
Observe also that for any u € V' and any v, w € X we have

(u-Vo,w) =—(u-Vw,v)



Indeed,

(u-Vo.w) = [

uivj7iwjd;v:—/ ui,ivjwjdx—/ uivjwj7id;v—|—/ u;N;v;w de
Q1 Q1 Q1

o

= —/ uivj'wj,idx—i—/ WUV W, dT :/ w;w; ;v;de = —(u - Vw,v)
04 T2

1

Hence by (3.12) and (3.19) we have
T T
/ (U (1) - Vup (1), T(t)w;)o,dt = —/ (U (t) - T (&) Vw;, um (1)), dt
0 0

T T
— —/ (u(t) - U(t)Vw;, u(t))q, dt = —/ (u(t) - Vu(t), ¥ (t)w;)o, dt
0 0

By the continuity of the trace operator from H'(Q;) to H'/2(9Q;) in the weak topology we have

Umloa, — ulon, weakly in  L2(0,T; H/?(90))?, (3.20)

Pmlog, — p2loa, weakly in L*(0,T; H'/2(00)). (3.21)
Hence again by Sobolev imbeddings after extracting another subsequence

Um|oo, — ulon, strongly in  L*(0,T; L*(9))?, (3.22)
which will take care of the interface terms.

Finally we have

T

T T
- / (w(t), w;)o, W' (1)t + (o, w5), B(0) + 21 / (D(w), D(w;))a, W(t)dt + / (u(t) - Vu(t), w:)o, T(t)dt
0 0 0

T T 1 1 T
+ [ a0 V)0, 00+ [ (a(0) = 0lt) - u®)wy - man)e VO + 5 [ ) a2, i), B
T T T
- [ ma w0l = [ (O w)av0d [ (RO.m)vOE @329
0 0 0

The second equation in P, is true for u and ug as m,uo — wuo strongly in L?(Q)?, i.e., letting m — oo in
(Um (0),w;) = (Tmuo, w;) we obtain
(u(0),w;) = (uo, w;), ¥j € {1,...,m}.

(3.23) holds for any v € span{(w;, r;)}7™,. We have chosen {(w;, r;)}ien to be total in W. So any (v,q) € W
can be approximated by elements of W,’s. Therefore, for any (v,q) € W,

T T T
—/ (u(t),v)QI\I/'(t)dt+(uo,v)QI\I/(O)+2u/ (D(u),D(v))Ql\Il(t)dt+/ (u(t) - Vu(t), v}, U (1)t
0 0 0
T T 1 1 T
+ [ 0Vna(0). Voo, 00+ [ (patt) = (0t u(t). v min)e, WO+ [ @070 0 i), w0

T T T
- / (wlt) - mz, Q)r o U (t)dt = / (Fr(8), 0)e, (1)t + / (o), e W ()t (3.24)
0 0 0

As D(0,T) C C'[0,T] contains functions which vanish at both 0 and T, restricting ¥ to D(0,7T') to get rid of
the term with ¥(0), we get

T

T T
—/ (u(t),v)QI\IJ'(t)dt-i-Zu/ (D(u)7D(v))91\IJ(t)dt+/ (u(t) - Vau(t), v)q, T(t)dt
0 0 0
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T T T
+ [ Tpa). Voo, W0yt [ at)= S t) lt) vomaa)r, WO G [ (lt) a0 T, Vo

T T T
- / (u(t) - a2, @),y ¥ (1)t = / (F1 (), 0)0, T(H)dt + / (falt), a)o, (1)L,
0 0 0

By the definition of weak derivatives,

T T
_ / (w(t), v)o, U (t)dt / (W (), ), U(t)d.
0 0

So, for any ¥ € D(0,T),

T T T
/ (' (£), v), T(1)dt + 2 / (D(u), D(v))o, T(t)di + / (ult) - Vau(t), v)a, U (t)dt
0 0 0

T T T
+ [ Tpa). Voo, W0t [ at)= S t) ult) vomia)r, WO G [ (lt) a0 mra)r, Ve

T T T
- / (u(t) -1z @)y ¥ (1)t = / (F1 (), 0)0, T(H)dt + / (falt), a)o, (1),
0 0 0

Hence for all (v,q) € W,

(u'(t), v)q, + 2u(D(w), D(v))a, + (u(t) - Vu(t), v)a, + (KVp2(t), Va)a, + (p2(t) — %(U(t) “u(t)), v nig)ry,

+é(u(t) *T12,V - Tl?)Fm - (u(t) ‘M2, Q)Fm = (fl(t)v U)Q1 + (fQ(t)a Q)QQ (325)

in the distributional sense.
To see ug = u(0) we multiply this with ¥ € C1[0, 7] such that ¥(T) = 0. Then integration by parts yields

T T
/ (' (), v)e, T (1)t = — / (u(t). v)e, U (1)t — (u(0), v)g, T(0).
0 0

So,

T

T T
- / (u(t), v)a, U'(1)dE — (u(0), v)a, T(0) + 24 / (D(w), D(v))a, T(t)dt + / (u(t) - Vu(t), v)o, U(t)dt
0 0 0

T

T T
+ [ Tpa). Voo, W0t [ at)= S t) ult) vomaa)r, WO+ G [ (lt) a0 mrar, Vo

T T T
- / (u(t) - 112 Q)roy ¥ (£)dt = / (F1 (), 0)0, T(H)dt + / (falt), a)o, (1),
0 0 0

Comparing this with (3.24) yields (uo,v)q, ¥(0) = (u©(0),v)q, ¥(0). Choosing ¥(0) # 0 we get (up —
u(0),v)q, = 0,Yv € V. Therefore letting v = ug — u(0) we ﬁnally get ug = u(0). The following a pri-
ori estimate follows trivially;

Corollary 3.2. Under the same assumptions as in Lemma 2.1 every solution (u,p2) of (P) satisfies

[[(w, p2)|| L20,73v) < Ce (3.26)

where C. is defined by (3.10).
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Now we will show that the solution for (P) is unique. For that purpose assume that (u,p2) and (@, ps) are
two solutions. Let w = u — @ and r = ps — p2. Then (w,q) € L%(0,T; W) satisfies

ow .
( ot )Ql + 2/1“(D( ) D(v))ﬂl + (w : V’LL7’U)Q1 + (u : V’UJ,’U)Ql + (erﬂ Vq)Qz + (T‘7U : nl?)Fu
1 1 1, .
+5(w “T12,V - T12) — (W-N12,¢)r,, — §(w SU,V - M12)Ty, — 5(“ “w,v - Ni2)r, =0

Choose v =w and ¢ =,

1d 1
5 dt||w||L2 @) + 20 D) I3z, + 1K 2Vr|3200,) + = Gllw n12l|7ar,,) + (W - Vu, w)a,
- 1 -
+(@ - Vw,w)q, — §(w SU,W - N2)ry, — g(u SW, W - M12)Ty,
Observing
(ﬂ‘ : vw7w)Ql = _(v Su,w - w)Q1 - (ﬁ’ : vwvw)Ql + (ﬂ‘ "M, , W - ’w)am
=—(a-Vw,w)q, + (& ni2,w- - w)pr,

we have

(- Vw,w)g, = (&N, w - w)r,,

l\JI»—A

So the equation becomes
1 - -
w0l + 20 D) [, 2V ) < — (Ve w3 (waw, B )y~ (- (4 8), w0, )
The right hand side can be bounded by the virtue of (3.12), (3.13), (3.17) and (3.26) by
1 -
< llwlZs@n Vel + 5wl (el caw,) + 2@l r..)

~ 1 B
h Ci”IID(W)H%z(Ql)(Cfl\D(U)IILzml) + 5 CH(Col D(w) L2(0) + 2C0] D(@)] 22(62,))

(04"’ COc4)||D( )||2L2(Ql)

Thus we have

1d Ce = 3
g gl + (2= CF 7= (CF + SCON)ID@) e, + 1K TrlEaa,y <0
Since w(0) = 0 multiplying by 2 and taking the integral from 0 to T" we get
lw(T)|72(0,) + 221 — CF \/—(04 + COC4))”D(w)”%%&T;L?(Ql)) + HKl/QVT”%?(QT;L?(Qz)) <0.

So under the condition

<y 3
(2u)*? > Cic. (CF + 5cocgf),

we have (w,r) = (0,0). Now we will show the existence of the pressure p; in the distributional sense. We
follow the argument in [23] and define

U() = /O w(s)ds, Fi(t) = /O Fi(s)ds,  Blt) = /O u(s) - Vau(s)ds.
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Then U,Fq,83 € C(0,T; V/). Integrating (P) between 0 and ¢, choosing v € V with v =0 onI'12 and ¢ =0
yields
vt € (0,T), 2u(D(U()), D(v))a, = (w(0) —u(t) — B(t) + Fi(t),v)q,.

So for all ¢ € [0, 7] there exists a P;(t) € L?(1) such that
Vi€ (0,T), ult) —u(0) — 2uV - D(U()) + B(t) + VP (t) = Fy (1), (3.27)

Since the gradient operator is an isomorphism from L?(Q) \ R into H ~1(2;), we conclude that VP, belongs
to C([0,T); H=1(Q4)) and thus Py € C([0,T]; L*(Q1)). We now differentiate (3.27) in the distributional sense
in Q; x (0,7) and we obtain

)
8—?—2#V-D(u)+u-VU+Vp1:fl
with
_op
Pr="a¢

What we achieved in this section can be stated as follows;

Theorem 3.3. Let uy € V and suppose that the assumptions of Lemma 2.1 holds. If in addition we assume
that

o, 3
(2)*? > CYC(CF + 5CoCY),

then the problem (P) has a unique solution (w,ps) € (L2(0,T;V) N H(0,T;L?(Q1)?) x L?(0,T; Mz) such
that

[ (w,p2)llL2(0,7;v) < Ce, (3.28)

with the constant defined in Theorem 3.1. Moreover, there exists p1 € L?(0,T; L*(21)) such that (u,p1,p2)
is a solution to the problem (Q).

4 Numerical Scheme

We discretize the coupled problem by a finite element method in space and a Crank-Nicolson scheme in time.
Let X, C X, My, C My and My, C M, be finite element spaces to be specified later. We regroup all the
linear terms involving w and po by defining a bilinear form B

1
B([u,pg]; [’U, q]) = ZM(D(U)v D(v))91 + (KVPQa V(])Q2 + (an v 'n12)F12 - (u'n127 Q)F12 + E(u "T12,V 'T12)F12'

Clearly B is bilinear and so it is bounded since we are in finite dimension. We also have )
B([v,a)[o,4)) = 201 D)2 0,y + 1KVl Fagay + 0 712l >0 (42)
The nonlinear reaction term w - Vu and the nonlinear term in v are discretized using the form N
N(u;w,v) = %(u -Vw,v)q, — %(u Vo, w)q, + %(u SV, W - N12)ry, — i(u SW, V- N12)ry,-
Then, the form N is linear with respect to all three arguments, and N satisfies the following property:
N(u;v,v) =0. (4.3)
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Lemma 4.1.
Vu,w,v € X, |N(u;w,v)| < Cn|Vulr20,)| VY| 20 V@ L2(0y), (4.4)

with R
Cn = Cf + CECQ

Proof. Using Holder’s inequality, we have:

1 1
IN(u; w,v)| < §||U||L4(Ql)||Vw||L2(Ql)||U||L4(Ql) + 5||U||L4(Ql)||VU||L2(91)||w||L4(Ql)

1 1
+§||u||L4(F12)||w||L4(F12)||v : n12||L2(F12) + 5||’u’||L4(F12)||v||L4(F12)||w : n12||L2(F12)'

By the bounds (3.1), (3.2) we obtain

1~ 1 -
N(u; w,v)| < §Ci||vu||L2(Ql)||Vw||L2(Ql)||VU||L2(Ql) + §Cf||vu||L2(Ql)||Vv||L2(Ql)||Vw||L2(Ql)

1 1
+§Cfco||vu||m(91) Vw22 [VollL2 ) + §Cfco||vu||m(91) Vol L2 [Vl L20))

< On|[Vullzz) VYl L2 VW] L2 (ay)-
O

Let Ny > 0 be the number of time steps, let ¢! be the first timestep and let At = (T —t!)/(Ny — 1) and let
tt =1 + (i — 1)At for i > 2. We use the standard notation

¢i+1/2 _ ¢i+l +¢i
2 3

for a sequence {¢;} or a function ¢ = ¢(t'). We propose the following scheme: Find {u}};>0 in Xy,
{pﬁh}izl € My, and {péh}i21 in My, such that

Yo € X5, (u),v) = (u(0),v), (4.5)
WoeXn Voe M (U)o, 4 B(fubphli[v.0) - (0 V-,
+N(uh;ub,v) = (F1,v)a, + (£, @), (4.6)
Vi>1, VYweXn Vg€ Moy, (“;LHA; Y p)g, + Bl 0 ,q) — (05 V- v)a
+N (22 v) = (72 v)a, + (572 ), (4.7)

Vi>0, Vqe& My, (V- uﬁLH,(I)Ql =0.

Equation (4.5) represents the initial condition whereas equation (4.6) computes the solution at the first time
step using a first order backward Euler scheme. We will choose ¢! small enough so that the resulting scheme
is of second order. Equation (4.7) defines the Crank-Nicolson scheme. Finally the incompressibility condition
is enforced discretely at each time step by equation (4.8).

Let us now prove existence of the numerical solution. As in the continuous problem, we restrict the discrete
problem (4.5)-(4.8) to the space of discretely divergent-free velocities:

Vh:{'UEXh:vqulhv (Q7vv)9120}
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We show existence of {u };>0 € Vi, {ph), }i>1 € Moy, satisfying (4.5) and

wl — u?
Yv € Vh7 V(] S M2h7 (%7’”)91 + B([u}wp%hL [Uvq]) + N(u}lz;u}w/v) = (f%av)fh + (f217q)927 (49)
j w, — i+1/2 it+1/2 i1/2 if1/2
Vi>1, YveVy, Vq& M, A ), + By, i v,g)) + N(wy S )
= (772 v)a, + (5% )0, (4.10)

Clearly u) is uniquely defined. We first give the proof for existence of (u},p} )i>2. The proof of existence of
(u},,p,) is simpler and outlined at the end. We assume that u}, and pi, are given for some i > 1. We show
that the solution (u®*!, pgﬁl) satisfying (4.10) exists using a corollary of Brouwer’s fixed point theorem. We
can modify the argument to show existence of (uj,pl; ). We introduce a mapping F; : Vi, x Map, — Vj, x Moy,

defined by

W(o0) € Vi x Mo, (Filz,0), (0,0)y = (G

—(f7% )0, — (57 0)a.- (4.11)

So F; is a well-defined map from V', x My, into itself by the Riesz representation theorem. The mapping F;
is also continuous. Furthermore if (2*,¢*) is a zero of F;, then (2z* — ul,2t* — pi, ) is a solution to (4.10).
Compute

7”)91 + B([Z,t]; [v, q]) + N(Z; z, U)

2(z — u}L)

(fi(zvt)v (Z,t))y = ( At

1
yZ)a, + 2H||D(Z)||2L2(Ql) + ||K1/2Vt||2L2(92) + EHZ : "'12||2L2(r12)
_(firV? (fiH1/2
1 2

7Z)Q1 - 7t)92

1 2 1 i2 2 1/2v74)12
2 2—AtHZ||L2(Ql) - Z—AtHuhHm(Ql) + 2M||D(Z)||L2(Ql) + K / Vt||L2(Q2)

1+1/2 1+1/2
—(FY RN

az)Ql _( Qo -

Using the bound (3), we have

1

1 P? i
S ||2L2(92) - E”uhH%?(Ql)'

i+1/2
S 1 f2

1 i+1/2
(Filz.1), (2.0)y > =||(z )] — @Pfollfﬁ P12 —

N =

We conclude that (F;(z,t),(z,t))y > 0 for all (z,¢) such that
1(z,)lly =R,

with the radius R; defined by

1 i+1/2 P? | Lit1)2 r 1/2
Ri= (5 FECHIA Wiy + 5 103" sy + gglsbl Eogen)

)\min

This implies that there is a zero of F; denoted by (ui"', pit!). This zero is a solution to (4.10). To show
that (u},p3;) exists, we follow a similar argument with the mapping Fi : V', x Mo, — V', x May, defined by

z —U?L
V(v,q) € Vi X Map, (Fi(z,t), (v,9))y = (T

_(f%vv)ﬁh - (f?lv Q)Q2' (412)

This yields a solution in the ball of radius R;.

7”)91 + B([Z,t]; [v,q]) + N<z; z,'v)

I (wh, p2n)lly < R,
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with
P

1 ) 1/2
Ri = (5 PRCI o + 3 |3 e + 11Ol ce) (413)

Choosing (v,q) = (u},,p3,) in (4.9) and (v,q) = (u 2+1/2,p;21/2) in (4.10) yields a priori bounds on the
solution. We skip the proof as it follows the argument above.

Lemma 4.2. If {(ul,ph,)}is1 is a solution of (4.9)-(4.10), it satisfies

2

1
[ |22, + 11 (uh 20) I < [u(0)]122(q,) t3 P1 Cit I F1l T ) + st 1 f2 220 (4.14)

)\mzn

i+1/2 +1/2
¥2<m < Np, ul|2eq,) +Atz|\ W2 o N < b2

. Np—1 P Np—1
i+1/2 i+1/2
+ZP12012A75 Z [Fitad 122000 + 1 At Z [Fisatt 172 (4.15)
=1

The next result states uniqueness of the solution under some condition on the data and on the time step.

Lemma 4.3. Let Ry be defined by (4.13). Under the following conditions
(2u)%/? > C3Cn max(R1, R),

with
Npr—1

t1R2 1 i+1/2 1 1/2 1/2
R=( A T ie Z [ HL2<91>+ Z 15213 0)) (4.16)

there exists a unique solution {(u},pb,)}i>1 satisfying (4.9)-(4.10).

Proof. First, we show uniqueness of (u},p},). Assume that there are two solutions say ({u}}, {ps,}) and
({a;}, {ps,}). Let w' = u} — @ and r' = pl, — ps,. From (4.9), we have

1
Vv e X, Vg€ Msy, (ltv—l,v)gl+B([w1,r1];[v,q])—&-N(u,ll;u,ll,v)—N(ﬂ,ll;ﬂ,l“v):0.

Equivalently,

1
Vv e Xy, VYq€ Mo, (1:—1,1))91+B([w1,r1][ q)) + N(w';up, v) + N(aj; w',v) = 0.

Choosing v = w! and ¢ = r! yields
1
t—1||w1||2L2(91) +[(wh IR < IN(wh g, wh)] < CTON || D(wh) || 720, 1D (w220,

From (4.14) and the definition (4.13), we have

Therefore, we obtain

1 CBCNRl
t_lelH%ﬂ(Ql) + (2,U - W)|‘D(wl)||%2(gl) + ||K1/2VT1||2L2(Q2) S 0.
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1 1

This means that w" and r* are zero if the following condition is satisfied

(2/14)3/2 > Clch'R,l.
Next, we fix ¢ > 1 and show uniqueness of (u}",psF!). We assume that (u},pb,) exists and is unique. As
above, we take the difference of two solutions w'*! = ui™ —ait! and 71 = pitt — i Then from (4.10)
we have
i+1

) T B o)) N (w2 ) - N (@ v) = 0.

Yv € Vi, Vq € Moy, (

Adding and subtracting the term N (ufl/ %, '&ZH/ ?

1
N

,v) yields:
w' ) + B(w 2, o, q]) + N (w2 0) N (w2 ) = .
Letting v = w'*/2 and ¢ = /2 and using the fact that N(uﬁlﬂm;'wi“/?, w't1/2) vanishes, we are left
with
Lo i i
Al T 4 2l D(w ) [F2 0, + 1KV R,
i _it1/2 i _it1/2
< OV 12, | Vit 2 120y € ONCE D™ 2) R 2 0, D32 | 200

From (4.15) we have

i+1/2 R
Dy )r2) < @ue
with R defined by (4.16). Therefore if we assume that (2u)%/? — CxyC{R > 0, the functions w**'/? and
7+1/2 vanish. Since in fact w't/? = w'*t1/2 and 7+1/2 = r+1 /2 we can conclude. O

We assume that the spaces X, and My, are conforming, i.e. they satisfy an inf-sup condition with g > 0
independent of h.

inf Sup (v i v? q)Ql

> (4.17)
9€Mun wev, [[D(v)| 22 a2 1)

A straightforward consequence is the existence and uniqueness of the Navier-Stokes pressure p}, for all i > 1.

5 Error analysis

Before we prove some error estimates, we show that the proposed scheme is consistent.
Lemma 5.1. The weak solution (u,p1,p2) of (Q) also satisfies

0
V/UEXha vq€*7\42ha _uvv)91 +B([u7p2];[v,q])—(pl,V-v)Ql +N(’U/;’LL7’U):(fl,U)Q1+(f2,q)Qz.

( ot
(5.1)
Proof. 1t suffices to check that
1
N(u;u,v) = (u- Vi, v)o, — (v 4,0 n12)r,.
But

1 1 1
N(u;u,v) = i(u : VU,U)Ql - 5(“’ : V’U,U)Ql + 5(“’ "U,u - nl?)Fm - i(u ‘u,v - nl?)rlz'

This is enough to conclude since the second and third term are equal to the first term by using integration
by parts and the fact that V- u = 0. O
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We decompose the errors into approximation and numerical errors. For any ¢ > 0, let w(t) € X} be
an approximation of w satisfying (V - (u(t) — u(t)),q)o, = 0 for any ¢ in My;,. Existence of such an
approximation can be found for instance in [13]. Also let p1 € My, and pa € May be approximations of p;
and ps, respectively. We take p; to be the L2-projection of py, that is, (p1 — p1,q)q, = 0 for all ¢ € My, and
we take pa to be the Lagrange interpolant. We further assume that the approximation errors are optimal,

i.e. , for any t > 0 and for some positive integers ki, ko
[D(w(t)) = D(a(t)||12(0y) < CH* [w(t)| g +1(0yy,  Vu € L2(0, T3 HHH(9Q1)%) N L?(0,T; X), (5.2)
i=0,1, |V'pi(t) = V'B1(t)llr2r) < ChF 7 pr(t)| e 00y, Vp1 € L2(0,T5 H* (1)) N L2(0,T; My),
(5.3)

i=0,1, [[V'pa(t) = V'P2(t)l L2 () < CR™* 7 po(t)maryys VP2 € L2(0,T; HP41 (1)) N L2(0,T; Ms).
(5.4)

By the virtue of triangle inequality and (5.2) we have the following stability condition
[D(@(t)l 200y < 1D(u(t) — D(a(t))llp2,) + [1D(w()20)) < Calw(®)lur@,), VE=0.  (5.5)

where C; > 0 is a constant independent of h. Let us give examples of conforming spaces that satisfy the
above assumptions [3, 15]. Let 75, = 7;! U 7,2 be the union of regular triangulations of the subdomains €4
and Qs such that the meshes match at the interface I'12. For any element T in 7j, let Pi(7T) denote the space
of polynomials of degree less than or equal to k& and defined on T'. The space May, is chosen to be the usual
continuous finite element space of piecewise polynomials of degree ks on each mesh element. We give below
two examples of Navier-Stokes velocity and pressure spaces.

Example 5.2. Py — Py Taylor-Hood spaces with continuous piecewise quadratic functions in velocity space
and continuous piecewise linear functions in pressure space, i.e.,

X, ={vel’ (@) :v|r ePy(T)* VT €T'}nX,
My, ={qeC’() : qlr € P (T) YT € T,;}} N Myy,.
In this case, the estimates (5.2) and (5.83) are satisfied with ki = 2.

Example 5.3. MINI element with continuous piecewise linears with bubbles for wvelocity and continuous
piecewise linears for pressure space.
Let B1(T') = span{AiXaAs} where X; € Py(T) with Ai(z;) = &5 for each vertex x; of T € Tp,.

Xp={vel @) vjre P (T)®B(T))?* VT €T'}nX,
My ={q€C%() : qlr €P(T) VT € T,}} N My,
In that case, the estimates (5.2) and (5.3) are satisfied with ki = 1.
Next we write
Uup —uU=Xx—1, X:uh_fl‘a ’I’]:’LL—’lNL,
porn —p2=&§—C, §=pan—DP2, (=p2—po
The following theorem states error bounds of the quantities x and &.

Theorem 5.4. Let uyy € L2(0,T; X). Assume that the following condition holds

3
p3? > CN—\/gl max(R,R1).
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There exists a constant C independent of h,t', At and p such that
Ix 7200 + 2 DX 7201 +t1||K1/2V51||2L2(92)

_ +C2
<X Zz ) + CA+p+pt + ——5—= i ——)HDMY) 20,y + CA+ 5~ HEC )

_ - _ 41
+Cp  Ipy = il 72y + O 2w ()1 20y ) + Cre 175—1”771 0’720,

and for any m > 1

m—1 m—1

X" 7202,y + #AE Y IDOCT )20, + ALY | EY2VET 2|70,
i=1 =1

~ +CQ m—1 . m—1 .
< ||X1||%2(Ql) +CA+p+p "+ T JAt Z D(n +1/2)||L2(Ql +C(1+p M)At Z I “/2@11(92)

=1 =1
m—1 m—1
- i+1/2  ~i41/2 _ 5 zi
O ALY Iy = 5P ) + Ol AL (e (B) 120 + e () 1320 ))
i=1 =1

m—1

a1 i i
+Cu 1E Sl = n -
=1

Proof. First, we take the average of (5.1) at times ¢ = t* and ¢t = t**1:

Yv € Xy, Vg € Moy, (u;+1/2, v)a, + B([u”l/z,p?l/z]; [v,q]) + §(N(u”1;u”1, v) + N(u';u',v))
~0y"2 Y 0) = (172 0, + (BT, 00, (5.6)
From (5.6) and (4.7), we have for any ¢ > 1:

i+l i ] , ;
XX o, + B2, 672, [v,q]) — (01512, V - v)a,

At
i+1/2  it1/2 i+1/2 a'tt — @’
N (o) = (w2 e, - (S
j j i 1 i i 1 i
FB(n T o) - 7V v, 4 N @ ) N ), ()
Choose v = x*t1/2 and ¢ = £€+1/2 in (5.7). Then

1 i i i i 1,
E(HX e = IX N 720,) + 201 D(x +1/2)||2L2(Ql) +[|K?ve +1/2||i2(92) + EHX +1/2 Ti2lla )

i+1/2 ) i+1/2 1 i i i 1 P
< |N(uy, i+1/ th/,XH/Q)—§N(U+1,u+1,x+l/2)—§N(u,’u,X+1/2)|
i+1/2 it1/2 att—at i+1/2 ~it1/2 i+1/2 ¢it1/2
+|(ut ’XlJr / )Ql - (TaXZJr / )Q1| + |B([7Il+ / 7Cl+ / ]7[X1+ / 7€l+ / ])'
i+1/2  i+1/2 i
(2 = pl 2 v X T g, . (5.8)

Let us first consider the nonlinear term

N = N( +1/2 h+1/2,xz+1/2)_ §N(Ul+l,ul+1,xl+l/2)— §N(ul,ul,xl+1/2).
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After adding and subtracting N (ut1/?; uZ’Ll/Q, xt1/2), we obtain

) i . ) i . 1 . ) ) 1 o
N = N((uh_u)z+l/2; uh+1/2a X1+1/2)+N(ul+1/2; uh+1/2a X1+1/2)_§N(u1+1; uerl’ Xz+l/2)_§N(uz;uz, X1+1/2)-
Next, separating the approximation error and discrete error and adding and subtracting N (w!T1/2 u/t1/2 xi+1/2)
we have
i +1/2 I i 1+1/2 i i +1/2 i i
N = N(x +1/2;uh+ / X +1/2) — N(n +1/2?“h+ / X +1/2) + N(u +1/2;uh+ /2 u +1/2,X +1/2)

1 . . . 1 S
§N(ul+1; ,ulerl7 Xz+1/2) _ §N(ul; uz7 Xl+l/2)'

Again, using the decomposition of u; — w in the third term gives:

+N(ui+1/27 ui+1/27 Xi+1/2) _

N = N(Xi+1/2;u2+1/2jxi+l/2) _ N(ni+1/2;u2+1/27xi+1/2) i N(ui+1/2;xi+1/27xi+1/2) _ N(ui+1/2;ni+l/2jxi+l/2)

)

i i i 1 i i i 1 Qi i
FN (W2, w2 ) - EN (Tt ) - SN (sl x ),
From (4.3), the term N (uw/t1/2;x+1/2 x141/2) vanishes. We next rewrite the last three terms.

i i i 1 i i i 1 i
N('LL +1/25u +1/2)X +1/2) - §N(U +1;’U, +15X +1/2) - §N(U YU, X +1/2)
_ iN(ui;qu — ot xi?) - EN(qu, Wit — gt x i1y = _EN(qu — it ol 2,

Therefore we have

) )

N = N(x*V2; u;'l+1/2’ X H1/?) - ]\7(7]z‘+1/2;u;'L+1/27 XHU2) N (uit1/2, qgit1/2 5 i+1/2)
_EN(uiH — bt gl U2,
Using the bounds (4.4), (3.1) and (4.15) with the definition (4.16), we have
N(Xz+l/2 1+1/2 z+1/2) < CNCBHD( z+1/2)”L QI)HD( i+1/ 2)||L2(Ql)

R %
S ( )1/2 ONOIHD( +1/2)||%2(Ql)5
and

; i+1/2 R i !
N 2w ) < G s OnCRIDOC ) llagan [T 2 o).

Similarly using (4.4), (3.1) and (3.28), we obtain

N(ui+1/2;ni+1/2jxi+1/2) <

C 7 3
(2 )1/2CNC1HD( +1/2)||L2(Ql)||vn+1/2||L2(Ql)'

Finally we have for some ' € (¢¢,¢"*1):

1 ) S ) . 1 . . .
V@ —uha - ul, %) < _CNcl”D(XZ—H/Q)HLQ(QQHv(uH—l —u')[2q,)
1 i1 n
ZONCHAt?HD( X | 2o [V (E M72n)-
Therefore by Young’s inequality, we obtain for any dg > 0:
N < RONCY IDOC ) 7200, + 26801 DXV 1220

@7

C 1 O 1
+—5(R2 +C2)IVn' +1/2||L2(Ql) + At4|\Vut(t )HL?(Ql)'
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Next, we consider the terms

it ot i+1 i i+1 i
i+1/2 i u o -u i+1/2 U —u noo-n i
D = (u! / X +1/2) _ (T’X +1/2)Ql = (u! /2 _ T’X +1/2) + (T’X H/Q)m-
From a Taylor expansion, we have for some #¢, ¢4 € (!, ')
i+l i 2 2
i+1/2 U —u i iy At
w2 - NI Uttt(h)T - Uttt(’fz)ﬂ'
Then by (3.1) and Young’s inequality, for any d; > 0, we obtain
2
D < 2018, | DO By + (A Sl (1) 30y + 3 11— 12 0))
< 2u01 X 2(2) 15, tt(to)lizz(00) ¥ A n N2
0=1

Using (3.1)-(3.4), we bound the linear term B(-,-) for any positive numbers d2, 03
B([n2, YR xR 62 < 2p D) L2 @ ID O 2
K2V o) | K 2VEH2 | L) + CoCoCr DO 2|2 162 )
CoCo
Vv )\min

% i 1 i
< d2(2p) || D(x +1/2)||2L2 @) T 33| K2 Ve +1/2H%2(Q2) + _HX +1/2 T2l e,

+

7 7 1 7 7
B PV 2o I 2 ) + glm 2 ol @ IXT? T2l e,

1 (2 2
O+ 5+ )IID( )2 +C( )IC“/22 ()

Since (V - (u't1/2 — u2+1/2), q)q, = 0 for all ¢ € My, we can rewrite the pressure term as

i+1/2 +1/2 o X¢+1/2)

+1/2 ~i+1/2 i
(py " =iy ARG AT VAV I

o = (n — @ =V X )

1 1h I 1°

The second term vanishes because of the property of the interpolant.

The first term is bounded by Young’s inequality for any d4 > 0:
i+1/2 _ 5i+1/2 i i i+1/2  ~it1/2
|2 = 52V X 20, < 2080 | DX gy + —Hp TR -

We combine the bounds above with (5.8) and choose §p = 61 = §3 = 04 = 3/16 and 3 = 1/2. We multiply
the resulting inequality by 2At and sum from i = 1 to ¢ = m — 1 for some m > 1. If the following condition

is satisfied 3

R/
then we obtain:
m—1 m—1
X" 1320, + BAE D IDOCT2) 200, + AL Y IIKY2VET2)2, 0 )
i=1 i=1
12 | RP4C 1 1/2 oy y 1/2
<lxllz2@y +CA+p+p= + T JAt Z |D(n iz +CA+pHA Z ¢ 21 ()
=1 =1
m—1
_ i+1/2  ~it1)2 _ Zi o
+Cu~ At Z I — 5t 1200,y + Cu™ AL Z(Hut(t M2y + lwee E)720,))
i=1 i=1

m—1

1 1 i i
+Cu 1& Z In —n ||2L2(Q1)'
i=1
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It remains to find a bound for [|x'(|72(q,)- For this, we consider the equation (4.6) and follow a similar
derivation as above. We skip the details. Kssume that

CNCiR
3/2> NY1 1.
=75

Then, we can prove

I 1220,y + B DO 120y + 1B 2VE (0,

. RI+C? _
<X N7eg@y + CA+p+p~ " + 1M72)t1||D(771)||%2(91) + C(1+p M )

— ~ _ ~ 41
+Cp t Ip1 = il 72y + O 2w ()1 20y ) + Cre 1t—1|\771 -1’72,

A straightforward corollary is the following result.

Theorem 5.5. In addition to the assumptions of Theorem 5.4 assume that t' < At?. Then there exists a
constant C independent of h,t' and At but dependent on u such that for any m > 2

m—1
IX 1 Z200) + IX™ 7200 + 1D T 200y + #AL Z ||D(XZ+1/2)||%2(91)
=1
m—1 ‘
| KVPVE T, + AL Y [ KVPVET2|T, ) < C(RPF + 12 + AtY).
i=1

Remark 5.6. From the analysis above, it is easy to derive the error estimates for a backward Euler time
discretization at each time step. The resulting method is then first order in time. Another extension of this
work is to consider non-homogeneous boundary conditions for the Darcy pressure as in [7]. For instance,

assume that ps = gp on I'sp with gp € Héé2(F2D). It suffices to consider a lift of the gp inside 1, say pp
and the weak solution becomes (u, p1, ¢2) with w2 = ps + pp and with (u, p1,p2) satifying the problem (Q).

6 Conclusions

We formulate a weak problem of the coupling between time-dependent Navier-Stokes and Darcy equations
and proved its well-posedness. We approximate the weak solution by a continuous finite element solution.
Uniqueness of the solution is obtained under a condition on the data. We show that the scheme is optimal
in space and second order in time.
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