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Abstract. Consider an incompressible fluid in a region Ωf flowing both ways across an interface,
I, into a porous media domain Ωp saturated with the same fluid. The physical processes in each
domain have been well studied and are described by the Stokes equations in the fluid region and
the Darcy equations in the porous media region. Taking the interfacial conditions into account
produces a system with an exactly skew symmetric coupling. Spatial discretization by finite element
method and time discretization by Crank-Nicolson LeapFrog gives a second order partitioned method
requiring only one Stokes and one Darcy sub-physics and sub-domain solver per time step for the fully
evolutionary Stokes-Darcy problem. Analysis of this method leads to a time-step condition sufficient
for stability and convergence. Numerical tests verify predicted rates of convergence, however stability
tests reveal the problem of growth of numerical noise in unstable modes in some cases. In such
instances, the addition of time filters adds stability.

1. Introduction. Many important problems in environmental science seek an
accurate solution for the coupling of groundwater flows with surface flows. For exam-
ple, one serious problem concerns how pollution discharged into lakes, streams, and
rivers, permeates ground water supply. Descriptions of the interaction of groundwater
and surface water can be found in many places, see for example, Pinder and Celia [1].
One difficulty in solving such problems comes from the coupling of two domains, a
fluid region and a porous media region, along with the two physical processes happen-
ing in each region, described by the Stokes or Navier-Stokes and Darcy or Brinkman
equations respectively. In both sub-regions, the problem is time-dependent and since
different physical processes are taking place in each region, this suggests the efficiency
of utilizing different codes for each sub-process.

This paper examines the effectiveness of the Crank-Nicolson LeapFrog to uncouple
the problem into two sub problems requiring only one Stokes and one Darcy sub-
physics and sub-domain solver per time step. We analyze the stability of such a
method in relation to the physical parameters and mesh width and conduct an error
analysis over long time intervals. Finally, we present numerical experiments and
compare and contrast these results with the analysis of the method.

Denote the fluid region by Ωf and the porous media region by Ωp. Assume both
domains are bounded and regular. Let I represent the interface between the two
domains. Assume that the fluid motion in Ωf is governed by the Stokes equations
and let the Darcy equations govern the fluid motion in Ωp. Then the fluid velocity,
u, fluid pressure, p, and porous media piezometric head (Darcy pressure), φ, satisfy
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ut − ν∆u+∇p = ff in Ωf ,

∇ · u = 0, in Ωf ,

S0φt −∇ · (κ∇φ) = fp in Ωp,

u(x, 0) = u0 in Ωf and φ(x, 0) = φ0 in Ωp,

u(x, t) = 0 on ∂Ωf \ I and φ(x, t) = 0 on ∂Ωp \ I,
+ coupling conditions across I.

We assume no-slip along the exterior boundary of the coupled region. Let the
dimension, d, be 2 or 3. Below is a list of the variables in the above equations and
many of the variables used throughout this paper.

u = fluid velocity in porous media region Ωf ,

ν = kinematic viscosity of fluid,

p = fluid pressure in Ωf , rescaled by density,

ff , fp = body forces in fluid region rescaled by density, source in porous region

up = fluid velocity in porous media region Ωp,

φ = Darcy pressure + elevation induced pressure = piezometric head,

S0 = specific mass storativity coefficient,

κ = hydraulic conductivity tensor,

g = gravitational acceleration.

All functions depend on both space, x = (x1, x2, ..., xd) and time, t. Note that u,
up, and ff are vector valued functions. We assume all material and fluid parameters
above are positive, and also that the eigenvalues of the hydraulic conductivity tensor
satisfy 0 < kmin = λmin(κ) ≤ λmax(κ) = kmax <∞. Denote the outward unit normal
vectors of Ωf,p by n̂f,p. Coupling conditions along the interface I for this problem
include conservation of mass and the balance of normal forces across the interface:

u · n̂f + up · n̂p = 0 on I ⇔ u · n̂f − κ∇φ · n̂p = 0 on I, (conservation of mass)

p− νn̂f · ∇u · n̂f = gφ on I. (balance of normal forces)

In addition to these coupling conditions, we need a tangential condition on the fluid
region’s velocity along the interface. For our analysis we utilize the Beavers-Joseph-
Saffman coupling condition (see, e.g. [2], [3]),

−ντ̂j · ∇u · n̂f =
α√

τ̂j · κ · τ̂j
u · τ̂j on I for any τ̂j tangent vector on I,

where τ̂j , j = 1, ..., d − 1 denotes the orthonormal system of tangent vectors on I,
and α > 0 is a constant that must be experimentally determined and depends on
properties of the porous medium. This condition is a simplification of the more
physically realistic Beavers-Joseph coupling condition in [4].
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1.1. Previous Work. There has been considerable growth on the numerical
analysis of methods for the Stokes-Darcy coupled problems. The study of the equi-
librium problem is advanced, see for example, Layton, Schieweck, and Yotov in [5],
Discacciati, Miglio, and Quarteroni in [6], and Payne and Straughan in [7]. Domain
decomposition for the equilibrium problem has been studied in Discacciati in [8] and
Discacciati, Quarteroni, and Valli in [9]. Cao, Gunzberger et. all in [10] provide
an analysis of the finite element method for the time-dependent problem using the
Beavers-Joseph interface conditions, and [11] analyzes parallel domain decomposition
methods. In this paper we focus on a specific partitioned method which allows us to
uncouple the fully evolutionary problem and use one (SPD) Stokes and one (SPD)
Darcy solver per time step. The first study on partitioned methods for this problem
was presented by Mu and Zhu [12] in 2010. Partitioned methods were also studied by
Layton and Trenchea in [13], and by Layton, Trenchea, and Tran in [14]. Partitioned
methods utilizing different time steps in each domain have been examined by Layton,
Shan, and Zheng in [15] and [16].

2. The Continuous Problem and Semi-Discrete Approximation. For
simplicity, denote the L2(I) norm by ‖ · ‖I and the L2(Ωf,p) norms by ‖ · ‖f,p re-
spectively. Likewise, we represent their corresponding inner products by (·, ·)I,f,p.
Define

Xf = {v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf \ I},
Xp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp \ I},
Qf = L2

0(Ωf ).

Define the following norms on the dual spaces (Xf )∗ and (Xp)
∗.

‖f‖−1,f,p = sup
06=w∈Xf,p

(f, w)f,p
‖∇w‖f,p

(2.1)

Our analysis will make use of the following inequalities.

Lemma 2.1. (A Trace Inequality) Let Ω be a bounded regular domain, u ∈ H1(Ω).
Then there exists a constant CΩ > 0 depending on the domain Ω such that the follow-
ing inequality holds.

‖u‖L2(∂Ω) ≤ CΩ‖u‖
1
2

L2(Ω)‖∇u‖
1
2

L2(Ω).

Proof. See, for example Brenner and Scott in [17], Ch. 1.6 p.36-38.

Lemma 2.2. (Poincaré Inequality) Let v ∈ Xf , ψ ∈ Xp. Then there exists a
constant CP > 0 such that the following holds for w = v or ψ.

‖w‖ ≤ CP ‖∇w‖. (Poincaré inequality) (2.2)

Define the bilinear forms
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af (u, v) = ν(∇u,∇v)f +

d−1∑
i=1

∫
I

α√
τ̂i · κ · τ̂i

(u · τ̂i)(v · τ̂i) ds,

ap(φ, ψ) = g(κ∇φ,∇ψ)p,

cI(u, φ) = g

∫
I

φu · n̂f ds.

Note that the bilinear forms af (·, ·) and ap(·, ·) are both continuous and coercive on
their respective domains, Ωf and Ωp, as given below in the following lemma.

Lemma 2.3. (Continuity and Coercivity of the Bilinear Forms) The following
inequalities hold.

af (u, v) ≤
(
ν +

αC√
kmin

)
‖∇u‖f‖∇v‖f ,

ap(φ, ψ) ≤ gkmax‖∇φ‖p‖∇φ‖p,
af (u, u) ≥ ν‖∇u‖2f ,
ap(φ, φ) ≥ gkmin‖∇φ‖2p,

(2.3)

where C > 0 is a positive constant depending on the domain of Ωf arising from the
Trace and Poincaré Inequalities.

The variational formulation for the coupled Stokes-Darcy problem is as follows.

Find (u, p, φ) : [0,∞)→ (Xf , Qf , Xp) satisfying

(ut, v)f + af (u, v)− (p,∇ · v)f + cI(v, φ) = (ff , v)f ,

(q,∇ · u)f = 0,

gS0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = g(fp, ψ)p,

for all (v, q, ψ) ∈ (Xf , Qf , Xp).

(2.4)

It is interesting to note that setting v = u and ψ = φ and adding the first and
third equations exactly cancels the coupling terms. In other words, the sub-Stokes
and sub-Darcy problems are exactly skew symmetric. Applying coercivity of the two
bilinear forms, using the Cauchy-Schwartz and Young inequalities and integrating in
time yields the energy estimate for the coupled system.

‖u(t)‖2f+gS0‖φ(t)‖2p + ν

∫ t

0

‖∇u(s)‖2f ds+ gkmin

∫ 2

0

‖∇φ(s)‖2p ds

≤ 1

2ν

∫ t

0

‖ff (s)‖2f ds+
g

2kmin

∫ t

0

‖fp(s)‖2p ds+ ‖u0‖2f + gS0‖φ0‖2p.

Select a mesh for Ωf and Ωp. Let Th denote the combined mesh of Ωf ∪ Ωp,
with the maximum triangle diameter denoted by h. Assume that Th is quasi-uniform.
Select finite element spaces,

fluid velocity: Xh
f ⊂ Xf ,

Darcy pressure: Xh
p ⊂ Xp,

Stokes pressure: Qhf ⊂ Qf ,
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based on a conforming FEM triangulation. We assume that the Stokes velocity-
pressure FEM spaces, Xh

f and Qhf satisfy the usual discrete inf-sup condition for

stability of the discrete pressure, denoted by (LBBh) [18], as stated below.

∃ βh > 0 such that inf
qh∈Qh

f , qh 6=0
sup

vh∈Xh
f , vh 6=0

(qh,∇ · vh)f
‖∇vh‖f‖qh‖f

> βh (LBBh)

No assumption is made on the mesh compatibility or inter-domain continuity
on the interface I between the two FEM meshes in the two subdomains. Assume
that Xh

f , X
h
p , and Qhf satisfy approximation properties of piecewise polynomials on

quasi-uniform meshes of local degrees r − 1, r, and r + 1. That is,

inf
uh∈Xh

f

‖u− uh‖f ≤ Chr+1‖u‖Hr+1(Ωf ),

inf
uh∈Xh

f

‖u− uh‖H1(Ωf ) ≤ Chr‖u‖Hr+1(Ωf ),

inf
φh∈Xh

p

‖φ− φh‖p ≤ Chr+1‖φ‖Hr+1(Ωp),

inf
φh∈Xh

p

‖φ− φh‖H1(Ωp) ≤ Chr‖φ‖Hr+1(Ωp),

inf
ph∈Qh

f

‖p− ph‖f ≤ Chr+1‖p‖Hr+1(Ωf ).

(2.5)

Further, assume that the following inverse inequality holds for our choice of Th and
finite element spaces. Note that this assumption implies an angle condition. See
Brenner and Scott, [17], chapter 4 for more on inverse inequalities.

Lemma 2.4. (An Inverse Inequality) Let wh ∈ Xh
f or Xh

p , then

h‖∇wh‖ ≤ C(inv)‖wh‖. (Inverse Inequality)

The semi-discretization for the coupled Stokes-Darcy problem is as follows.

Find (uh(·, t), ph(·, t), φh(·, t)) : [0,∞)→ (Xh
f , Q

h
f , X

h
p )

satisfying for all (vh, qh, ψh) ∈ (Xh
f , Q

h
f , X

h
p ),

(uh,t, vh)f + af (uh, vh)− (ph,∇ · vh)f + cI(uh, φh) = (ff , vh)f ,

(qh,∇ · uh) = 0,

gS0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = g(fp, ψh)p.

(2.6)

Throughout this paper, C represents a positive constant independent of the time
step and mesh width and will vary from situation to situation. Analysis of the method
will require special treatment of the coupling term, cI(·, ·).

Lemma 2.5. (Coupling Inequalities) For all vh ∈ Xh
f and ψh ∈ Xh

p , with C =
CΩf

CΩpC(inv)g we have

cI(vh, ψh) ≤ 1

2
Ch−2‖vh‖2f +

1

2
C‖ψh‖2p (2.7)
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cI (vh, ψh) ≤ 1

2
Ch−1‖vh‖2f +

1

2
Ch−1‖ψh‖2p. (2.8)

Proof. We make use of the Cauchy-Schwarz, Trace, Inverse, and Young inequal-
ities in that order, picking up the corresponding constants which depend on the ge-
ometry of the spaces Ωf or Ωp.

cI(vh, ψh) = g

∫
I

ψhvh · n̂fds ≤
∣∣∣∣g ∫

I

ψhvh · n̂fds
∣∣∣∣

≤ g‖ψh‖I‖vh‖I ≤ CΩf
CΩp

g‖ψh‖
1
2
p ‖∇ψh‖

1
2
p ‖vh‖

1
2

f ‖∇vh‖
1
2

f

≤ CΩf
CΩp

C(inv)h
−1g‖ψh‖p‖vh‖f

≤ 1

2
CΩf

CΩp
C(inv)h

−2g‖vh‖2f +
1

2
CΩf

CΩp
C(inv)g‖ψh‖2p

Note that we can replace the last line with

cI (vh, ψh) ≤ 1

2
CΩf

CΩp
C(inv)h

−1ρg‖vh‖2f +
1

2
CΩf

CΩp
C(inv)h

−1ρg‖ψh‖2p.

3. CNLF for the coupled Stokes Darcy Equations. One of the difficulties
in solving the coupled Stokes-Darcy equations arises from the desire to uncouple the
equations in order to implement existing codes optimized to solve the physical pro-
cesses in each sub domain. By treating the coupling terms explicitly with Leapfrog,
we successfully uncouple the two equations.

Definition 1. (Crank-Nicolson LeapFrog Method) Let tn := n∆t and wn :=
w(x, tn) for any function w(x, t). CNLF for the evolutionary Stokes-Darcy equations
is as follows.

Given
(
ukh, p

k
h, φ

k
h

)
,
(
uk−1
h , pk−1

h , φk−1
h

)
∈
(
Xh
f , Q

h
f , X

h
p

)
, find(

uk+1
h , pk+1

h , φk+1
h

)
∈
(
Xh
f , Q

h
f , X

h
p

)
satisfying for all (vh, qh, ψh) ∈

(
Xh
f , Q

h
f , X

h
p

)
:

(
uk+1
h −uk−1

h

2∆t , vh

)
f

+ af

(
uk+1
h +uk−1

h

2 , vh

)
−
(
pk+1
h +pk−1

h

2 ,∇ · vh
)
f

+ cI(vh, φ
k
h) = (fkf , vh)f ,(

qh,∇ ·
(
uk+1
h +uk−1

h

2

))
f

= 0,

gS0

(
φk+1
h −φk−1

h

2∆t , ψh

)
p

+ ap

(
φk+1
h +φk−1

h

2 , ψh

)
− cI(ukh, ψh) = g(fkp , ψh)p.

(3.1)

CNLF is a 3 level method. The first terms, (u0
h, p

0
h, φ

0
h), arise from the initial

conditions of the problem. To obtain (u1
h, p

1
h, φ

1
h) one must use another method. Note

that errors in this first step will affect the overall convergence rate of the method.

3.1. Stability of CNLF. We derive a CFL-type time step condition for the
stability of CNLF. Under this condition, approximate solutions to the Stokes-Darcy
coupled problem are uniform in time stable and convergent.
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Theorem 3.1. (Stability for CNLF Method) Suppose ∆t satisfies

∆t ≤ C−1 max
{

min
{
h2, gS0

}
,min {h, gS0h}

}
, (3.2)

where C = CΩf
CΩp

C(inv)g. Let α = min{1 − ∆tC−1h−1, 1 − ∆tC−1h−2} > 0 and
β = min{gS0 − ∆tC−1h−1, gS0 − ∆tC−1} > 0. Then, for N = 1, 2, 3,... CNLF
stability holds:

α(‖uN+1
h ‖2f + ‖uNh ‖2f ) + β(‖φN+1

h ‖2p + ‖φNh ‖2p)

+ ∆t

N−1∑
k=1

[
ν

2
‖∇
(
uk+1
h + uk−1

h

)
‖2f +

gkmin
2
‖∇
(
φk+1
h + φk−1

h

)
‖2p
]

≤ (‖u1
h‖2f + ‖u0

h‖2f ) + gS0(‖φ1
h‖2p + ‖φ0

h‖2p) + 2∆t
(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h)
)

+ 2∆t

N−1∑
k=1

[
(ν)−1‖fkf ‖2−1 + g(kmin)−1‖fkp ‖2−1

]
.

Proof. Choose vh = uk+1
h +uk−1

h and ψh = φk+1
h +φk−1

h . Then the second equation
drops out and the first and third equations of the method added together become

1
2∆t

(
‖uk+1

h ‖2f + gS0‖φk+1
h ‖2g − ‖uk−1

h ‖2f − gS0‖φk−1
h ‖2g

)
+ af (

uk+1
h +uk−1

h

2 , uk+1
h + uk−1

h ) + ap(
φk+1
h +φk−1

h

2 , φk+1
h + φk−1

h )

+ cI(u
k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h )

= (fkf , u
k+1
h + uk−1

h )f + g(fkp , φ
k+1
h + φk−1

h )p.

Consider the right-hand-side of the above equation. Using the Cauchy-Schwarz and
Young inequalities, one obtains the following bound.

(fkf , u
k+1
h + uk−1

h )f + g(fkp , φ
k+1
h + φk−1

h )p

≤ ‖fkf ‖−1,f‖∇(uk+1
h + uk−1

h )‖f + g‖fkp ‖−1,p‖∇(φk+1
h + φk−1

h )‖p

≤ ν

4
‖∇(uk+1

h + uk−1
h )‖2f + (ν)−1‖fkf ‖2−1,f

+
gkmin

4
‖∇(φk+1

h + φk−1
h )‖p + g(kmin)−1‖fkp ‖2−1,p.

This bound along with coercivity of af (., .) and ap(., .) gives,

1
2∆t

(
‖uk+1

h ‖2f + gS0‖φk+1
h ‖2p − ‖uk−1

h ‖2f − gS0‖φk−1
h ‖2p

)
+
ν

4
‖∇(uk+1

h + uk−1
h )‖2f

+
gkmin

4
‖∇(φk+1

h + φk−1
h )‖p + cI(u

k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h )

≤ (ν)−1‖fkf ‖2−1 + g(kmin)−1‖fkp ‖2−1.

Consider the coupling terms cI(u
k+1
h + uk−1

h , φkh)− cI(ukh, φ
k+1
h + φk−1

h ). Define

Ck+ 1
2 = cI(u

k+1
h , φkh)− cI(ukh, φk+1

h ).
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The coupling terms equal Ck+ 1
2 − Ck− 1

2 . Multiplying by 2∆t and adding and sub-
tracting ‖ukh‖2f and gS0‖φkh‖2p yields the following.

(
‖uk+1

h ‖2f + ‖ukh‖2f + gS0‖φk+1
h ‖2g + gS0‖φkh‖2p)

−
(
‖ukh‖2f + ‖uk−1

h ‖2f + gS0‖φkh‖2p + gS0‖φk−1
h ‖2p

)
+ 2∆t

(
ν

4
‖∇(uk+1

h + uk−1
h )‖2f +

gkmin
4
‖∇(φk+1

h + φk−1
h )‖p

)
+ 2∆t

(
Ck+ 1

2 − Ck− 1
2

)
≤ 2∆t

(
(ν)−1‖fkf ‖2−1,f + g(kmin)−1‖fkp ‖2−1,p

)
.

Define the energy terms.

Ek+ 1
2 = ‖uk+1

h ‖2f + ‖ukh‖2f + gS0‖φk+1
h ‖2p + gS0‖φkh‖2p.

Using this notation, sum the previous inequality from k = 1 to N − 1.

EN−
1
2 − E 1

2 + 2∆tCN−
1
2 − 2∆tC

1
2

+ 2∆t

N−1∑
k=1

[
ν

4
‖∇(uk+1

h + uk−1
h )‖2f +

gkmin
4
‖∇(φk+1

h + φk−1
h )‖p

]

≤ 2∆t

N−1∑
k=1

[
(ν)−1‖fkf ‖2−1,f + g(kmin)−1‖fkp ‖2−1,p

]
.

The above inequality implies the stability of the CNLF-method provided that
EN−

1
2 + 2∆tCN−

1
2 ≥ 0. By (2.7) and (2.8),

CN−
1
2 ≥ −1

2
Ch−2

(
‖uNh ‖2f + ‖uN−1

h ‖2f
)
− 1

2
C
(
‖φNh ‖2p + ‖φN−1

h ‖2p
)
,

CN−
1
2 ≥ −1

2
Ch−1

(
‖uNh ‖2f + ‖uN−1

h ‖2f
)
− 1

2
Ch−1

(
‖φNh ‖2p + ‖φN−1

h ‖2p
)

.

Apply these bounds separately to the energy term EN−
1
2 + 2∆tCN−

1
2 .

EN−
1
2 + 2∆tCN−

1
2 ≥ (1−∆tCh−2)(‖uNh ‖2f + ‖uN−1

h ‖2f )

+ (gS0 −∆tC)(‖φNh ‖2p + ‖φN−1
h ‖2p),

EN−
1
2 + 2∆tCN−

1
2 ≥ (1−∆tCh−1)(‖uNh ‖2f + ‖uN−1

h ‖2f )

+ (gS0 −∆tCh−1)(‖φNh ‖2p + ‖φN−1
h ‖2p).

Therefore EN−
1
2 + 2∆tCN−

1
2 ≥ 0 provided that

∆t ≤ C−1 max
{

min
{
h2, gS0

}
,min {h, gS0h}

}
.
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Fig. 3.1. (left) Surface Plot of the Time Step Condition (right) Cross Section of the Time Step
Condition

A surface plot for the time step condition is given in Figure 3.1, with g = 1. For
stability, ∆t must be on or below the surface. This surface consists of three separate
surfaces forming one continuous surface as evident in 3.1 (left). In region I, ∆t ≤ S0,
in region II, ∆t ≤ h2, and in region III, ∆t ≤ S0h. It is also important to notice that
this time step condition is independent of kmin but sensitive to S0.

3.2. Error Analysis of CNLF. We analyze the error of the method over long
time intervals. Recall that the FEM spaces, Xh

f , Xh
p and Qhf satisfy approximation

properties of piecewise polynomials of degree r− 1, r, and r+ 1 as stated previously.
Since we assumed that Xh

f and Qhf satisfied (LBBh), there exists some constant C
such that if u ∈ V := {v ∈ Xf : ∇ · v = 0}

inf
vh∈Vh

‖u− vh‖H1(Ωf ) ≤ C inf
xh∈Xh

f

‖u− xh‖H1(Ωf ), (3.3)

(see, for example, Girault and Raviart [18]). Let N ∈ N be given. Denote tn = n∆t
and T = N∆t. If T =∞ then N =∞. In order to conduct error analysis for CNLF,
we first introduce the following discrete norms.

‖|v|‖L2(0,T ;Hs(Ωf,p)) :=

(
N∑
k=1

‖vk‖2Hs(Ωf,p)∆t

)1/2

,

‖|v|‖L∞(0,T ;Hs(Ωf,p)) := max
0≤k≤N

‖vk‖Hs(Ωf,p).

Our error analysis of CNLF will use the lemma below.

9



Lemma 3.2. (Consistency Errors) The following inequalities hold:

∆t

N−1∑
k=1

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

≤ (∆t)4

40
‖uttt‖2L2(0,T ;L2(Ωf )), (3.4)

∆t

N−1∑
k=1

‖φkt −
φk+1 − φk−1

2∆t
‖2p ≤

(∆t)4

40
‖φttt‖2L2(0,T ;L2(Ωp)), (3.5)

∆t

N−1∑
k=1

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

≤ 7(∆t)4

6
‖utt‖2L2(0,T ;H1(Ωf )), (3.6)

∆t

N−1∑
k=1

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

≤ 7(∆t)4

6
‖φtt‖2L2(0,T ;H1(Ωp)). (3.7)

Proof. We will prove (3.4) and (3.6). The proofs for the other inequalities are
similar. We prove the first inequality by integrating by parts twice and the Cauchy-
Schwarz inequality.

N−1∑
k=1

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

=
1

4(∆t)2

∫
Ωf

N−1∑
k=1

(∫ tk+1

tk
(t− tk+1)utt dt+

∫ tk

tk−1

(t− tk−1)utt dt

)2

dx

=
1

4(∆t)2

∫
Ωf

N−1∑
k=1

(∫ tk+1

tk

(t− tk+1)2

2
uttt dt+

∫ tk

tk−1

(t− tk−1)2

2
uttt dt

)2

dx

≤ 1

4(∆t)2

∫
Ωf

N−1∑
k=1

(∆t)5

20

(∫ tk+1

tk−1

|uttt|2 dt

)
dx

≤ (∆t)3

40

∫
Ωf

∫ T

0

|uttt|2 dt dx ≤
(∆t)3

40
‖uttt‖2L2(0,T ;L2(Ωf )).

This next inequality is proved similarly.

N−1∑
k=1

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

=

∫
Ωf

N−1∑
k=1

∣∣∣∣∇(uk − uk+1

2
+
uk − uk−1

2

)∣∣∣∣2 dx
=

1

4

∫
Ωf

N−1∑
k=1

|(∇uk −∇uk+1) + (∇uk −∇uk−1)|2 dx

10



=
1

4

∫
Ωf

N−1∑
k=1

∣∣∣∣∣
∫ tk

tk+1

∇ut dt+

∫ tk

tk−1

∇ut dt

∣∣∣∣∣
2

dx

=
1

4

∫
Ωf

N−1∑
k=1

∣∣∣∣∣
∫ tk

tk+1

(t− tk)′∇utdt+

∫ tk

tk−1

(t− tk)′∇utdt

∣∣∣∣∣
2

dx

=
1

4

∫
Ωf

N−1∑
k=1

∣∣∣∣∣−∆t

∫ tk+1

tk−1

∇utt dt+

∫ tk+1

tk
(t− tk)∇utt dt

+

∫ tk

tk−1

(tk − t)∇utt dt|2dx

≤ 1

2

∫
Ωf

N−1∑
k=1

((∆t)2

∣∣∣∣∣
∫ tk+1

tk−1

∇utt dt

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ tk+1

tk
(t− tk)∇utt dt

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ tk

tk−1

(tk − t)∇utt dt

∣∣∣∣∣
2

) dx

≤ 1

2

∫
Ωf

N−1∑
k=1

(
(∆t)3

∫ tk+1

tk−1

|∇utt|2 dt+
(∆t)3

3

∫ tk+1

tk−1

|∇utt|2 dt

)
dx

≤ 7(∆t)3

6
‖utt‖2L2(0,T ;H1(Ωf )).

We now prove convergence with optimal rates over long time intervals under con-
dition (3.2). Denote enf = un − unh and enp = φn − φnh.

Theorem 3.3. (Convergence of CNLF) Consider the CNLF method (3.1). Sup-
pose that the time step condition (3.2) holds and u, p, φ satisfy the following regularity
conditions.

u ∈ L2(0, T ;Hr+2(Ωf )) ∩ L∞(0, T ;Hr+1(Ωf )) ∩H3(0, T ;H1(Ωf )),

p ∈ L2(0, T ;L2(Ωf )),

φ ∈ L2(0, T ;Hr+2(Ωp)) ∩ L∞(0, T ;Hr+1(Ωp)) ∩H3(0, T ;H1(Ωp)).

Then, for any 0 ≤ tN ≤ ∞, there is a positive constant Ĉ independent of the mesh
width and time step such that

α

2
(‖eNf ‖2f + ‖eN−1

f ‖2f +
β

2
(‖eNp ‖2p + ‖eN−1

p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

4
‖∇(ek+1

f + ek−1
f )‖2f +

gkmin
4
‖∇(ek+1

p + ek−1
p )‖2p

)
11



≤ Ĉ{h2r{‖|u‖|2L2(0,T ;Hr+1(Ωf )) + ‖|φ‖|2L2(0,T ;Hr+1(Ωp))}

+ h2r+2{‖ut‖2L2(0,T ;Hr+1(Ωf )) + ‖φt‖L2(0,T ;Hr+1(Ωp)) + ‖|u|‖2L∞(0,T ;Hr+1(Ωf ))

+ ‖|φ|‖2L∞(0,T ;Hr+1(Ωp)) + ‖|p|‖2L2(0,T ;Hr+1(Ωf ))}
+ (∆t)4{‖uttt‖2L2(0,T ;L2(Ωf )) + ‖φttt‖2L2(0,T ;L2(Ωp)) + ‖utt‖2L2(0,T ;H1(Ωf ))

+ ‖φtt‖2L2(0,T ;H1(Ωp))}+ ∆t(‖∇e1
f‖2f + ‖∇e0

f‖2f + ‖∇e1
p‖2p + ‖∇e0

p‖2p)

+ ‖e1
f‖2f + ‖e0

f‖2f + ‖e1
p‖2p + ‖e0

p‖2p }.
Proof. Recall that solution uk = u(tk) where tk = k∆t, satisfies (2.4). Consider

CNLF over the discretely divergence free space V h := {vh ∈ Xh
f : (qh,∇ · vh)f =

0 ∀qh ∈ Qhf} instead of Xh
f . Subtract (3.1) from (2.4) evaluated at time tk. Note that

since vh ∈ V h, the Stokes pressure term,
(
pk+1
h +pk−1

h

2 ,∇ · vh
)

is equal to zero, and can

therefore be omitted from the equation. We have:(
ukt −

uk+1
h −uk−1

h

2∆t , vh

)
f

+ af

(
uk − uk+1

h +uk−1
h

2 , vh

)
−
(
pk,∇ · vh

)
f

+ cI
(
vh, φ

k − φkh
)

= 0,

gS0

(
φkt −

φk+1
h −φk−1

h

2∆t , ψh

)
p

+ ap

(
φk − φk+1

h +φk−1
h

2 , ψh

)
− cI

(
uk − ukh, ψh

)
= 0.

Since vh is discretely divergence free,
(
pk,∇ · vh

)
f

=
(
pk − λkh,∇ · vh

)
f
, for any λh ∈

Qhf .

After rearranging terms, the error equations become

(
uk+1 − uk+1

h

2∆t
−
uk−1 − uk−1

h

2∆t
, vh

)
f

+ af

(
uk+1 + uk−1

2
−
uk+1
h + uk−1

h

2
, vh

)

+cI
(
vh, φ

k − φkh
)

=

(
uk+1 − uk−1

2∆t
, vh

)
f

− (ukt , vh)f

−af
(
uk − uk+1 + uk−1

2
, vh

)
+
(
pk − λkh,∇ · vh

)
f
,

gS0

(
φk+1 − φk−1

2∆t
−
φk+1
h − φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk+1 + φk−1

2
−
φk+1
h + φk−1

h

2
, ψh

)

−cI
(
uk − ukh, ψh

)
= gS0

(
φk+1 − φk−1

2∆t
, ψh

)
p

− gS0(φkt , ψh)p

−ap
(
φk − φk+1 + φk−1

2
, ψh

)
.
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The consistency errors are:

εkf (vh) =

(
uk+1 − uk−1

2∆t
, vh

)
f

− (ukt , vh)f − af
(
uk − uk+1 + uk−1

2
, vh

)
,

εkp(ψh) = gS0

(
φk+1 − φk−1

2∆t
, ψh

)
p

− gS0(φkt , ψh)p − ap
(
φk − φk+1 + φk−1

2
,Ψh

)
.

Split the error terms into:

ek+1
f = uk+1 − uk+1

h = (uk+1 − ũk+1) + (ũk+1 − uk+1
h ) = ηk+1

f + ξk+1
f ,

ek+1
p = φk+1 − φk+1

h = (φk+1 − φ̃k+1) + (φ̃k+1 − φk+1
h ) = ηk+1

p + ξk+1
p .

Take ũk+1 ∈ V h and φ̃k+1 ∈ Xh
p so that ξk+1

f ∈ V h. Rearranging error equations
gives

(
ξk+1
f − ξk−1

f

2∆t
, vh

)
f

+ af

(
ξk+1
f + ξk−1

f

2
, vh

)
+ cI(vh, ξ

k
p )

= −

(
ηk+1
f − ηk−1

f

2∆t
, vh

)
f

− af

(
ηk+1
f + ηk−1

f

2
, vh

)
− cI(vh, ηkp) + εkf (vh) +

(
pk − λkh,∇ · vh

)
f
,

gS0

(
ξk+1
p − ξk−1

p

2∆t
, ψh

)
p

+ ap

(
ξk+1
p + ξk−1

p

2
, ψh

)
− cI(ξkf , ψh)

= −gS0

(
ηk+1
p − ηk−1

p

2∆t
, ψh

)
p

− ap

(
ηk+1
p + ηk−1

p

2
, ψh

)
+ cI(η

k
f , ψh) + εkp(ψh).

Choosing vh = ξk+1
f + ξk−1

f ∈ V h and ψh = ξk+1
p + ξk−1

p ∈ Xh
p and adding both error

equations produces

1

2∆t

(
‖ξk+1
f ‖2f + gS0‖ξk+1

p ‖2p − ‖ξk−1
f ‖2f − gS0‖ξk−1

p ‖2p
)

+
[
cI(ξ

k+1
f + ξk−1

f , ξkp )− cI(ξkf , ξk+1
p + ξk−1

p )
]

+
1

2

[
af (ξk+1

f + ξk−1
f , ξk+1

f + ξk−1
f ) + ap(ξ

k+1
p + ξk−1

p , ξk+1
p + ξk−1

p )
]

= − 1

2∆t

[(
ηk+1
f − ηk−1

f , ξk+1
f + ξk−1

f

)
f

+ gS0

(
ηk+1
p − ηk−1

p , ξk+1
p + ξk−1

p

)
p

]
−1

2

[
af

(
ηk+1
f + ηk−1

f , ξk+1
f + ξk−1

f

)
+ ap

(
ηk+1
p + ηk−1

p , ξk+1
p + ξk−1

p

)]
−
[
cI(ξ

k+1
f + ξk−1

f , ηkp)− cI(ηkf , ξk+1
p + ξk−1

p )
]

+εkf (ξk+1
f + ξk−1

f ) +
(
pk − λkh,∇ · (ξk+1

f + ξk−1
f )

)
f

+ εkp(ξk+1
p + ξk−1

p ).
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Split the coupled terms on the left hand side in the following way:

cI(ξ
k+1
f + ξk−1

f , ξkp )−cI(ξkf , ξk+1
p + ξk−1

p )

=
(
cI(ξ

k+1
f , ξkp )− cI(ξkf , ξk+1

p )
)
−
(
cI(ξ

k
f , ξ

k−1
p )− cI(ξk−1

f , ξkp )
)

= C
k+ 1

2

ξ − Ck−
1
2

ξ .

Denote the ξ energy terms by

E
k+1/2
ξ := ‖ξk+1

f ‖2f + gS0‖ξk+1
p ‖2p + ‖ξkf‖2f + gS0‖ξkp‖2p.

Applying the coercivity of af (·, ·) and ap(·, ·) we have

E
k+1/2
ξ + 2∆tC

k+ 1
2

ξ − Ek−1/2
ξ − 2∆tC

k− 1
2

ξ

+ ∆t
(
ν‖∇(ξk+1

f + ξk−1
f )‖2f + gkmin‖∇(ξk+1

p + ξk−1
p ‖2p

)
≤ −

[(
ηk+1
f − ηk−1

f , ξk+1
f + ξk−1

f

)
f

+ gS0

(
ηk+1
p − ηk−1

p , ξk+1
p + ξk−1

p

)
p

]
−∆t

[
af

(
ηk+1
f + ηk−1

f , ξk+1
f + ξk−1

f

)
+ ap

(
ηk+1
p + ηk−1

p , ξk+1
p + ξk−1

p

)]
− 2∆t

[
cI(ξ

k+1
f + ξk−1

f , ηkp)− cI(ηkf , ξk+1
p + ξk−1

p )
]

+ 2∆t
(
εkf (ξk+1

f + ξk−1
f ) + (pk − λkh,∇ · (ξk+1

f + ξk−1
f ))f + εkp(ξk+1

p + ξk−1
p )

)
.

Now we bound the right hand side of the inequality from above. We begin by
bounding the first term on the right using the standard Cauchy-Schwarz, Poincaré
(2.2), and Young inequalities.

(ηk+1
f − ηk−1

f , ξk+1
f + ξk−1

f )f + gS0(ηk+1
p − ηk−1

p , ξk+1
f + ξk−1

p )p

≤
3C2

P,f

ν∆t
‖ηk+1
f − ηk−1

f ‖2f +
5gS2

0C
2
P,p

2kmin∆t
‖ηk+1
p − ηk−1

p ‖2p

+ ∆t
ν

12
‖∇(ξk+1

f + ξk−1
f )‖2f + ∆t

gkmin
10
‖∇(ξk+1

p + ξk−1
p )‖2p.

Next, we apply the continuity of the bilinear forms af (·, ·) and ap(·, ·) to bound the

second term on the right. To simplify, let M =

(
ν +

αC√
kmin

)
as in (2.3).

af (ηk+1
f + ηk−1

f ,ξk+1
f + ξk−1

f ) + ap(η
k+1
p + ηk−1

p , ξk+1
p + ξk−1

p )

≤M‖∇(ηk+1
f + ηk−1

f )‖f‖∇(ξk+1
f + ξk−1

f )‖f
+ gkmax‖∇(ηk+1

p + ηk−1
p )‖p‖∇(ξk+1

p + ξk−1
p )‖p

≤ 3M2

ν
‖∇(ηk+1

f + ηk−1
f )‖2f +

5gk2
max

2kmin
‖∇(ηk+1

p + ηk−1
p )‖2p

+
ν

12
‖∇(ξk+1

f + ξk−1
f )‖2f +

gkmin
10
‖∇(ξk+1

p + ξk−1
p )‖2p
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We bound the coupled terms on the right hand side using the trace (2.1), Poincaré
(2.2), and Young inequalities. Let C = C2

Ωf
C2

Ωp
CP,fCP,pg

2. Then

cI(ξ
k+1
f + ξk−1

f , ηkp)− cI(ηkf , ξk+1
p + ξk−1

p )

≤ g
(
‖(ξk+1

f + ξk−1
f ) · n̂f‖I‖ηkp‖I + ‖ηkf · n̂f‖I‖ξk+1

p + ξk−1
p ‖I

)
≤ CΩf

CΩp
g
(
‖ξk+1
f + ξk−1

f ‖1/2f ‖∇(ξk+1
f + ξk−1

f )‖1/2f ‖η
k
p‖1/2p ‖∇ηkp‖1/2p

+ ‖ξk+1
p + ξk−1

p ‖1/2p ‖∇(ξk+1
p + ξk−1

p )‖1/2p ‖ηkf‖
1/2
f ‖∇η

k
f‖

1/2
f

)
≤
√
C
(
‖∇(ξk+1

f + ξk−1
f )‖f‖∇ηkp‖p + ‖∇ηkf‖f‖∇(ξk+1

p + ξk−1
p )‖p

)
≤ 6C

ν
‖∇ηkf‖2f +

5C

gkmin
‖∇ηkp‖2p

+
ν

24
‖∇(ξk+1

f + ξk−1
f )‖2f +

gkmin
20
‖∇(ξk+1

p + ξk−1
p )‖2p.

Finally, we bound the consistency errors, εkf and εkp, and the pressure term,(
pk − λkh,∇ · (ξ

k+1
f + ξk−1

f )
)
f
, as follows.

εkf (ξk+1
f + ξk−1

f ) =

(
uk+1 − uk−1

2∆t
, ξk+1
f + ξk−1

f

)
− (ukt , ξ

k+1
f + ξk−1

f )f

− af
(
uk − uk+1 + uk−1

2
, ξk+1
f + ξk−1

f

)
≤
∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥
f

‖ξk+1
f + ξk−1

f ‖f

+M

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥
f

‖∇(ξk+1
f + ξk−1

f )‖f

≤
6C2

P,f

ν

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

+
6M2

ν

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

+
ν

12
‖∇(ξk+1

f + ξk−1
f )‖2f ,

εkp(ξk+1
p + ξk−1

p ) = gS0

(
φk+1 − φk−1

2∆t
, ξk+1
p + ξk−1

p

)
p

− gS0(φkt , ξ
k+1
p + ξk−1

p )p

− ap
(
φk − φk+1 + φk−1

2
, ξk+1
p + ξk−1

p

)
≤ gS0

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥
p

‖ξk+1
p + ξk−1

p ‖p

+ gkmax

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥
p

‖∇(ξk+1
p + ξk−1

p )‖p

≤
5gS2

0C
2
P,p

kmin

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+
5gkmax
kmin

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

+
gkmin

10
‖∇(ξk+1

p + ξk−1
p )‖2p,
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(
pk − λkh,∇ · (ξk+1

f + ξk−1
f )

)
f
≤ ‖pk − λkh‖f‖∇ · (ξk+1

f + ξk−1
f )‖f

≤ 6d

ν
‖pk − λkh‖2f +

ν

24
‖∇(ξk+1

f + ξk−1
f )‖2f .

Having bounded each term on the right hand side from above, we now subsume
the ξ terms on the right into the left hand side of the inequality.

E
k+ 1

2

ξ + 2∆tC
k+ 1

2

ξ − Ek−
1
2

ξ − 2∆tC
k− 1

2

ξ

+ ∆t

(
ν

2
‖∇(ξk+1

f + ξk−1
f )‖2f +

gkmin
2
‖∇(ξk+1

p + ξk−1
p )‖2p

)
≤ (∆t)−1

{
3C2

P,f

ν
‖ηk+1
f − ηk−1

f ‖2f +
5gS2

0C
2
P,p

2kmin
‖ηk+1
p − ηk−1

p ‖2p

}

+ ∆t{3M2

ν
‖∇(ηk+1

f + ηk−1
f )‖2f +

5gk2
max

2kmin
‖∇(ηk+1

p + ηk−1
p )‖2p +

12C

ν
‖∇ηkf‖2f

+
10C

gkmin
‖∇ηkp‖2p +

12C2
P,f

ν

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

+
12M2

ν

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

+
12d

ν
‖pk − λkh‖2f

+
5gS2

0C
2
P,p

kmin

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+
5gk2

max

kmin

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

}.
Sum this inequality from k = 1, ..., N − 1. Then

E
N− 1

2

ξ + 2∆tC
N− 1

2

ξ − E
1
2

ξ

+ ∆t

N−1∑
k=1

(
ν

2
‖∇
(
ξk+1
f + ξk−1

f

)
‖2f +

gkmin
2
‖∇(ξk+1

p + ξk−1
p )‖2p

)

≤ (∆t)−1
N−1∑
k=1

[
3C2

P,f

ν
‖ηk+1
f − ηk−1

f ‖2f +
5gS2

0C
2
P,p

2kmin
‖ηk+1
p − ηk−1

p ‖2p

]

+ ∆t

N−1∑
k=1

[3M2

ν
‖∇(ηk+1

f + ηk−1
f )‖2f +

5gk2
max

2kmin
‖∇(ηk+1

p + ηk−1
p )‖2p

+
12C

ν
‖∇ηkf‖2f +

10C

gkmin
‖∇ηkp‖2p +

12C2
P,f

ν

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

+
12M2

ν

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

+
12d

ν
‖pk − λh‖2f

+
10gS2

0C
2
P,p

kmin

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+
10gk2

max

kmin

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

].
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We want to bound this in terms of norms instead of summations. Using Cauchy-
Schwarz and other basic inequalities, we bound the first term on the right hand side
as follows.

N−1∑
k=1

‖ηk+1
f − ηk−1

f ‖2f =

N−1∑
k=1

∥∥∥∥∥
∫ tk+1

tk−1

ηf,tdt

∥∥∥∥∥
2

f

≤
N−1∑
k=1

∫
Ωf

(2∆t)

∫ tk+1

tk−1

|ηf,t|2dt dx

≤ 4∆t‖ηf,t‖2L2(0,T ;L2(Ωf )).

(3.8)

We treat the second term similarly.

N−1∑
k=1

‖ηk+1
p − ηk−1

p ‖2f ≤ 4∆t‖ηp,t‖2L2(0,T ;L2(Ωp)). (3.9)

We bound the remaining η terms using Cauchy-Schwartz and the discrete norms.

N−1∑
k=1

‖∇(ηk+1
f +ηk−1

f )‖2f ≤ 2

N−1∑
k=1

(
‖∇ηk+1

f ‖2f + ‖∇ηk−1
f ‖2f

)
≤ 4

N∑
k=0

‖∇ηkf‖2f ≤ 4(∆t)−1‖|∇ηf |‖2L2(0,T ;L2(Ωf )),

(3.10)

N−1∑
k=1

‖∇(ηk+1
p + ηk−1

p )‖2f ≤ 4(∆t)−1‖|∇ηp|‖2L2(0,T ;L2(Ωp)), (3.11)

N−1∑
k=1

‖∇ηkf‖2f ≤ (∆t)−1‖|∇ηf |‖2L2(0,T ;L2(Ωf )), (3.12)

N−1∑
k=1

‖∇ηkp‖2p ≤ (∆t)−1‖|∇ηp|‖2L2(0,T ;L2(Ωp)), (3.13)

N−1∑
k=1

‖pk − λkh‖2f ≤ (∆t)−1‖|p− λh|‖2L2(0,T ;L2(Ωf )). (3.14)

Recall from the proof of stability that since (3.2) holds, we have the following
lower bound for the energy terms.

E
N−1/2
ξ + 2∆tC

N− 1
2

ξ ≥ α(‖ξNf ‖2f + ‖ξN−1
f ‖2f ) + β(‖ξNp ‖2p + ‖ξN−1

p ‖2p) ≥ 0

Here α = min{1−∆tC−1h−1, 1−∆tC−1h−2} and β = min{gS0−∆tC−1h−1, gS0−
∆tC−1} are both positive because of the time step condition (3.2).
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After applying bounds (3.8)-(3.14), along with (3.4)-(3.7), and absorbing all the

constants into one constant, Ĉ1, the inequality becomes

α(‖ξNf ‖2f + ‖ξN−1
f ‖2f ) + β(‖ξNp ‖2p + ‖ξN−1

p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

2
‖∇(ξk+1

f + ξk−1
f )‖2f +

gkmin
2
‖∇(ξk+1

p + ξk−1
p )‖2p

)
≤ Ĉ1{‖ηf,t‖2L2(0,T ;L2(Ωf )) + ‖ηp,t‖2L2(0,T ;L2(Ωp)) + ‖|∇ηf |‖2L2(0,T ;L2(Ωf ))

+ ‖|∇ηp|‖2L2(0,T ;L2(Ωp)) + ‖|p− λh|‖2L2(0,T ;L2(Ωf ))

+ (∆t)4
(
‖uttt‖2L2(0,T ;L2(Ωf )) + ‖φttt‖2L2(0,T ;L2(Ωp))

+ ‖utt‖2L2(0,T ;H1(Ωf )) + ‖φtt‖2L2(0,T ;H1(Ωp)))}+ E
1/2
ξ + 2∆tC

1
2

ξ .

(3.15)

Recall that eNf = uN −uNh and eNp = φN −φNh . Use the triangle inequality on the
error equation to split the error terms into terms of η and ξ.

α

2
(‖eNf‖2f + ‖eN−1

f ‖2f +
β

2
(‖eNp ‖2p + ‖eN−1

p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

4
‖∇(ek+1

f + ek−1
f )‖2f +

gkmin
4
‖∇(ek+1

p + ek−1
p )‖2p

)
≤ α(‖ξNf ‖2f + ‖ξN−1

f ‖2f ) + β(‖ξNp ‖2p + ‖ξN−1
p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

2
‖∇(ξk+1

f + ξk−1
f )‖2f +

gkmin
2
‖∇(ξk+1

p + ξk−1
p )‖2p

)
+ α(‖ηNf ‖2f + ‖ηN−1

f ‖2f ) + β(‖ηNp ‖2p + ‖ηN−1
p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

2
‖∇(ηk+1

f + ηk−1
f )‖2f +

gkmin
2
‖∇(ηk+1

p + ηk−1
p )‖2p

)

(3.16)

Note that ‖ηNf,p‖2f,p, ‖η
N−1
f,p ‖2f,p ≤ ‖|ηf,p|‖2L∞(0,T ;L2(Ωf,p)). Using this, the previous

bounds for η terms, applying inequality (3.15), and absorbing constants into a new

constant, Ĉ2 produces

α

2
(‖eNf‖2f + ‖eN−1

f ‖2f +
β

2
(‖eNp ‖2p + ‖eN−1

p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

4
‖∇(ek+1

f + ek−1
f )‖2f +

gkmin
4
‖∇(ek+1

p + ek−1
p )‖2p

)
≤ Ĉ2{‖ηf,t‖2L2(0,T ;L2(Ωf )) + ‖ηp,t‖2L2(0,T ;L2(Ωp)) + ‖|∇ηf |‖2L2(0,T ;L2(Ωf ))
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+ ‖|∇ηp|‖2L2(0,T ;L2(Ωp)) + ‖|p− λh|‖2L2(0,T ;L2(Ωf ))

+ (∆t)4
(
‖uttt‖2L2(0,T ;L2(Ωf )) + ‖φttt‖2L2(0,T ;L2(Ωp))

+ ‖utt‖2L2(0,T ;H1(Ωf )) + ‖φtt‖2L2(0,T ;H1(Ωp)))

+ ‖|ηf |‖2L∞(0,T ;L2(Ωf )) + ‖|ηp|‖2L∞(0,T ;L2(Ωp))}
+ ‖ξ1

f‖2f + gS0‖ξ1
p‖2p + ‖ξ0

f‖2f + gS0‖ξ0
p‖2p + 2∆tC

1/2
ξ .

(3.17)

The coupled terms on the right hand side can be bounded by:

C
1/2
ξ ≤ C

2

(
‖∇ξ0

p‖2p + ‖∇ξ1
p‖2p + ‖∇ξ0

f‖2f + ‖∇ξ1
f‖2f
)
.

Since (3.17) holds for any ũ ∈ V h, λh ∈ Qhf , and φ̃ ∈ Xh
p , we may take the

infimum over V h, Qhf , and Xh
p . By (3.3), we may bound the infimum over V h by the

infimum over Xh
f so the following holds for some positive constant Ĉ4:

α

2
(‖eNf ‖2f + ‖eN−1

f ‖2f +
β

2
(‖eNp ‖2p + ‖eN−1

p ‖2p)

+ ∆t

N−1∑
k=1

(
ν

4
‖∇(ek+1

f + ek−1
f )‖2f +

gkmin
4
‖∇(ek+1

p + ek−1
p )‖2p

)

≤ Ĉ3{ inf
ũ∈Xh

f

{‖ηf,t‖2L2(0,T ;L2(Ωf )) + ‖|ηf |‖2L2(0,T ;H1(Ωf )) + ‖|ηf |‖2L∞(0,T ;L2(Ωf ))

+ ‖ξ1
f‖2f + ‖ξ0

f‖2f + ∆t(‖∇ξ1
f‖2f + ‖∇ξ0

f‖2f )}+ inf
λh∈Qh

f

‖|p− λh|‖2L2(0,T ;L2(Ωf ))

+ inf
φ̃∈Xh

p

{‖ηp,t‖2L2(0,T ;L2(Ωp)) + ‖|ηp|‖L2(0,T ;H1(Ωp)) + ‖|ηp|‖2L∞(0,T ;L2(Ωp))

+ gS0(‖ξ1
p‖2p + ‖ξ0

p‖2p) + ∆t(‖∇ξ1
p‖2p + ‖∇ξ0

p‖2p)}+ (∆t)4{‖uttt‖2L2(0,T ;L2(Ωf ))

+ ‖φttt‖2L2(0,T ;L2(Ωp)) + ‖utt‖2L2(0,T ;H1(Ωf )) + ‖φtt‖2L2(0,T ;H1(Ωp))}}.
After applying the approximation assumptions we get the final result.

4. Numerical Experiments. Using the exact solutions introduced by Mu and
Zhu in [12], we conduct numerical experiments to verify the stability and predicted
rates of convergence of CNLF. First, we test the convergence rate of the method.
Then, we will test stability in various ways. In both tests, we use the same domain
and exact solutions. We utilize FreeFem++ software for all calculations.
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Ωf = (0, 1)× (1, 2), Ωp = (0, 1)× (0, 1), I = {(x, 1) : x ∈ (0, 1)}

u(x, y, t) =

(
(x2(y − 1)2 + y) cos(t), (

2

3
x(1− y)3 + 2− π sin(πx)) cos(t)

)
p(x, y, t) = (2− π sin(πx)) sin(

π

2
y) cos(t)

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t)

4.1. Convergence Experiment. To test the rate of convergence, we set all
parameters, α, ν, S0, κ, g, equal to one. We use Taylor-Hood elements (P2-P1) for
the Stokes problem and piecewise quadratics (P2) for the Darcy problem. We set the
boundary condition on the problem to be inhomogeneous Dirichlet: uh = u on ∂Ωf/I,
and similar for the Darcy pressure, φ. The initial condition and first two terms are
chosen to correspond with the exact solutions. We set the mesh size, h, equal to the
time step, ∆t. This satisfies the time step condition (3.2) when S0 = 1. The errors
for various values of h are given in Table 4.1. We denote L∞(0, 1;L2(Ωf,p)) by L∞f,p.

h = ∆t ‖|u− uh‖|L∞f rate ‖|p− ph‖|L∞f rate ‖|φ− φh‖|L∞p rate
1
10 0.000862671 0.156045 0.00654407
1
20 0.000177135 2.28 0.0377064 2.05 0.00146515 2.16
1
40 3.54644e-5 2.32 0.0089672 2.07 0.00034904 2.07
1
80 6.72106e-6 2.40 0.00215951 2.05 8.70886e-5 2.00

Table 4.1
Rates of Convergence

The rates of convergence in the table exhibit second order convergence for u, p,
and φ. This agrees with the error analysis.

4.2. Stability Experiments. To test the stability of the method, we set the
body force and source functions, ff and fp, equal to zero, change the boundary
conditions to be equal to zero except along the interface, I, and calculate the energy at
each time level, E(n) = ‖unh‖2f +‖un−1

h ‖2f +gS0‖φnh‖2p+gS0‖φn−1
h ‖2p. Let h = ∆t = 1

20 .
We compute the energy over the time interval (0, 10) for various values of S0 and plot
the energy versus the time step, n.

As evident in 4.1, the energy decays to zero only for S0 = 1.0, which satisfies
our time step condition. The other values of S0 violate the condition and we see the
energy for the system increasing as time progresses.

The CFL-type stability condition, (3.2), is independent of kmin. We ran the same
stability tests for S0 = O(1) and kmin is small. The energy rapidly decreased towards
zero, as expected. However, when the time interval was extended, the energy began to
grown again due, we believe, to the accumulation of numerical noise in the ”unstable
mode” of Leapfrog, see, for example, Durran [19]. Leapfrog is only marginally stable
due to an undamped oscillatory mode, referred to here as the ”unstable mode”. To
connect the energy growth to the unstable mode, we computed two energy modes of
u and φ: ‖un+1

h − un−1
h ‖2f , ‖φn+1

h − φn−1
h ‖2p, the unstable energy modes, and ‖un+1

h +

un−1
h ‖2f , and ‖φn+1

h + φn−1
h ‖2p, the stable energy modes.

In both pictures of 4.2, the growth in the energy, E(n), corresponds with spurious
oscillations in unstable energy modes of both u and φ. The stable energy modes decay
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Fig. 4.1. Test 1: CFL Condition holds, Test 2-4: CFL Condition Violated

to zero in machine precision. Thus, the rise in energy in this case is exactly in the
unstable mode of CNLF.

4.3. CNLF and Time Filtering. One popular way to counteract this effect of
the unstable mode in CNLF in geophysical fluid dynamics is to use time filters, see,
for example Jablonowski and Williamson [20]. For this initial test we begin with the
Robert-Asselin Filter, or RA-filter ([21], [22]). At every time step, after computing
uk+1
h , pk+1

h , φk+1
h , we update the previous kth values and replace them with a filtered

value, given below.

wkh = wkh + α(wk−1
h − 2wkh + wk+1

h ), where w = u, p, or φ, 0 ≤ α ≤ 1.

The RA-filter damps the computational mode in Leapfrog (see e.g. Durran [19]).
However, the analytical theory of the RA-filter applied to CNLF remains an interesting
open problem. For this initial test we chose α = 0.20. For more discussion on the
choice of the parameter α see, for example [20] p. 437. After applying the RA-filter
to the stability test performed in 4.1, with S0 = O(1) and kmin = 0.1, we see the
energy, E(n) decay to zero in machine precision, as well as the unstable energy mode,
Figure 4.3.

5. Conclusion. Analysis of the Crank Nicolson Leap-Frog method applied to the
Stokes-Darcy equations lead us to a CFL-type time step condition, (3.2), sufficient for
stability and convergence. However, the sensitivity of this condition to small values of
S0, is restrictive in cases of confined aquifers in which S0 can be very small. See p.566
in Domenico and Mifflin, [23], for values of specific storage for different materials.
Numerical experiments confirmed sensitivity to S0. Theoretical analysis showed that
the CFL-type condition for stability is insensitive to kmin being small when we have
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Fig. 4.2. Energy Plots for kmin = 0.1

S0 = O(1). However, the numerical tests revealed the problem of growth of numerical
noise in unstable modes causing an energy blow-up in finite time. Time filters seem to
add stability, but their analytical foundations is an open problem. The convergence
analysis and numerical experiments show that this method is second order in time and
space provided our stability condition is satisfied, approximation assumptions (2.5)
hold for at least r = 2, and our choice of initial method to compute (u1

h, p
1
h, φ

1
h) is

accurate enough.
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