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Abstract. Geophysical flow simulations have evolved sophisticated Implicit-Explicit time stepping methods (based on fast slow wave
splittings) followed by time filters to control any unstable models that result. These time filters are wonderfully elegant as algorithms, modular
and embarrassingly parallel. Their effect on stability of the overall process has been tested in numerous simulations but never studied analytically.
We do so herein.
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1. Introduction. The fundamental method for time stepping in most current geophysical fluid dynamics (GFD)
codes consists of one step of the Crank-Nicolson-Leap-Frog (CNLF) method (based on a fast-slow wave decoupling
strategy) followed by one step of the Robert-Asselin (RA) [17, 2] time filter to control CNLF’s computational
mode followed by one step of the Williams [22] time filter to restore lost accuracy and anti-diffuse the RA step.
This combination is algorithmically elegant, subtle and effective. Williams [22] lists 25 major GFD codes using
this approach including the Community Climate Systems Model, e.g., [20]. Our goal herein is to complement the
numerous numerical tests with a first rigorous numerical analysis of the combination for systems, complementing
root condition analysis and numerical tests in, e.g., [5, 22]. Thus, given N×N matrices A,Λ, we consider the system
for u : [0,∞)→ RN

ut +Au = Λu, u(0) = u0, where (1.1)
A+AT ≥ 0, and Λ =−Λ

T . (1.2)

When A+AT = 0 so A =−AT the system is exactly conservative, for the euclidean norm: ||u(t)||= ||u(0)||. When
A+AT > 0 it is dissipative, ||u(t)|| → 0 as t → ∞. CNLF followed by the Robert-Asselin-Williams (RAW) filter
[1, 22, 23] is: given timestep4t, filter parameters ν > 0,α ∈ [ 1

2 ,1] and starting values u0,v1, (of sufficient accuracy,
[21]) find un,wn+1,vn+1

(CNLF step)
wn+1−un−1

2∆t
=−A

wn+1 +un−1

2
+Λvn (1.3)

(RA step) un = vn +
να

2
(wn+1−2vn +un−1) (1.4)

(W step) vn+1 = wn+1 +
ν(α−1)

2
(wn+1−2vn +un−1). (1.5)

The parameter ν is the Robert-Asselin filter parameter, usually O(0.01 to 0.2), and α is the Williams filter parameter,
around 1

2 . If α = 1 then the third, W filter, step, drops out and the method reduces to CNLF + RA filter (1.4), and if
ν = 0, CNLF is recovered. Unfiltered CNLF is stable in the absence of roundoff error [14] under the CFL condition

4t||Λ||< 1. (1.6)

In the presence of roundoff error, CNLF possesses an undamped ( since un+1 +un−1 ≡ 0 for the mode) and slightly
unstable mode, that can take a long time to appear but is inevitable in long time simulations without time filters, e.g.,
[5].
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1.1. A summary of results. There have been many numerical studies of CNLF with the RAW filter giving
evidence of control of CNLF’s unstable mode. Our analysis supports this conclusion two ways: (i) the stability
regions we calculate for CNLF+RAW in Section 5 for 1

2 < α < 1 contain a section of the imaginary axis strictly
inside them, and (ii) the stability estimates for the system in Section 4 exhibit damping in all modes (see Corollary
1.4 below).

There have been reports in [4], see also [11, section 13.5], of stable CNLF simulations that were destabilized
when RAW steps were added. These instabilities (not related to the nonlinear instabilities studied in [6]) were
resolved in [4] by cutting the timestep severely. We give two analytic explanations. First, the stability regions of
CNLF+RAW in Section 5 and the system energy analysis in Theorem 1.3 lead to CFL conditions

(Necessary)4t||Λ|| ≤CFLscalar(α,ν),

(Sufficient) 4t||Λ|| ≤CFLsystem(α,ν),

where CFLsystem(α,ν) :=
√

2α−1

√
2−ν

α2(2+ν−2αν)

(
1− ν

2
(2α−1)

)
CFLscalar(α,ν) :=CFLsystem(α,ν)

1√
1−ν2( 1

2 −α)2
.

The first condition is necessary (and sufficient for scalar problems) while the second is sufficient. The RHS’ are
related by

CFLsystem(α,ν)≤CFLscalar(α,ν)< 1 =CFLCNLF .

For α > 1/2, CFLscalar(α,ν)→ 0 as α → 1/2. Thus, a stable CNLF simulation at or near its CFL limit would be
exponentially destabilized by an added RAW step. Second, in Section 4 we show that the parameter choice α = 1/2
for RAW results in a method that is unconditionally unstable for wave propagation problems.

COROLLARY 1.1. Let A = 0,Λ 6= 0. Then, CNLF+RAW is unconditionally unstable if α = 1
2 .

Proof. Two different proofs: First, the stability region of CNLF+RAW does not intersect the imaginary axis
if α = 1

2 , see Section 5, Figure 5.1. Second, in the above necessary condition for stability CFLscalar(α,ν)→ 0 if
α → 1

2 .
This corollary is one explanation of the common practice∗ of taking α > 1/2 but close to α = 1/2. The natural,

but so far unsuccessful, strategy to analyze stability of CNLF + RAW for systems is to track the evolution of a system
energy through the individual steps of (1.3), (1.4), (1.5). Instead, our stability analysis of CNLF+RAW is based on
reduction of CNLF+RAW to an equivalent multistep method followed by application of the tools of stability regions
and G-stability theory [3, 8]. Thus, the first main result is the equivalence to a linear multistep method and analysis
of its consistency error, proven in Section 3.

THEOREM 1.2. The approximation un of CNLF plus RAW satisfies

un−νun−1− (1−ν)un−2 =−∆tA(un +ν(α−1)un−1 +(1−να)un−2)

+∆tΛ
((

2+ν(α−1)
)
un−1−ναun−2

)
. (1.7)

For ν > 0,α ∈ (1/2,1] the CNLF+RAW has second order consistency error. For the special value α = 1
2 , CNLF +

RAW has third order consistency error.
Utility of CNLF+RAW depends on stability. For scalar problems, the stability regions of (1.7) are presented in

Section 5. To analyze stability for systems, in Section 4 we construct a 2×2 matrix G

G11 = 1− ν

4
(ν +2α−2αν)− ν

4

√
(2+ν−2αν)(2α−1)(2−ν),

∗Thus, the recommendation α = 1/2 is shorthand for, e.g., α = 1/2+4t, which also preserves the higher consistency error of α = 1/2.
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G12 = G21 =
ν

4
(2α +ν−2−2αν)+

ν

4

√
(2+ν−2αν)(2α−1)(2−ν),

G22 = 1− ν

4
(4+2α−ν−2αν)− ν

4

√
(2+ν−2αν)(2α−1)(2−ν).

In Lemma 4.4 we show G is SPD for 1
2 ≤ α ≤ 1 and 0≤ ν ≤ 0.3. Thus, we can define the method’s G-norm

‖(un,un−1)‖2
G := (un,un−1)G(un,un−1)

T .

Denote γ,r,s,τ by

γ = ν

√
(1−α)2 +α2∆t2‖Λ‖2, r = 1− γ

2
, (1.8)

s = 1− γ

2
−ν

(
1− ν

2

)
, τ =

√
(γ−ν)2 +((2−ν)∆t‖Λ‖)2,

and remark that r ≥ τ2/(4s). Our main result (Theorem 4.1 of Section 4) is as follows.
THEOREM 1.3. Consider the CNLF method with RAW time filter (1.3)-(1.5) with α ∈ ( 1

2 ,1] and ν ∈ [0,0.3].
Suppose that the time step condition holds

∆t‖Λ‖ ≤CFLsystem(α,ν).

Then CNLF with RAW time filter is stable. More precisely, for each N ≥ 2 we have(
r− τ2

4s

)
|uN |2 +

(
τ

2
√

s
|uN |−

√
s|uN−1|

)2
(1.9)

+
γ

2

N

∑
n=2

(
|un−un−1|− |un−1−un−2|

)2
+
(

ν

2
(2α−ν(2α−1))−γ

)N−1

∑
n=2
|un−un−1|2

+∆t
N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

≤ |u1|2 + |u0|2− (2−ν)∆t〈Λu0,u1〉+
γ

2
|u1−u0|2.

This theorem implies control of the unstable mode when A is SPD.
COROLLARY 1.4. Assume ∆t‖Λ‖ ≤CFLsystem(α,ν). Let A+AT > 0. Then, the approximations generated by

CNLF+RAW satisfy un→ 0 as n→ ∞.
Proof. The RHS of (1.9) is independent of N. Thus , letting N → ∞ , the infinite series coming from terms 2

through 4 in (1.9) converge. Hence, their nth terms must approach zero. Since A has positive definite symmetric
part, as n→ ∞ this implies

an = un−un−1→ 0
bn = un +ν(α−1)un−1 +(1−να)un−2→ 0.

From these two sequences, form the sequence that must also approach zero: bn− ναan−1− (an− an−1) = (2−
ν)un−1→ 0.

The above stability bound (1.9) and the proof of the corollary shows the mechanism by which RAW controls
the unstable mode of CNLF. The second dissipative term controls all modes except those for which un− un−1 ≡ 0
while the third dissipative term controls all modes except those for which un +ν(α −1)un−1 +(1−να)un−2 ≡ 0.
In combination, all modes are controlled.
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FIG. 2.1. RA moves vn down to decrease κ; W moves wn+1 to preserve means.

2. Background on the RAW time filter. Detailed background for CNLF+RAW is given in, e.g., [18, 17, 2,
22, 23, 1]. Thus, we give only a brief outline in this section. In GFD simulations the choice of the terms A,Λ in
(1.1) is to associate Λu with Coriolis terms yielding waves that are high energy and slow and Au with low energy but
fast waves plus other effects. Thus the CFL condition associated with explicit treatment of Λu is modest. Durran
[5, page 412] shows that accuracy degrades rapidly when fully implicit treatment of all terms is used in conjunction
with a larger time step violating the CFL condition for the high energy components, see also [15, 13, 9].

The method CNLF has a long history. Stability (in the absence of roundoff) was proven by Fourier methods
in 1963 [12] and in 2012 by energy methods for systems, [14]. In the presence of roundoff error, CNLF has an
unstable mode that can take a long time to appear before growing disastrously. This has been long noted (e.g., [10]
and [7, page 242] note that LF being marginally stable is often “slightly unstable”) and is explained many ways. For
example, even when A = AT > 0 is a dissipative term in (1.1) the CN discretization of it, A(un+1 +un−1), does not
damp the energy in modes like un ∼ +1,+1,−1,−1,+1,+1, · · · which can grow as a result. The added RA filter
controls the unstable mode. It also reduces the accuracy of CNLF+RA from second order (for CNLF) to first order
and over damps: un→ 0, even when ||u(t)|| ≡ ||u(0)||. The W step anti-diffuses the RA step and restores accuracy,
namely, CNLF + RAW is second order if α = 1

2 +O(∆t).

2.1. Curvature Evolution. This section reviews a beautiful geometric interpretation of the RAW filter in terms
of curvature evolution by Robert, Asselin and Williams.

DEFINITION 2.1. The discrete curvature of φn is

κ(φn) = φn+1−2φn +φn−1.

Denote a curvature in time before and after the time filter, (1.4) and (1.5), as, respectively,

κ
n
old = wn+1−2vn +un−1

κ
n
new = vn+1−2un +un−1.

Figure 2.1 illustrates how the time filter reduces the discrete curvature of the solution. After solving for wn+1 in the
CNLF step (1.3) the first solution curve is the continuous line. The curvature obtained is κn

old . Next, performing the
filter (1.4) and (1.5), leads to the new solution curve (the dashed line of Figure 2.1), with curvature κn

new.
PROPOSITION 2.2. For n≥ 1 we have

κ
n
new = (1−ν

α +1
2

)κn
old ,
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|κn
new|< |κn

old | for 0 < ν < 1,
1
2
< α ≤ 1.

When α = 1
2 CNLF + RAW preserves the mean of the solution curves:

vn+1 +un +un−1

3
=

wn+1 + vn +un−1

3
.

Proof. The first step of the filter (1.4) is un = vn+
να

2 κn
old and the second step (1.5) is vn+1 =wn+1+

ν(α−1)
2 κn

old .
A calculation with (1.4) and (1.5) shows

κ
n
new = vn+1−2un+un−1 = (wn+1−2vn+un−1)+(vn+1−wn+1)+2(vn−un) (2.1)

= κ
n
old +

ν(α−1)
2

κ
n
old +2(

−να

2
)κn

old = (1− ν(α +1)
2

)κn
old .

When α = 1
2 the means are:

vn+1 +un +un−1

3
=

wn+1 + vn +un−1 +
(2α−1)ν

2 κn
old

3
=

wn+1 + vn +un−1

3
.

3. The Equivalent Linear Multistep Method. The identification of the equivalent linear multistep method is
one key in the stability analysis of CNLF + RAW. After this, powerful tools from the theory of such methods will
be applied.

THEOREM 3.1. The approximation un of CNLF plus RAW satisfies

un−νun−1− (1−ν)un−2 =−∆tA(un +ν(α−1)un−1 +(1−να)un−2) (3.1)

+∆tΛ
((

2+ν(α−1)
)
un−1−ναun−2

)
,

which can be rewritten as

un+1−un−1

2∆t
+A
(un+1 +un−1

2

)
−Λun

− ν

2

(
un−un−1

∆t
+A

(
(1−α)un +αun−1)−Λ

(
(1−α)un +αun−1))= 0.

For α = 1, (CNLF + RA) (3.1) is first order accurate (in the sense of having second order local truncation error)
for fixed ν > 0, and second order if ν = O(∆t). For fixed ν > 0,α ∈ (1/2,1], (3.1) is first order accurate and is
second order if ν(2α−1) = O(∆t). For the special value α = 1

2 , (3.1) is formally second order accurate.
Proof. [Theorem 3.1] Step 1: Equivalence to a linear multistep method: This equivalence is proven by

algebraic elimination of intermediate variables. Indeed, the first two steps, CNLF+RA can be rewritten as a block
2x2 system [

(I +4tA) −24tΛ
να

2 I (1−να)I

][
wn+1

vn

]
=

[
(I−4tA)un−1
un− να

2 un−1

]
.

We solve this system expressing wn+1,vn in terms of un,un−1. Next these are inserted into the third step yielding the
claimed linear multistep method.

Step 2: The local truncation orders. Let u be the exact solution of u′(t) =−Au+Λu and un be the numerical
approximation. By Taylor expansion,

u(tn) = u(tn−1)+∆tu′(tn−1)+
∆t2

2
u′′(tn−1)+O(∆t3)
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= u(tn−1)+∆t(−A+Λ)u(tn−1)+
∆t2

2
(−A+Λ)2u(tn−1)+O(∆t3).

Similarly, we have

u(tn−2) = u(tn−1)−∆t(−A+Λ)u(tn−1)+
∆t2

2
(−A+Λ)2u(tn−1)+O(∆t3),

Au(tn) = Au(tn−1)+∆tA(−A+Λ)u(tn−1)+O(∆t2),

Au(tn−2) = Au(tn−1)−∆tA(−A+Λ)u(tn−1)+O(∆t2),

Λu(tn−2) = Λu(tn−1)−∆tΛ(−A+Λ)u(tn−1)+O(∆t2).

Using this, the local truncation error of the scheme (1.7) is

τn =
∣∣∣u(tn)−νu(tn−1)−(1−ν)u(tn−2)

∆t

+A
(

u(tn)+ν(α−1)u(tn−1)+(1−να)u(tn−2)
)

−Λ

(
(2+ν(α−1))u(tn−1)−ναu(tn−2)

)∣∣∣
≤ν

2
(2α−1)‖−A+Λ‖2‖u‖∞∆t +O(∆t2),

where ‖u‖∞ = sup{|u(t)| : t ≥ 0}. Thus, the method is second order for ν(α− 1
2 ) = O(∆t).

REMARK 1 (On parameter values). The question arises if similar effects can be obtained from using only the
RA filter (so no W step) but taking smaller parameter values. This does not seen to be the case. Typical values for
the RA parameter ν vary from ν = 0.01 in quasi-geostrophic models [22, 19], to ν = 0.12 for global atmospheric
models, to ν = 0.5−0.6 for convective cloud models [5, 16]. RA is more stable than RAW, see e.g. Figure 5.2, and
RA and RAW are both first order (for α > 1

2 ). However, RAW has a smaller error coefficient. For example, suppose
the RA parameter ν := 0.2, α := 0.53. If we then apply only one RA step with νRA−new = ν(α − 1

2 ) = 0.006, then
this RA-new and RAW have the same order of accuracy and the same coefficient of ∆t in the local truncation error.
However, the RA step with this new value 0.006 does not dampen enough the leapfrog computational mode since
0.006 lies outside the range observed in practice of acceptable RA filter values.

4. G-Stability Analysis of CNLF Method with the RAW Filter. For vectors of the same length, denote the
usual euclidean inner product and norm by 〈u,v〉 := uT v, |u|2 := 〈u,u〉, the weighted norm of the symmetric positive
definite matrix A by ‖u‖2

A := uT Au, and by ‖Λ‖ the matrix norm of Λ. Recall from Section 1.1 that

CFLsystem(α,ν) :=
√

2α−1

√
2−ν

α2(2+ν−2αν)

(
1− ν

2
(2α−1)

)
CFLscalar(α,ν) :=

√
2α−1

√
2−ν

α2(2+ν−2αν)

(
1− ν

2
(2α−1)

) 1√
1−ν2( 1

2 −α)2
.

Let us define

∆tRAW :=
1
‖Λ‖

CFLsystem(α,ν), (4.1)

∆t ′RAW :=
1
‖Λ‖

CFLscalar(α,ν). (4.2)

THEOREM 4.1. For CNLF method with RAW time filter with α ∈ ( 1
2 ,1] and ν ∈ [0,0.3]. Suppose that the time

step condition holds

∆t ≤ ∆tRAW , equivalently ∆t||Λ|| ≤CFLsystem(α,ν). (4.3)
6



Then CNLF + RAW is stable for (1.1): For each N ≥ 2 we have(
r− τ2

4s

)
|uN |2 +

(
τ

2
√

s
|uN |−

√
s|uN−1|

)2

+
γ

2

N

∑
n=2

(
|un−un−1|− |un−1−un−2|

)2
+
(

ν

2
(2α−ν(2α−1))−γ

)N−1

∑
n=2
|un−un−1|2

+∆t
N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

≤ |u1|2 + |u0|2− (2−ν)∆t〈Λu0,u1〉+
γ

2
|u1−u0|2,

where γ, r, s, τ > 0 are defined in (1.8) and satisfy r ≥ τ2

4s .
COROLLARY 4.2. When α = 1 the resulting CNLF method with RA time filter with ν ∈ [0,0.3] is stable when

∆t‖Λ‖ ≤ 1− ν

2
.

REMARK 2. The sufficient time step restriction ∆tRAW in (4.1) is derived using an energy estimate. Stability
region analysis for scalar problems in (Section 5.1) gives the necessary condition ∆t ≤ ∆t ′RAW , (4.2).

COROLLARY 4.3. The leapfrog method with RAW time filter for α = 1
2 is unstable for all ν ∈ [0,0.3]. Before

proving these results, we provide necessary supporting lemmas.
LEMMA 4.4. The 2×2 matrix G given below is symmetric positive definite for α ∈ [ 1

2 ,1] and ν ∈ [0,0.3]:

G11 = 1− ν

4
(ν +2α−2αν)− ν

4

√
(2+ν−2αν)(2α−1)(2−ν),

G12 = G21 =
ν

4
(2α +ν−2−2αν)+

ν

4

√
(2+ν−2αν)(2α−1)(2−ν),

G22 = 1− ν

4
(4+2α−ν−2αν)− ν

4

√
(2+ν−2αν)(2α−1)(2−ν).

Proof. First we note that for arbitrary ν ∈ [0,0.3] the following terms

ν +2α−2αν , (2+ν−2αν)(2α−1)(2−ν) and 4+2α−ν−2αν

are monotone increasing functions of α . Then the main diagonal terms satisfy

G11 ≥ G11

∣∣∣
α=1

= 1−ν +
ν2

2
≥ 1−ν > 0,

G22 ≥ G22

∣∣∣
α=1

= (1−ν)2,

while for the secondary diagonal we have

|G12|=
ν

4
|2(α−1)+ν(1−2α)|+ ν

4

√
(2+ν−2αν)(2α−1)(2−ν)

≤ ν

4
(2|α−1|+ν |1−2α|)+ ν

4
(2−ν)≤ ν

4

(
2
∣∣∣1
2
−1
∣∣∣+ν |1−2|

)
+

ν

4
(2−ν)

=
3ν

4
.

Therefore the determinant of G is positive

det(G) = G11G22−G2
12 ≥ (1−ν)3− 9

16
ν

2 > 0 for ν ∈ [0,0.3],
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which completes the proof.
LEMMA 4.5. Suppose p, q ∈ RN , v ∈ CN and skew symmetric matrix Λ ∈ RN×N . Then we have

|pv+qΛv| ≤
√

p2 +q2‖Λ‖2|v|.

Proof. Note that

|pv+qΛv|2 = p2|v|2 +q2|Λv|2 ≤ p2|v|2 +q2‖Λ‖2|v|2 = (p2 +q2‖Λ‖2)|v|2.

To simplify the proofs, in them we will denote by x,y and η

x =
1
2

√
ν

2
(2+ν−2αν), y =

1
2

√
ν

2
(2−ν)(2α−1),and ηn = un−un−1. (4.4)

Then (1.8) takes the form

γ =
√

4(x2− y2)2 +(αν∆t‖Λ‖)2, r = 1− γ

2
, s = 1− γ

2
−4x2−ν

2(α−1),

τ =

√
(ν(α−2)+2(x2− y2)+ γ)2 +((2−ν)∆t‖Λ‖)2,

and

G =

(
1− (x+ y)2 ν

2 (α−2)+2x(x+ y)
ν

2 (α−2)+2x(x+ y) 1− (x+ y)2−4x2−ν2(α−1)

)
. (4.5)

LEMMA 4.6. For each n≥ 2 we have

|(x+y)un−2xun−1+(x−y)un−2|2−αν∆t
(
〈Λun−1,un〉−〈Λun−2,un〉+〈Λun−2,un−1〉

)
≥
(

2(x2 + y2)− γ

2

)
|ηn|2−

γ

2
|ηn−1|2 +

γ

2
(
|ηn|− |ηn−1|

)2− (x− y)2(|ηn|2−|ηn−1|2
)
.

Proof. Using Lemma 4.5, we have

|(x+ y)un−2xun−1 +(x− y)un−2|2

−αν∆t
(
〈Λun−1,un〉−〈Λun−2,un〉+ 〈Λun−2,un−1〉

)
=|(x+ y)ηn− (x− y)ηn−1|2−αν∆t〈Ληn−1,ηn〉
=(x+ y)2|ηn|2 +(x− y)2|ηn−1|2−2(x2− y2)〈ηn−1,ηn〉−αν∆t〈Ληn−1,ηn〉
=
(
(x+ y)2 +(x− y)2) |ηn|2−2(x2− y2)〈ηn−1,ηn〉−αν∆t〈Ληn−1,ηn〉
− (x− y)2|ηn|2 +(x− y)2|ηn−1|2

=2(x2 + y2)|ηn|2−〈2(x2− y2)ηn−1 +αν∆tΛηn−1,ηn〉− (x− y)2(|ηn|2−|ηn−1|2)
≥2(x2 + y2)|ηn|2−|2(x2− y2)ηn−1 +αν∆tΛηn−1||ηn|− (x− y)2(|ηn|2−|ηn−1|2)

≥2(x2 + y2)|ηn|2−
√

4(x2− y2)2 +(αν∆t‖Λ‖)2|ηn−1||ηn|− (x− y)2(|ηn|2−|ηn−1|2)

=2(x2 + y2)|ηn|2− γ|ηn−1||ηn|− (x− y)2(|ηn|2−|ηn−1|2)

=2(x2 + y2)|ηn|2−
γ

2
(|ηn−1|2 + |ηn|2− (|ηn|− |ηn−1|)2)− (x− y)2(|ηn|2−|ηn−1|2)
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=
(

2(x2 + y2)− γ

2

)
|ηn|2−

γ

2
|ηn−1|2 +

γ

2
(|ηn|− |ηn−1|)2− (x− y)2(|ηn|2−|ηn−1|2).

LEMMA 4.7. For all n≥ 2, the following inequality holds∥∥∥∥ un
un−1

∥∥∥∥2

G
− (2−ν)∆t〈Λun−1,un〉+

(
(x+ y)2− γ

2

)
|un−un−1|2

≥
(

r− τ2

4s

)
|un|2 +

(
τ

2
√

s
|un|−

√
s|un−1|

)2
.

Proof. By (4.5) we have∥∥∥∥ un
un−1

∥∥∥∥2

G
− (2−ν)∆t〈Λun−1,un〉+

(
(x+ y)2− γ

2

)
|un−un−1|2

=(1− (x+ y)2)|un|2 +(1− (x+ y)2−4x2−ν
2(α−1))|un−1|2

+2
(

ν

2
(α−2)+2x(x+ y)

)
〈un,un−1〉− (2−ν)∆t〈Λun−1,un〉

+
(
(x+ y)2− γ

2

)
|un−un−1|2

=(1− (x+ y)2)|un|2 +(1− (x+ y)2−4x2−ν
2(α−1))|un−1|2

+(ν(α−2)+4x(x+ y))〈un,un−1〉

− (2−ν)∆t〈Λun−1,un〉+
(
(x+ y)2− γ

2

)(
|un|2 + |un−1|2−2〈un,un−1〉

)
=(1− γ

2
)|un|2 +(1− γ

2
−4x2−ν

2(α−1))|un−1|2

+
(
ν(α−2)+4x(x+ y)−2(x+ y)2 + γ

)
〈un,un−1〉− (2−ν)∆t〈Λun−1,un〉

=(1− γ

2
)|un|2 +(1− γ

2
−4x2−ν

2(α−1))|un−1|2

+ 〈
(
ν(α−2)+2(x2− y2)+ γ

)
un−1− (2−ν)∆tΛun−1,un〉

≥(1− γ

2
)|un|2 +(1− γ

2
−4x2−ν

2(α−1))|un−1|2

−
√

(ν(α−2)+2(x2− y2)+ γ)2 +((2−ν)∆t‖Λ‖)2|un−1||un|

=r|un|2 + s|un−1|2− τ|un||un−1|

=
(

r− τ2

4s

)
|un|2 +

(
τ

2
√

s
|un|−

√
s|un−1|

)2
,

where we applied Lemma 4.5 again. Now we are ready to give the proof of Theorem 4.1.
Proof. [Proof of Theorem 4.1] If we take the inner product of (1.7) with (un +ν(α−1)un−1 +(1−να)un−2),

then the left hand side can be written as

LHS = 〈un−νun−1− (1−ν)un−2,un +ν(α−1)un−1 +(1−να)un−2〉

=

∥∥∥∥ un
un−1

∥∥∥∥2

G
−
∥∥∥∥ un−1

un−2

∥∥∥∥2

G
+ |(x+ y)un−2xun−1 +(x− y)un−2|2, (4.6)

while the right hand side is

RHS =−∆t‖un +ν(α−1)un−1 +(1−να)un−2‖2
A
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+∆t〈Λ((2+ν(α−1))un−1−ναun−2),un +ν(α−1)un−1 +(1−να)un−2〉
=−∆t‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

+∆t(2+ν(α−1))〈Λun−1,un〉+(2+ν(α−1))(1−να)∆t〈Λun−1,un−2〉
−αν∆t〈Λun−2,un〉−αν∆t〈Λun−2,ν(α−1)un−1〉

=−∆t‖un +ν(α−1)un−1 +(1−να)un−2‖2
A

+(2−ν)∆t (〈Λun−1,un〉−〈Λun−2,un−1〉)
+αν∆t(〈Λun−1,un〉−〈Λun−2,un〉+ 〈Λun−2,un−1〉). (4.7)

According to Lemma 4.6, equations (4.6) and (4.7) can be written as follows.

0 =
(∥∥∥∥ un

un−1

∥∥∥∥2

G
− (2−ν)∆t〈Λun−1,un〉

)
−
(∥∥∥∥ un−1

un−2

∥∥∥∥2

G
− (2−ν)∆t〈Λun−2,un−1〉

)
+∆t‖un +ν(α−1)un−1 +(1−να)un−2‖2

A + |(x+y)un−2xun−1+(x−y)un−2|2

−αν∆t(〈Λun−1,un〉−〈Λun−2,un〉+ 〈Λun−2,un−1〉)

≥
(∥∥∥∥ un

un−1

∥∥∥∥2

G
− (2−ν)∆t〈Λun−1,un〉− (x− y)2|ηn|2

)
−
(∥∥∥∥ un−1

un−2

∥∥∥∥2

G
− (2−ν)∆t〈Λun−2,un−1〉− (x− y)2|ηn−1|2

)
+∆t‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

+
(

2(x2 + y2)− γ

2

)
|ηn|2−

γ

2
|ηn−1|2 +

γ

2
(|ηn|− |ηn−1|)2 . (4.8)

Then sum up (4.8) from n = 2 to N,

0≥
N

∑
n=2

(∥∥∥∥ un
un−1

∥∥∥∥2

G
− (2−ν)∆t〈Λun−1,un〉− (x− y)2|ηn|2

)
(4.9)

−
N

∑
n=2

(∥∥∥∥ un−1
un−2

∥∥∥∥2

G
− (2−ν)∆t〈Λun−2,un−1〉− (x− y)2|ηn−1|2

)
+∆t

N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

+
N

∑
n=2

((
2(x2 + y2)− γ

2

)
|ηn|2−

γ

2
|ηn−1|2 +

γ

2
(|ηn|− |ηn−1|)2

)
=
(∥∥∥∥ uN

uN−1

∥∥∥∥2

G
− (2−ν)∆t〈ΛuN−1,uN〉− (x− y)2|ηN |2

)
−
(∥∥∥∥ u1

u0

∥∥∥∥2

G
− (2−ν)∆t〈Λu0,u1〉− (x− y)2|η1|2

)
+∆t

N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

+
N

∑
n=2

((
2(x2 + y2)− γ

2

)
|ηn|2−

γ

2
|ηn−1|2 +

γ

2
(|ηn|− |ηn−1|)2

)
=
(∥∥∥∥ uN

uN−1

∥∥∥∥2

G
− (2−ν)∆t〈ΛuN−1,uN〉− (x− y)2|ηN |2

)
10



−
(∥∥∥∥ u1

u0

∥∥∥∥2

G
− (2−ν)∆t〈Λu0,u1〉− (x− y)2|η1|2

)
+∆t

N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A

+
(

2(x2+y2)− γ

2

)
|ηN |2−

γ

2
|η1|2

+
γ

2

N

∑
n=2

(|ηn|− |ηn−1|)2 +
(
2(x2+y2)−γ

)N−1

∑
n=2
|ηn|2.

By simplifying (4.9), we have(∥∥∥∥ uN
uN−1

∥∥∥∥2

G
− (2−ν)∆t〈ΛuN−1,uN〉+

(
(x+ y)2− γ

2

)
|ηN |2

)
(4.10)

+∆t
N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A +
γ

2

N

∑
n=2

(
|ηn|− |ηn−1|

)2

+
(
2(x2 + y2)− γ

)N−1

∑
n=2
|ηn|2

≤
∥∥∥∥ u1

u0

∥∥∥∥2

G
− (2−ν)∆t〈Λu0,u1〉+

(
γ

2
− (x− y)2

)
|η1|2

≤
∥∥∥∥ u1

u0

∥∥∥∥2

G
− (2−ν)∆t〈Λu0,u1〉+

γ

2
|η1|2

≤ |u1|2 + |u0|2− (2−ν)∆t〈Λu0,u1〉+
γ

2
|η1|2.

Under the time step condition (4.3), all terms on the left hand side of (4.10) are positive. Then we apply Lemma 4.7
to (4.10) and obtain (

r− τ2

4s

)
|uN |2 +

(
τ

2
√

s
|uN |−

√
s|uN−1|

)2
(4.11)

+∆t
N

∑
n=2
‖un +ν(α−1)un−1 +(1−να)un−2‖2

A +
γ

2

N

∑
n=2

(|ηn|− |ηn−1|)2

+
(
2(x2 + y2)− γ

)N−1

∑
n=2
|ηn|2

≤ |u1|2 + |u0|2− (2−ν)∆t〈Λu0,u1〉+
γ

2
|η1|2.

The coefficient of the energy term is positive since

4rs− τ
2 ≥ (2−ν)2

α2

(
(1−α)2(1−αν+αν

2)+
ν2

4
(2α−1)

(
1−2α(1−α)

))
≥ 0

for α ∈ [ 1
2 ,1] and ν ∈ [0,0.3], with equality only when α = 1 and ν = 0.

Finally, using (4.4), we write (4.11) in terms of α , ν and un to obtain the energy bound (1.9), which concludes the
proof.

5. Absolute Stability Region and Root Locus Curve of Leapfrog with RAW. Stability can be analyzed
exactly for scalar problems in terms of the root locus curve. The results of this analysis is organized in a compact
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and useful manner by the methods stability regions, derived in this section. This analysis gives necessary conditions
for stability in the system case and allows us to test sharpness of the filter-dependent CFL timestep conditions
derived in the Section 4.

5.1. Root Locus Curve. Taking A = 0, we consider leapfrog with RAW time filter, which is

un−νun−1− (1−ν)un−2 = ∆tΛ
((

2+ν(α−1)
)
un−1−ναun−2

)
. (5.1)

Then the characteristic polynomials of (5.1) are

ρ(ζ ) = ζ
2−νζ − (1−ν),

σ(ζ ) = (2+ν(α−1))ζ −να.

Denote w = ∆tλ , where λ is an arbitrary non-zero eigenvalue of Λ, thus, w is a purely imaginary number. Let ζ be
on the unit circle, i.e., ζ = eiθ , θ ∈ [0,2π], then the root locus curve [8, section V.1] for w is determined by

ρ(ζ )−wσ(ζ ) = 0 or w =
ρ(ζ )

σ(ζ )
.

Thus,

w =
ρ(ζ )

σ(ζ )
=

ζ 2−νζ − (1−ν)

(2+ν(α−1))ζ −να

=
(cos2θ + isin2θ)−ν(cosθ + isinθ)− (1−ν)

(2+ν(α−1))(cosθ + isinθ)−να

= Re(w)+ iIm(w),

where

Re(w) =
ν(1− cosθ)(2α +ν−2αν−2+2α cosθ)

((2+ν(α−1))cosθ −να)2 +((2+ν(α−1))sinθ)2 ,

Im(w) =
sinθ

(
(2−ν)2 +2αν(1− cosθ)

)
((2+ν(α−1))cosθ −να)2 +((2+ν(α−1))sinθ)2 .

Since w is purely imaginary, set Re(w) = 0. Then this gives

cosθ = 1 or cosθ = ν−1+
2−ν

2α
,

and in this case Im(w) = 0 or

Im(w) = ∆tλ =±
√
(2−ν)(2α−1)

α
√

2−ν +2αν
=± ∆tRAW√

1−ν2( 1
2 −α)2

=±∆t ′RAW .

Therefore we have proven the following result on the absolute stability of Leapfrog method (A = 0) with the RAW
time filter (1.4)-(1.5).

PROPOSITION 5.1. The Leapfrog method with RAW time filter is stable if and only if the time-step satisfies

∆t ≤ ∆t ′RAW equivalently ∆t||Λ|| ≤CFLscalar(α,ν).

REMARK 3. The time step (4.1) yielding the CFLsystem condition also gives the largest time interval on which
the amplification factor function is differentiable [22].
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5.2. Unconditional instability of Leapfrog + RAW for α = 1
2 . Now we give the proof of Corollary 4.3.

Proof. [Corollary 4.3] From (4.2) we note that ∆t ′RAW = 0 when α = 1
2 , which implies that the intersection of

the root locus curve with the imaginary axis is the origin, concluding the argument.
This instability is visualized through the root locus curve for LF+RAW with α = 1

2 in Figure 5.1. As predicted,
the zoom of Figure 5.1(b) shows that CNLF-RAW with α = 1

2 is unconditionally unstable, confirming geometrically
the above algebraic proof. The real axis is rescaled of order 10−11 around imaginary axis. The only intersection of
root locus curve with the imaginary axis is the origin, which implies the unconditional instability of leapfrog with
RAW time filter for α = 1

2 .

FIG. 5.1. (a) The root locus curve / region of absolute stability for Leapfrog with RAW, for α = 1
2 and ν = 0.2. (b) Points on the root locus

curve of leapfrog with RAW time filter .
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FIG. 5.2. Absolute stability of leapfrog with RAW vs RA.

6. Numerical Tests. We will give an example of energy obtained by both ∆tRAW and ∆t ′RAW . Consider

u′(t) = Λu(t), Λ =

(
0 50
−50 0

)
, u(0) = [1,1]T .

Take α = 0.53 and ν = 0.2, then we calculate the sufficient and necessary timestep restrictions for stability to be,
respectively,

∆tRAW = 0.00874267 and ∆t ′RAW = 0.00874283.
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FIG. 6.1. Energy obtained with step size ∆t = 0.99∆t ′RAW on the left, and ∆t = 1.01∆t ′RAW on the right.
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FIG. 6.2. Energy obtained with step size ∆t = ∆t ′RAW on the left, and ∆t = ∆tRAW on the right.

Finally, the predicted instability leapfrog with RAW time filter for α = 1
2 is verified in Figure 6.3.
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FIG. 6.3. Energy obtained by using step size ∆t = 0.00005, with α = 0.5, ν = 0.2, for which the scheme is unconditionally unstable. The
figure implies that no matter how small the step size is, the energy eventually blows up.
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