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Abstract

Stability is proven for two second order, two step methods for uncoupling a system of
two evolution equations with exactly skew symmetric coupling: the Crank-Nicolson
Leap Frog (CNLF) combination and the BDF2-AB2 combination. The form of the
coupling studied arises in spatial discretizations of the Stokes-Darcy problem. For
CNLF we prove stability for the coupled system under the time step condition
suggested by linear stability theory for the Leap-Frog scheme. This seems to be a
first proof of a widely believed result. For BDF2-AB2 we prove stability under a
condition that is better than the one suggested by linear stability theory for the
individual methods. This report is an expended version of the one submitted for
publication.
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This is an expanded version, containing supplementary material, of
a report with the same title.

In this report we prove stability of two, second order IMEX methods for
uncoupling two evolution equations with exactly skew symmetric coupling:
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du

dt
+ A1u+ Cφ= f(t), for t > 0 and u(0) = u0

dφ

dt
+ A2φ− CTu= g(t), for t > 0 and φ(0) = φ0.

This problem occurs, for example, after spatial discretization of the evolution-
ary Stokes-Darcy problem, e.g., [16,12,18,17]. Here

u : [0,∞)→ RN , φ : [0,∞)→ RM ,

and f, g, u0, φ0 and the matrices A1/2, C have compatible dimensions (and in
particular C is N ×M). Note especially the exactly skew symmetric coupling
linking the two equations. We assume that the Ai are SPD. Our analysis
extends to the case of Ai positive real or even nonlinear with 〈A(v), v〉 ≥
Const.|v|2. With superscript denoting the time step number, the first method
is CNLF, the combination of Crank-Nicolson and Leap Frog given by: for
n ≥ 2

un+1 − un−1

24t
+ A1

un+1 + un−1

2
+ Cφn = fn, (CNLF)

φn+1 − φn−1

24t
+ A2

φn+1 + φn−1

2
− CTun = gn.

Since the stability region of LF is the interval −1 < Im(z) < +1, from the

scalar case we expect a stability restriction of the form 4t
√
λmax(CTC) ≤ 1.

Interestingly, it seems that sufficiency in the non-commutative case is not yet
proven Verwer [22], remark 3.1, page 6. We prove in Section 2 that CNLF is
indeed stable under (1), exactly the condition suggested by the linear stability
theory.

For vectors of the same length, denote the usual euclidean inner product and
norm by 〈u, v〉 := uTv , |φ|2 := 〈φ, φ〉. We denote the weighted norms by

|u|2A1
:= uTA1u, and |φ|2A2

:= φTA2φ.

Theorem 1 (Stability of CNLF) Consider CNLF. Suppose the time step
restriction holds:

4t
√
λmax(CTC) ≤ α < 1, for some α < 1. (1)
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Then for any n ≥ 2

1− α
2

[
|un+1|2 + |φn+1|2 + |un|2 + |φn|2

]
+4t

n∑
`=1

1

4

(
|u`+1 + u`−1|2A1

+ |φ`+1 + φ`−1|2A2

)
≤ 1

2

[
|u1|2 + |φ1|2 + |u0|2 + |φ0|2

]
+4t

[
〈Cφ0, u1〉 − 〈Cφ1, u0〉

]
+4t

n∑
`=1

(
λ−1

min(A1)|f `|2 + λ−1
min(A2)|g`|2

)
.

Next we establish the stability of BDF2 with explicit AB2 coupling

3un+1 − 4un + un−1

24t
+ A1u

n+1 + C(2φn − φn−1) = fn+1, (BDF2-AB2)

3φn+1 − 4φn + φn−1

24t
+ A2φ

n+1 − CT (2un − un−1) = gn+1.

The stability region of AB2 suggests that this combination is strictly worse
than CNLF. However, we prove that the combination inherits enough stability
from BDF2 to be stable under a time step condition that in many cases is
better than the one for CNLF.

Theorem 2 (Stability of BDF2-AB2) Consider BDF2-AB2. Suppose that
the time step restriction holds

∆tmax{λmax(A−1
1 CCT ), λmax(A−1

2 CTC)} ≤ α < 1, for some α > 0, (2)

then BDF2-AB2 is stable:

|un|2 + |φn|2 ≤ C(initial data, forcing terms), for any n ≥ 2.

More precisely, for all n ≥ 1, we have that

1

2

(
|un+1|2+ |φn+1|2

)
+

1

2

(
|2un+1−un|2+ |2φn+1−φn|2

)
+ ∆t

n∑
`=1

1

2

(
R`+1+ R`+1

)
≤ 1

2

(
|u1|2 + |φ1|2

)
+

1

2

(
|2u1 − u0|2 + |2φ1 − φ0|2

)
+∆t

n∑
`=1

1

2(1− α)

( |f `+1|2

λmin(A1)
+
|g`+1|2

λmin(A2)

)
,
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where we have denoted

R`+1 =
∣∣∣∣√∆tCTu`+1 − 1

2
√

∆t
(φ`+1 − 2φ` + φ`−1)

∣∣∣∣2
+
∣∣∣∣√∆tCφ`+1 +

1

2
√

∆t
(u`+1 − 2u` + u`−1)

∣∣∣∣2,
R`+1 =

∣∣∣∣λ1/2
min(A1 −∆tCCT )u`+1 − 1

2λ
1/2
min(A1 −∆tCCT )

f `+1

∣∣∣∣2
+
∣∣∣∣λ1/2

min(A2 −∆tCTC)φ`+1 − 1

2λ
1/2
min(A2 −∆tCTC)

g`+1

∣∣∣∣2.

Note that (2) implies that A1 −∆tCTC,A2 −∆tCCT are SPD.

Both methods use 3 levels; approximations are needed at the first two time
steps to begin. We suppose these are computed to appropriate accuracy, Ver-
wer [22].

Because the problem and methods are linear, stability immediately implies
that the error is bounded by its consistency error.

1.1 Connection to the coupled Stokes-Darcy problem

To specify the motivating problem leading to the system of evolution equations
considered, let two domains be denoted by Ωf ,Ωp and lie across an interface I
from each other. The fluid velocity and porous media piezometric head (Darcy
pressure) satisfy

ut − ν4u+∇p = ff (x, t),∇ · u = 0, in Ωf , (3)

S0φt −∇ · (K∇φ) = fp, in Ωp,

φ(x, 0) = φ0, in Ωp and u(x, 0) = u0, in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I,

+ coupling conditions across I.

Let n̂f/p denote the indicated, outward pointing, unit normal vector on I. The
coupling conditions are conservation of mass and balance of forces on I

u · n̂f + up · n̂p = 0, on I ⇔ u · n̂f −
1

η
K∇φ · n̂p = 0, on I,

p− ν n̂f · ∇u · n̂f = ρgφ on I.

The last condition needed is a tangential condition on the fluid region’s velocity
on the interface. The most correct condition is not completely understood
(possibly due to matching a pointwise velocity in the fluid region with an
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averaged or homogenized velocity in the porous region). We take the Beavers-
Joseph-Saffman (-Jones) interfacial coupling

−ν ∇u · n̂f =
α√

τ̂i · K · τ̂i
u · τ̂i, on I for any τ̂i tangent vector on I.

This is a simplification of the original and more physically realistic Beavers-
Joseph conditions (in u · τ̂i which is replaced by (u− up) · τ̂i). Here:

φ= Darcy pressure + elevation induced pressure = piezometric head

q = volume discharge,

up = fluid velocity in porous media region, Ωp,

u = fluid velocity in Stokes region, Ωf ,

ff , fp = body forces in fluid region and source in porous region,

K= hydraulic conductivity tensor,

ν = kinematic viscosity of fluid,

S0 = specific mass storativity coefficient,

η= volumetric porosity,

ρ= density,

g= gravitational acceleration constant.

We shall assume that the boundary conditions are simple Dirichlet conditions
on the exterior boundaries (not including the interface I).

We denote the L2(I) norm by || · ||I and the L2(Ωf/p) norms by || · ||f/p,
respectively; the corresponding inner products are denoted by (·, ·)f/p. Define

Xf : = {v ∈
(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Xp : = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},
Q=L2

0(Ωf ).

Define the bilinear forms

af (u, v) = (ν∇u,∇v)f +
∑

i

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)(v · τ̂i)ds,

ap(φ, ψ) = (K∇φ,∇ψ)p,

cI(u, φ) =nρg
∫

I
φu · n̂fds.

A (monolithic) variational formulation of the coupled problem is to find (u, p, φ) :
[0,∞) → Xf × Qf × Xp satisfying the given initial conditions and, for all
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v ∈ Xf , q ∈ Qf , ψ ∈ Xp

(ut, v)f + af (u, v)− (p,∇ · v)f + cI(v, φ) = (ff , v)f ,

(q,∇ · u)f = 0, (4)

S0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = (fp, ψ)p.

Note that, setting v = u, ψ = φ and adding, the coupling terms exactly cancel
in the monolithic sum yielding the energy estimate for the coupled system.

To discretize the Stokes-Darcy problem in space by the finite element method,
we select finite element spaces

velocity: Xh
f ⊂ Xf , Darcy pressure: Xh

p ⊂ Xp, Stokes pressure: Qh
f ⊂ Qf

based on a conforming FEM triangulation with maximum triangle diameter
denoted ”h”. No mesh compatibility at the interface I between the FEM
meshes in the two subdomains is assumed. The Stokes velocity-pressure FEM
spaces are assumed to satisfy the usual discrete inf-sup condition for stability
of the discrete pressure. We denote the discretely divergence free velocities by

V h := Xh
f ∩ {vh : (qh,∇ · vh)f = 0, for all qh ∈ Qh

f}

The semi-discrete approximations are maps (uh, ph, φh) : [0,∞)→ Xh
f ×Qh

f ×
Xh

p satisfying the given initial conditions and, for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈
V h

p

(uh,t, vh)f + af (uh, vh)− (ph,∇ · vh)f + cI(vh, φh) = (ff , vh)f ,

(qh,∇ · uh)f = 0, (5)

S0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = (fp, ψh)p.

Note in particular the exactly skew symmetric coupling between the Stokes
and the Darcy sub-problems. If the velocity is restricted to the discretely
divergence free subspace we obtain The semi-discrete approximations are maps
(uh, φh) : [0,∞)→ V h

f ×Xh
p satisfying the given initial conditions and, for all

vh ∈ V h
f , ψh ∈ V h

p

(uh,t, vh)f + af (uh, vh) + cI(vh, φh) = (ff , vh)f ,

S0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = (fp, ψh)p.

The exactly skew symmetric coupling between the Stokes and the Darcy sub-
problems is retained. Picking a basis for the FEM spaces in the above, this
leads to a system:

Mf
du

dt
+ A1u+ Cφ= f(t), for t > 0 and u(0) = u0

S0Mp
dφ

dt
+ A2φ− CTu= g(t), for t > 0 and φ(0) = φ0.
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Here the respective FEM mass matrices are denoted Mf/p. These are often
spectrally equivalent to the identity. The above system can also be reduced
to the one studied by a further change of variable. The Stokes-Darcy problem
has experienced a rapid development of numerical methods. We end the paper
with a list of some additional papers that, while not relevant to the precise
problem considered herein, are on numerical methods for the Stokes -Darcy
problem.

1.2 Previous work

When Ai are SPD, IMEX methods, like CNLF and BDF2-AB2 require the so-
lution of two, smaller SPD systems per time step (which can be done by legacy
codes for the independent sub-problems) as compared to one larger, nonsym-
metric system for monolithically coupled methods. Given this potentially large
simplification, it is not surprising that IMEX methods (and associated parti-
tioned schemes) have been used extensively in the computational practice of
multi-domain, multiphysics applications. The theory of IMEX methods is also
developing; see [11,21,2] and [13] for early papers and [1,10] and particularly
[22] and the book [14] for recent work. CNLF is itself a classic (e.g. [15]) com-
bination of methods in computational fluid dynamics with wide practical use,
including in the dynamic core of the NCAR climate model, [19].

Partitioned methods are often motivated by available codes for subproblems
[20] and tend to be application specific. Examples of partitioned methods in-
clude ones designed for fluid-structure interaction [3,4,7], Maxwell’s equations
[23] and atmosphere-ocean coupling [8,10,9]. The block system we study arises
in evolutionary groundwater-surface water coupling, e.g., [6,5,12,16]. Mu and
Zhu [17] gave the first (in 2010) numerical analysis of a partitioned method
based on the backward Euler-forward Euler IMEX scheme; this has been ex-
tended to, so-called, asynchronous time stepping (different time steps for dif-
ferent system components) in [18]. Our work herein is motivated by the search
for partitioned methods for the Stokes-Darcy problem with higher accuracy
and better stability.

2 Proof of stability of CNLF

This section gives a complete proof of Theorem 1.

Lemma 3 We estimate

〈Cφ, u〉 =
1

2
|Cφ|2 +

1

2
|u|2 − 1

2
|u− Cφ|2
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and, if Ai are SPD

|u| ≤ λ
−1/2
min (A1)|u|A1 , |φ| ≤ λ

−1/2
min (A2)|φ|A2 ,

|Cφ| ≤
√
λmax(CTC)|φ|.

Thus

|〈Cφ, u〉| ≤ 1

2

√
λmax(CTC)|φ|2 +

1

2

√
λmax(CTC)|u|2.

Proof. The first claim is the polarization identity. The second inequality is
elementary while the fourth follows by inserting the third into the first. For
the third, we have

|Cφ| = 〈Cφ,Cφ〉1/2 = 〈CTCφ, φ〉1/2 ≤ λ1/2
max(CTC)|φ|.

The first of three main steps in the proof of Theorem 1 is to take the inner
product of CNLF with un+1 + un−1 and φn+1 + φn−1 and add:

1

24t
[
|un+1|2 + |φn+1|2

]
− 1

24t
[
|un−1|2 + |φn−1|2

]
+

1

2

[
|un+1 + un−1|2A1

+ |φn+1 + φn−1|2A2

]
(6)

+〈Cφn, un+1 + un−1〉 − 〈CTun, φn+1 + φn−1〉
= 〈fn, un+1 + un−1〉+ 〈gn, un+1 + un−1〉.

The second step is to rearrange the coupling terms as an exact difference
between two time levels: Coupling = 〈Cφn, un+1 − un−1〉 − 〈CTun, φn+1 −
φn−1〉 = Cn+1/2 − Cn−1/2, where

Cn+1/2 : = 〈Cφn, un+1〉 − 〈Cφn+1, un〉,
Cn−1/2 : = 〈Cφn−1, un〉 − 〈Cφn, un−1〉.

The third step is to add and subtract |un|2 + |φn|2 to the control the energy
at level tn:

1

24t
[
|un+1|2 + |φn+1|2 + |un|2 + |φn|2

]
− 1

24t
[
|un|2 + |φn|2 + |un−1|2 + |φn−1|2

]
+

1

2

[
|un+1 + un−1|2A1

+ |φn+1 + φn−1|2A2

]
+ Cn+1/2 − Cn−1/2

= 〈fn, un+1 + un−1〉+ 〈gn, un+1 + un−1〉 ≡ RHS.
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Using Lemma 3 we treat RHS in a standard way:

RHS ≤ |fn|λ−1/2
min (A1)|un+1 + un−1|A1 + |gn|λ−1/2

min (A2)|φn+1 + φn−1|A2

≤
(
λ−1

min(A1)|fn|2+λ−1
min(A2)|gn|2

)
+

1

4
(|un+1+un−1|2A1

+|φn+1+φn−1|2A2
).

Thus, define the system energy

En+1/2 :=
1

2

[
|un+1|2 + |φn+1|2 + |un|2 + |φn|2

]
+4tCn+1/2.

Collecting terms we obtain

En+1/2 − En+1/2 +4t
(
|un+1 + un−1|2A1

+ |φn+1 + φn−1|2A2

)
≤ 4t(λ−1

min(A1)|fn|2 + λ−1
min(A2)|gn|2).

Obviously, En+1/2 − En−1/2 + {positive terms} ≤ RHS immediately implies
stability provided only that En+1/2 > 0 for every n. We have (using Lemma
3 to bound the coupling terms)

En+1/2≥ 1

2

[
|un+1|2 + |φn+1|2 + |un|2 + |φn|2

]
−4t

2

√
λmax(CTC)

[
|un+1|2 + |un|2 + |φn+1|2 + |φn|2

]
.

This is positive (completing the proof) provided

4t
√
λmax(CTC) < 1.

3 Proof of stability of BDF2-AB2

We proceed to prove Theorem 2. Take the inner product of BDF2-AB2 with
un+1, φn+1, respectively, and add. There are two keys to the proof of stability.
The first key is the treatment of the BDF2 term. Apply the identity

[
a2

4
+

(2a− b)2

4

]
−
[
b2

4
+

(2b− c)2

4

]
+

(a− 2b+ c)2

4
=

1

2
(3a− 4b+ c)a
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with a = un+1, b = un, c = un−1, and once with a = φn+1, b = φn, c = φn−1.
This gives

1

4∆t

(
|un+1|2 + |2un+1 − un|2

)
− 1

4∆t

(
|un|2 + |2un − un−1|2

)
(7)

+
1

4∆t
|un+1−2un+un−1|2

+
1

4∆t

(
|φn+1|2 + |2φn+1 − φn|2

)
− 1

4∆t

(
|φn|2 + |2φn − φn−1|2

)
+

1

4∆t
|φn+1 − 2φn + φn−1|2

+ |un+1|2A1
+ |φn+1|2A2

+ 〈C(2φn − φn−1), un+1〉 − 〈CT (2un − un−1), φn+1〉
= 〈fn+1, un+1〉+ 〈gn+1, φn+1〉.

The second key is to rearrange the coupling terms. We use the skew-symmetry
of the coupling term and the polarization identity (Lemma 3) to write it as
follows:

Coupling = 〈C(2φn − φn−1), un+1〉 − 〈CT (2un − un−1), φn+1〉 (8)

= −〈C(φn+1 − 2φn + φn−1), un+1〉+ 〈CT (un+1 − 2un + un−1), φn+1〉

= − 1

4∆t
|φn+1−2φn+φn−1|2 −∆t|un+1|2CCT

− 1

4∆t
|un+1−2un+un−1|2 −∆t|φn+1|2CT C +Rn+1.

Then (7) and (8) give

1

4∆t

(
|un+1|2 + |2un+1 − un|2

)
− 1

4∆t

(
|un|2 + |2un − un−1|2

)
+

1

4∆t

(
|φn+1|2 + |2φn+1 − φn|2

)
− 1

4∆t

(
|φn|2 + |2φn − φn−1|2

)
+ |un+1|2A1

+ |φn+1|2A2
−∆t|un+1|2CCT −∆t|φn+1|2CT C +Rn+1

= 〈fn+1, un+1〉+ 〈gn+1, φn+1〉.

Using again the polarization identity yields

1

4∆t

(
|un+1|2 + |2un+1 − un|2

)
− 1

4∆t

(
|un|2 + |2un − un−1|2

)
+

1

4∆t

(
|φn+1|2 + |2φn+1 − φn|2

)
− 1

4∆t

(
|φn|2 + |2φn − φn−1|2

)
+ |un+1|2A1

+ |φn+1|2A2
−∆t|un+1|2CCT −∆t|φn+1|2CT C +Rn+1

= λmin(A1 −∆tCCT )|un+1|2 +
1

4λmin(A1 −∆tCCT )
|fn+1|2

+ λmin(A2−∆tCTC)|φn+1|2 +
1

4λmin(A2−∆tCTC)
|gn+1|2 −Rn+1,
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which by summation implies the stability result

|un+1|2

4∆t
+

1

4∆t
|2un+1−un|2 +

|φn+1|2

4∆t
+

1

4∆t
|2φn+1−φn|2 +

n∑
`=1

(R`+1+R`+1)

≤ |u
1|2

4∆t
+

1

4∆t
|2u1 − u0|2 +

|φ1|2

4∆t
+

1

4∆t
|2φ1 − φ0|2

+
n∑

`=1

(
1

4(1− α)λmin(A1)
|fn+1|2 +

1

4(1− α)λmin(A2)
|gn+1|2

)
.

4 Numerical verification of the Theorems

We give two numerical tests that confirm the theory (showing in particu-
lar that the restriction (1) is sharp). The examples also illustrate that there
are cases where each method’s time step restriction is better than the other
method.

In all test cases, the initial conditions are

u0 =

 1

1

 , φ0 =

 1

1


and u1, φ1 are computed using the implicit backward Euler. We take f = g = 0,
so that any growth in the energy is an instability.

Test 1. In the first case the matrices are

A1 =

 10 0

0 20

 , A2 =

 30 0

0 50

 , C =

 2 3

4 5


yielding the following time step restrictions

∆tCNLF = 0.1361, ∆tBDFAB = 0.2990.

With the time step

∆t = 0.99 ∗∆tCNLF

both methods are observed to be stable, Figure 1). With the time step ∆t =
1.01∗∆tCNLF the CNLF approximations exhibit growth and thus are unstable
Since 1.01 ∗∆tCNLF < ∆tBDFAB the theory predicts BDF2-AB2 to be stable
and this is indeed seen in Figure 2.
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Fig. 1. Both methods stable, as predicted.
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Fig. 2. CNLF unstable, BDF2-AB2 stable, as predicted.

Test 2. With matrices

A1 =

 1 0

0 2

 , A2 =

 3 0

0 5

 , C =

 2 3

4 5



the time step restrictions are

∆tCNLF = 0.1361, ∆tBDFAB = 0.0299.

With time step ∆t = .99∗∆tCNLF the CNLF converges, while with BDF2-AB2
the solution is unstable, Figure 3.
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Fig. 3. CNLF stable, BDF2-AB2 unstable, as predicted.
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