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Abstract.

Central pattern generators (CPGs) consisting of interacting groups of neurons drive
a variety of repetitive, rhythmic behaviors in invertebrates and vertebrates, such as arise
in locomotion, respiration, mastication, scratching, and so on. These CPGs are able
to generate rhythmic activity in the absence of afferent feedback or rhythmic inputs.
However, functionally relevant CPGs must adaptively respond to changing demands,
manifested as changes in oscillation period or in relative phase durations in response to
variations in non-patterned inputs or drives. Although many half-center CPG models,
composed of symmetric units linked by reciprocal inhibition yet varying in their intrinsic
cellular properties, have been proposed, the precise oscillatory mechanisms operating in
most biological CPGs remain unknown. Using numerical simulations and phase-plane
analysis, we comparatively investigated how the intrinsic cellular features incorporated
in different CPG models, such as subthreshold activation based on a slowly inactivating

persistent sodium current, adaptation based on slowly activating calcium-dependent
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potassium current, or post-inhibitory rebound excitation, can contribute to the control
of oscillation period and phase durations in response to changes in excitatory external
drive to one or both half-centers. Our analysis shows that both the sensitivity of
oscillation period to alterations of excitatory drive and the degree to which the duration
of each phase can be separately controlled depend strongly on the intrinsic cellular
mechanisms involved in rhythm generation and phase transitions. In particular, the
CPG formed from units incorporating a slowly inactivating persistent sodium current
shows the greatest range of oscillation periods and the greatest degree of independence
in phase duration control by asymmetric inputs. These results are explained based on

geometric analysis of the phase plane structures corresponding to the dynamics for each

CPG type.



1 Introduction

Animal interactions with the environment include various repetitive movements (breath-
ing, walking, swimming, flapping, scratching, chewing, and so on) that are produced
by coordinated rhythmic activities of different neural populations. As shown in many
studies, these rhythmic activities are generated by central pattern generators (CPGs)
- special neural networks located in the central nervous system and able to generate
rhythmic neural activities in the absence of afferent feedback and rhythmic inputs from
other structures [1], [2], [4], [5], [6], [8], [12], [15], [13], [14], [20], [26]. The bipartite (or
half-center) model of the spinal locomotor CPG proposed by Brown [1], [2] and refined
by Lundberg [11] provided an important conceptual and theoretical basis for the stud-
ies of neural control of locomotion. According to this concept, the rhythmic pattern
of alternating bursts of flexor and extensor activities is produced by two symmetri-
cally organized excitatory neural populations that drive alternating activity of flexor
and extensor motoneurons and reciprocally inhibit each other via inhibitory interneu-
rons. Recent studies of fictive locomotion in decerebrate, immobilized cat preparations
provided additional evidence for a symmetrical, half-center organization of the spinal
locomotor CPG as well as for a critical role of reciprocal inhibition for generation and
shaping of the locomotor pattern [10], [17], [25], [38]. At the same time, the specific
intrinsic neural mechanisms involved in the generation of locomotor oscillations remain
largely unknown.

The important features of CPGs are their flexibility and the ability to adaptively
adjust the oscillatory patterns they generate to organismal demands and current motor
tasks, under control of inputs from higher centers, sensory signals, and afferent feedback.
In particular, these features include the capacity to alter oscillation frequency (e.g., with
a change in descending excitatory drive to the CPG) and to independently change the
duration of each phase (i.e., to operate in an asymmetric regime). For example, oscil-
lation periods observed during fictive locomotion in the decerebrate, immobilized cat
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s [17], [38], due perhaps to changes in the descending excitatory drive [28]. During both
fictive and real locomotion, changes in the locomotor period usually involve a dispro-
portionate change in the duration of one of the phases. For example, during normal or
treadmill locomotion in cats, the shortening of the step cycle (faster walking) is provided
primarily by shortening the extensor phase, whereas the flexor phase remains relatively
constant [7]. During fictive locomotion (in the absence of sensory feedback), changes in
cycle period are usually associated with dominant changes in either extensor or flexor
phase, but not in both [38], which suggests that even in the absence of afferent feedback
each locomotor phase can be independently regulated by the descending supraspinal
drive.

Theoretical investigations have shown that similar half-center oscillations may be
produced by many different intrinsic and network mechanisms and their combinations
(e.g., [4], [8], [15], [16], [21], [30], [29], [37]). For example, half-center oscillations may
emerge from two half-centers (neurons or neural populations) coupled with mutual re-
ciprocal inhibition if the activity of each half-center undergoes some form of adaptation
allowing the currently suppressed half-center to escape from inhibition at a particular
moment of time, become active, and inhibit the currently active half-center, or if each
half-center includes some specific features producing hyperpolarization-induced rebound
activity that allows the half-centers to release from inhibition and become active after
a period of suppression [29]. Alternatively, each half-center may be able to generate an
intrinsic bursting activity itself, which then becomes alternating and coupled because
of reciprocal inhibition between the half-centers.

Rybak et al. [25] proposed a half-center model of the spinal CPG in which locomo-
tor oscillations were produced by an escape mechanism emerging from a combination
of the dynamics of persistent sodium current (Iy,p) in each half-center and the recip-
rocal inhibition between the half-centers. With changing descending excitatory drives
to each half-center, the model could reproduce the full range of locomotor periods and
phase durations observed during fictive and treadmill locomotion. This computational

model, however, has not been theoretically investigated in detail. Moreover, although



an involvement of In,p in locomotor rhythm generation has received some experimen-
tal support [36], [39], the proposed Iy,p-dependent mechanism remains hypothetical.
Other oscillatory mechanisms, such as those described above, can be involved in CPG
operation. Since the exact intrinsic mechanisms operating in the CPG remain unknown,
we aimed to comparatively investigate the ability of several CPG models to reproduce
the key features of the locomotor CPG, namely its capacity to undergo changes in
oscillation frequency with change of excitatory drive and its ability to operate in asym-
metrical regimes, with different phase durations produced by changing drive to one
half-center.

In this paper, we focus on several reduced CPG models, including a simplified ver-
sion of the Iy,p-based Rybak et al. [25] model. Each of these models consists of two
neurons with mutually inhibitory synaptic connections, forming a half-center oscillator.
The unique components of these reduced models are, respectively, a persistent (slowly
inactivating) sodium current, neural adaptation based on calcium influx and calcium-
dependent potassium current, and postinhibitory rebound based on low-threshold acti-
vated calcium current. In each model, we incorporate excitatory synaptic inputs from
external sources representing external excitatory drives to each neuron and consider
the range of oscillation periods over which each CPG can maintain oscillations as the
drives to both cells are varied. The resultant oscillations in all models are relaxation
oscillations, consisting of two phases in which one neuron (half-center) is active and the
other neuron is silent or suppressed, with rapid transitions between these phases. The
other major focus of our study was the impact of changing the drive to only one of the
neurons, which was motivated by the idea that the ability to separately control phase
durations would allow each CPG to operate in an asymmetric regime. Interestingly, we
find that the influence of asymmetric drive on CPG dynamics is highly sensitive to the
intrinsic cellular mechanisms involved in rhythm generation in each CPG. We show that
CPGs formed from units incorporating a slowly inactivating persistent sodium current
show the greatest range of oscillation periods and the greatest degree of independence

in phase duration control by asymmetric inputs.



The paper is organized as follows. Section 2 introduces the general form of the equa-
tions for the models we consider, along with some important structural aspects. These
are followed by the equations for the three specific half-center oscillation mechanisms
that we consider. Since each of these examples features fast and slow timescales, we
present, the idea of fast and slow subsystems, and we use a fast-slow decomposition
to derive conditions for the existence of periodic half-center oscillations in the singu-
lar limit. Section 3 presents our results on the effects of varying the drives to both
or one of the CPG units within each half-center oscillator, and comparative analysis
of the effects of drive changes upon the oscillation period and phase durations. This
analysis clearly lays out the hypotheses, and implications of these hypotheses, that lead
to these changes. The paper concludes with a discussion, given in Section 4, and an
Appendix specifying the functions and parameter values used for simulations of the

models considered.

2 CPG Models and Half-Center Oscillations

2.1 Model equations

Consider, for i € {1, 2}, a system of ordinary differential equations of the form

Cmvzl' = fi(via hz) + gsynsj(vsyn - 'Ui) + gappi(vapp - 'Ui) = E(Ui; hia Sj)a j 7£ ia
hi = egi(vi, hi),
s = aSeo(vi)(1— ;) — Bsi, (1)

where 0 < e < 1, a, 3 > 0, and $(v) is a monotone increasing function taking values

in [0, 1]. For notational convenience, let

Soo(v) = 1/ (1 +exp((v = 05)/05)), 05 >0, (2)

with a limiting case of sy (v) = H(v), the Heaviside step function, as o, | 0; however,

the results here carry over to more general forms of s, (v). In the neuronal case, each



v;(t) represents the membrane potential, or voltage, of a cell with capacitance C,,, each
h; is an associated channel state variable, and each s; modulates the strength of the
synaptic coupling current from cell 7 to cell j. Note that gs,,s; > 0, such that as long
as v > Usyy,, the coupling term gives a negative contribution to v;. Coupling for which
V; > Usy, over most relevant values of v; is called inhibitory. Also note that the interval
I, :=[0,a/(a + B)] is positively invariant for s, and let

a
a+

Smaz +—

The final term of the voltage equation in system (1) is a cell-specific applied drive current
Gapp; (Vapp — V). We take vgp, = 0 mV for the remainder of the paper, corresponding to
a typical reversal potential for an excitatory synaptic input.

The following assumptions will be made on system (1):

(H1) For i € {1,2} and fixed s; € I, the v-nullcline, {(v;, h;) : F;(v;, hs, s;) = 0},
defines a cubic-shaped curve, composed of left, middle, and right branches, in the

(v;, h;) phase plane.

Dropping the subscript j from s;, denote the branches of F; = 0 by v = vi(h,s),
v = vi(h,s), v = vh(h,s), with v} < v}, < v% for each (h,s) on which all three
functions are defined. It is important to remember, with this notation, that the variable
s corresponds to the synaptic input received by the cell, driven by the voltage of the
other cell. The drive current to each cell, gapp, (Vapp — Vi), is also treated as synaptic but
is independent of the other cell in the network. For the analysis, in some cases, we will
increase the drive to one cell only. When both cells receive the same drive, we refer to
this as baseline drive. When the drive to one cell is increased, we refer to the drive level

as extra drive and we mark all variables describing this cell with the A symbol.

(H2) For i € {1,2}, the h-nullcline, {(v;, h;) : g;(v;, h;) = 0}, is a monotone curve in
the (v;, h;) plane. For fixed s € I, the h-nullcline intersects F; = 0 at a unique

point prp(s) = (vpp(s), hpp(s)).



We define a cell as ezcitable if ppp(0) lies on the left branch of the v-nullcline,
{(v,h) : v =wvr(h,0)}. Alternatively, we say that a cell is oscillatory if prp(0) lies on
the middle branch of the v—nullcline, {(v,h) : v = var(h,0)}; in this case, the cell will
intrinsically oscillate, yielding a reduced representation of bursting activity. Finally,
a cell is tonic if ppp(0) lies on the right, most depolarized branch of the v—nullcline,
{(v,h) : v =wvg(h,0)}, yielding a reduced representation of tonic spiking. We assume in
this study that the two neurons we are going to couple are either both excitable, both
oscillatory, or both tonic.

In a neuron, a bursting solution alternates repeatedly between silent phases of rela-
tively constant, low voltage and active phases featuring voltage spikes, which are rapid
voltage oscillations of significant amplitude. A model of the form (1) can be obtained
from a model bursting neuron by omitting some spike-generating currents but maintain-
ing a current that allows for transitions to an elevated voltage state. In this model, a
bursting solution consists of an oscillation composed of silent phases, with v; ~ v¢ (h, s),

alternating with active phases, with v; &~ v (h, s).

2.2 Examples

Here we specify the differential equations for the four classes of dynamics that we
consider as building blocks for a half-center oscillator. For each case, the forms of
auxiliary functions and the values of parameters incorporated are given in Appendix A,

and these are chosen such that assumptions (H1) — (H2) hold.
2.2.1 Half-center CPG based on persistent sodium current [3]

For each cell, take



where Ingp = GnapMoo(V)R(V — €ng), I(v) = gi(v — €;) and hyo(v), Mao (), Seo(v) are
monotone, sigmoidal functions, with h,(v) decreasing and the others increasing with
v. The first equation in (3) describes the evolution of the voltage across the cell’s
membrane, with capacitance C,, in terms of a persistent sodium current (In,p), a leak
current (Ir,), and network (I,,) and drive (I,,,) synaptic currents. The function Iy,
takes the form I, = gsyns(v — €syn) and the current I,,, is described by I,y = gappt,
where g,y > 0 is a constant. The second equation in (3) describes the slow inactivation
of the persistent sodium current. Parameters are set such that prp(0) lies on {v =

vr(h,0)} and each cell is intrinsically tonic.
2.2.2 Half-center CPG based on postinhibitory rebound [24, 31]

The equations in this case are
Ot/ = —Ip —Tp — Tyyn — Tupy

W = (heo(v) = h)/Tn(v) (4)

s = a(l —s)sw(v) — (s.
As in (3), the first equation in (4) is the voltage equation, with voltage dynamics here
incorporating a low-threshold or T-type calcium current, It = grme(v)h(v — ve), in
addition to a leak current (I), and network ([y,,) and drive (I,,,) synaptic currents,
which take the same forms as in (3). The second equation in (4) describes the slow
inactivation of the calcium current; ho(v), 7,(v) are different functions here than in

(3); see the Appendix. Parameters are set such that prp(0) lies on {v = vy (h,0)} and

each cell is intrinsically excitable.
2.2.3 Half-center CPG based on neuronal adaptation (modified from [9])

In this case, we take

Cpv' = —Ig, — Lanp = I, = Lsyn — Lapp
Cd' = e(=gaalca(v) = kealCa = canase) (5)
s = ((1—8)se0(v) — ks)/7s
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The voltage dynamics, described in the first equation of (5), depend here on a calcium
current, Ico(v) = Jou((Caso(v))?)(v — veq), and a calcium-dependent potassium after-
hyperpolarization (AHP) current, Iup,(v,Ca) = ganp(v — ex)(Ca®)/(Ca® + k), in
addition to the leak and synaptic currents as previously described. The second equation
in (5) describes the slow evolution of the intracellular calcium concentration, based on
the inward calcium current and the deviation from a baseline calcium level, cap,s.; the
parameter gc, converts units of current to units of moles/time. Note that C'a here plays
the role of the variable h in system (1).

A key component of the adaptation case is that in the absence of coupling, each
cell has a unique stable critical point ppp(0) on the right branch of its v-nullcline,
{v = vg(h,0)}. What distinguishes this case from the persistent sodium example
described earlier is that here, vg(h,s) varies much more strongly with h, leading to
a much more significant decline in voltage during the active phase, instantiating the
adaptation. Moreover, the location of prp(0) is at a sufficiently low voltage, relative
to the synaptic threshold 6, in equation (2), that the synaptic current generated by an
active cell diminishes as the cell approaches ppp(0).

We consider two parameter sets for this model (see Appendix), which we call Case 1
and Case 2. These cases represent different balances of effects that result from increas-
ing drive, as we detail further below, but in both, adaptation is a crucial component
of phase transitions. Case 2 is more similar to what has previously been considered
in models featuring half-center oscillations with mutual inhibition and adaptation (e.g.
[27],[30],]29]), but we include both to emphasize that the adaptation mechanism sup-

ports more than one type of behavior in response to drive modulation.

2.3 Fast and slow subsystems

We will seek to establish conditions under which periodically oscillating solutions can
be constructed for systems (2.2.1), (2.2.2), and (2.2.3) under (H1) — (H2) and the
assumptions in Section 2.2, in the singular limit of € | 0. Results on geometric singular

perturbation theory suggest that this construction will yield the existence of nearby
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oscillating solutions for ¢ > 0 sufficiently small [18], although checking the details
rigorously may be technically involved.

To begin the analysis, let us call the points in (v, h) space where any two branches of
a cubic-shaped v-nullcline meet the knees of this nullcline. Specifically, under (H1), for
fixed s € I, the left branch (v (h,s), h) meets the middle branch (v (h, s),h) in the
left knee of the v-nullcline, while the middle branch meets the right branch (vg(h, s), h)
in the right knee. For each s € I, let prr(s) = (vpk(s), hrk(s)) denote the left knee
of the v—nullcline and, similarly, let pri(s) = (vri(S), hri(s)) denote the right knee
of the v-nullcline.

For system (1), there are associated fast and slow subsystems. The fast subsystem

is obtained by setting € = 0 directly and thus takes the form

vi = Fi(vi,hiss;), § # 1,

h; = 0,

s = aSeo(vy) (1 — 85) — Bsi, (6)
where we have absorbed C,, into F;. Recall that i € {1,2}, so (6) is a system of six
equations.

To define various slow subsystems, set 7 = et and let “dot” denote differentiation

with respect to 7. Under this rescaling of time, system (1) becomes, with i € {1,2},

ev; = Fi(vi, hiysj), j#1,

hi = gi(vi, hy),

€5 = So(v)(1 —s8;) — Bs;. (7)
The slow subsystems are obtained from system (7) by setting € = 0, solving the algebraic

equations, and inserting the results into the h-equation. This process yields, for each

ie{1,2},

hz’ = gi(UX(hia Sj)v hz)v ] 7A iv (8)
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for X € {L, M, R}. In equation (8), s; depends on v; and hence is a function of h;.
Consider the limit of o5 | 0 in equation (2). Since the branch vy (h, s) is unstable

with respect to the fast subsystem, there are four distinct slow subsystems (8) that

could theoretically be relevant. Two of these are obtained when cell 7 is silent and cell

j active for © = 1 or ¢ = 2, and each of these takes the form

hz’ - GL(hz) = g(vL(hia Sma:v)a hz)a (9)

hj = Gr(h;) == g(vr(h;,0), hy). (10)

The other two subsystems involve the cases that both cells are silent or active, but we
will not write these explicitly as it turns out that they will not be needed here.

A key point is that the singular solution consists of a concatenation of solutions of
systems (6) and (9)-(10) for i = 1,2. Projected to each (v, h)-plane, the solutions to
system (6) consist of jumps between branches of v-nullclines for different values of s,
while the solutions to the slow subsystems take the form of pieces of these nullclines.
Although the slow subsystems above correspond to o, | 0, solutions obtained in this
limit persist for small o, > 0 for the persistent sodium and postinhibitory rebound
models. In the case of adaptation, the smooth form of s, (v) in equation (2) becomes

more important. We will address this in subsection 2.4.3.

2.4 Half-center oscillation mechanisms

In this section we present the construction of periodic singular solutions for pairs of
identical cells mutually coupled with synaptic inhibition, each with dynamics governed
by one of the systems given in Section 2.2, under assumptions (H1)-(H2). This con-
struction will include the derivation of conditions for each of the four cases that are
sufficient to guarantee existence of such a solution. In this section we will focus on the

case that both cells have the same drive.
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2.4.1 Oscillations based on persistent sodium current

Figure 1A shows the nullcline configuration and the basic periodic orbit for two neurons
with persistent sodium current tuned such that, in the absence of coupling, each is
tonically active. The nullclines, from top to bottom, correspond to the following sets
of inputs: maximal inhibition plus baseline drive, maximal inhibition plus extra drive,
baseline drive without inhibition, and extra drive without inhibition. We now want to
construct a periodic singular solution under the assumption that both cells receive the
same, baseline drive, such that the extra drive nullclines can for the moment be ignored.

To simplify the argument, consider the limit as o5 | 0 in equation (2). An example
of how to deal with o, > 0 is given in subsection 2.4.3, where its positivity is important,
but taking os > 0 does not affect the qualitative outcome of the arguments given here.
Suppose cell 1 starts at (vg(hi,0), hy) for some hy € Ip = [hpp(0), hri (Smez)] and
cell 2 starts at pri(Smaz). Cell 2 jumps up immediately and inhibits cell 1. Since
h1 < hrk(Smaz), the resulting inhibition immediately induces it to jump down into the
silent phase. We track cells 1 and 2 under the flow of (9)-(10) until the first time that
cell 2 returns to prx (Smaz), say at t =ty > 0. Let l~L1 denote the h-coordinate of cell
1 at t = ty. The existence of a periodic oscillation is guaranteed if for all h; € I,
hy € int(Ig), the interior of Ip.

To establish this condition, let Ts(h;) be the time cell 1 spends in the silent phase,
on {v = v (h, Smaez)}, until it jumps up, at prr(Smaez). At that moment, cell 2 will
jump down if its h—coordinate lies in Ip. This will occur if Ts(hy) > T4, where T} is
defined as the time of evolution on the right branch from (vg(hrx(Smaz),0), Prg(Smaz))
to (vr(hri(Smaz),0)s hri(Smaz)), determined by the dynamics of (10). Since Ts(hy) is

a monotone decreasing function of hq, it suffices that

TS(hRK(Smam)) > TA- (11)

Now, if condition (11) holds, then cell 2 jumps down when cell 1 jumps up. Similarly,

since at that moment the A—coordinate of cell 2 lies in the interior of Ig, it follows that
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during the time it takes for cell 2 to evolve back to prx (Smaez) in the silent phase under
(9), the h—coordinate of cell 1 will return to the interior of I under (10). Thus, if we
view the above process as a map on the h—coordinate for cell 1, then this map contracts
I into the interior of I, and a fixed point, corresponding to a singular periodic solution,
exists. Moreover, there must be at least one stable fixed point of the map, and hence a
stable singular periodic solution, by this contraction result.

Finally, let (vgz(hi,0),h;) denote the position of cell 1 when cell 2 is at prx (Smaz)
along this periodic solution. By symmetry, which can be proved easily, the period of

the oscillation is 2Ts(hy).
2.4.2 Oscillations based on postinhibitory rebound

The nullcline configuration and the basic periodic orbit for two neurons with low—
threshold calcium current, tuned such that in the absence of coupling each is excitable,
are shown in Figure 1B. The nullclines, from top to bottom, correspond to the same
inputs as in the previous case: inibition only, inhibition plus extra drive, baseline drive
without inhibition, and extra drive without inhibition.

We now want to construct a periodic singular solution under the assumption that
both cells receive the same, baseline drive, such that the extra drive nullclines can be
ignored. Again, for simplicity, consider o, | 0. Suppose cell 1 starts at prx(0) and
cell 2 starts at (vg,(hi, Smaz), h1) for some hy € Iy, := [hpx(0), hpp(Smaz)]. Cell 1 jumps
down immediately and, because cell 2 is in I, the resulting fast decay of inhibition
immediately releases it to jump up into the active phase. We track cells 1 and 2 under
the flow of (9)-(10) until the first time that cell 1 returns to prk(0), say at t =t; > 0.
Let h; denote the h-coordinate of cell 2 at ¢t = ty. The existence of a periodic oscillation
is guaranteed if for all hy € I, hy € int(Iy,), the interior of I}

Similarly to subsection 2.4.1, we construct a map on the h-coordinate for cell 2. De-
fine T as the time of evolution from (vy, (hrk (0), Smaz), Pric(0)) to (v (AL (0), Smaz ), bk (0))
under (9) and T4 as the time of evolution from (vg(h,0),h) to pri(0) under (10). An

analogous argument to that from subsection 2.4.1 implies that if
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TA(hLK(O)) > Ts, (12)

then at least one stable, symmetric fixed point, corresponding to a stable singular
periodic solution, exists. If we let (vf,(h1, Smaz), P1) denote the position of cell 2 when
cell 1 is at pri(0) along this periodic solution, then the period of this oscillation is

2T (hy).
2.4.3 Oscillations based on neuronal adaptation

We focus now on oscillations based on adaptation. We consider a single parameter set
(Case 1), since the arguments giving existence of half-center oscillations in both cases are
identical. Figure 1C shows the nullcline configurations and the basic periodic orbit for
two neurons with calcium and AHP currents tuned such that, in the absence of coupling,
each cell adapts but settles to a tonically active state, as discussed in subsection 2.2.3.
Note that there exists a critical point on the left branch of the inhibited nullcline. This
means that an inhibited cell that evolves in the silent phase is not able to reach the left
knee unless the level of inhibition changes. This cell is dependent on getting released by
the cell which evolves in the active phase, in order to jump up. Choosing parameters
that yield this nullcline configuration ensures that the half-center oscillation in this case
truly incorporates an adaptation-based mechanism.

As above, we now construct a periodic singular solution under the assumption that
both cells receive the same, baseline drive. To do so, we need to consider the slow
subsystem for the adaptation case. Suppose that cell i is silent, with v; = v (Ca;, s;),
and cell j is active, with v; = vg(Caj,s;). Assume that since cell ¢ is silent, s; = 0.

From equations (2),(7), with C'a in place of h, we have

aSeo(vR(Caj,0))

s; = s(Cay;) == 13
I (Ca;) @Soo(VR(Caj,0)) + (13)

in the singular limit. Thus, the slow subsystem becomes
Ca; = g(vi(Cay, s(Caj)), Ca;), 14)

Caj = g(vR(Cajao)aoaj)7

15



for g given by the C'a-equation in system (5) and j # i € {1,2}. Of course, to be precise,
even if cell 7 is silent, s; will be small but nonzero. In the rest of this subsection, we
assume that the inhibition from a cell shuts off when it is silent, such that s; = 0 here.

We will track the dynamics of a pair of cells using system (14). Even though each
s is a fast variable slaved to the corresponding Cla, it is useful to visualize the cells’
trajectories in a common (Ca;, s;) plane, shown in Figure 2A. We emphasize here that
j # i, which is appropriate since the term s; = s(Ca;), but not the term s;, appears
in the differential equation for Ca;. In this figure, a cell that is silent jumps up to the
active phase when it hits the curve of left knees, prx(s) = {(vr.(Cark(s),s), Cark(s)) :
s € 10, Spmaz|}- If cell 2 jumps up from the silent phase and cell 1 jumps down from the
active phase at the same time, then the trajectory of cell 2 is a vertical segment from
a point on pri(s) to {s = 0}, while the trajectory of cell 1 is a vertical segment up
from {s = 0} to some {s = § > 0}. If prx(0) is not too large, then § & s,,4:, and for
simplicity we take § = S, in Figure 2. After such a pair of jumps, cell 2 evolves along
{s = 0} in the active phase while cell 1 evolves in the silent phase, under the dynamics
of system (14).

We define (Ca,,0) as the point at which the curves of fixed points and left knees
intersect (see Figure 2A), and therefore Ca, is the minimal C'a—value at which the cell
in the silent phase is able to jump up. Suppose that cell 1 starts in the active phase
with Ca; € Ig := [Cark(Smaz), Capp(0)] (and with v; = vg(Cay,0) and s = s(Cay)
correspondingly), and that cell 2 starts in the silent phase with (Cay, v9) = pri(s1),
with Cay € Iy, := [Ca,, Cari(0)] (and with s, = 0). We can represent our set of initial
conditions as a rectangle in (C'ay, C'ay)-space, as shown in Figure 2B, since there is a
1-1 correspondence between s and C'a along prx(s). In analogy to the previous two
subsections, we track cells 1 and 2 under the flow of (14) until the first time that cell 2
returns to the curve of left knees pyx(s), say at ¢t = ¢t; > 0, if this return occurs. Let Ca
denote the C'a-coordinate of cell 1 at ¢ = ¢; and Cay = Cark(51) the Ca—coordinate of
cell 2 at that time. The existence of a periodic oscillation is guaranteed if ¢; exists and

for all (Cay,Cay) € Req := I, x Ig, (Cay, Cay) € int(Re).
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Suppose that a cell is active and the inhibition it receives jumps from s =0 to s =
Smaz- That cell will jump down if and only if its Cla—coordinate is above Cagrg (Smaz)-
Thus, the existence of a periodic solution of the type we seek will require that when

each cell is active, its C'a—coordinate rises above Capk (Smas). Hence, t; exists if

o > $(Cark(Smaz)), (15)

for s(Ca) defined in equation (13), and (15) is our first existence condition. This
condition could be weakened by replacing Cagg (Smaez) With any value in int(Ig), in
which case this value would be substituted for Cagx (Smaz) in the arguments below, but
we neglect this possibility here for clarity.

We have assumed that, in the (Ca;, sj)-plane, cell 2 starts at pyx(s1) for s; € [0,0],
such that Cay € Iy, and cell 1 starts at (Cay, 0) with C'a; € Ig. From this configuration,
cell 2 jumps up immediately and, because cell 1 is in I, the resulting inhibition induces
it to jump down into the silent phase. As long as (15) holds, cell 1 will eventually reach
pri ($) and jump up again. How long this takes to occur depends on C'ay at time 0, since
the time course of C'ay controls the time course of s(C'ay), the inhibition from cell 2 to
cell 1, and on the value of C'ay. If we fix the initial C'ay € Iy, then the amount of time
it takes for cell 1 to reach pk(s) is a monotonically increasing function of Ca; € I,
due to the slope of prx(s). Define ®(t;Ca) as the solution of the second equation of
(14) with initial condition C'a. Define Tx(Ca) by ®(T4(Ca); Ca) = Cagrk (Smaz). Define
Ts(Ca) as the time it takes to evolve system (14) with i = 1, j = 2 from initial condition
(Cay,Cas) = (Cark (Smaz), Ca) until cell 1 hits prr(s). Given any initial condition on

Rc., it follows that cell 2 will be in position to jump down when cell 1 hits prx(s) if
TA(OCLQ) < Ts(CCLQ), V Cay € I, (16)

Note that cell 1 must jump up with Ca; > Cark(0), since s, cannot actually reach
0 while cell 2 is active, and cell 2 must jump down with C'ay < Capp(0). Finally,
given conditions (15),(16), repeating the argument one more time gives (Cay, Cay) €
int(Rca), such that a singular periodic solution exists, and numerical simulations (e.g.

Figure 1C) indicate that this solution is symmetric.
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Gappo | Telative g,,, range | relative T' range | AT/Agqpp
Persistent sodium 0.235 | 0.383 1.28 3.34
Postinhibitory rebound | 0.05 | 1.80 0.197 0.110
Adaptation, Case 1: 0.815 | 0.331 0.576 1.74
Adaptation, Case 2: 0.63 | 1.59 0.356 0.224

Table 1: Changes in oscillation periods and drive conductances in the balanced case.

3 Control of Oscillation Period and Phase Dura-
tions

For each half-center oscillation mechanism, an example of the basic, or reference, peri-
odic orbit that exists when both cells receive the same, baseline drive is shown in Figure
1. We refer to this as the balanced case. When the conductance g, of the baseline
drive current to both cells is varied, by an amount that is not too great, each periodic
half-center solution will persist, although the period will change. If the drive is changed
enough, then the number of stable states may change, and the periodic oscillation itself
may be lost. We did not explore additional branches of solutions, but rather focused
on the single branch of oscillations that we followed from a baseline value of g,,,. For
this branch, we computed how the half-center oscillation period varies over a range of
Japp for each case. We display the results in Figure 3 and summarize them in Table
1. Here, gqpp, is defined as the midpoint of the range of g¢,,, over which oscillations
were observed, the relative g,,, range is given by the total range divided by ¢4,,, the
relative T" range is given by the maximal period minus the minimal period, divided by
the period Ty occurring at ¢ = gapp,, and AT/Ag,,, is the relative T' range divided
by the relative g, range. In brief, while the postinhibitory rebound mechanism yields
oscillations over the greatest relative range of g,,, values, the persistent sodium mech-
anism shows the greatest relative range of periods as well as the greatest sensitivity of
period to changes in drive conductance.

Note from Figure 3 that the two different adaptation cases that we consider show
monotone and non-monotone relationships of oscillation period to gy, respectively. In
Case 1, the dominant effect of increasing g, is that the left knee of each nullcline is

raised, due to the fact that the silent phase, but not the active phase, lies far from the

18



excitatory synaptic reversal potential. In Case 2, we have changed the excitatory rever-
sal potential as well as the synaptic threshold and maximal synaptic conductance s,,,q; .
For relatively small g,,,, phase transitions require substantial decay of the inhibitory
conductance s. Thus, each cell jumps up to high v, with small C'a, and periods are
long (Figure 4A). Increases in gy, induce two effects, both tied to the fact that the
v-nullcline shifts up for each fixed s. As in Case 1, the rise in the left knee of the v-
nullcline promotes earlier phase transitions. Additionally, however, the new excitatory
reversal potential allows a more significant change in the active phase, such that at each
(Ca, s), the active cell has larger v. Coupled with the voltage-dependence of s indicated
in equation (2), this effect leads to stronger inhibition to the silent cell and also delays
adaptation, thereby promoting longer active phase durations and period. As seen in
Figure 3, the former effect dominates for small increases in g,p,, while the latter takes
over as gqpp increases further, leading to a non-monotone dependence of period on ggp,.

In the subsequent subsections, we consider what happens if the drive to just one
cell is increased, for each half-center oscillation mechanism. We refer to this situation
as the asymmetric case. Without loss of generality, we assume that cell 1 receives the
additional drive, corresponding to gupp, > Gapp,- Note that all variables that describe
the dynamics of cell 1 are marked with the A-symbol to distinguish these variables
from the ones describing the dynamics of cell 2, the cell receiving baseline drive. For
each half-center oscillation mechanism introduced in Section 2, we assume that there
exists a periodic half-center oscillation (in the singular limit, at least) and we establish
sufficient conditions for this type of solution to persist as drives become asymmetric.
First, we consider how the silent and active phase durations for each cell change as a
result of the increase in drive to one cell.

Figure 5 illustrates the changes in silent phase durations observed numerically for
several values of g, in the four analyzed cases. More specific quantitative findings are
presented in Table 2. To generate this table, we defined the relative range of ggp,, as the
range of g,,,, over which oscillations were maintained, divided by g¢4p,, the midpoint

of the interval of g,,, over which periodic oscillations exist in the balanced case (as well
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Gappo | €l Gapp, range | rel T, range | rel T, range | ATg, /AT
Persistent sodium 0.235 | 0.438 2.30 0.0167 0.993
Postinhibitory rebound | 0.05 | 2.40 0.0582 0.181 0.243
Adaptation, Case 1: 0.815 | 0.270 0.544 -0.0187 1.04
Adaptation, Case 2: 0.63 | 1.43 0.722 -1.49 0.624

Table 2: Changes in drive conductances and silent phase durations in the asymmetric case
(rel abbreviates relative).

as the drive to cell 2 here). Moreover, we defined the relative range of Ts, (Ts,) as the
range of silent phase durations for cell 1 (cell 2) divided by Ts,, the silent phase duration
for both cells with gupp, = Gapps = Gappe- Finally, ATs, /AT denotes the observed range
of Tg, divided by the range of oscillation periods, which represents a measure of the
phase independence, or degree to which changes in period are attributable to changes in
silent phase duration for the oscillator receiving extra drive. Note that oscillations are
maintained over the greatest relative range of drive asymmetries in the postinhibitory
rebound model, while the greatest range of phase durations achieved by changes in
drive to cell 1 is observed in the persistent sodium model, specifically in the silent
phase duration for cell 1. Crucially, the persistent sodium model displays the greatest
capacity for independent phase modulation, exhibiting strong changes in the silent phase
duration of cell 1 and negligible changes in the silent phase duration of cell 2 when the
drive to cell 1 alone is modulated; the adaptation model in Case 1 displays a rather
high degree of phase independence as well, although it achieves a more limited range of
oscillation periods.

Finally, Table 3 qualitatively summarizes the changes in silent and active phase
durations for cells 1 and 2 shown in Figure 5. In Table 3, the number of symbols in each
entry in Table 1 corresponds to the relative strength of the effect. Note that, consistent
with the results with balanced drive, Case 1 of adaptation represents an intermediate
case between the persistent sodium model and a strong adaptation regime, represented

by Case 2 (see also subsection 3.3 and Section 4).

20



cell 1 silent | cell 2 silent
Persistent sodium | ----- -
Postinhibitory rebound | - - -
Adaptation Case 1: --- +
Adaptation Case 2: --- ++++

Table 3: Qualitative summary of the observed changes in phase durations.

3.1 Half-center CPG based on persistent sodium current

Recall that for the persistent sodium half-center oscillator, phase transitions occur when
the cell from the silent phase reaches the appropriate left knee and jumps up to the
active phase, inhibiting the cell that is already there. For the balanced case gupp, = gapps-
the single condition (11) suffices to give the existence of a stable half-center oscillation.
Condition (11) ensures that when the active cell becomes inhibited, it immediately
jumps down to the silent phase.

As shown in Figure 1, once gapp, > Gapp,, there are four nullclines to consider for the
coupled pair of cells. Nonetheless, if gy, is not increased too much, then both cells
have critical points in the active phase in the absence of coupling (lower nullclines in
Figure 1), corresponding to sustained tonic spiking, and the phase switches still occur
when each silent cell reaches its left knee and jumps up.

Recall that we will use the symbol A to label structures defined for extra drive
and no extra symbol to label baseline drive structures. In tracking cells during time,
note that 7;(0), hz(0) refer to the cells’ h-coordinates at time ¢ = 0, while h,(0),
he(0) for z € {LK,RK,FP} refer to the h-coordinates of various structures with
inhibition s = 0. Suppose the cell with the extra drive (cell 1) starts in the active
phase at (65(hi(0),0),h1(0)) and the other cell (cell 2) starts in the silent phase at
(vLK (Smaz)s PLi (Smaz)), poised to jump up (see Figure 6A). We can assume that iLI(O) >
hip(0), since (6pp(0), hpp(0)) is a fixed point on the right branch of the appropriate
nullcline. Cell 1 will jump down when cell 2 jumps up as long as lAzl(O) < ERK(smam).
Thus, the minimum time that cell 1 spends in the silent phase is the time of evolution

from {h = hrx (Smaz)} 10 {h = hpx(Smez)} under the flow of (9), call it T4.
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Similarly, when cell 1 jumps up, the relevant range of values for the h—coordinate of
cell 2, call it hg(Té), over which cell 2 can jump down is (hgp(0), hrk (Smaz)). Thus, one
condition for the existence of a periodic half-center oscillation, in the singular limit, is
T4 > T2, where T? is the time of evolution from {h = Ak (Smaz)} t0 {h = hrx (Smaz)}
under the flow of (10). Further, the minimum time that cell 2 spends in the silent phase
is the time of evolution from {h = hrk(Smaz)} t0 {h = hpk(Smaz)} under the flow of
(9), call it T2. When cell 2 jumps up, cell 1 will be able to jump down as long as
T2 > T}, where T} is the time of evolution from {h = hzx ($maz)} 10 {h = hrk (Smez)}
under the flow of (10). In summary, the existence of a singular, periodic half-center
oscillation when gapp, > Gapp, follows from a pair of conditions, 74 > T3 and T2 > T7,
that are the natural generalization of (11). Next, we consider how the durations of
various phases change as g, is increased.

First, note that in this half-center oscillation, the silent (active) phase of cell 1 co-
incides with the active (silent) phase of cell 2. Thus, there are really only two changes
to consider. Second, note that the key to understanding these changes is understand-
ing how changes in g,,, affect the v-nullcline. We now list several properties of the
v-nullcline, specifically some effects on the v-nullcline achieved by varying gep,. To un-
derstand this discussion, recall from our original, general system of equations (1) that
F(v,h,s) denotes dv/dt (without loss of generality, we set Cp, = 1). We now refer to
this quantity as F'(v, h, S, gapp), to make explicit the role of g,,,. Similarly, the branches

of the v-nullcline can be expressed as vy (h, s, gopp) for X € {L, M, R}.

(E'1) An increase in g4y, causes the v-nullcline for cell 1 to shift to a lower h value for
each fixed v < 0, and to a higher h value for each fixed v > 0, since we assume
that the synaptic drive current reverses at v,,, = 0. Importantly, the size of the
shift is proportional to v — v,,, = v. Thus, the greatest effects of the increase

appear in the silent phase, where
ovr,(h, S, Gapp)/OGapp > 0. (17)

(E2) Implicit differentiation of F'(vy(h, S, gapp), P, S, Japp) = 0 yields
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v, /Oh = —(0F/0h)/(0F /0v). Moreover, OF /Oh = —gnapMoo(vL) (VL — Upg) ON
the left branch, where m.,(vy) is small, due to the deactivation of Iy,p. Hence,
away from the left knee, where 0F/0v = 0, we have that |Ovy/0h| is small.
Correspondingly, large shifts in the v-nullcline in the h direction due to changes

in gqpp are translated into much smaller changes in vy,.

(E3) Instead of expressing the v-nullcline as vy, U vy U vg, we can instead express it
as the graph of a function h,, where F(v, h,(v, S, Gapp)+ S» Gapp) = 0. The knees of

the v-nullcline satisfy

0 = N(U, Sa gapp) = Fv(va hn(U, 87 gapp)a Sa gapp)- (18)

In particular, the left knee is given by (vrx (S, Gapp), PLE (S, Japp)), Where vk (S, Gapp)

is one solution of (18) and hrx (S, Japp) = hn(VLK (S, Gapp), S, Gapp)- Thus,

8hLK/8gapp - (8hn ('ULK; S, gapp)/av) (8'ULK/agapp) + 8hn ('ULK; S, gapp)/agapp-

Since the knees are exactly the points where dh,,/0v = 0 and Ovpi/0¢ap, is fi-
nite, this equation gives 0hrx/0Gapp = Ohn (VLK Sy Gapp)/OGapp- Direct calculation

yields

Ohn (VLic, S5 Gapp) [ OGapp = (=LK )/ (GnapMeo (VLK) (VLK — Vna))- (19)

Now, the numerator in equation (19) is bounded well above zero, since in the silent
phase, including the left knee, v is significantly below zero. The denominator,
however, is negative and small, reflecting the deactivation of In,p in the silent
phase. Hence, the h-coordinate of the left knee decreases significantly as g,

increases.

We also append one additional hypothesis to this list of effects.
(H3) With baseline drive, hyx & hoo (Vi K)-

Assuming (H1) — (H2), effects (E1) — (E3) follow, and from these and (H3), we

can deduce the temporal effects of changing g,,,,. Recall that we previously used h; to
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denote the initial A-coordinate of cell 1, in the active phase in the half-center oscillation
that we proved exists in the balanced drive case. Let hi(t) denote the h-coordinate of
cell 1 along this balanced half-center oscillation, with h;(0) = h;. Suppose that in the
asymmetric case, at time ¢t = 0, the h-coordinate of cell 1 lies at h; as well, and let ﬁl(t)
denote the h-coordinate of cell 1 in the ensuing solution, also assuming, as previously,
that at time 0, cell 2 lies at (vpx (Smaz)s ALK (Smaz)). We will compare hy (t) to hy(t). In
a nutshell, we will note that when g,,,, is increased, one effect pushes h; (t) above hy (t)
while another does the reverse, but these effects are weak. Beyond these, the dominant
effect of increasing g,y is, as stated in (E3), that hpk is significantly decreased, which
leads to a much shorter silent phase duration Tbl for cell 1 relative to the silent phase
duration Tg of both cells in the balanced case.

To establish all of these claims, we first note that if we let time flow in the asymmetric
case from the initial configuration just described, then cell 1 jumps down immediately
as long as gapp, — Japp, 18 NOL too large, since cell 2 instantly jumps up and inhibits cell
1. Cell 1 evolves on the left branch {v = 01, (h, S;me)} under (9), since it receives extra
drive. Since (17) holds, vy, (h, Smaz) < 91 (h, Smaz) for each fixed h, including h = h;.
Hence, hoo(vr (R, Smaz)) > hoo(0r (R, Smaz)) for fixed h. Thus, for small ¢ > 0 at least,
hn(t) > hu(t) and hi(t) > ha(2) follows.

This initial calculation hints that increased drive may lead to a longer residence time
in the silent phase. However, this effect is quite small. Indeed (E2) implies that large
shifts in the v-nullcline in the h direction, corresponding to the size of Ohy /0., =
—0/(GnapMeoo (V) (U — Unq)), are rescaled into much smaller shifts in vy, for each fixed h
away from the knee, including h = h. Moreover, another small effect works to oppose
this small one. Since 0h,,/0¢ay, < 0 from the above expression, it follows that if h;(¢)
gets too far ahead of h(t), such that vy (t) = &;(£), then lizl(t) > hy(t), and the lead of
hi(t) over hy(t) will decrease.

Because the total effect of these factors is weak, the dominant impact of increasing
Gapp, 18 its effect on the left knee, presented in (E3). That is, since Ohpx /0y, is nega-

tive and has large magnitude, the net effect of increasing gqp)p, is that T§ is significantly
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shorter than Ts. This means that cell 1 spends a shorter time in the silent phase, and
correspondingly cell 2 spends a shorter time in the active phase, in the asymmetric
drive case.

The shorter active phase residence implies that cell 2 jumps down with hy(T4) > h.
Thus, even though cell 2 evolves according to (9) in the silent phase, exactly as in the
balanced drive case, its silent phase residence time satisfies T2 < Ts. We note, however,
that the difference between T2 and Ts is very small. The small size of this change
follows from two effects. First, assume that the existence conditions for the periodic
half-center oscillation hold, such that hy(T%) € (hpp(0), hri (Smas)), and that hpp(0)
is close to hgi(Smaz), as in Figure 6. These assumptions constrain fairly tightly the
position of hy at jump-down. Second, assume that property (H3) holds, as also shown
in Figure 6. Under this assumption, the rate of change of hy becomes quite slow when
cell 2 is in the neighborhood of the left knee in the silent phase, and the time T2 is
dominated by the time spent in this neighborhood, which washes out small differences
in jump up positions.

Finally, repeating the above arguments yields a sequence of successively shorter
silent phase durations for each cell. Both sequences must converge, if the existence
conditions for a half-center oscillation are satisfied. If (H1) — (H3) hold and these
conditions are satisfied, then effects (E'1) — (E3), which we have shown to be inherent
in the persistent sodium half-center oscillation mechanism, imply that the silent phase
duration for cell 1 (and active phase duration for cell 2) ends up much shorter than in
the balanced drive case, due predominantly to the change in knee positions specified in
(E3), while the silent phase duration for cell 2 (and active phase duration for cell 1) is

only very slightly decreased (see Figure 6 B).

3.2 Half-center CPG based on postinhibitory rebound

For the postinhibitory rebound half-center oscillator, phase transitions occur when the
cell from the active phase reaches the appropriate right knee and jumps down into the

silent phase, releasing the cell that is already there to jump up into the active phase. For
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the balanced case gapp, = Gapp, the single condition (12) suffices to give the existence of
a stable half-center oscillation. Condition (12) ensures that when the silent cell becomes
released, it immediately jumps up to the active phase.

As shown in Figure 1 and Figure 7A, once gapp, > Gapp,, there are four nullclines to
consider for the coupled pair of cells. Nonetheless, if gqpp, is not increased too much,
then both cells have critical points in the silent phase in the absence of coupling (upper
nullclines in Figure 1), and the phase switches still occur when each active cell reaches
its right knee and jumps down.

As in Section 3.1, the existence of a singular, periodic half-center oscillation when
Japps > Japp, follows from a pair of conditions, T% > T4 and T} > T2, that are the
natural generalization of (12). Here, T3 is the time of evolution from {h = hrx(0)} to
{h = hrk(0)} under the flow of (10), T4 is the time of evolution from {h = hgx(0)} to
{h = hyx(0)} under the flow of (9), T} is the time of evolution from {h = h;x(0)} to
{h = hrk(0)} under the flow of (10), and T2 is the time of evolution from {h = hg (0)}
to {h = hpx(0)} under the flow of (9).

Next, we consider how the durations of various phases change as g,,,, is increased.
We will explain why the silent and active phases of both cells become shorter, but not
much shorter, for our biologically relevant parameter set, as seen in Figure 7. As in
Section 3.1, we list several properties of the v—nullcline, including some effects on the
v-nullcline achieved by varying g,,,. The postinhibitory rebound case differs from the
persistent sodium case in that the persistent sodium current In.p = gnapmoo(v)h(v —
ena) is replaced by a T-type calcium current I = grmeo(v)h(v — ve,). Therefore,
analogously to Section 3.1, we have 0F/0h = —grmuo(vr) (v, — veq) With small me(v)

over the silent phase, and the following conditions hold:

(E1) An increase in g,ppy, causes the v—nullcline for cell 1 to shift to a lower h value

for each fixed v < 0, and to a higher h value for each fixed v > 0, with

ovr,(h, S, Gapp)/OGapp > 0. (20)

The size of the shift in the v-nullcline is proportional to v, such that Ovg (R, gapp)/0Gapp
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is quite small for all relevant h.

(E2) Large shifts in the v-nullcline in the A direction due to changes in g, are trans-

lated into smaller changes in vy,.

(E3) Based on calculations analogous to the derivation of (19) and the small size of
(—vrK)/91M o0 (VRK ) (VRK — Una) for each vgk (0, gapp), the h-coordinate of the left
knee decreases significantly as gqp, increases, while the h-coordinate of the right

knee changes negligibly.

We also append one additional hypothesis to this list of properties, since this arises

for the parameter regime that we consider.
(H3) The fixed points lie on the steep part of the hA—nullcline.

Assuming (H1) — (H2), effects (E1) — (E3) follow, and we also assume (H3). Let
hy(t) denote the h—coordinate of cell 1 along the balanced half-center oscillation de-
scribed in section 2.4.2, with hq(0) = hrk(0). Suppose that in the asymmetric case, at
time ¢ = 0, the h-coordinate of cell 1 lies at hrx(0) as well, and let A, (t) denote the
h-coordinate of cell 1 in the ensuing solution, also assuming, as stated above, that at
time 0, cell 2 lies at (vr,(h1(Smaz)s Smaz)s P1(Smaz)). Cell 1 jumps down when it reaches
{h = hgxk(0)}, which occurs almost immediately since (E3) implies hgrx (0) & hrx (0).
The location of cell 2 implies that it jumps up instantly in response to the associated
release from inhibition. In the silent phase, we have hy () < hy(t) due to (E1). Because
cell 2 receives no extra drive, it jumps down after essentially the same active phase
duration T present in the balanced case, with hy (T4) < hy(T4). Thus, cell 1 enters
the active phase at a smaller A than in the balanced case. Cell 1 jumps down from the
active phase when hy = hrg(0). As noted above, (E3) implies that hgg (0) & hrx(0).
Hence, the active phase duration T} satisfies 7% < T4. As a result, cell 2 jumps down
from a smaller A value than in the balanced case. Repeating the above arguments
yields a sequence of successively shorter silent phase durations for each cell. Moreover,
both sequences must converge, if the existence conditions for a half-center oscillation

are satisfied.
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Now, we have established that the durations of all phases of the oscillation become
shorter when extra drive is applied to one cell in the postinhibitory rebound case. We
now explain why these changes are, in fact, quite small (e.g., see Figure 7B). The changes
observed are all linked to the fact that, given the same starting h—coordinate in the silent
phase, a cell receiving extra drive reaches a smaller h before release from inhibition than
a cell receiving baseline drive. There are four possible effects that could squelch this
difference, and three of them are observed for our system. The first possibility is that
the fixed point in the silent phase lies at similar h-values as g, varies and jump up
occurs near the fixed point. But this is not observed here, by (H3); indeed, (H3) helps
ensure that the changes in phase durations are non-negligible. Given that the fixed
points are at quite different values, the second and third possible effects both follow
from the fact that the rate of change of A is sufficiently faster in the active phase than
in the silent phase. This difference means that the cells jump up from positions far
below their respective fixed points, before they have time to spread out substantially.
It also implies that differences in A at jump up translate into very small differences in
time spent in the following active phase. We observe both of these effects (see Figure
7). Finally, (F2) helps bound the differences in rate of change of h in the silent phase
between the cells with and without extra drive, although this is not a strong factor for

our postinhibitory rebound model.

3.3 Half-center CPG based on neuronal adaptation

For the balanced half-center oscillator based on adaptation, phase transitions occur
when the inhibition to the cell in the silent phase has decreased enough so that the
cell reaches the appropriate left knee and jumps up to the active phase, inhibiting the
cell that is already there. For the balanced case gapp, = Gapp,, the conditions (15),(16)
suffice to give the existence of a stable half-center oscillation. These conditions ensure
that the cell in the silent phase is able to reach the curve of left knees ppx(s) and that
when the active cell becomes inhibited, it immediately jumps down to the silent phase.

As in subsection 2.4.3, we focus on Case 1. This choice is motivated by the fact that
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the Case 1 model is more similar to the persistent sodium model than is Case 2. Hence,
the differences between Case 1 and persistent sodium that we illustrate will be even
stronger between Case 2 and persistent sodium (see Table 1), by completely analogous
arguments.

As shown in Figure 1C, once gopp, > Gapp,, there are four nullclines to consider for
the pair of coupled cells. If g,,,, is not increased too much, then both cells have critical
points in the silent phase in the absence of coupling, and the phase switches still occur
when each cell reaches its left knee and jumps up. The shifts in the nullclines yield a
new value & where the fixed point curve meets the curve of left knees for the cell with
extra drive and new intervals I7, I analogous to I, I in subsection 2.4.3 and Figure
2; see Figure 8. In the case with gapp, > Gapp,, establishing the existence of a singular
periodic solution requires that both of the jumping conditions are met both when cell 1
is silent and cell 2 is active and vice versa. The arguments in subsection 2.4.3 generalize
immediately to imply that the solution exists if two pairs of conditions are met. The

first pair of conditions are
o > 5(Car ($mazr))s and & > s(Cagx (Smaz)),

where o () is the s value at which the curves of fixed points and left knees intersect for
baseline (extra) drive, as in subsection 2.4.3 and s(Ca), §(Ca) are given by evaluating
equation (13) at vg(Ca,0) and 9z(Ca,0), respectively. The second pair of conditions
are

TA(Ca) < Ts(Ca),¥YCa € Iy, and Tx(Ca) < Ts(Ca),¥Ca € Iy,

where 7' terms denote evolution times for the cell with extra drive.

Next, we consider how the durations of various phases change as g,,,, is increased.
As in Sections 3.1 and 3.2 we want to understand how changes in g, affect the v—
nullcline. Analogously to the previous sections, we catalog a set of effects that g,
has on the v-nullcline. To do this, we now write dv/dt = F(v,Ca,s, gapp), to make
explicit the role of g,,,. Similarly, the branches of the v-nullcline can be expressed as

vx(Ca, s, gapp) and vx(Ca, S, gapp) for X € {L, M, R}, depending on the level of drive.
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(E1) An increase in gqp,, causes the v-nullcline for cell 1 to shift to a higher C'a value
for each fixed v < 0, and to a lower Ca value for each fixed v > 0. The size of
the shift is proportional to v — vg,, = v. Thus, the greatest effects of the increase

appear in the silent phase, where duvy,(Ca, s, Gapp)/OGapp > 0.

(E2) Large shifts in the v-nullcline in the Ca direction due to changes in g,,, are

translated into smaller changes in v.

(E3) The Ca—coordinate of the left knee increases significantly as g,,, increases.

We append four additional hypotheses to this list of effects.

(H3) The Ca—nullcline intersects the inhibited v—nullclines on their left branches
v (Ca, s, gapp) for s sufficiently large. Therefore, the cell in the silent phase is
not able the reach the left knee when it is maximally inhibited, and phase switch-
ing depends on there being some decay of synaptic strength, due to the evolution
of the cell in the active phase. Note that despite this second intersection, we
use (vpp, Capp), (Opp, éapp) to denote the fixed point on the right branch of the

uninhibited nullcline for the baseline and extra drive cases, respectively.
(H4) |0Cark/0s| is sufficiently large.

(H5) Adaptation of the active cell becomes significant only near its fixed points (i.e.,

0, in equation (2) is near vpp).

(H6) The fixed points satisfy vpp < vgpp, and the Ca—nullcline is not too steep where

they occur.

Below, we clarify what is meant by (H4) and (H6).

Assuming (H1) — (H2), effects (E1) — (E3) follow. We now deduce the temporal
effects of changing g,,,,. Qualitatively, the cells still follow trajectories in the (Ca, s)
plane that are similar to those in Figure 2A, although the relevant range of C'a for cell
1 shifts as discussed above. Assume that at time 0, cell 2 lies at its jump up point from

the balanced case, (vLk(s), Cark(s)) for some s € (0, Spaz), and cell 1 lies at its jump
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down point from the balanced case, with 6’21 € Ig. Cell 2 jumps up and evolves under
equation (10) along the same path it followed in the balanced case until cell 1 jumps up
again. We consider how long it takes for this to occur, relative to the balanced silent
phase duration Ts. By (E1), and the form of the equations in system (5), C'a; evolves
more slowly than in the balanced case, following a different path in (Cay, s2)-space as
sy decays, which is necessary by (H3). On the other hand, by (E3), the curve of left
knees lies at larger C'a; for cell 1 than in the balanced case; that is, @LK > Car i for
each s. The key question is, does s, decay more or less than in the balanced case by
the time cell 1 hits the curve of knees?

The answer depends on how Ca and Cay e change with Gapp s well as on |0Cay i /0s|,
as illustrated in Figure 8 A and B. If Ca depends strongly on ¢,,,, then this promotes
a long silent phase (dotted curves in Figure 8). However, this case is not what we ob-
serve, by (E2). On the other hand, (F3) implies that C'apx increases significantly with
Japp, Which prevents the silent phase from becoming too long and could potentially even
shorten it. Finally, a large |0Carx/0s|, as assumed in (H4), also promotes a shorter
silent phase, as shown in Figure 8. In sum, while the effect is weak due to the slower
evolution of C'a; in the silent phase relative to the balanced case, C'a; at jump-up will
be larger in the asymmetric case, and the silent phase T§ will be shorter than Ts under
(H1) — (H4); see Figure 8B. We next show that cell 1 jumps down at similar Ca in
both cases, such that these arguments persist beyond the first oscillation cycle.

To do this, we continue to follow cell 1 beyond its jump up to the active phase. As
we just showed, the jump up occurs at a larger C'a than in the balanced case, which
could promote a shorter active phase. By (H3), however, the cell in the active phase
must reach a sufficiently large C'a for adaptation to become significant and release the
silent cell. Moreover, by (H5), this release requires the active cell in each case to reach a
small neighborhood of its fixed point, which compresses the difference in C'a. Finally, a
key point is that by (H6), Capp > Capp and ipp > vpp. The latter inequality implies
that s; will adapt more slowly in the asymmetric case than in the balanced case, causing

cell 2 to spend a longer time in the silent phase. If the C'a—nullcline were very steep at
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the fixed point, then the difference vzp —vpp would be very small in magnitude. Under
(H6), this difference is more significant, although it may still be quantitatively small,
ensuring that this is the dominant effect in determining the phase duration. Moreover,
(H6) also implies that Capp—Capp is small and hence cell 1 jumps down from a similar
Ca—value in both cases, as claimed.

Figure 9 illustrates the adaptation case with increased g¢qp,, when (H1) — (H6), and
hence (E1) — (E3), hold. The jump down point of the reference orbit (balanced case,
black) is close to the critical point. Figure 9 shows that the duration of the silent phase
of cell 1 and therefore the active phase of cell 2 is shorter compared to the asymmetric
case. The duration of the active phase of cell 1 and therefore the duration of the silent

phase of cell 2 is prolonged.

3.4 Slow synaptic decay

In the previous sections, we analyzed the effect of increasing g,,,, when synaptic decay
occurs on the fast timescale. Our results carry over directly when synaptic decay occurs
on the slow timescale. Slow synaptic decay is modelled by assuming 5 = O(e) in systems
(3) and (4). This assumption implies that S;q, = 1 in the singular limit, but we will
continue to refer to s,,,, for consistency with previous sections.

Figure 15 illustrates the changes in silent phase durations for cell 1 and 2 for several
increased values of g,,,, in the model systems that we consider, with slow synaptic
decay. The results are qualitatively identical to those in Figure 5. In some cases, the
effect of changing g,,, is quantitatively weaker when the synaptic decay is slow, and the
range of gapp, /Gapp, Over which half-center oscillations exist may be reduced. In Figures
11A, 12A, 14A, the baseline drive nullclines and the extra drive nullclines are closer
together than in the fast synaptic decay cases due to correspondingly smaller choices
of Gapp-

The mechanisms that contribute to the observed changes in phase durations are

similar across synaptic decay rates. The analysis, however, becomes more complicated
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when synapses decay slowly. The simplest aspect to analyze is the existence of a pe-
riodic singular bursting solution with gap,, = gapp, in the persistent sodium model,
which we consider here. Suppose cell 1 starts at (vg(hi(0),0),h1(0)), with hy(0) €
[hrp(0), hri (Smaz)] and cell 2 starts at (vnx (Smaz)s PLi (Smaz)); see Figure 10A. Cell 2
jumps up to the right branch of the inhibited v—nullcline, to (vr (AL (Smaz)s Smaz)s Pric(Smaz))-
Cell 1 is inhibited by cell 2 and jumps down to the silent phase, because hi(0) €
[hep(0), hrk (Smaz)]. While cell 2 evolves in the active phase, the inhibition to cell 2
slowly decays to a value, say p, during the time, say Ty, that cell 1 needs to reach the
left knee and jump up into the active phase. Cell 2 is able to jump down to the silent
phase if the inhibition decays fast enough so that its corresponding h—value, hi(p), lies
in the interval [hpp(0), hri (Smaz)]- Figure 10B illustrates the decay of inhibition to
cell 2 in the slow phase plane.

Although there are two slow variables in the active phase, both cells always jump
up with b = hpg(Smaee) and s = Spae. Thus, the cells always enter the active phase
with the same initial conditions and correspondingly follow the same 1-d trajectory
(h(t),5(t) = smaze ?') in the active phase. Since this trajectory is monotone in both
components, we can express s = s(h) along it. The shortest possible time that a cell will
spend in the silent phase is Ts(hrk (Smaz)), the time of evolution of A from hgrg (Smaz)
t0 hik (Smaz) under the flow of (9). Analogously to the previous sections, the existence

of a periodic singular solution is guaranteed if

Ta(hrk (Smaz)) < Ts(hrr (Smaz)),

where the former is the evolution time from (hzx (Smaz)s Smaz) t0 (Pri (Smaz)s S(hri (Smaz))

under the flow of ‘
h - g('UR(ha S)a h)a

s = —fs.

The above analysis shows that because the dynamics of the decay of s is independent
of the evolution of h and the phase transition is governed by the cell in the silent phase,
the slow decay of s has minimal impact on the half-center oscillation. Indeed, although

we omit the details, the same factors as discussed in subsection 3.1 yield a shorter silent
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phase of cell 1 and only a negligible change in the silent phase duration of cell 2 when
Gappr > Gapp»» s shown in Figure 11.

Analysis with slow synaptic decay in the other models is more complicated. In the
adaptation model, recall from subsection 3.3 that the jump up required crossing a curve
of left knees, parameterized by s, in the silent phase. Slow synaptic decay introduces
slow dynamics of s, which imply that the level of s is no longer strictly slaved to the
voltage of the active cell. Slow synaptic decay continues in the active phase as well,
introducing continuous variation of the position of the nullcline on which each cell
evolves when active, but this is a more minor effect since s only weakly affects nullcline
position in the active phase; see Figure 12.

In the postinhibitory rebound case, the slow decay of inhibition also influences how
cells jump up from the silent phase, as shown in Figure 13. Moreover, as with adap-
tation, the decay of inhibition continues to be a factor while each cell is active. The
existence of a periodic half-center oscillation in the balanced case with slow synaptic
decay can be analyzed using a map approach as in previous sections, and in fact similar
analysis has been done previously (e.g., Rubin and Terman, 2000). Introducing extra
drive, with gapp, > gapp,, complicates the precise arguments, but again, the relevant
mechanisms remain those discussed in subsection 3.2, and the effects on oscillation

period are qualitatively similar to those observed with fast decay; see Figure 14.

4 Discussion

We have considered the generation of oscillations in three reduced half-center CPG mod-
els encapsulating three different dynamic mechanisms for phase transitions, embodied
through persistent sodium current, postinhibitory rebound, and a calcium-dependent
adaptation, respectively, together with mutual synaptic inhibition. By considering
asymmetric drives, we have uncovered a critical distinction between adaptability of
CPGs composed of units with different types of intrinsic dynamics, in contrast with the
emphasis of previous studies. The mathematical analysis that we have given provides

a specific accounting of the factors in the phase plane dynamics corresponding to each
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model that determine its responses to variations in drive, and how each factor con-
tributes. The generality of this analysis ensures that any parameter set that maintains
qualitatively similar dynamical features will yield similar outcomes, while more sub-
stantial parameter variations may change the dynamic structure of a model and alter
the effects of drive modulation correspondingly.

As summarized in Tables 1-3, our results show that oscillations based on the postin-
hibitory rebound model or on adaptation in Case 2, where an increase in drive con-
ductance gqp, can yield an increase in period, share common traits. In particular, both
show high stability, with half-center oscillations maintained over a large range of g,,,
and over a large ratio of gupp, /Gapp,- At the same time, both mechanisms, and partic-
ularly postinhibitory rebound, yield insensitivity of period to g.p, and an inability to
tune phase durations independently via asymmetric drive, which would limit their ef-
fectiveness within a feedback loop. In contrast, oscillations based on persistent sodium
exhibit the greatest sensitivity of period to g,,, and achieve the largest range of periods,
although they persist over a relatively small range of g,,,. Moreover, with asymmetric
drive, persistent sodium-based oscillations show the greatest range of phase durations
and the highest independence in phase duration control.

At first glance, the CPG models based on persistent sodium current and postin-
hibitory rebound may appear to be mirror images of each other, with one cell clearly in
control of each switch between phases. However, the scaling of the effects of inhibitory
coupling, and of excitatory drive, with postsynaptic potential breaks the symmetry be-
tween these models and causes them to respond differently to drive modulation. In fact,
the models based on persistent sodium current and on adaptation are arguably more
closely related to each other and less similar to postinhibitory rebound. In the model
based on postinhibitory rebound, transitions occur when the active cell falls down from
the active phase, releasing the suppressed cell from inhibition [29]. In both of the other
models, transitions occur when the silent cell reaches a knee or curve of knees from
which it can escape from the silent phase, and this escape yields inhibition of the ac-

tive cell, terminating its activity. In the model based on adaptation, however, escape

35



cannot, occur unless it is accompanied by a partial synaptic release due to adaptation.
Indeed, it is appropriate to think of the models based on persistent sodium current
and adaptation as points on a continuum. The persistent sodium-based model lies in
an extreme position, with little or no change in the strength of the synaptic output
from a cell while it is active. Moving along the continuum away from this extreme, by
increasing the synaptic threshold for example, yields progressively more adaptation, or
weakening of synaptic output during the latter stages of the active phase. Our Case
2 of adaptation represents a point along this continuum that is farther away from the
persistent sodium model than is our Case 1, yielding a non-monotonic dependence of
period on drive in the balanced drive regime, as observed by other authors [27, 30]. The
more extreme nature of Case 2 is also reflected in the stronger changes observed with
asymmetric drives. More generally, different susceptibilities to drive modulation and
different degrees of independent phase control would arise at different points along the
continuum, interpolating between the cases that we have considered.

As noted in the Introduction, the specific intrinsic neural mechanisms involved in
the generation of locomotor oscillations in most CPGs, especially in mammals, remain
largely unknown. What is known is that these CPGs are extremely flexible and can
adaptively adjust the oscillatory patterns they generate to the motor demands they
face. This flexibility includes the ability to generate oscillations with a wide range of
frequencies, combined with independent regulation of each phase duration under the
control of descending drives, even in the absence of phasic afferent feedback (e.g., as
seen in fictive locomotion, [17],[38]). If we assume that the structure and operation
of at least some biological CPGs (e.g., the spinal locomotor CPG) can, in a simplified
sense, be represented by half-center models, then it is important to elucidate what dy-
namic mechanisms could potentially provide this flexibility. Since the precise features
involved in the operation of most CPGs are unknown, we felt that it was reasonable to
comparatively investigate different half-center models, incorporating different intrinsic
dynamic mechanisms, with a particular focus on how different components yield dif-

ferent responses to changes in drive. In particular, previous numerical simulations [25]
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have demonstrated that a half-center model of the spinal CPG based on the dynamics
of the persistent sodium current can reproduce the full range of locomotor periods and
phase durations observed during fictive and treadmill locomotion in cats. This com-
putational model, however, has not been theoretically investigated in detail, and CPG
models based on other intrinsic mechanisms have not been previously studied in the
context considered here, namely their operation in regimes of asymmetric drive. Here we
have shown that the persistent sodium current-based half-center CPG model achieves a
greater range of oscillation periods with changes in the drives to both half-centers than
other typical half-center models considered. Moreover, this model provides a unique
possibility for the independent control of each phase duration in the asymmetric regime
attained by changing drive to only one half-center. These findings provide additional
support for the possibly important role of persistent sodium current-dependent mecha-
nisms in the operation of biological CPGs, and especially in the operation of the spinal
locomotor CPG.

One set of previous studies that have considered frequency control and asymmetry
within a half-center CPG system has made use of dynamic clamp technology to gener-
ate hybrid systems composed of a biological neuron synaptically coupled to a simulated
neuron [33],[19]. In particular, it was recognized that independent phase regulation
could be achieved by modulation of the time constant of a slow current or the con-
ductance of a particular ionic current, in one cell within a half-center system with an
adaptation-type phase transition mechanism [19]. We have considered a more direct
form of modulation, namely variation of the external drive to one cell, rather than its
internal parameters. Nonetheless, given the ubiquity of neuromodulators in neuronal
systems, it is likely that multiple modulatory mechanisms exist, which together enable
control of oscillatory properties through effects on multiple targets.

Our analysis focused on reduced models, with each cell’s intrinsic dynamics rep-
resented in a two-dimensional phase plane. Such reductions are known to capture
fundamental effects present in higher-dimensional models (e.g., [22],[23],[24],[29],[32])

while allowing for analytical tractability. Unlike previous reduced models for CPGs
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and other rhythmic systems based on firing rate formalisms [16],[27],[34],[35], the re-
duced models we consider are conductance-based, such that transition mechanisms and
model parameters are connected directly to particular biological features. Nonetheless,
future theoretical studies should examine how the results observed here are affected
by the presence of additional currents observed in specific biological CPGs, as well as
synaptic effects such as short-term synaptic plasticity [34],[35], and how these results
scale up to larger networks incorporating biologically relevant connectivity architectures
and neuromodulatory pathways. Such extensions will elucidate further details about

the mechanisms through which particular CPG units subserve different behaviors.
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5 Appendix

Here, we list the auxiliary functions and parameter values used in the three example

systems that we consider, as introduced in Section 2.2.

5.1 Model featuring the persistent sodium current [3]

The ordinary differential equations for the model featuring the persistent sodium current

are

C(m'U, — _[NaP - IL - [syn - [appa
W= (heo(v) = h)/7a(v),
s = a(l—s)se(v) — Os,

(21)
with associated functions

Isyn = gsyns(v_esyn)a
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where C), = 0.21, gnqp = 10,

= GnapMoo(v)h(v = €na),

= gv—ea),

= Japp?,

= 1/(1+ exp((v — 6h)/on)),

= /(1 +exp((v = bsyn)/osyn));
= ecosh((v—6y)/on/2), and

= 1/(L+exp((v = Oin)/0m)),

g = 2.8, ena = 50, e, = —65, Csyn = —380, Om = —37,

om = —6, 0, = =30, o), = 6, € = 0.01, Oy, = —43, o5yn = —0.1, Gsyn = 1, Gapp = 0.19,

a=1,and =1 (fast decay)

5.2 Model featuring

or 3 =0.08 (slow decay).

postinhibitory rebound [24, 31]

For the model featuring postinhibitory rebound, the relevant differential equations are

Cm?)l == _[T - IL - [syn - Iappa

W = (heo(v) = h)/7a(v),

with associated functions

Isyn -

Iapp -
IL -

IT:

s = a(l —s)se(v) — Bs,

gsyns(v - esyn)a (22)
gappva

gi(v — ),

910 (V) (0 = vea),

1/(L+ exp(=(v = bn)/om)),

1/(1+ exp(—(v = 6)/on)),
to+t1/(1+ exp(—(v — On)/ont)), and
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So(v) = 1/(14exp((v — gsyn)/asyn))a

where gr = 4, vpy = 90, 0,, = —40, 0,y = 7.4, Oy = —70, 04 = —4, Oy = —50, o4y = —3,
g1 = 0.4, v, = =70, tg = 30, t; = 200, goyn = 1.4, vgyn = —85, Oyyn = —35, Tyyn = —0.1,

Gapp = 0.01, « =1, and =1 (fast decay) or f = 0.05 (slow decay).

5.3 Model featuring adaptation (modified from [9])

The model featuring adaptation is given by the differential equations

C’mvl _ICa - Iahp - IL - [syn - [app;
Cal 6(_gca[C’a('U) - kca(ca - Cabase));
s' (1 = 8)800(v) — ks) /s,

with associated functions

Mo (v) = 1/(1+exp((v — ) /o)), (23)
Soo(v) = 1/(L+exp((v —Osyn)/Osyn)),
Cax(v) = 1/(1+exp((v —0c4)/0ca)),
I, = gv—e),
Lapp = Gapp,
Lyyn = gsyns(v_esyn)a
Litp = Ganp(v — ) (Ca®)/(Ca® + kzhp), and
Lo = Gea((Caoe(v))?) (v = vea).
Tn Case 1, Cy = 21, Goyn = 2, Gapp = 0.7, ¢ = —55, Oy = —34, 0,y = —5, e, = —85,
g =1, ey = =70, k =1, 7, = 1 (fast decay) or 7, = 400 (slow decay), o5y, = —5,
Ooyn = —20, O = —34, 0y = —8.0, kg = 22.5, € = e — 05, kany = 0.7, Vea = 140,

Gahp = 75 gea = 0.05, geq1 = 1, and capese = 0.08. In Case 2, the same parameters are
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used except gs, = 6 (fast decay) or gs,, = 4 (slow decay), ez, = 50,k = 0.02 (fast
decay) or k = 0.002 (slow decay), 0,y = —4, and 0, = 20.
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Figure 1: Basic nullcline configurations and periodic orbits for the three half-center oscillation
mechanisms (see sections 2.2 and 2.4). Half-center oscillations based on (A) persistent sodium,
(B) postinhibitory rebound, and (C) adaptatid®. Note that inh denotes inhibition, while other
notation is defined in the text.
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Figure 2: Existence of a periodic oscillation for the adaptation model can be established using
a contraction argument. (A) (Ca,s) phase plane. When a cell is in the active phase, it evolves
along {s = 0}. When a cell is in the silent phase, it evolves in the region with s > 0, with the
decay rate of s determined by the position of the other cell in the active phase. The vertical
dotted lines indicate that, for the starting configurations shown, cells 1 and 2 switch phases
immediately. (B) The rectangle Rc,. The existence of a periodic oscillation is guaranteed if
for all (Cay, Cay) € Rea, (Caz,Cay) € int(Rey).
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with balanced drive. (B) Time courses for periodic oscillations in the balanced (black) and
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Figure 5: Changes in silent phase durations with changes in gy, , the drive to cell 1. In each
plot, gupp, was held fixed at gapp,, the baseline drive for the corresponding model, and g,py,, was
varied above and below that level. T, and T, denote the resulting silent phase durations of
cells 1 and 2, respectively, and T, denotes the silent phase duration with gupp, = Gapp, = Gappo -
Half-center oscillations based on (A) persistent sodium, (B) postinhibitory rebound, and (C)
adaptation, Case 1, (D) adaptation, Case 2.
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Figure 6: Periodic oscillations in the model with persistent sodium, in the asymmetric case.
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the duration of the active phase of cell 2 (blue). The duration of the active phase of cell 1,
and therefore the duration of the silent phase of cell 2, is only slightly affected. (A) Phase
plane orbits. (B) Voltage time courses.
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Figure 7: Periodic oscillations in the model with postinhibitory rebound, in the asymmetric
case. Both cell 1, with increased drive (red), and cell 2 have shorter active phases and therefore
also shorter silent phases than in the balanced case. (A) Phase plane orbits. (B) Voltage time

courses.
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Figure 8: (Ca, s) phase plane for the adaptation model. The structures (fixed points, FP, and
left knees, LK) defined when drive is increased are labeled with the A symbol; 0,6 denote the
s values at which FP and LK intersect with baseline and increased drive, respectively. The
duration of the silent phase is dependent on how Ca and Carx change with g,pp, as well as
on |0Cark/0s|. (A) A small |0Cark/0s| promotes a long silent phase, with relatively high
sensitivity to changes in Ca (dashed and dotted curves), seen as large changes in the s-value
at which the trajectory reaches LK with changes in Ca. (B) A large |0Cark /9s| promotes a
short silent phase, with relatively low sensitivity to changes in Ca (dashed and dotted curves)
seen as small changes in the s-value at which the trajectory reaches LK with changes in Ca.
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|
5000

time

10000

correspondingly. (A) Phase plane orbits. (B) Voltage time courses.
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and thus the active phase of cell 1 do not decrease significantly. (A) Phase plane orbits. (B)
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Figure 13: Periodic oscillations in the model with postinhibitory rebound, with slow synaptic
decay and balanced drive. (A) Basic period orbit in the (v, h) phase plane. (B) Slow phase
plane. Whether the cell in the silent phase is able to reach the curve of left knees depends on
the relative rates of change of its h—coordinate and of the inhibition it receives.
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Figure 15: Changes in silent phase durations dependent on increased drive to cell 1 (drive
to cell 2 has not been changed) in the persistent sodium, postinhibitory rebound and the two
adaptation cases with slow decay of inhibition. In each plot, g,pp, was held fixed at gpp,, the
baseline drive for the corresponding model, and g4y, was varied above and below that level.
T,, and Ty, denote the silent phase durations of cell 1 and 2, respectively and T, denotes the
silent phase duration of the basic periodic orbits shown in subsection 2.2.
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