
ANALYSIS OF A SECOND ORDER, UNCONDITIONALLY

STABLE, PARTITIONED METHOD

FOR THE EVOLUTIONARY STOKES-DARCY PROBLEM

MICHAELA KUBACKI AND MARINA MORAITI

Abstract. In this work we study a new stabilization for abstract evolution equations applied to

the numerical solution of the coupled, fully evolutionary Stokes-Darcy equations that model the

interaction between groundwater and surface water flows. The method consists of uncoupling the

fluid flow from the porous media subdomains by the Crank-Nicolson Leap-Frog (CNLF) method,

studied by Kubacki in [13], with added stabilization terms that eliminate the CFL time step

restriction of CNLF. We prove that the CNLF-stab method is unconditionally stable and second

order convergent. We verify stability numerically. Numerical tests for convergence confirm second

order convergence for the Stokes velocity and Darcy pressure variables as predicted.
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1. Introduction

One of the di�culties in solving the Stokes-Darcy problem arises from the cou-

pling of two di↵erent physical processes in two adjacent domains. Using partitioned

methods to uncouple the Stokes-Darcy equations resolves this issue and allows one

to leverage existing solvers already optimized to solve the physical processes in each

subdomain. Mu and Zhu first studied two, first order accurate partitioned methods

for the evolutionary Stokes-Darcy equations in [16]. Layton, Trenchea, and Tran

analyzed other first order partitioned methods in [14]. In [13], it was shown that

the classical Crank-Nicolson Leap-Frog (CNLF) method results in a second order

partitioned method for the Stokes-Darcy system. However, the conditional stabil-

ity of CNLF makes the method impractical when faced with certain small problem

parameters. In addition, even when the CFL type time step condition for stability

holds, regular CNLF becomes unstable due to the unstable computational mode of

Leap-Frog in some cases (see [13]).
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Figure 1. Fluid and porous media domains

By adding stabilization terms to both the Stokes as well as the groundwater

flow equation, the proposed numerical scheme, denoted CNLF-stab and introduced

in Section 3, equations (20)-(22), is unconditionally stable and second order con-

vergent. More specifically, we give a proof that the stabilization eliminates the

CFL type time step restriction without a↵ecting the second order convergence of

the Stokes velocity and Darcy pressure variables. In further contrast to classical

CNLF, numerical tests in Section 5 demonstrate that CNLF-stab controls the un-

stable mode due to Leap-Frog in the cases in which regular CNLF stability fails.

Analytic understanding of this attribute is an open question.

The system of equations modeling the interaction between surface water and

groundwater flows follows. Let ⌦f , ⌦p denote two regular domains, the fluid and

porous media regions respectively, and assume they lie across an interface, I, from

each other (Figure 1). Assume that an incompressible fluid flows both ways across

the interface into the two domains. We assume time-dependent Stokes flow in ⌦f

and the time-dependent groundwater flow equation along with Darcy’s law in ⌦p.

The fluid velocity field u = u(x, t) and pressure p = p(x, t), defined on ⌦f , and
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porous media hydraulic head � = �(x, t), defined on ⌦p, satisfy

ut � ⌫�u+rp = ff (x, t),r · u = 0, in ⌦f ,

S0�t �r · (Kr�) = fp(x, t), in ⌦p,

u(x, 0) = u0, in ⌦f , �(x, 0) = �0, in ⌦p, (1)

u(x, t) = 0, in @⌦f\I,�(x, t) = 0, in @⌦p\I,

+ coupling conditions across I,

where we normalized the pressure p, as well as the body forces in the fluid re-

gion ff by the fluid density. Denoted by fp are the sinks and sources in the

porous media region, ⌫ > 0 is the kinematic viscosity of the fluid, and K is the

hydraulic conductivity tensor, assumed to be symmetric, positive definite with

spectrum(K) 2 [kmin, kmax]. We assume Dirichlet boundary conditions on the

exterior boundaries of the two domains (not including the interface I). We discuss

the coupling conditions in more detail in Section 2.

In the aforementioned equations, the parameter S0 represents the specific stor-

age, meaning the volume of water that a portion of a fully saturated porous medium

releases from storage per unit volume and per unit drop in hydraulic head, see Freeze

and Cherry [7], and Hantush [9]. Table 1 gives values of S0 for di↵erent materials

from Domenico and Mi✏in [6] and Johnson [11]. In (2) we have the time step

condition for stability in regular CNLF derived in [13], where g represents the grav-

itational acceleration constant and h the mesh size in the finite element discretiza-

tion. The condition involves S0, making the time step condition computationally

restrictive. In the case of a confined aquifer, for instance, with S0 = O(10�6), if we

take h = O(0.1) then, because g = O(101) the time step can at most be of order

10�5. A small time step is prohibitive since studying flow in large aquifers with low

conductivity necessitates accurate calculations over long time periods.

�t  Cmax{min{h2, gS0},min{h, gS0h}} (2)
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Table 1. Specific Storage (S0) values for di↵erent materials

Material Specific Storage S0 (m�1)

Plastic clay 2.0⇥ 10�2 � 2.6⇥ 10�3

Sti↵ clay 2.6⇥ 10�3 � 1.3⇥ 10�3

Medium hard clay 1.3⇥ 10�3 � 9.2⇥ 10�4

Loose sand 1.0⇥ 10�3 � 4.9⇥ 10�4

Dense sand 2.0⇥ 10�4 � 1.3⇥ 10�4

Dense sandy gravel 1.0⇥ 10�4 � 4.9⇥ 10�5

Rock, fissured jointed 6.9⇥ 10�5 � 3.3⇥ 10�6

Rock, sound less than 3.3⇥ 10�6

Another important parameter in our analysis is the hydraulic conductivity tensor

in the porous medium, K. In exact arithmetic, stability of CNLF does not depend

upon K. However, in the presence of round-o↵ error, CNLF becomes unstable

for small values of the minimum eigenvalue of K, kmin. If �t = O(10�2) and

kmin = O(10�1) or smaller, classical CNLF method becomes unstable due to the

unstable computational mode (see Kubacki [13] Section IV.B Figure 3). Since the

hydraulic conductivity is often orders of magnitude smaller than 10�1 (see Table 2

for values of kmin from Bear [1]), this can be a frequent problem of using CNLF.

Table 2. Hydraulic conductivity (kmin) values for di↵erent materials

Material Hydraulic conductivity kmin (m/s)

Well sorted gravel 10�1 � 100

Highly fractured rocks 10�3 � 100

Well sorted sand or sand & gravel 10�4 � 10�2

Oil reservoir rocks 10�6 � 10�4

Very fine sand, silt, loess, loam 10�8 � 10�5

Layered clay 10�8 � 10�6

Fresh sandstone, limestone, dolomite, granite 10�12 � 10�7

Fat/Unweathered clay 10�12 � 10�9

In Section 2 we present necessary preliminaries along with the corresponding

weak formulation of the Stokes-Darcy problem. In Section 3 we introduce the

CNLF-stab method for the evolutionary Stokes-Darcy problem and present the

proof for unconditional stability. We prove second order convergence of the method

in Section 4. Section 5 demonstrates the method’s unconditional stability and

second order convergence through a series of numerical tests. Finally, we present

conclusions in Section 6.
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2. Preliminaries

Before discussing the CNLF-stab method, we present the equivalent variational

formulation along with some inequalities relevant to our analysis. To complete the

system of equations in (1), we must add coupling conditions to describe the flow

along the interface, I. The coupling conditions consist of conservation of mass

across the interface

u · n̂f �Kr� · n̂p = 0, on I, (3)

and balance of normal forces across the interface

p� ⌫n̂f ·ru · n̂f = g�, on I, (4)

where n̂p = �n̂f are the outward pointing unit normal vectors on ⌦f/p (Figure

1). The last condition is a condition on the tangential velocity on I. Let ⌧̂i,

i = 1, . . . , d � 1, denote an orthonormal basis of tangent vectors on I, d = 2 or

3. We assume the Beavers-Joseph-Sa↵man condition, see Joseph [12] and Sa↵man

[18]:

�⌫⌧̂i ·ru · n̂f =
↵p

⌧̂i · K · ⌧̂i
u · ⌧̂i, for i = 1, . . . , d� 1, on I, (5)

which is a simplification of the original and more physically realistic Beavers-Joseph

condition, see Beavers and Joseph [2]. The parameter ↵ in (5) is an experimentally

determined constant. For more information on this condition see e.g., Mikelic̀ and

Jäger [10], and Payne and Straughan [17].

The equivalent variational formulation of equations (1)-(5) follows, see e.g., Dis-

cacciati, Miglio and Quarteroni [5]. Let the L2 norm on ⌦f/p be denoted by k ·kf/p
and the L2 norm on the interface, I, by k ·kI ; denote the corresponding inner prod-

ucts on ⌦f/p by (·, ·)f/p. Furthermore, denote the H1 norm on ⌦f/p by k · k1,f/p.
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Define the spaces

Xf :=
�

v 2 (H1(⌦f ))
d : v = 0 on @⌦f\I

 

,

Xp :=
�

 2 H1(⌦p) :  = 0 on @⌦p\I
 

,

Q := L2(⌦f ),

Vf := {v 2 Xf : (r · v, q)f = 0 for all q 2 Q} .

The norms on the dual spaces X⇤
f and X⇤

p are given by

kfk�1,f/p = sup
0 6=v2Xf/p

(f, v)f/p
krvkf/p .

In the analysis to follow we use the following inequalities. The first is the Poincaré-

Friedrichs inequality. The second is a trace inequality, see, for example, Brenner

and Scott [3], chapter 1.6, p. 36-38. The first and second inequalities hold for any

function w that belongs to either Xf or Xp and the third inequality holds for any

function u 2 Xf .

kwkf/p  CPf/p
krwkf/p, for some constants CPf/p

> 0, (6)

kwkL2(@⌦f/p)  C⌦f/p
kwk 1

2

f/pkrwk 1
2

f/p, for some constants C⌦f/p
> 0, (7)

kr · ukf 
p
dkrukf , where d = 2, or 3. (8)

Define the bilinear forms

af (u, v) = (⌫ru,rv)f +
d�1
X

i=1

Z

I

↵p
⌧̂i · K · ⌧̂i

(u · ⌧̂i)(v · ⌧̂i) ds,

ap(�, ) = (Kr�,r )p ,

cI(u,�) = g

Z

I

�u · n̂f ds.

The interface coupling term, cI(·, ·), plays a key role in our analysis. The following

inequalities hold for our bilinear forms.
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Lemma 1. The bilinear forms af (·, ·), ap(·, ·) and cI(u,�) satisfy

af (u, v)  max
n

⌫ + 1, (1/2)C(⌦f )↵k
�1/2
min

o

kuk1,fkvk1,f , (9)

af (u, u) � ⌫kruk2f + ↵k�1/2
max

d�1
X

i=1

Z

I

(u · ⌧̂i)2 d� =: ⌫kruk2f + ↵k�1/2
max ku · ⌧̂k2I ,

(10)

ap(�, )  kmaxkr�kpkr kp, (11)

ap(�,�) � kminkr�k2p, (12)

|cI(u,�)|  (1/2)gC(⌦f ,⌦p)kuk1,fk�k1,p (13)

for all u, v 2 Xf and all �, 2 Xp.

Proof. The proofs are straightforward. For the first four inequalities, see for exam-

ple Kubacki [13] Section II Lemma 2.3. For the coupling inequality, see for example

Moraiti [15] Section 2 Lemma 2.2. ⇤

An additional inequality on the interface term is given below and holds under

conditions on the domains ⌦f ,⌦p. The constant Cf,p depends on ⌦f/p and in the

special case of a flat interface I, with ⌦f and ⌦p being arbitrary domains, Cf,p

equals 1, see Moraiti in [15] Section 3 Lemmas 3.1 and 3.2.

|cI(u,�)|  gCf,pkukDIV,fk�k1,p. (14)

The variational formulation of the Stokes-Darcy problem (1), (3)-(5) reads: given

u(x, 0) = u0(x), �(x, 0) = �0(x), find u : [0,1) ! Vf , � : [0,1) ! Xp satisfying

(ut, v)f + af (u, v) + cI(v,�) = (ff , v)f , (15)

gS0(�t, )p + gap(�, )� cI(u, ) = g(fp, )p, (16)

for all v 2 Vf , and  2 Xp. The existence and uniqueness of a solution (u,�) to

the problem (15)-(16) follows by the Hille - Yosida theorem, see Brézis [4].

We discretize in space using the Finite Element Method (FEM). Select a quasiu-

niform triangular mesh, Th for the combined subdomains, ⌦f [⌦p, where h denotes
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the maximum triangle diameter. Next, choose FEM spaces based on a conforming

FEM triangulation:

Fluid velocity: Xh
f ⇢ Xf ,

Darcy Pressure: Xh
p ⇢ Xp,

Stokes Pressure: Qh
f ⇢ Qf .

Additionally, we must select Xh
f and Qh

f so that they satisfy the discrete inf-sup

condition (LBBh) (see, for example [8]) for stability of the discrete pressure. Notice

that V h
f := {vh 2 Xh

f : (qh,r · vh)f = 08qh 2 Qh
f} is not necessarily a subset of Vf .

Hence, we must include the incompressibility condition (18) in the semidiscretized

formulation. Given uh(x, 0) = u0(x),�h(x, 0) = �0(x), find (uh, ph,�h) : [0,1) !
(Xh

f , Q
h
f , X

h
p ) such that

(uh,t, vh)f + af (uh, vh)� (ph,r · vh)f + cI(vh,�h) = (ff , vh)f , (17)

(qh,r · uh)f = 0, (18)

gS0(�h,t, h)p + gap(�h, h)� cI(uh, h) = g(fp, hi)p, (19)

for all (vh, qh, h) 2 (Xh
f , Q

h
f , X

h
p ).

3. CNLF-stab method and Unconditional Stability

The CNLF-stab method for the numerical solution of the evolutionary Stokes-

Darcy problem given in (1), (3)-(5) is introduced next.

Algorithm 2. (CNLF-stab Method) Let tn := n�t and vn := v(x, tn) for any

function v(x, t). CNLF with added stabilization for the evolutionary Stokes-Darcy

equations is as follows.
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Given
�

uk
h, p

k
h,�

k
h

�

,
�

uk�1
h , pk�1

h ,�k�1
h

� 2
⇣

Xh
f , Q

h
f , X

h
p

⌘

, find
�

uk+1
h , pk+1

h ,�k+1
h

� 2
⇣

Xh
f , Q

h
f , X

h
p

⌘

satisfying for all (vh, qh, h) 2
⇣

Xh
f , Q

h
f , X

h
p

⌘

:

⇣

uk+1
h �uk�1

h
2�t , vh

⌘

f
+
⇣

r ·
⇣

uk+1
h �uk�1

h
2�t

⌘

,r · vh
⌘

f
+ af

⇣

uk+1
h +uk�1

h
2 , vh

⌘

�
⇣

pk+1
h +pk�1

h
2 ,r · vh

⌘

f
+ cI(vh,�

k
h) = (fk

f , vh)f

(20)

⇣

qh,r ·
⇣

uk+1
h +uk�1

h
2

⌘⌘

f
= 0, (21)

gS0

⇣

�n+1
h ��k�1

h
2�t , h

⌘

p
+ ap

⇣

�k+1
h ��k�1

h
2 , h

⌘

� cI(u
k
h, h)

+�tg2C2
f,p

�r(�k+1
h � �k�1

h ),r h

�

p
+�tg2C2

f,p

�

�k+1
h � �k�1

h , h

�

p
= g(fk

p , h)p

(22)

where Cf,p is the constant from inequality (14).

CNLF-stab is a 3 level method. The zeroth terms, (u0
h, p

0
h,�

0
h), come from the

initial conditions of the problem. We must obtain the first terms, (u1
h, p

1
h,�

1
h), by a

one step method which uncouples the system, for example Backward Euler Leap-

Frog (BELF). The errors in this first step will a↵ect the overall convergence rate of

the method. Notice that the added stability terms,

⇣

r ·
⇣

uk+1
h �uk�1

h
2�t

⌘

,r · vh
⌘

f
, in (20) and

�tg2C2
f,p

�r(�k+1
h � �k�1

h ),r h

�

p
,�tg2C2

f,p

�

�k+1
h � �k�1

h , h

�

p
, in (22),

are O(�t2). Similar to CNLF, the CNLF-stab method uncouples the Stokes-Darcy

equations into two subdomain problems by treating the coupling term explicitly

with Leap-Frog. By adding the above stabilization terms to CNLF, we eliminate the

need for a CFL type time step restriction for stability. The proof for unconditional

stability of the CNLF-stab method (20)-(22) follows.
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Theorem 3. (Unconditional Stability of CNLF-stab) CNLF-stab is unconditionally

stable: for any N > 0, there holds

1

2

�kuN
h k2DIV,f + kuN�1

h k2DIV,f

�

+ gS0

�k�Nh k2p + k�N�1
h k2p

�

+
�t

2

N�1
X

k=1

�

⌫kr �uk+1
h + uk�1

h

� k2f + kminkr
�

�k+1
h + �k�1

h

� k2p
 

 ku1
hk2DIV,f + ku0

hk2DIV,f + gS0

�k�1hk2p + k�0hk2p
�

+ 2�t2g2C2
f,p

�k�1hk21,p + k�0hk21,p
�

+ 2�t
�

cI(�
0
h, u

1
h)� cI(�

1
h, u

0
h)
 

+
�t

2

N�1
X

k=1

⇢

g

kmin
kfk

p k2�1,p +
1

⌫
kfk

f k2�1,f

�

.

(23)

Proof. In (20), (22) set vh = uk+1
h + uk�1

h ,  h = �k+1
h + �k�1

h . Then the pressure

term in (20) cancels by (21). Adding the two equations together and multiplying

through by 2�t yields

kuk+1
h k2DIV,f � kuk�1

h k2DIV,f + gS0

�k�k+1
h k2p � k�k�1

h k2p
�

+ 2�t2g2C2
f,p

�k�k+1
h k21,p � kr�k�1

h k21,p
�

+�t
�

ap
�

�k+1
h + �k�1

h ,�k+1
h + �k�1

h

�

+ af
�

uk+1
h + uk�1

h , uk+1
h + uk�1

h

� 

+ 2�t
�

cI(u
k+1
h + uk�1

h ,�kh)� cI(u
k
h,�

k+1
h + �k�1

h )
�

= 2�t
n

g
�

fk
p ,�

k+1
h + �k�1

h

�

p
+
�

fk
f , u

k+1
h + uk�1

h

�

f

o

.

If we let

Ck+1/2 = cI(�
k
h, u

k+1
h )� cI(�

k+1
h , uk

h),

then the interface terms in the equation above become

cI(u
k+1
h + uk�1

h ,�kh)� cI(u
k
h,�

k+1
h + �k�1

h ) = Ck+ 1
2 � Ck� 1

2 .
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Using coercivity of the bilinear forms af/p(·, ·), the dual norms on Xp, Xf and

Young’s inequality we obtain, after rearranging,

kuk+1
h k2DIV,f � kuk�1

h k2DIV,f + gS0

�k�k+1
h k2p � k�k�1

h k2p
�

+ 2�t2g2C2
f,p

�k�k+1
h k21,p � k�k�1

h k21,p
�

+ 2�t
n

Ck+ 1
2 � Ck� 1

2

o

+�t
�

kmin
2 kr ��k+1

h + �k�1
h

� k2p + ⌫
2kr

�

uk+1
h + uk�1

h

� k2f
 

 �t
1

2⌫
kfk

f k2�1,f +�t
g2

2kmin
kfk

p k2�1,p.

(24)

Denote the energy terms by

Ek+1/2 = kuk+1
h k2DIV,f + kuk

hk2DIV,f + gS0

�k�k+1
h k2p + k�khk2p

�

+2�t2g2C2
f,p

�k�k+1
h k21,p + k�khk21,p

�

.

Then (24) becomes

Ek+1/2 � Ek�1/2 +�t
�

kmin
2 kr ��k+1

h + �k�1
h

� k2p + ⌫
2kr

�

uk+1
h + uk�1

h

� k2f
 

+2�t
n

Ck+1/2 � Ck�1/2
o

 �t
g2

2kmin
kfk

p k2�1,p +�t
1

2⌫
kfk

f k2�1,f .

Sum up the inequality from k = 1 to N � 1 to find

EN�1/2 +�t
N�1
X

k=1

�

kmin
2 kr ��k+1

h + �k�1
h

� k2p + ⌫
2kr

�

uk+1
h + uk�1

h

� k2f
 

+2�tCN�1/2  E1/2 + C1/2 +�t
g2

2kmin
kfk

p k2�1,p +�t
1

2⌫
kfk

f k2�1,f .

(25)

Applying inequality (14) to the interface terms involved in the term CN�1/2 gives

|cI(uN
h ,�N�1

h )|  gCf,pkuN
h kDIV,fk�N�1

h k1,p and

|cI(uN�1
h ,�Nh )|  gCf,pkuN�1

h kDIV,fk�Nh k1,p.

Therefore, we may bound the term CN�1/2 by the Cauchy-Schwarz and Young

inequalities as follows.

|2�tCN�1/2|  1

2

�kuN
h k2DIV,f + kuN�1

h k2DIV,f

�

+ 2�t2g2C2
f,p

�k�N�1
h k21,p + k�Nh k21,p

�

.
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Thus,

EN�1/2 + 2�tCN�1/2 � 1

2

�kuN
h k2DIV,f + kuN�1

h k2DIV,f

�

+ gS0

�k�Nh k2p + k�N�1
h k2p

�

.

(26)

After combining inequalities (25) and (26) we achieve the desired unconditional

stability bound (23). ⇤

Corollary 4. If ff = fp ⌘ 0, then the averages, (un+1
h + un�1

h )/2 and (�n+1
h +

�n�1
h )/2, converge to zero as n ! 1.

Proof. The bound (23) implies that the series
P1

n=1{kr(un+1
h +un�1

h )k} converges.

Thus, kr(un+1
h +un�1

h )k ! 0, as n ! 1, and by the Poincaré-Friedrichs inequality,

kun+1
h + un�1

h k ! 0 as well. (Similarly for (�n+1
h + �n�1

h )/2.) ⇤

This shows that the CNLF-stab method controls the stable mode of Leap-Frog.

However, Theorem 3 does not imply control over the unstable mode. We check the

behavior of the unstable mode in the numerical experiments in Section 5.

4. Error Analysis of CNLF-stab

In this section, in Theorem 6, we establish the method’s second order convergence

over long time intervals. An essential feature of the error analysis is that no form

of Gronwall’s inequality is available as a tool.

We assume that the FEM spaces, Xh
f , X

h
p and Qh

f , satisfy approximation prop-

erties of piecewise polynomials of degree r � 1, r, and r + 1:

inf
uh2Xh

f

ku� uhkf  Chr+1kukHr+1(⌦f )

inf
uh2Xh

f

ku� uhkH1(⌦f )  ChrkukHr+1(⌦f )

inf
�h2Xh

p

k�� �hkp  Chr+1k�kHr+1(⌦p)

inf
�h2Xh

p

k�� �hkH1(⌦p)  Chrk�kHr+1(⌦p)

inf
ph2Qh

f

kp� phkf  Chr+1kpkHr+1(⌦f ).

(27)
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Moreover, we assume that the spaces Xh
f and Qh

f satisfy the (LBBh) condition. As

a consequence, there exists some constant C such that if u 2 Vf , then

inf
vh2Vh

ku� vhkH1(⌦f )  C inf
xh2Xh

f

ku� xhkH1(⌦f ), (28)

(see, for example, Girault and Raviart [8], Chapter II, Proof of Theorem 1.1, Equa-

tion (1.12)). Let N 2 N be given and denote tn = n�t and T = N�t. If T = 1
then N = 1. We introduce the following discrete norms.

k|v|k2L2(0,T ;Hs(⌦f,p))
:=

N
X

k=1

kvkk2Hs(⌦f,p)
�t,

k|v|kL1(0,T ;Hs(⌦f,p)) := max
0kN

kvkkHs(⌦f,p).

In the proof of convergence to follow, we will need the bounds given in the next

lemma.

Lemma 5. (Consistency Errors) The following inequalities hold:

�t
N�1
X

k=1

�

�

�

�

uk
t � uk+1 � uk�1

2�t

�

�

�

�

2

f

 (�t)4

20
kutttk2L2(0,T ;L2(⌦f ))

, (29)

�t
N�1
X

k=1

k�kt � �k+1 � �k�1

2�t
k2p  (�t)4

20
k�tttk2L2(0,T ;L2(⌦p))

, (30)

�t
N�1
X

k=1

�

�

�

�

r
✓

uk � uk+1 + uk�1

2

◆

�

�

�

�

2

f

 7(�t)4

6
kuttk2L2(0,T ;H1(⌦f ))

, (31)

�t
N�1
X

k=1

�

�

�

�

r
✓

�k � �k+1 + �k�1

2

◆

�

�

�

�

2

p

 7(�t)4

6
k�ttk2L2(0,T ;H1(⌦p))

. (32)

�t
N�1
X

k=1

�

�

�

�

r
✓

uk
t � uk+1 � uk�1

2�t

◆

�

�

�

�

2

f

 (�t)4

20
krutttk2L2(0,T ;L2(⌦f ))

, (33)

�t
N�1
X

k=1

k�k+1 � �k�1k21,p  4�t2k�tk2L2(0,T,H1(⌦p))
(34)
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Proof. For inequalities (29)-(33) see Kubacki in [13] Section 3 Lemma 3.2. For the

proof of (34), we have

�t
N�1
X

k=1

k�k+1 � �k�1k2p = �t
N�1
X

k=1

Z

⌦f

 

Z tk+1

tk�1

�t dt

!

dx

 �t

Z

⌦f

N�1
X

k=1

Z tk+1

tk�1

dt

Z tk+1

tk�1

�2t dt dx

= �t

Z

⌦f

N�1
X

k=1

2�t

Z tk+1

tk�1

�2t dt dx

 2�t2
Z

⌦f

2
N
X

k=1

Z tk

tk�1

�2t dt dx

= 4�t2k�tk2L2(0,T,L2(⌦p))
, (35)

Similarly,

�t
N�1
X

k=1

kr ��k+1 � �k�1
� k2p = 4�t2kr�tk2L2(0,T,L2(⌦p))

. (36)

Inequalities (35) and (36) combined give (34). ⇤

Denote the errors by enf = un � un
h and enp = �n � �nh.

Theorem 6. (Second Order Convergence of CNLF-stab) Consider the CNLF-stab

method (20)-(22). For any 0 < tN = T  1, if u, p, � satisfy the regularity

conditions

u 2 L2(0, T ;Hr+2(⌦f )) \ L1(0, T ;Hr+1(⌦f )) \H3(0, T ;H1(⌦f )),

p 2 L2(0, T ;Hr+1(⌦f )),

� 2 L2(0, T ;Hr+2(⌦p)) \ L1(0, T ;Hr+1(⌦p)) \H3(0, T ;H1(⌦p)),
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then there exists a constant bC > 0, independent of the mesh width h, time step �t

and final time tN = T , such that

1

2
(keNf k2DIV,f + keN�1

f k2DIV,f ) + gS0(keNp k2p + keN�1
p k2p)

+�t
N�1
X

k=1

✓

⌫

2
kr(ek+1

f + ek�1
f )k2f +

gkmin

2
kr(ek+1

p + ek�1
p )k2p

◆

 bC{h2r{kutk2L2(0,T ;Hr+1(⌦f ))
+ k|u|k2L2(0,T ;Hr+1(⌦f ))

+ k|u|k2L1(0,T ;Hr+1(⌦f ))

+�t4k�tk2L2(0,T ;Hr+1(⌦p))
+ k|�|k2L1(0,T ;Hr+1(⌦p))

}

+ h2r+2{k|p|k2L2(0,T ;Hr+1(⌦p))
+ k�tk2L2(0,T ;Hr+1(⌦p))

+ k|�|k2L1(0,T ;Hr+1(⌦p))
}

+�t4{kutttk2L2(0,T ;H1(⌦f ))
+ kuttk2L2(0,T ;H1(⌦f ))

+ k�tttk2L2(0,T ;L2(⌦p))

+ k�tk2L2(0,T ;H1(⌦p))
+ k�ttk2L2(0,T ;H1(⌦p))

}+ ke1fk2DIV,f + ke1pk21,p}.

(37)

Proof. Consider CNLF-stab (20)-(22) over the discretely divergence free space V h :=

{vh 2 Xh
f : (qh,r · vh)f = 0 8qh 2 Qh

f}, instead of Xh
f , so that the pressure term

⇣

pk+1
h +pk�1

h
2 ,r · vh

⌘

cancels out. Subtract (20) and (22) from the variational form

(15) and (16) evaluated at time tk to get:

✓
uk
t � uk+1

h �uk�1
h

2�t , vh

◆

f

�
✓
r ·

✓
uk+1
h �uk�1

h
2�t

◆
,r · vh

◆

f

+ af

✓
uk � uk+1

h +uk�1
h

2 , vh

◆

�
⇣
pk,r · vh

⌘

f
+ cI

⇣
vh,�

k � �k
h

⌘
= 0,

gS0

✓
�k
t � �k+1

h ��k�1
h

2�t , h

◆

p

+ ap

✓
�k � �k+1

h +�k�1
h

2 , h

◆

��tg2C2
f,p(r(�k+1

h � �k�1
h ),r h)p ��tg2C2

f,p(�
k+1
h � �k�1

h , h)p � cI
⇣
uk � uk

h, h

⌘
= 0.

Since vh is discretely divergence free, we have that
�

pk,r · vh
�

f
=
�

pk � �kh,r · vh
�

f
,

for any �h 2 Qh
f . Further,

�r · uk
t , vh

�

= 0. Thus, after rearranging we get:

✓

ek+1
f �ek�1

f

2�t , vh

◆

f

+

✓

r ·
✓

ek+1
f �ek�1

f

2�t

◆

, r · vh
◆

f

+ af

✓

ek+1
f +ek+1

f

2 , vh

◆

+ cI
�

vh, e
k
p

�

= �
⇣

uk
t � uk+1�uk�1

2�t , vh
⌘

f
�
⇣

r ·
⇣

uk
t � uk+1�uk�1

2�t

⌘

, r · vh
⌘

f

� af
⇣

uk � uk+1+uk�1

2 , vh
⌘

+
�

pk � �kh,r · vh
�

f
,
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gS0

✓

ek+1
p �ek�1

p

2�t , h

◆

p

+ ap

✓

ek+1
p +ek�1

p

2 , h

◆

+�tg2C2
f,p(r(ek+1

p � ek�1
p ),r h)p

+�tg2C2
f,p(e

k+1
p � ek�1

p , h)p � cI
�

ekf , h

�

= �gS0

⇣

�kt � �k+1��k�1

2�t , h

⌘

p
� ap

⇣

�k � �k+1+�k�1

2 , h

⌘

+�tg2C2
f,p(r(�k+1 � �k�1),r h)p +�tg2C2

f,p(�
k+1 � �k�1, h)p.

Denote the consistency errors by:

"kf (vh) = �
⇣

uk
t � uk+1�uk�1

2�t , vh
⌘

f
�
⇣

r ·
⇣

uk
t � uk+1�uk�1

2�t

⌘

,r · vh
⌘

f

� af
⇣

uk � uk+1+uk�1

2 , vh
⌘

,

"kp( h) = �gS0

⇣

�kt � �k+1��k�1

2�t , h

⌘

p
+�tg2C2

f,p(r(�k+1 � �k�1),r h)p

+�tg2C2
f,p(�

k+1 � �k�1, h)p � ap
⇣

�k � �k+1+�k�1

2 , h

⌘

.

Decompose the error terms into

ek+1
f = uk+1 � uk+1

h = (uk+1 � ũk+1) + (ũk+1 � uk+1
h ) = ⌘k+1

f + ⇠k+1
f ,

ek+1
p = �k+1 � �k+1

h = (�k+1 � �̃k+1) + (�̃k+1 � �k+1
h ) = ⌘k+1

p + ⇠k+1
p ,

and take ũk+1 2 V h and �̃k+1 2 Xh
p , so that ⇠k+1

f 2 V h. Then the error equations

become:

✓

⇠k+1
f �⇠k�1

f

2�t , vh

◆

f

+

✓

r ·
✓

⇠k+1
f �⇠k�1

f

2�t

◆

, vh

◆

f

+ af

✓

⇠k+1
f +⇠k�1

f

2 , vh

◆

+ cI(vh, ⇠
k
p )

= �
✓

⌘k+1
f �⌘k�1

f

2�t , vh

◆

f

�
✓

r ·
✓

⌘k+1
f �⌘k�1

f

2�t

◆

,r · vh
◆

f

� af

✓

⌘k+1
f +⌘k�1

f

2 , vh

◆

� cI(vh, ⌘
k
p) + "kf (vh) +

�

pk � �kh,r · vh
�

f
,
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gS0

✓

⇠k+1
p �⇠k�1

p

2�t , h

◆

p

+ ap

✓

⇠k+1
p +⇠k�1

p

2 , h

◆

+�tg2C2
f,p(r(⇠k+1

p � ⇠k�1
p ),r h)p

+�tg2C2
f,p(⇠

k+1
p � ⇠k�1

p , h)p � cI(⇠
k
f , h)

= �gS0

✓

⌘k+1
p �⌘k�1

p

2�t , h

◆

p

� ap

✓

⌘k+1
p +⌘k�1

p

2 , h

◆

+ cI(⌘
k
f , h)

��tg2C2
f,p(r(⌘k+1

p � ⌘k�1
p ),r h)p ��tg2C2

f,p(⌘
k+1
p � ⌘k�1

p , h)p + "kp( h).

Pick vh = ⇠k+1
f + ⇠k�1

f 2 V h and  h = ⇠k+1
p + ⇠k�1

p 2 Xh
p in the equations above

and add to obtain:

1

2�t

⇣

k⇠k+1
f k2DIV,f + gS0k⇠k+1

p k2p +�t2g2C2
f,pk⇠k+1

p k2H1(⌦p)

⌘

� 1

2�t

⇣

k⇠k�1
f k2DIV,f + gS0k⇠k�1

p k2p +�t2g2C2
f,pk⇠k�1

p k2H1(⌦p)

⌘

+
h

cI(⇠
k+1
f + ⇠k�1

f , ⇠kp )� cI(⇠
k
f , ⇠

k+1
p + ⇠k�1

p )
i

+
1

2

h

af (⇠
k+1
f + ⇠k�1

f , ⇠k+1
f + ⇠k�1

f ) + ap(⇠
k+1
p + ⇠k�1

p , ⇠k+1
p + ⇠k�1

p )
i

=� 1

2�t



⇣

⌘k+1
f � ⌘k�1

f , ⇠k+1
f + ⇠k�1

f

⌘

f
+
⇣

r · (⌘k+1
f � ⌘k�1

f ),r · (⇠k+1
f � ⇠k+1

f )
⌘

f

�

� 1

2�t
[gS0

�

⌘k+1
p � ⌘k�1

p , ⇠k+1
p + ⇠k�1

p

�

p

+�tg2C2
f,p(r(⌘k+1

p � ⌘k�1
p ),r(⇠k+1

p + ⇠k�1
p ))p +�tg2C2

f,p(⌘
k+1
p � ⌘k�1

p , ⇠k+1
p + ⇠k�1

p )p]

� 1

2

h

af
⇣

⌘k+1
f + ⌘k�1

f , ⇠k+1
f + ⇠k�1

f

⌘

+ ap
�

⌘k+1
p + ⌘k�1

p , ⇠k+1
p + ⇠k�1

p

�

i

�
h

cI(⇠
k+1
f + ⇠k�1

f , ⌘kp)� cI(⌘
k
f , ⇠

k+1
p + ⇠k�1

p )
i

+ "kf (⇠
k+1
f + ⇠k�1

f ) +
⇣

pk � �kh,r · (⇠k+1
f + ⇠k�1

f )
⌘

f
+ "kp(⇠

k+1
p + ⇠k�1

p ).

Rewrite the coupling terms on the left hand side equivalently as follows:

cI(⇠
k+1
f + ⇠k�1

f , ⇠kp )� cI(⇠
k
f , ⇠

k+1
p + ⇠k�1

p )

=
⇣

cI(⇠
k+1
f , ⇠kp )� cI(⇠

k
f , ⇠

k+1
p )

⌘

�
⇣

cI(⇠
k
f , ⇠

k�1
p )� cI(⇠

k�1
f , ⇠kp )

⌘

= C
k+ 1

2
⇠ � C

k� 1
2

⇠ .
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If we denote the ⇠ energy terms by

Ek+1/2
⇠ := k⇠k+1

f k2DIV,f + gS0k⇠k+1
p k2p +�t2g2C2

f,pk⇠k+1
p k2H1(⌦p)

+ k⇠kfk2DIV,f + gS0k⇠kpk2p +�t2g2C2
f,pk⇠kpk2H1(⌦p)

and also apply the coercivity of the forms af (·, ·) and ap(·, ·), the inequality becomes

Ek+1/2
⇠ + 2�tC

k+ 1
2

⇠ � Ek�1/2
⇠ � 2�tC

k� 1
2

⇠

+�t
⇣

⌫kr(⇠k+1
f + ⇠k�1

f )k2f + gkminkr(⇠k+1
p + ⇠k�1

p k2p
⌘

 �


⇣

⌘k+1
f � ⌘k�1

f , ⇠k+1
f + ⇠k�1

f

⌘

f
+
⇣

r ·
⇣

⌘k+1
f � ⌘k�1

f

⌘

,r ·
⇣

⇠k+1
f + ⇠k�1

f

⌘⌘

f

�

� [gS0

�

⌘k+1
p � ⌘k�1

p , ⇠k+1
p + ⇠k�1

p

�

p
+ 2�t2g2C2

f,p(r(⌘k+1
p � ⌘k�1

p ),r(⇠k+1
p + ⇠k�1

p ))p

+ 2�t2g2C2
f,p(⌘

k+1
p � ⌘k�1

p , ⇠k+1
p + ⇠k�1

p )p]

��t
h

af
⇣

⌘k+1
f + ⌘k�1

f , ⇠k+1
f + ⇠k�1

f

⌘

+ ap
�

⌘k+1
p + ⌘k�1

p , ⇠k+1
p + ⇠k�1

p

�

i

� 2�t
h

cI(⇠
k+1
f + ⇠k�1

f , ⌘kp)� cI(⌘
k
f , ⇠

k+1
p + ⇠k�1

p )
i

+ 2�t
h

"kf (⇠
k+1
f + ⇠k�1

f ) + (pk � �kh,r · (⇠k+1
f + ⇠k�1

f ))f + "kp(⇠
k+1
p + ⇠k�1

p )
i

,

(38)

where we multiplied through by 2�t. Next, we bound each term on the right

hand side of the above inequality. We bound the first two terms by the standard

Cauchy-Schwarz and Young inequalities along with the Poincaré inequality (6) and

inequality (8).

⇣

⌘k+1
f � ⌘k�1

f , ⇠k+1
f + ⇠k�1

f

⌘

f
+
⇣

r ·
⇣

⌘k+1
f � ⌘k�1

f

⌘

,r ·
⇣

⇠k+1
f + ⇠k�1

f

⌘⌘

f

 6C2
P,f

⌫�t
k⌘k+1

f � ⌘k�1
f k2f +

6d2

⌫�t
kr
⇣

⌘k+1
f � ⌘k�1

f

⌘

k2f +�t
⌫

12
kr(⇠k+1

f + ⇠k�1
f )k2f ,
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gS0(⌘
k+1
p �⌘k�1

p , ⇠k+1
p + ⇠k�1

p )p + 2�t2g2C2
f,p

�r �⌘k+1
p � ⌘k�1

p

�

,r �⇠k+1
p + ⇠k�1

p

��

p

+ 2�t2g2C2
f,p

�

⌘k+1
p � ⌘k�1

p , ⇠k+1
p + ⇠k�1

p

�

p

 15gC2
P,p

2kmin�t

�

S2
0 + 4�t4g2C4

f,p

� k⌘k+1
p � ⌘k�1

p k2p

+
30�t3g3C4

f,p

kmin
kr �⌘k+1

p � ⌘k�1
p

� k2p +�t
gkmin

10
kr(⇠k+1

p + ⇠k�1
p )k2p.

To bound the second term, we apply the continuity of the bilinear forms af (·, ·)
and ap(·, ·). Letting M = ⌫ + ↵Ck�1/2

min gives:

af (⌘
k+1
f + ⌘k�1

f , ⇠k+1
f + ⇠k�1

f ) + ap(⌘
k+1
p + ⌘k�1

p , ⇠k+1
p + ⇠k�1

p )

 Mkr(⌘k+1
f + ⌘k�1

f )kfkr(⇠k+1
f + ⇠k�1

f )kf + gkmaxkr(⌘k+1
p + ⌘k�1

p )kpkr(⇠k+1
p + ⇠k�1

p )kp

 3M2

⌫
kr(⌘k+1

f + ⌘k�1
f )k2f +

5gk2max

2kmin
kr(⌘k+1

p + ⌘k�1
p )k2p

+
⌫

12
kr(⇠k+1

f + ⇠k�1
f )k2f +

gkmin

10
kr(⇠k+1

p + ⇠k�1
p )k2p.

We bound the coupling terms on the right hand side using the trace (7), Poincaré

(6) and Young inequalities. Letting C = C2
⌦f

C2
⌦p

CP,fCP,pg2, this yields

cI(⇠
k+1
f + ⇠k�1

f , ⌘kp)� cI(⌘
k
f , ⇠

k+1
p + ⇠k�1

p )

 g
⇣

k(⇠k+1
f + ⇠k�1

f ) · n̂fkIk⌘kpkI + k⌘kf · n̂fkIk⇠k+1
p + ⇠k�1

p kI
⌘

 C⌦fC⌦pg
⇣

k⇠k+1
f + ⇠k�1

f k1/2f kr(⇠k+1
f + ⇠k�1

f )k1/2f k⌘kpk1/2p kr⌘kpk1/2p

⌘

+
⇣

k⇠k+1
p + ⇠k�1

p k1/2p kr(⇠k+1
p + ⇠k�1

p )k1/2p k⌘kfk1/2f kr⌘kfk1/2f

⌘


p
C
⇣

kr(⇠k+1
f + ⇠k�1

f )kfkr⌘kpkp + kr⌘kfkfkr(⇠k+1
p + ⇠k�1

p )kp
⌘

 6C

⌫
kr⌘kfk2f +

5C

gkmin
kr⌘kpk2p +

⌫

24
kr(⇠k+1

f + ⇠k�1
f )k2f +

gkmin

20
kr(⇠k+1

p + ⇠k�1
p )k2p.

Finally, we bound the consistency errors, "kf and "kp, and the pressure term as

follows. We use the Cauchy-Schwarz, Young and Poincaré (6) inequalities as well
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as inequality (8).

"kf (⇠
k+1
f + ⇠k�1

f ) = �
✓

uk
t � uk+1 � uk�1

2�t
, ⇠k+1

f + ⇠k�1
f

◆

� af

✓

uk � uk+1 + uk�1

2
, ⇠k+1

f + ⇠k�1
f

◆

�
✓

r ·
✓

uk
t � uk+1 � uk�1

2�t

◆

,r ·
⇣

⇠k+1
f + ⇠k�1

f

⌘

◆

 CP,f

 

�

�

�

�

uk
t � uk+1 � uk�1

2�t

�

�

�

�

f

+ d

�

�

�

�

r
✓

uk
t � uk+1 � uk�1

2�t

◆

�

�

�

�

f

+M

�

�

�

�

r
✓

uk � uk+1 + uk�1

2

◆

�

�

�

�

f

!

kr(⇠k+1
f + ⇠k�1

f )kf

 9C2
P,f

⌫

�

�

�

�

uk
t � uk+1 � uk�1

2�t

�

�

�

�

2

f

+
9M2

⌫

�

�

�

�

r
✓

uk � uk+1 + uk�1

2

◆

�

�

�

�

2

f

+
9d2

⌫

�

�

�

�

r
✓

uk
t � uk+1 + uk�1

2�t

◆

�

�

�

�

2

f

+
⌫

12
kr(⇠k+1

f + ⇠k�1
f )k2f ,

"kp(⇠
k+1
p + ⇠k�1

p ) = �gS0

✓

�kt � �k+1 � �k�1

2�t
, ⇠k+1

p + ⇠k�1
p

◆

p

+�tg2C2
f,p(r(�k+1 � �k�1),r(⇠k+1

p + ⇠k�1
p ))p

+�tg2C2
f,p(�

k+1 � �k�1, ⇠k+1
p + ⇠k�1

p )p � ap

✓

�k � �k+1 + �k�1

2
, ⇠k+1

p + ⇠k�1
p

◆


 

CP,p

�

�

�

�

�kt � �k+1 � �k�1

2�t

�

�

�

�

p

+ gkmax

�

�

�

�

r
✓

�k � �k+1 + �k�1

2

◆

�

�

�

�

p

+�tg2C2
f,p

�kr(�k+1 � �k�1)kp + CP,pk�k+1 � �k�1kp
�

!

kr(⇠k+1
p + ⇠k�1

p )kp

 10gS2
0C

2
P,p

kmin

�

�

�

�

�kt � �k+1 � �k�1

2�t

�

�

�

�

2

p

+
10�t2g3C4

f,p

kmin
kr(�k+1 � �k�1)k2p

+
10�t2g3C4

f,pC
2
P,p

kmin
k�k+1 � �k�1k2p +

10gkmax

kmin

�

�

�

�

r
✓

�k � �k+1 + �k�1

2

◆

�

�

�

�

2

p

+
gkmin

10
kr(⇠k+1

p + ⇠k�1
p )k2p,

⇣

pk � �kh,r · (⇠k+1
f + ⇠k�1

f )
⌘

f
 kpk � �khkfkr · (⇠k+1

f + ⇠k�1
f )kf

 6d

⌫
kpk � �khk2f +

⌫

24
kr(⇠k+1

f + ⇠k�1
f )k2f .
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After absorbing all the resulting ⇠ terms into the left hand side of inequality (38)

and grouping together the remaining terms, the inequality becomes

E
k+ 1

2
⇠ + 2�tC

k+ 1
2

⇠ � E
k� 1

2
⇠ � 2�tC

k� 1
2

⇠

+�t

✓

⌫

2
kr(⇠k+1

f + ⇠k�1
f )k2f +

gkmin

2
kr(⇠k+1

p + ⇠k�1
p )k2p

◆

 (�t)�1{6C2
P,f

⌫
k⌘k+1

f � ⌘k�1
f k2f +

15gC2
P,p

2kmin

�

S2
0 + 4�t4g2C4

f,p

� k⌘k+1
p � ⌘k�1

p k2p

+
6d2

⌫
kr
⇣

⌘k+1
f � ⌘k�1

f

⌘

k2f}
+�t{30�t2g3C4

f,p

kmin
kr �⌘k+1

p � ⌘k�1
p

� k2p +
3M2

⌫
kr(⌘k+1

f + ⌘k�1
f )k2f

+
5gk2max

2kmin
kr(⌘k+1

p + ⌘k�1
p )k2p +

12C

⌫
kr⌘kfk2f +

10C

gkmin
kr⌘kpk2p

+
18C2

P,f

⌫

�

�

�

�

uk
t � uk+1 � uk�1

2�t

�

�

�

�

2

f

+
18M2

⌫

�

�

�

�

r
✓

uk � uk+1 + uk�1

2

◆

�

�

�

�

2

f

+
18d2

⌫

�

�

�

�

r
✓

uk
t � uk+1 � uk�1

2�t

◆

�

�

�

�

2

f

+
12d

⌫
kpk � �khk2f

+
20gS2

0C
2
P,p

kmin

�

�

�

�

�kt � �k+1 � �k�1

2�t

�

�

�

�

2

p

+
20�t2g3C4

f,p

kmin
kr(�k+1 � �k�1)k2p

+
20�t2g3C4

f,pC
2
P,p

kmin
k�k+1 � �k�1k2p +

20gk2max

kmin

�

�

�

�

r
✓

�k � �k+1 + �k�1

2

◆

�

�

�

�

2

p

}.
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Now, we sum this inequality from k = 1, ..., N � 1. This yields

E
N� 1

2
⇠ + 2�tC

N� 1
2

⇠ � E
1
2
⇠ � 2�tC

1
2
⇠

+�t
N�1
X

k=1

✓

⌫

2
kr
⇣

⇠k+1
f + ⇠k�1

f

⌘

k2f +
gkmin

2
kr(⇠k+1

p + ⇠k�1
p )k2p

◆

 (�t)�1
N�1
X

k=1

{6C2
P,f

⌫
k⌘k+1

f � ⌘k�1
f k2f +

15gC2
P,p

2kmin

�

S2
0 + 4�t4g2C4

f,p

� k⌘k+1
p � ⌘k�1

p k2p

+
6d2

⌫
kr
⇣

⌘k+1
f � ⌘k�1

f

⌘

k2f}
+�t

N�1
X

k=1

{30�t2g3C4
f,p

kmin
kr �⌘k+1

p � ⌘k�1
p

� k2p +
3M2

⌫
kr(⌘k+1

f + ⌘k�1
f )k2f

+
5gk2max

2kmin
kr(⌘k+1

p + ⌘k�1
p )k2p +

12C

⌫
kr⌘kfk2f +

10C

gkmin
kr⌘kpk2p

+
18C2

P,f

⌫

�

�

�

�

uk
t � uk+1 � uk�1

2�t

�

�

�

�

2

f

+
18M2

⌫

�

�

�

�

r
✓

uk � uk+1 + uk�1

2

◆

�

�

�

�

2

f

+
18d2

⌫

�

�

�

�

r
✓

uk
t � uk+1 � uk�1

2�t

◆

�

�

�

�

2

f

+
12d

⌫
kpk � �khk2f

+
20gS2

0C
2
P,p

kmin

�

�

�

�

�kt � �k+1 � �k�1

2�t

�

�

�

�

2

p

+
20�t2g3C4

f,p

kmin
kr(�k+1 � �k�1)k2p

+
20�t2g3C4

f,pC
2
P,p

kmin
k�k+1 � �k�1k2p +

20gk2max

kmin

�

�

�

�

r
✓

�k � �k+1 + �k�1

2

◆

�

�

�

�

2

p

}.

To obtain a bound involving norms instead of summations, we use the Cauchy-

Schwarz and other basic inequalities to bound each term on the right hand side as

follows. For the first term, we have:

N�1
X

k=1

k⌘k+1
f � ⌘k�1

f k2f =
N�1
X

k=1

�

�

�

�

�

Z tk+1

tk�1

⌘f,tdt

�

�

�

�

�

2

f


N�1
X

k=1

Z

⌦f

(2�t)

Z tk+1

tk�1

|⌘f,t|2dt dx

 4�tk⌘f,tk2L2(0,T ;L2(⌦f ))
. (39)

Likewise, we treat the second term,

N�1
X

k=1

k⌘k+1
p � ⌘k�1

p k2f  4�tk⌘p,tk2L2(0,T ;L2(⌦p))
. (40)
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In a similar manner we bound the third and fourth terms.

N�1
X

k=1

kr
⇣

⌘k+1
f � ⌘k�1

f

⌘

k2f  4�tkr⌘f,tk2L2(0,T ;L2(⌦f ))
, (41)

N�1
X

k=1

kr �⌘k+1
p � ⌘k�1

p

� k2p  4�tkr⌘p,tk2L2(0,T ;L2(⌦p))
. (42)

Inequalities (39) and (41) imply the following.

N�1
X

k=1

n

k⌘k+1
f � ⌘k�1

f k2f + kr
⇣

⌘k+1
f � ⌘k�1

f

⌘

k2f
o

 4�tk⌘f,tk2L2(0,T ;H1(⌦f ))
(43)

The rest of the ⌘ terms are bounded using Cauchy-Schwarz and the discrete norms.

N�1
X

k=1

kr(⌘k+1
f + ⌘k�1

f )k2f  2
N�1
X

k=1

⇣

kr⌘k+1
f k2f + kr⌘k�1

f k2f
⌘

 4
N
X

k=0

kr⌘kfk2f  4(�t)�1k|r⌘f |k2L2(0,T ;L2(⌦f ))
,

(44)

N�1
X

k=1

kr(⌘k+1
p + ⌘k�1

p )k2f  4(�t)�1k|r⌘p|k2L2(0,T ;L2(⌦p))
, (45)

N�1
X

k=1

kr⌘kfk2f  (�t)�1k|r⌘f |k2L2(0,T ;L2(⌦f ))
, (46)

N�1
X

k=1

kr⌘kpk2p  (�t)�1k|r⌘p|k2L2(0,T ;L2(⌦p))
, (47)

N�1
X

k=1

kpk � �khk2f  (�t)�1k|p� �h|k2L2(0,T ;L2(⌦f ))
. (48)

After applying bounds (39)-(48), along with (29)-(34), and the bound (26) from

the stability proof, and after absorbing all the constants into one constant, bC1, the
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inequality becomes

1

2
(k⇠Nf k2DIV,f + k⇠N�1

f k2DIV,f ) + gS0(k⇠Np k2p + k⇠N�1
p k2p)

+�t
N�1
X

k=1

✓

⌫

2
kr(⇠k+1

f + ⇠k�1
f )k2f +

gkmin

2
kr(⇠k+1

p + ⇠k�1
p )k2p

◆

 bC1{k⌘f,tk2L2(0,T ;H1(⌦f ))
+ k⌘p,tk2L2(0,T ;L2(⌦p))

+�t4kr⌘p,tk2L2(0,T ;L2(⌦p))

+ k|r⌘f |k2L2(0,T ;L2(⌦f ))
+ k|r⌘p|k2L2(0,T ;L2(⌦p))

+�t4( kutttk2L2(0,T ;H1(⌦f ))

+ kuttk2L2(0,T ;H1(⌦f ))
+ k�tttk2L2(0,T ;L2(⌦p))

+ k�tk2L2(0,T,H1(⌦p))

+ k�ttk2L2(0,T ;H1(⌦p))
)+ k|p� �h|k2L2(0,T ;L2(⌦f ))

}+ E1/2
⇠ + 2�tC1/2

⇠ .

(49)

Recall that the error terms equal eNf = uN � uN
h = ⌘Nf + ⇠Nf and eNp = �N � �Nh =

⌘Np + ⇠Np . Applying the triangle inequality we have

1

4
(keNfk2DIV,f + keN�1

f k2DIV,f ) +
gS0

2
(keNp k2p + keN�1

p k2p)

+�t
N�1
X

k=1

✓

⌫

4
kr(ek+1

f + ek�1
f )k2f +

gkmin

4
kr(ek+1

p + ek�1
p )k2p

◆

 1

2
(k⇠Nf k2DIV,f + k⇠N�1

f k2DIV,f ) + gS0(k⇠Np k2p + k⇠N�1
p k2p)

+�t
N�1
X

k=1

✓

⌫

2
kr(⇠k+1

f + ⇠k�1
f )k2f +

gkmin

2
kr(⇠k+1

p + ⇠k�1
p )k2p

◆

+
1

2
(k⌘Nf k2DIV,f + k⌘N�1

f k2DIV,f ) + gS0(k⌘Np k2p + k⌘N�1
p k2p)

+�t
N�1
X

k=1

✓

⌫

2
kr(⌘k+1

f + ⌘k�1
f )k2f +

gkmin

2
kr(⌘k+1

p + ⌘k�1
p )k2p

◆

.

Notice that k⌘Nf,pk2f,p, k⌘N�1
f,p k2f,p  k|⌘f,p|k2L1(0,T ;L2(⌦f,p))

and therefore k⌘Nf k2DIV,f 
dk|⌘f |k2L1(0,T ;H1(⌦f ))

. This fact, together with the previous bounds for ⌘ terms and
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inequality (49) result in

1

4
(keNfk2DIV,f + keN�1

f k2DIV,f ) +
gS0

2
(keNp k2p + keN�1

p k2p)

+�t
N�1
X

k=1

✓

⌫

4
kr(ek+1

f + ek�1
f )k2f +

gkmin

4
kr(ek+1

p + ek�1
p )k2p

◆

 bC2{k⌘f,tk2L2(0,T ;H1(⌦f ))
+ k⌘p,tk2L2(0,T ;L2(⌦p))

+�t4kr⌘p,tk2L2(0,T ;L2(⌦p))
+ k|r⌘f |k2L2(0,T ;L2(⌦f ))

+ k|r⌘p|k2L2(0,T ;L2(⌦p))

+�t4( kutttk2L2(0,T ;H1(⌦f ))
+ kuttk2L2(0,T ;H1(⌦f ))

+ k�tttk2L2(0,T ;L2(⌦p))

+ k�tk2L2(0,T ;H1(⌦p))
+ k�ttk2L2(0,T ;H1(⌦p))

)+ k|p� �h|k2L2(0,T ;L2(⌦f ))

+ k|⌘f |k2L1(0,T ;H1(⌦f ))
+ k|⌘p|k2L1(0,T ;L2(⌦p))

}+ k⇠1fk2DIV,f + k⇠0fk2DIV,f

+ gS0(k⇠1pk2p + k⇠0pk2p) +�t2g2C2
f,p(k⇠1pk21,p + k⇠0pk21,p) + 2�tC1/2

⇠ ,

(50)

where we absorbed all constants into a new constant, bC2 > 0. Now, we bound the

coupling terms on the right hand side as follows:

C1/2
⇠  C

2

�k⇠0pk21,p + k⇠1pk21,p + k⇠0fk2DIV,f + k⇠1fk2DIV,f

�

. (51)

Inequality (50) holds for any ũ 2 V h, �h 2 Qh
f , and �̃ 2 Xh

p . Taking the infimum

over the spaces V h, Qh
f , and Xh

p , using (28) to bound the infimum over V h by the

infimum over Xh
f and using bound (51), we have the following for some positive
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constant bC3:

1

2
(keNfk2DIV,f + keN�1

f k2DIV,f ) + gS0(keNp k2p + keN�1
p k2p)

+�t
N�1
X

k=1

✓

⌫

2
kr(ek+1

f + ek�1
f )k2f +

gkmin

2
kr(ek+1

p + ek�1
p )k2p

◆

 bC3{ inf
ũ2Xh

f

{k⌘f,tk2L2(0,T ;H1(⌦f ))
+ k|r⌘f |k2L2(0,T ;L2(⌦f ))

+ k|⌘f |k2L1(0,T ;H1(⌦f ))
+ k⇠1fk2DIV,f + k⇠0fk2DIV,f}

+ inf
�h2Qh

f

k|p� �h|k2L2(0,T ;L2(⌦f ))
+ inf

�̃2Xh
p

{k⌘p,tk2L2(0,T ;L2(⌦p))

+�t4kr⌘p,tk2L2(0,T ;L2(⌦p))
+ k|r⌘p|k2L2(0,T ;L2(⌦p))

+ k|⌘p|k2L1(0,T ;L2(⌦p))

+ k⇠1pk21,p + k⇠0pk21,p}+�t4( kutttk2L2(0,T ;H1(⌦f ))
+ kuttk2L2(0,T ;H1(⌦f ))

+ k�tttk2L2(0,T ;L2(⌦p))
+ k�tk2L2(0,T ;H1(⌦p))

+ k�ttk2L2(0,T ;H1(⌦p))
)}.

The result of the theorem now immediately follows by applying the approximation

assumptions given in (27). ⇤

Corollary 7. Under the same regularity conditions as in Theorem 6, the temporal

growth of the error is at most

keNf kDIV,f , keNp kp = O(
p
tN ).

Proof. For any function v : [0,1) ! X and any spatial norm k · kX we have

Z tN

0
kvk2X dt  tNkvk2L1(0,1;X),

for any 0 < T  1. Similarly for the discrete norms we have

N
X

k=1

kvkk2X�t  kvk2L1(0,1;X)

N
X

k=1

�t = tNkvk2L1(0,1;X).

Applying the above to the terms on the RHS of (37) gives the claim of the Corollary.

⇤
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5. Numerical tests

We verify the method’s unconditional stability and rate of convergence in a

series of numerical tests. For these experiments we use the exact solutions intro-

duced by Mu and Zhu in [16], recalled next. All experiments were conducted using

FreeFEM++ [19].

⌦f = (0, 1)⇥ (1, 2), ⌦p = (0, 1)⇥ (0, 1), I = {(x, 1) : x 2 (0, 1)}

u(x, y, t) =

✓

(x2(y � 1)2 + y) cos(t), (
2

3
x(1� y)3 + 2� ⇡ sin(⇡x)) cos(t)

◆

p(x, y, t) = (2� ⇡ sin(⇡x)) sin(
⇡

2
y) cos(t)

�(x, y, t) = (2� ⇡ sin(⇡x))(1� y � cos(⇡y)) cos(t)

To confirm unconditional stability of the CNLF-stab method we set the body force

and source functions, ff and fp equal to zero. We also enforce homogeneous Dirich-

let boundary conditions, except along the interface I.

5.1. Test 1 - Unconditional Stability (CNLF’s CFL (2) violated). We set

h = �t = 0.1. We calculate the energy of the system over the time interval [0, 10].

In Figure 2 we take S0 = 0.1 and kmin = 1.0, while in Figure 3 we consider the

case of a confined aquifer and set S0 = 10�6 and kmin = 10�4. The values for S0,

�t and h in both cases violate the stability condition (2) for original CNLF. The

energy of CNLF-stab decays to zero over time, as expected, while CNLF blows up

in both cases. In particular, CNLF experiences a drastic increase in system energy

in the second case (Figure 3b).

5.2. Test 2 - Control of Unstable Mode (CFL (2) holds). We test the e↵ect

of CNLF-stab on the unstable mode of Leap-Frog, given by kwn+1
h � wn�1

h k2f,p for

w = u,�, in Figures 4 and 5. For these tests we set h = �t = 0.05 and further S0 =

1.0 and kmin = 0.1. In [13], it was shown that decreasing the value of kmin from 1.0

to 0.1 led to instability even though condition (2) holds. Numerical tests showed the

sudden rise in energy corresponded to spurious oscillations in the unstable modes.

We calculate these unstable modes in both the Stokes velocity and Darcy pressure
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Figure 2. Energy with S0 = 0.1, kmin = 0.1, h = �t = 0.1, T =
10 =) (2) violated
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Figure 3. Energy with S0 = 10�6, kmin = 10�4, h = �t =
0.1, T = 10 =) (2) violated

variables and compare them to the total energy of the method at each time step.

Notice in Figure 4 that the energy and unstable modes of CNLF-stab decay to

zero, while we observe a rise in the energy for CNLF in Figure 5 corresponding

to oscillations in the unstable modes. Therefore, numerical tests indicate that

CNLF-stab damps the unstable mode of Leap-Frog. Theoretical verification that

CNLF-stab does control the unstable mode is an open question.

5.3. Test 3 - Convergence Rate Verification. We next test the convergence

rate of the CNLF-stab method. We set the parameters ↵, ⌫, S0, K, g, equal to

1 and apply inhomogeneous Dirichlet external boundary conditions: uh = u on

⌦f \ I, �h = � on ⌦p \ I. We chose the initial conditions, as well as the first terms

in the method, to match the exact solutions. We set h = �t and calculate the
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Figure 4. CNLF-stab Energy and Unstable Modes with S0 =
1.0, kmin = 0.1, h = �t = 0.05, T = 5.
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Figure 5. CNLF Energy and Unstable Modes with S0 =
1.0, kmin = 0.1, h = �t = 0.05, T = 10.

errors and convergence rates for the variables u, p, and � in Table 3 over the time

interval [0, 10]. Define the norms for the errors, E(u), E(p), and E(�), as follows.

E(u) = k|u� uh|kL1(0,T ;DIV (⌦f )),

E(p) = k|p� ph|kL1(0,T ;L2(⌦f )),

E(�) = k|�� �h|kL1(0,T ;L2(⌦p)).

We let ru,� denote the calculated rate of convergence. As expected, we have second

order convergence for the Stokes velocity, u, and Darcy pressure, �. However, we do

not have second order convergence for the Stokes pressure, p. A further numerical

investigation of this e↵ect on the convergence of the Stokes pressure follows.
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h = �t E(u) ru E(�) r� E(p)
1/4 6.98⇥ 10�2 1.54⇥ 10�1 2.65
1/8 1.58⇥ 10�2 2.14 3.85⇥ 10�2 2.00 2.56
1/16 4.15⇥ 10�3 1.93 9.62⇥ 10�3 2.00 2.35
1/32 1.12⇥ 10�3 1.89 2.40⇥ 10�3 2.00 1.34

Table 3. Errors for CNLF+Stab

5.4. Test 4 - An Anomaly in the Stokes Pressure. We examing the lack of

second order convergence for the Stokes pressure p in the above table by conducting

a series of tests to isolate the anomaly. We ran the same convergence tests to analyze

the errors in regular CNLF in Table 4, CNLF with added Grad-Div stabilization

terms in the Stokes equation (CNLF-GradDiv) in Table 5, and CNLF with the

added O(�t2) stabilization terms in the Darcy equation (CNLF-StabDarcy) in

Table 6. The Stokes pressure is second order convergent in both CNLF and CNLF-

StabDarcy. In tests for CNLF-GradDiv, we obtained the same results for the Stokes

pressure error as we found for CNLF-stab. This suggests that the added Grad-Div

stabilization term in the Stokes equation adversely a↵ects the convergence rate of

the Stokes pressure.

Surprisingly, when we calculated k|r·uhk|L2(0,T ;L2(⌦f )), k|r·uh,tk|2L2(0,T ;L2(⌦f ))
=

PN�1
k=1 kr · un+1

f �un�1
f

2�t k2f , and k|phk|L2(0,T ;L2(⌦f )) for CNLF-stab in Table 7, we see

that k|r ·uhk|L2(0,T ;L2(⌦f )) and k|r ·uh,tk|L2(0,T ;L2(⌦f )) converge to zero while the

discrete norm of the pressure is still stabilizing. We obtained the same numerical

results for CNLF-GradDiv. When we calculated those same norms for CNLF in

Table 8 we see that k|r ·uhk|L2(0,T ;L2(⌦f )) and k|r ·uh,tk|L2(0,T ;L2(⌦f )) converge to

zero and the discrete pressure norm converges to 1.56. We obtained similar results

for CNLF-StabDarcy, given in Table 9. We have no theoretical explanation for this

e↵ect. It is another important open question.

h = �t E(u) E(�) E(p)
1/4 1.18⇥ 10�1 5.27⇥ 10�2 1.52
1/8 1.97⇥ 10�2 1.12⇥ 10�2 2.88⇥ 10�1

1/16 4.84⇥ 10�3 2.29⇥ 10�3 5.96⇥ 10�2

1/32 1.22⇥ 10�3 5.72⇥ 10�4 1.44⇥ 10�2

Table 4. Errors for CNLF
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h = �t E(u) E(�) E(p)
1/4 6.98⇥ 10�2 5.27⇥ 10�2 2.64
1/8 1.58⇥ 10�2 1.12⇥ 10�2 2.56
1/16 4.15⇥ 10�3 2.29⇥ 10�3 2.35
1/32 1.12⇥ 10�3 5.72⇥ 10�4 1.34

Table 5. Errors for CNLF-GradDiv

h = �t E(u) E(�) E(p)
1/4 8.41⇥ 10�2 3.85⇥ 10�2 1.02
1/8 1.91⇥ 10�2 3.85⇥ 10�2 2.56⇥ 10�1

1/16 4.84⇥ 10�3 9.62⇥ 10�3 6.09⇥ 10�2

1/32 1.22�3 2.40⇥ 10�3 1.45⇥ 10�2

Table 6. Error for CNLF-StabDarcy

h = �t k|r · uhk|f k|r · uh,tk|f k|phk|f
1/4 1.6⇥ 10�1 2.2⇥ 10�1 5.13
1/8 3.51⇥ 10�2 5.51⇥ 10�3 4.92
1/16 4.15⇥ 10�3 2.35⇥ 10�3 2.35
1/32 1.12⇥ 10�3 9.55⇥ 10�4 1.34

Table 7. Discrete Norms for CNLF-Stab

h = �t k|r · uhk|f k|r · uh,tk|f k|phk|f
1/4 2.18⇥ 10�1 5.78⇥ 10�1 2.71
1/8 4.47⇥ 10�2 2.14⇥ 10�1 1.63
1/16 1.12⇥ 10�2 1.02⇥ 10�1 1.56
1/32 2.81⇥ 10�3 4.24⇥ 10�2 1.56

Table 8. Discrete norms for CNLF

h = �t k|r · uk|f k|r · utk|f k|pk|
1/4 1.98⇥ 10�1 4.53⇥ 10�1 2.40
1/8 4.41⇥ 10�2 2.06⇥ 10�1 1.62
1/16 1.11⇥ 10�2 4.16⇥ 10�4 1.56
1/32 1.22⇥ 10�3 9.59⇥ 10�4 1.56

Table 9. Discrete Norms for CNLF-StabDarcy

6. Conclusions

The added stabilization terms in the CNLF-stab method correct one of the two

shortcomings of original CNLF, namely the conditional stability. Theoretical and
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numerical analysis of the CNLF-stab method showed that the stabilization main-

tains second order convergence in the Stokes velocity and Darcy pressure variables

while eliminating the dependence on the specific storage parameter, S0, for stability.

Numerical tests suggest that the added stabilization terms dampen the e↵ect of the

unstable mode from Leap-Frog, in contrast to regular CNLF. Our tests reveal two

important open theoretical questions: (1) Whether the added stabilization terms in

CNLF-stab control the unstable mode of Leap-Frog, and (2) Why the fluid pressure

p fails to be second order convergent with CNLF-stab.
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Pures et Appliquées, 77:317–354, 1998.

[18] P. Sa↵man. On the boundary condition at the interface of a porous medium. Stud. Appl.

Math., 1:93–101, 1971.

[19] FreeFEM++ software. www.freefem.org/↵++/index.htm.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail : mjk63@pitt.edu and mam328@pitt.edu

URL: http://www.pitt.edu/⇠mjk63/ and http://www.pitt.edu/⇠mam328/


