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Abstract

We consider a fully discrete stabilized finite element method for the Navier-Stokes
equations which is unconditionally stable and has second order temporal accuracy of
O(k2+hk+ spatial error). The method involves a simple artificial viscosity stabilization
of the linear system for the approximation of the new time level connected to anti-
diffusion of its effects at the old time level. The method requires only the solution of
one linear system (arising from an Oseen problem) per time step. The cell Reynolds
number of this discrete linear Oseen problem is O(1) and is thus amenable to standard
iterative methods and preconditioners.
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1 Introduction

The accurate and reliable solution of fluid flow problems is important for many applications.
In these one core problem is the Navier-Stokes equations, given by: find u : Ω × [0, T ] →
Rd (d = 2, 3), p : Ω× (0, T ] → R satisfying

ut + u · ∇u− ν∆u +∇p = f , for x ∈ Ω, 0 < t ≤ T

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u = 0, on ∂Ω, for 0 < t ≤ T , (1.1)
u(x, 0) = u0(x), for x ∈ Ω,
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with the usual normalization condition that
∫
Ω p(x, t) dx = 0 for 0 < t ≤ T when (1.1) is

discretized by accepted, accurate and stable methods, such as the finite element method in
space and Crank-Nicolson in time, the approximation can still fail for many reasons. One
common mode of failure is non-convergence of the iterative nonlinear and linear solvers
used to compute the velocity and pressure at the new time levels. We consider herein a
simple, second order accurate, and unconditionally stable method which addresses these
failure modes. The method requires the solution of one linear system per time step.

This linear system is a discretized Oseen problem plus an O(h) artificial viscosity opera-
tor - so the standard iterative solvers and well-tested preconditioners can be used successfully
(the preconditioners are described, e.g., in chapter 8 of [ESW05]). Suppressing the spatial
discretization, the method can be written as (with time step k = ∆t and tuning parameter
α = O(1))

∇ · un+1 = 0 and

un+1 − un

k
+ Un+1/2 · ∇(

un+1 + un

2
)− ν∆(

un+1 + un

2
)− αh∆un+1

+∇(
pn+1 + pn

2
) = f(tn+1/2)− αh∆un. (1.2)

Here Un+1/2 := 3
2un − 1

2un−1 is the linear extrapolation of the velocity to tn+1/2 from
previous time levels. Thus, (1.2) is an extension of Baker’s [B76] extrapolated Crank-
Nicolson method. Artificial viscosity stabilization is introduced into the linear system for
un+1 by adding −αh∆un+1 to the LHS and correcting for it by −αh∆un (the previous
time level) on the RHS. This is a known idea1 in practical CFD, and likely has been used
in practical computations with many different timestepping methods. To our knowledge
however, it has only been proven unconditionally stable in combination with first order,
backward Euler time discretizations, e.g. E and Liu [EL01], Anitescu, Layton and Pahlevani
[ALP04], Pahlevani [P06] for related stabilizations and also He[He02] for a two-level method
based on Baker’s extrapolated Crank-Nicolson method.

The increase in accuracy from first order Backward Euler with stabilization to second
order in (1.2) (extrapolated CN with stabilization) is important. There is also a quite simple
proof that (1.2) is unconditionally stable. We give the stability proof in Proposition 3.1
and then explore the effect the stabilization (and correction) in (1.2) have on the rates of
convergence for various flow quantities.

No discretization is perfect. However, simple and stable ones leading to easily solvable
linear systems can be very useful. We therefore conclude with numerical tests which verify
accuracy and decrease in complexity in the linear equation solver.

Defining the method precisely requires a small amount of notation. The spatial part of
(1.1) is naturally formulated in

X := H1
0 (Ω)d, Q := L2

0(Ω).

The finite element approximation begins by selecting conforming finite element spaces Xh ⊂
X, Qh ⊂ Q satisfying the usual discrete inf-sup condition (defined in Section 2). Denote the

1The author WL first saw it used as a numerical regularization in 1980 and it seems to have been known
well before that. It is related to the simple Kelvin-Voight model of viscoelasticity, Oskolkov [O80], Kalantarev
and Titi [KT07].
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usual L2 norm and inner product by ‖·‖ and (·, ·), and the space of discretely divergence
free functions Vh by:

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0, ∀ qh ∈ Qh}.
Define the explicitly skew-symmetrized trilinear form

b∗(u,v,w) :=
1
2
(u · ∇v,w)− 1

2
(u · ∇w,v), (1.3)

and the extrapolation to tn+ 1
2

:= tn+tn+1

2 by

E[uh
n,uh

n−1] :=
3
2
uh

n −
1
2
uh

n−1, (1.4)

where uh
j (x) is a known approximation to u(x, tj).

The method studied is a 2-step method, so the initial condition and first step must be
specified, but are not essential. We choose the Stokes Projection, defined in Section 2.

Algorithm 1.1 (Stabilized, extrapolated trapezoid rule). Let uh
0 be the Stokes Projection

of u0(x) into Vh. At the first time level (uh
1 , ph

1) ∈ (Xh, Qh) are sought, satisfying

(
uh

1 − uh
0

k
,vh) + ν(∇(

uh
1 + uh

0

2
),∇vh) + αh(∇uh

1 ,∇vh)

+b∗(uh
0 ,

uh
1 + uh

0

2
,vh) − (

1
2
(ph

1 + ph
0),∇ · vh)

= (f(t 1
2
),vh) + αh(∇uh

0 ,∇vh), ∀ vh ∈ Xh, (1.5)

(∇ · uh
1 , qh) = 0, ∀ qh ∈ Qh.

Given a time step k > 0 and an O(1) constant α, the method computes uh
2 ,uh

3 , · · · , ph
2 , ph

3 , · · ·
where tj = jk and uh

j (x) ∼= u(x, tj), ph
j (x) ∼= p(x, tj). For n ≥ 1, given (uh

n, ph
n) ∈ (Xh, Qh)

find (uh
n+1, p

h
n+1) ∈ (Xh, Qh) satisfying

(
uh

n+1 − uh
n

k
,vh) + ν(∇(

uh
n+1 + uh

n

2
),∇vh) + αh(∇uh

n+1,∇vh)

+b∗(E[uh
n,uh

n−1],
uh

n+1 + uh
n

2
,vh) − (

1
2
(ph

n+1 + ph
n),∇ · vh)

= (f(tn+ 1
2
),vh) + αh(∇uh

n,∇vh), ∀ vh ∈ Xh, (1.6)

(∇ · uh
n+1, q

h) = 0, ∀ qh ∈ Qh.

We will refer to Algorithm 1.1 as CNLEStab (Crank-Nicolson with Linear Extrapolation
Stabilized). If α = 0, i.e. if no stabilization is used, Algorithm 1.1 reduces to one studied
by G. Baker in 1976 [B76] and others, that we will refer to as CNLE.

We shall show that Algorithm 1.1 (CNLEStab) is unconditionally stable and second
order accurate, O(k2 + hk + spatial error). The extra stabilization terms added are O(hk)
because

αh(∇(uh
n+1 − uh

n),∇vh) = αhk(∇(
uh

n+1 − uh
n

k
),∇vh) ' hk(−∆ut) = O(hk).

As stated above, each time step of the method requires the solution of only one linear Oseen
problem at cell Reynolds number O(1).
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Remark 1.1. At the first time level, a nonlinear treatment of the trilinear term can be used
instead of extrapolation: find (uh

1 , ph
1) ∈ (Xh, Qh), satisfying

(
uh

1 − uh
0

k
,vh) + ν(∇(

uh
1 + uh

0

2
),∇vh) + αh(∇uh

1 ,∇vh)

+b∗(
uh

1 + uh
0

2
,
uh

1 + uh
0

2
,vh) − (

1
2
(ph

1 + ph
0),∇ · vh)

= (f(t 1
2
),vh) + αh(∇uh

0 ,∇vh), ∀ vh ∈ Xh, (1.7)

(∇ · uh
1 , qh) = 0, ∀ qh ∈ Qh.

We shall show that this modification affects neither the stability of the method nor the
convergence rate of the velocity error approximation, but increases the convergence rate of
pressure approximation.

The stabilization in the method alters the numerical method’s kinetic energy rather
than in its energy dissipation. Proposition 5.1 and Section 5 show that

Kinetic Energy in CNLEStab =
1

2L3
[||uh

n||2 + αkh||∇uh
n||2],

Energy Dissipation in CNLEStab =
ν

L3
||∇uh

n||2.
We shall show in Sections 5 and 6 that this has several interesting consequences.

Section 2 collects some mathematical preliminaries for the analysis that follows. Sections
3 and 4 present a convergence analysis of the method (1.2). The modification of the method’s
kinetic energy influences the norm in which convergence is proven. A basic convergence
analysis is fundamental to a numerical method’s usefulness but there are many important
questions it does not answer. We try to address some of these in Section 5 and onward.
In Section 5 we consider physical fidelity of a simulation produced by the method (1.2).
One aspect of physical fidelity is conservation of important integral invariants of the Euler
equations (ν = 0) and near conservation when ν is small. The conservation of the method’s
kinetic energy when ν = 0 is clear from the stability proof in Section 3. The second
important integral invariant of the Euler equations in 3d is helicity, [MT92],[DG01],[CCE03]
and in 2d, enstrophy. Approximate conservation of these is explored in Section 5. Section
6 gives some insight into the predictions of (1.1) of flow statistics in turbulent flows. In
Section 7 we present the results of the computational tests. These confirm the rates of
convergence, predicted in Section 3.

2 Mathematical Preliminaries

Recall that (1.1) is naturally formulated in

X := H1
0 (Ω)d, Q := L2

0(Ω).

The dual space of X is denoted by X∗ (and its norm, by || · ||−1), and V = {v ∈ X :
(q,∇ · v) = 0, ∀ q ∈ Q} is the set of weakly divergence free functions in X. Norms in the
Sobolev spaces Hk(Ω)d (or W k

2 (Ω)d) are denoted by ‖ · ‖k, and seminorms by | · |k.
Later analysis will require upper bounds on the nonlinear term, given in the following

lemma.
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Lemma 2.1. Let Ω ⊂ R3or R2. For all u,v,w ∈ X

|b∗(u,v,w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖,
and

|b∗(u,v,w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

If, in addition, v,∇v ∈ L∞(Ω),

|b∗(u,v,w)| ≤ C(Ω)(‖v‖L∞(Ω) + ‖∇v‖L∞(Ω))‖u‖‖∇w‖
and

|b∗(u,v,w)| ≤ C(‖u‖‖∇v‖L∞(Ω) + ‖∇u‖‖v‖L∞(Ω))‖w‖.
Proof. See Girault and Raviart [GR86] for a proof of the first inequality. The second inequal-
ity follows from Hölder’s inequality, the Sobolev embedding theorem and an interpolation
inequality, e.g., [LT98]. The third bound follows from the definition of the skew-symmetric
form and Hölder’s inequality

|b∗(u,v,w)| ≤ 1
2
‖∇v‖L∞(Ω)‖u‖‖w‖+

1
2
‖v‖L∞(Ω)‖u‖‖∇w‖,

and Poincare’s inequality, since w ∈ X. The proof of the last inequality can be found, e.g.,
in [LT98].

Throughout the paper, we shall assume that the velocity-pressure finite element spaces
Xh ⊂ X and Qh ⊂ Q are conforming, have approximation properties typical of finite
element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖ ≥ βh > 0, (2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can be found
in [GR79], [GR86], [G89]. In addition, we assume that an inverse inequality holds, i.e.
there exists a constant C independent of h and k, such that

‖∇v‖ ≤ Ch−1‖v‖, ∀v ∈ Xh. (2.2)

We assume that (Xh, Qh) satisfy the following approximation properties typical of piece-
wise polynomials of degree (m,m− 1), [BS94]:

inf
v∈Xh

‖u− v‖ ≤ Chm+1|u|m+1, u ∈ Hm+1(Ω), (2.3)

inf
v∈Xh

‖∇(u− v)‖ ≤ Chm|u|m+1, u ∈ Hm+1(Ω), (2.4)

inf
q∈Qh

‖p− q‖ ≤ Chm|p|m, p ∈ Hm(Ω). (2.5)

We will also use the following inequality, which holds under (2.1) and for all u ∈ V:

inf
v∈Vh

‖∇(u− v)‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖. (2.6)

The proof of (2.6) can be found, e.g., in [GR79] (p.60, inequality (1.2)).
Throughout the paper we use the following Stokes Projection.
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Definition 2.1 (Stokes Projection). The Stokes projection operator PS: (X, Q) → (Xh, Qh),
PS(u, p) = (ũ, p̃), satisfies

ν(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0,

(∇ · (u− ũ), qh) = 0, (2.7)

for any vh ∈ Xh, qh ∈ Qh.

In (Vh, Qh) this formulation reads: given (u, p) ∈ (X, Q), find ũ ∈ Vh satisfying

ν(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (2.8)

for any vh ∈ Vh, qh ∈ Qh. Under the discrete inf-sup condition (2.1), the Stokes projection
is well defined.

Proposition 2.1 (Stability of the Stokes Projection). Let u, ũ satisfy (2.8). The following
bound holds

ν‖∇ũ‖2 ≤ 2[ν‖∇u‖2 + dν−1 inf
qh∈Qh

‖p− qh‖2], (2.9)

where d is the dimension, d = 2, 3.

Proof. Take vh = ũ ∈ Vh in (2.8). This gives

ν‖∇ũ‖2 = ν(∇u,∇ũ)− (p− qh,∇ · ũ). (2.10)

Using the Cauchy-Schwarz and Young inequalities, we obtain

ν‖∇ũ‖2 ≤ ν‖∇u‖2 +
ν

4
‖∇ũ‖2 (2.11)

+dν−1 inf
qh∈Qh

‖p− qh‖2 +
ν

4d
‖∇ · ũ‖2.

Next, use the obvious inequality ‖∇ · ũ‖2 ≤ d‖∇ũ‖2. Combining the like terms in (2.11)
concludes the proof.

In the error analysis we shall use the error estimate of the Stokes Projection (2.8).

Proposition 2.2 (Error estimate for the Stokes Projection). Suppose the discrete inf-sup
condition (2.1) holds. Then the error in the Stokes Projection satisfies

ν‖∇(u− ũ)‖2 ≤ C[ν inf
vh∈Xh

‖∇(u− vh)‖2 + ν−1 inf
qh∈Qh

‖p− qh‖2], (2.12)

where C is a constant independent of h and ν.

Proof. Decompose the projection error e = u− ũ into e = u− I(u)− (ũ− I(u)) = η − φ,
where η = u− I(u), φ = ũ− I(u), and I(u) approximates u in Vh. Take vh = φ ∈ Vh in
(2.8). This gives

ν‖∇φ‖2 = ν(∇η,∇φ)− (p− qh,∇ · φ). (2.13)

The Cauchy-Schwarz and Young inequalities lead to

ν‖∇φ‖2 ≤ 2ν‖∇η‖2 + Cν−1 inf
qh∈Qh

‖p− qh‖2. (2.14)

Since I(u) is an approximation of u in Vh, we can take infimum over Vh. The proof is
concluded by applying (2.6) and the triangle inequality.
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Remark 2.1. Using the Aubin-Nitsche lift, one can obtain (see, e.g., [BDK82])

‖u− ũ‖ ≤ Ch

(
inf

vh∈Xh
‖∇(u− vh)‖+ inf

qh∈Qh
‖p− qh‖

)
, (2.15)

where C = C(ν,Ω).

The following variation on the discrete Gronwall Lemma is given in [HR90] as a remark
to Lemma 5.1. In this estimate, the first sum on the right hand side is only up to the
next-to-last time step, which allows for an estimate with no smallness condition on k.

Lemma 2.2 (Discrete Gronwall). Let k,B, an, bn, cn, dn for integers n ≥ 0 be nonnegative
numbers such that for N ≥ 1, if

aN + k
N∑

n=0

bn ≤ k
N−1∑

n=0

dnan + k
N∑

n=0

cn + B,

then for all k > 0,

aN + k
N∑

n=0

bn ≤ exp(k
N−1∑

n=0

dn)

(
k

N∑

n=0

cn + B

)
.

The following results are readily obtained by Taylor series expansion.

Lemma 2.3. Let k = tn+1 − tn for all i and denote tn+1/2 = tn+1+tn
2 . Let ψ(·, t) be a

function such that ψt ∈ C0(0, T ; L2(Ω)). Then there exists θ ∈ (0, 1) such that

‖ψ(·, tn+1)− ψ(·, tn)
k

‖ ≤ C‖ψt(·, tn+θ)‖.

If ψtt ∈ C0(0, T ; L2(Ω)), then there exist θ1, θ2 ∈ (0, 1) such that

‖ψ(·, tn+1) + ψ(·, tn)
2

− ψ(·, tn+1/2)‖ ≤ Ck2‖ψtt(·, tn+θ1)‖

and
‖3
2
ψ(·, tn)− 1

2
ψ(·, tn−1)− ψ(·, tn+1/2)‖ ≤ Ck2‖ψtt(·, tn+θ2)‖.

If ψttt ∈ C0(0, T ;L2(Ω)), then there exists θ3 ∈ (0, 1) such that

‖ψ(·, tn+1)− ψ(·, tn)
k

− ψt(·, tn+1/2)‖ ≤ Ck2‖ψttt(·, tn+θ3)‖.

3 Stability and Convergence of the Stabilized Method

We start with the proof of unconditional stability, which is the mathematical key to the
good properties of the method, and motivates the more technical error analysis that follows.

The unconditional stability of Algorithm 1.1 is proven in the following proposition.
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Proposition 3.1. [Stability of extrapolated trapezoidal method] Let f ∈ L2(0, T ; H−1(Ω)).
The stabilized, extrapolated trapezoid scheme (1.5)-(1.6) (and the scheme (1.6)-(1.7)) is
unconditionally stable. For any h, k > 0 and α ≥ 0, n ≥ 0

||uh
n+1||2 + αkh||∇uh

n+1||2 + νk
n∑

i=0

||∇(
uh

i+1 + uh
i

2
)||2

≤ ||uh
0 ||2 + αkh||∇uh

0 ||2 + ν−1k
n∑

i=0

||f(ti+ 1
2
)||2−1.

Proof. Taking vh = uh
1+uh

0
2 ∈ Vh in (1.5) (and in (1.7)) gives

(
uh

1 − uh
0

k
,
uh

1 + uh
0

2
) + ν‖∇(

uh
1 + uh

0

2
)‖2 + αhk(∇uh

1 − uh
0

k
,∇uh

1 + uh
0

2
)

= (f(t 1
2
),

uh
1 + uh

0

2
). (3.1)

Apply the Cauchy-Schwarz and Young inequalities. This gives

‖uh
1‖2 − ‖uh

0‖2

2k
+ ν‖∇(

uh
1 + uh

0

2
)‖2 + αhk

‖∇uh
1‖2 − ‖∇uh

0‖2

2k

≤ 1
2
ν−1‖f(t 1

2
)‖2
−1 +

1
2
ν‖∇(

uh
1 + uh

0

2
)‖2. (3.2)

Thus, on the first time level we obtain the stability bound

‖uh
1‖2 + νk‖∇(

uh
1 + uh

0

2
)‖2 + αhk‖∇uh

1‖2 ≤ ‖uh
0‖2 + αhk‖∇uh

0‖2 + ν−1k‖f(t 1
2
)‖2
−1. (3.3)

Now consider (1.6) for n ≥ 1; let vh =
uh

n+1+uh
n

2 ∈ Vh. This gives

(
uh

n+1 − uh
n

k
,
uh

n+1 + uh
n

2
) + ν‖∇(

uh
n+1 + uh

n

2
)‖2 + αhk(∇(

uh
n+1 − uh

n

k
),∇(

uh
n+1 + uh

n

2
))

= (f(tn+ 1
2
),

uh
n+1 + uh

n

2
). (3.4)

Applying Cauchy-Schwarz and Young inequalities leads to

‖uh
n+1‖2 − ‖uh

n‖2

2k
+ ν‖∇(

uh
n+1 + uh

n

2
)‖2 + αhk

‖∇uh
n+1‖2 − ‖∇uh

n‖2

2k

≤ 1
2
ν−1‖f(tn+ 1

2
)‖2
−1 +

1
2
ν‖∇(

uh
n+1 + uh

n

2
)‖2. (3.5)

Simplifying (3.5) gives

(‖uh
n+1‖2 − ‖uh

n‖2) + νk‖∇(
uh

n+1 + uh
n

2
)‖2 + αhk(‖∇uh

n+1‖2 − ‖∇uh
n‖2)

≤ ν−1k‖f(tn+ 1
2
)‖2
−1. (3.6)

8



Summing (3.6) over the time levels gives

‖uh
n+1‖2 + k

n∑

i=1

ν‖∇(
uh

i+1 + uh
i

2
)‖2 + αhk‖∇uh

n+1‖2

≤ ‖uh
1‖2 + αhk‖∇uh

1‖2 + k
n∑

i=1

ν−1‖f(ti+ 1
2
)‖2
−1. (3.7)

Finally, using the bound on (‖uh
1‖2 + αhk‖∇uh

1‖2) from (3.3), we obtain that for all n ≥ 1

‖uh
n+1‖2 + k

n∑

i=0

ν‖∇(
uh

i+1 + uh
i

2
)‖2 + αhk‖∇uh

n+1‖2

≤ ‖uh
0‖2 + αhk‖∇uh

0‖2 + k
n∑

i=0

ν−1‖f(ti+ 1
2
)‖2
−1. (3.8)

This result, combined with Proposition 2.1, proves the Proposition.

Hence the method is unconditionally stable. The question remains: how fast does uh

converge to u? To evaluate the rates of convergence as h → 0, we must make a specific
choice of Xh, Qh.

Theorem 3.1 (Velocity Convergence Rates). Let the finite-element spaces (Xh, Qh) in-
clude continuous piecewise polynomials of degree m and m − 1 respectively (m ≥ 2), and
satisfy the discrete inf-sup condition (2.1) and approximation properties (2.3)-(2.5). Let
C‖u‖L∞(0,T ;Hm+1(Ω))khm− 3

2 ≤ 1/2, and

u ∈ L∞(0, T ; Hm+1(Ω)) ∩ L∞(0, T ; L∞(Ω)) ∩ C0(0, T ; H1(Ω)),

∇u ∈ L∞(0, T ; L∞(Ω)),

ut ∈ L2(0, T ;Hm+1(Ω)) ∩ L∞(0, T ; L2(Ω)),∇utt ∈ L2(0, T ; H1(Ω)),

ptt ∈ L2(0, T ; L2(Ω)).

Then there is a C = C(ν,u, p, T ) < ∞ such that ∀n ∈ {0, 1, ..., N − 1} the error in
Algorithm 1.1 satisfies

‖u(tn+1)− uh
n+1‖+

(
k

n∑

i=0

ν‖∇(
(u(ti+1)− uh

i+1) + (u(ti)− uh
i )

2
)‖2

) 1
2

+α
1
2 h

1
2 k

1
2 ‖∇(u(tn+1)− uh

n+1)‖ ≤ C(ν,u, p)
(
hm + αhk + k2

)
.

The rest of this section will be devoted to proving this theorem.

Proof. Consider the variational formulation corresponding to the Navier-Stokes equations
(1.1), for any time t, in Xh,

(ut,vh) + b∗(u,u,vh) + ν(∇u,∇vh)− (p,∇ · vh) = (f ,vh), ∀vh ∈ Xh. (3.9)
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Then subtract (1.6) from (3.9), taken at t = tn+ 1
2
, to get

(ut(tn+ 1
2
)− uh

n+1 − uh
n

k
,vh) + ν(∇u(tn+ 1

2
)−∇(

uh
n+1 + uh

n

2
),∇vh)

− αh(∇(uh
n+1 − uh

n),∇vh) + b∗(u(tn+ 1
2
),u(tn+ 1

2
),vh)

− b∗(E[uh
n,uh

n−1],
uh

n+1 + uh
n

2
,vh)− (p(tn+ 1

2
)− p(tn+1) + p(tn)

2
,∇ · vh) = 0.(3.10)

Let the velocity error be decomposed as

en := u(tn)− uh
n = (u(tn)−Un)− (uh

n −Un) =: ηn − φh
n, (3.11)

where Un is the Stokes Projection of un into Vh (therefore φh
n ∈ Vh, but ηn /∈ Vh). For

ξ = e, φh or η, define ξn+ 1
2

:= ξn+1+ξn

2 .

Add and subtract

(
u(tn+1)− u(tn)

k
,vh) + ν(∇(

u(tn+1)− u(tn)
2

),∇vh)

+αh(∇(u(tn+1)− u(tn)),∇vh)− (
p(tn+1) + p(tn)

2
,∇ · vh)

+b∗(u(tn+ 1
2
) + E[u(tn),u(tn−1)] + E[uh

n,uh
n−1],

u(tn+1) + u(tn)
2

,vh)

to (3.10) to obtain the error equation (recall also that (qh,∇ · vh) = 0, ∀qh ∈ Qh)

(
en+1 − en

k
,vh) + ν(∇en+1/2,∇vh) + αh(∇(en+1 − en),∇vh)

= (
p(tn+1) + p(tn)

2
− qh,∇ · vh)− b∗(E[uh

n,uh
n−1], en+1/2,v

h)

+b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,vh) + T (u, p;vh), (3.12)

where

T (u, p;vh) = (
u(tn+1)− u(tn)

k
− ut(tn+ 1

2
),vh) + ν(∇(

u(tn+1) + u(tn)
2

)−∇u(tn+ 1
2
),∇vh)

−αh(∇(u(tn+1)− u(tn)),∇vh)− (
p(tn+1) + p(tn)

2
− p(tn+ 1

2
),∇ · vh)

+b∗(u(tn+ 1
2
),

u(tn+1) + u(tn)
2

− u(tn+ 1
2
),vh)

−b∗(E[u(tn),u(tn−1)]− u(tn+ 1
2
),

u(tn+1) + u(tn)
2

,vh). (3.13)

Using the error decomposition (3.11) and setting vh = φh
n+1/2 in (3.12) gives

1
2k

(‖φh
n+1‖2 − ‖φh

n‖2) + ν‖∇φh
n+1/2‖2 +

αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

= (
ηn+1 − ηn

k
, φh

n+1/2) + ν(∇ηn+1/2,∇φh
n+1/2)

+αhk(∇(
ηn+1 − ηn

k
),∇φh

n+1/2)− (
p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1/2)

+b∗(E[uh
n,uh

n−1],ηn+1/2, φ
h
n+1/2) + b∗(E[ηn, ηn−1],

u(tn+1) + u(tn)
2

, φh
n+1/2)

+b∗(E[φh
n, φh

n−1],
u(tn+1) + u(tn)

2
, φh

n+1/2) + T (u, p; φh
n+1/2), (3.14)
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since b∗(E[uh
n,uh

n−1], φ
h
n+1/2,φ

h
n+1/2) = 0.

Also it follows from the choice of the projection Un that

ν(∇ηn+1/2,∇φh
n+1/2)− (

p(tn+1) + p(tn)
2

− qh,∇ · φh
n+1/2) = 0.

Applying the Cauchy-Schwarz and Young’s inequalities to the linear terms on the right
hand side of (3.14) gives

1
2k

(‖φh
n+1‖2 − ‖φh

n‖2) +
3ν

4
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2

+| b∗(E[uh
n,uh

n−1], ηn+1/2,φ
h
n+1/2) |

+| b∗(E[ηn,ηn−1],
u(tn+1) + u(tn)

2
, φh

n+1/2) |

+| b∗(E[φh
n, φh

n−1],
u(tn+1) + u(tn)

2
, φh

n+1/2) |+ |T (u, p; φh
n+1/2) |, (3.15)

For clarity, we analyze each of the remaining nonlinear terms on the RHS of (3.15) indi-
vidually. Here we use frequently Lemma 2.1 and the inverse estimate (2.2), together with
Young’s inequality.

We start with the first nonlinear term in (3.15). Adding and subtracting the quantity
b∗(E[u(tn),u(tn−1)], ηn+1/2,φ

h
n+1/2), and using Lemma 2.1, followed by Young’s inequality,

we get
∣∣∣b∗(E[uh

n,uh
n−1], ηn+1/2,φ

h
n+1/2)

∣∣∣
≤ ν

16
‖φh

n+1/2‖2 + Cν−1‖∇E[u(tn),u(tn−1)]‖2 ‖∇ηn+1/2‖2

+ Cν−1‖∇E[ηn, ηn−1]‖2 ‖∇ηn+1/2‖2

+ C‖E[φh
n, φh

n−1]‖1/2‖∇E[φh
n, φh

n−1]‖1/2‖∇ηn+1/2‖ ‖∇φh
n+1/2‖. (3.16)

The first two terms involving the operator E[·, ·] can be bounded by using its definition
(1.4) and regularity assumptions on u,

‖∇E[u(tn),u(tn−1)]‖ ≤ C and ‖∇E[ηn, ηn−1]‖ ≤
3
2
‖∇ηn‖+

1
2
‖∇ηn−1‖. (3.17)

For the third and fourth terms, we also need the inverse estimate (2.2), resulting in

‖E[φh
n, φh

n−1]‖ ‖∇E[φh
n, φh

n−1]‖ ≤ C(‖φh
n‖+ ‖φh

n−1‖) (‖∇φh
n‖+ ‖∇φh

n−1‖),
≤ Ch−1(‖φh

n‖+ ‖φh
n−1‖)2,

so that

‖E[φh
n, φh

n−1]‖1/2 ‖∇E[φh
n,φh

n−1]‖1/2‖∇ηn+1/2‖ ‖∇φn+1/2‖
≤ Ch−3/2‖∇ηn+1/2‖ (‖φh

n‖+ ‖φh
n−1‖) (‖φh

n‖+ ‖φh
n+1‖), (3.18)
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Putting (3.17) and (3.18) back into (3.16), we have
∣∣∣b∗(E[uh

n,uh
n−1], ηn+1/2, φ

h
n+1/2)

∣∣∣
≤ ν

16
‖φh

n+1/2‖2 + Cν−1 ‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) ‖∇ηn+1/2‖2

+Ch−3/2‖∇ηn+1/2‖ (‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2). (3.19)

For the second trilinear term, use Lemma 2.1 and the assumption that ‖∇u(t)‖ is
bounded for any t ∈ [0, T ]. Then we apply Young’s inequality and (3.17), resulting in

∣∣∣∣b∗(E[ηn, ηn−1],
u(tn+1) + u(tn)

2
,φh

n+1/2)
∣∣∣∣ ≤ C‖∇E[ηn, ηn−1]‖‖∇φh

n+1/2‖

≤ Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)

+
ν

16
‖∇φh

n+1/2‖2. (3.20)

The third trilinear term is bounded with the help of the third inequality in Lemma 2.1
and the regularity assumptions on u. As a result,

∣∣∣∣b∗(E[φh
n, φh

n−1],
u(tn+1) + u(tn)

2
, φh

n+1/2)
∣∣∣∣ ≤ C‖E[φh

n,φh
n−1]‖‖∇φh

n+1/2‖

≤ Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+
ν

16
‖∇φh

n+1/2‖2, (3.21)

where the last step follows from Young’s inequality.
Now, with (3.19), (3.20) and (3.21), the error equation (3.15) can be rewritten as

1
2k

(‖φh
n+1‖2 − ‖φh

n‖2) +
9ν

16
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2 + Cν−1‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) + Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+Ch−3/2‖∇ηn+1/2‖(‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2) + |T (u, p; φh

n+1/2) |, (3.22)

and what is left is to bound |T (u, p; φh
n+1/2) |. Each of its four linear terms can be bounded

by the Cauchy-Schwarz and Young’s inequalities, together with the estimates in Lemma
2.3. We take care of one at a time below.

|(u(tn+1)− u(tn)
k

− ut(tn+1/2),φ
h
n+1/2)| ≤

ν

80
‖∇φh

n+1/2‖2 + Cν−1k4‖uttt(tn+θ1)‖2, (3.23)

ν|(∇(
u(tn+1) + u(tn)

2
− u(tn+ 1

2
)),∇φh

n+1/2)| ≤ ν

80
‖∇φh

n+1/2‖2

+Cνk4‖∇utt(tn+θ2)‖2, (3.24)
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αhk|(∇(
u(tn+1)− u(tn)

k
),∇φh

n+1/2)| ≤
ν

80
‖∇φh

n+1/2‖2 + Cν−1α2h2k2‖∇ut(tn+θ3)‖2,(3.25)

|(p(tn+1) + p(tn)
2

− p(tn+1/2),∇ · φh
n+1/2)| ≤

ν

80
‖∇φh

n+1/2‖2 + Cν−1k4‖ptt(tn+θ4)‖2,(3.26)

for some θ1, θ2, θ3, θ4 ∈ (0, 1).
For the two nonlinear terms in |T (u, p; φh

n+1/2) |, use Lemma 2.1, Lemma 2.3 and
Young’s inequality, together with ‖∇u(t)‖ ≤ C, for any t ∈ [0, T ]. This gives
∣∣∣∣b∗(E[u(tn),u(tn−1)]− u(tn+1/2),

u(tn+1) + u(tn)
2

, φh
n+1/2)

∣∣∣∣

+
∣∣∣∣b∗(u(tn+1/2),

u(tn+1) + u(tn)
2

− u(tn+1/2), φ
h
n+1/2)

∣∣∣∣

≤ C(Ω)‖∇(
3
2
u(tn)− 1

2
u(tn−1)− u(tn+1/2))‖‖∇(

u(tn+1) + u(tn)
2

)‖‖∇φh
n+1/2‖

+C(Ω)‖∇(
u(tn+1) + u(tn)

2
− u(tn+1/2))‖‖∇u(tn+1/2)‖‖∇φh

n+1/2‖

≤ Cν−1k4‖∇utt(tn+θ5)‖2 +
ν

80
‖∇φh

n+1/2‖2, (3.27)

for some θ5 ∈ (0, 1).
Combining (3.23)-(3.27), we have

|T (u, p; φh
n+1/2) | ≤ ν

16
‖∇φh

n+1/2‖2 + Cν−1k4(‖uttt(tn+θ1)‖2 + ‖ptt(tn+θ4)‖2)

+Cνk4‖∇utt(tn+θ5)‖2 + Cν−1α2h2k2‖∇ut(tn+θ3)‖2, (3.28)

so that error equation (3.22) gives

1
2k

(‖φh
n+1‖2 − ‖φh

n‖2) +
ν

2
‖∇φh

n+1/2‖2 +
αh

2
(‖∇φh

n+1‖2 − ‖∇φh
n‖2)

≤ Cν−1‖ηn+1 − ηn

k
‖2 + Cν−1αhk‖∇(

ηn+1 − ηn

k
)‖2 + Cν−1‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2

+Cν−1(‖∇ηn‖2 + ‖∇ηn−1‖2) + Cν−1(‖φh
n‖2 + ‖φh

n−1‖2)

+Ch−3/2‖∇ηn+1/2‖(‖φh
n−1‖2 + ‖φh

n‖2 + ‖φh
n+1‖2)

+Cν−1k4(‖uttt(tn+θ1)‖2 + ‖ptt(tn+θ4)‖2)
+Cνk4‖∇utt(tn+θ5)‖2 + Cν−1α2h2k2‖∇ut(tn+θ3)‖2. (3.29)

Multiply both sides of (3.29) by 2k and use (2.12),(2.15) together with the approximation
properties (2.3)-(2.5) of the spaces (Xh, Qh). Then sum over the time levels from 1 to n,
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choosing U0 = uh
0 , which gives φh

0 = 0, and

‖φh
n+1‖2 + k

n∑

i=1

ν‖∇φh
i+1/2‖2 + αhk‖∇φh

n+1‖2

≤ ‖φh
1‖2 + αhk‖∇φh

1‖2 + Cν−1h2m+2‖ut‖2
L2(0,T ;Hm+1(Ω))

+Cν−1αh2m+1k‖ut‖2
L2(0,T ;Hm+1(Ω)) + Cν−1h2m‖u‖2

L2(0,T ;Hm+1(Ω))

+Cν−1h4m‖u‖2
L2(0,T ;Hm+1(Ω))

+Cν−1h2m‖u‖2
L2(0,T ;Hm+1(Ω)) + Cν−1k4(‖uttt‖2

L2(0,T ;L2(Ω)) + ‖ptt‖2
L2(0,T ;L2(Ω)))

+Cνk4‖∇utt‖2
L2(0,T ;L2(Ω)) + Cν−1α2h2k2‖∇ut‖2

L2(0,T ;L2(Ω))

+Cν−1k
n∑

i=1

(‖φh
i−1‖2 + ‖φh

i ‖2)

+Chm−3/2k

n∑

i=1

|u(ti+1/2) |m+1(‖φh
i−1‖2 + ‖φh

i ‖2 + ‖φh
i+1‖2). (3.30)

Since u ∈ L∞(0, T ; Hm+1(Ω)), the last two sums in (3.30) can be combined as

C‖u‖L∞(0,T ;Hm+1(Ω))h
m−3/2k‖φh

n+1‖2 + C(hm−3/2 + ν−1)k
n∑

i=1

‖φh
i ‖2.

Using the regularity of u and p, and the assumption that C‖u‖L∞(0,T ;Hm+1(Ω))h
m−3/2k ≤

1/2, the error equation finally takes the form

1
2
‖φh

n+1‖2 + k

n∑

i=1

ν‖∇φh
i+1/2‖2 + αhk‖∇φh

n+1‖2

≤ ‖φh
1‖2 + αhk‖∇φh

1‖2 + Cν−1(2 + h2 + αhk + h2m)h2m

+Cν−1α2h2k2 + C(ν−1 + ν)k4

+Ck

n∑

i=1

(ν−1 + hm−3/2)‖φh
i ‖2. (3.31)

To complete the proof bounds are needed for φh
1 in the above estimates. These bounds

depend upon the way the first time step is taken, and there are two possibilities (1.5) and
(1.7); we shall analyze both. Both lead to an optimal velocity error estimate. The more
expensive method (1.7) also leads to an optimal pressure error estimate (in Theorem 4.3
below). The error equation for φh

1 is the same as for φh
n except for the nonlinear terms, and

is treated in the same way, except for the nonlinear term. Therefore, we go directly to the
treatment of the nonlinear term in both cases (1.5) and (1.7).

We start with formulation (1.5). Adding and subtracting b∗(uh
0 − u(t0),

u(t0)+u(t1)
2 ,vh)

to the nonlinear terms in (3.10), we have

b∗(u(t1/2),u(t1/2),v
h)− b∗(uh

0 ,
uh

0 + uh
1

2
,vh) = b∗(u(t1/2),u(t1/2),v

h)

+ b∗(uh
0 , e1/2,v

h)− b∗(e0,
u(t0) + u(t1)

2
,vh)

+ b∗(u(t0),
u(t0) + u(t1)

2
,vh). (3.32)
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Taking vh = φh
1/2, the second and third terms in (3.37) can be treated exactly as in (3.16),

(3.20) and (3.21). The first and last are bounded as follows. Using Lemma 2.3 and the fact
that there exists tθ ∈ (0, k) such that u(t1/2)− u(t0) = kut(tθ), we obtain

|b∗(u(t0),
u(t1) + u(t0)

2
, φh

1/2)− b∗(u(t1/2),u(t1/2), φ
h
1/2)|

= |b∗(u(t0),u(t1/2) + Ck2utt(tθ), φh
1/2)− b∗(u(t1/2),u(t1/2), φ

h
1/2)|

≤ |b∗(u(t0)− u(t1/2),u(t1/2),φ
h
1/2)|+ Ck2|b∗(u(t0),utt(tθ), φh

1/2)|
≤ k|b∗(ut(tθ),u(t1/2), φ

h
1/2)|+ Ck2|b∗(u(t0),utt(tθ), φh

1/2)|
≤ k|b∗(ut(tθ),u(t1/2), φ

h
1/2)|+ εν‖∇φh

1/2‖2 + Cν−1k4. (3.33)

In order to bound the first term in (3.33), we use integration by parts and Hölder’s inequality
to obtain

b∗(ut(tθ),u(t1/2), φ
h
1/2) = (ut(tθ) · ∇u(t1/2), φ

h
1/2) +

1
2
(∇ · ut(tθ),u(t1/2) · φh

1/2). (3.34)

Thus,

k|b∗(ut(tθ),u(t1/2), φ
h
1/2)| ≤ Ck(‖ut(tθ)‖‖∇u(t1/2)‖L∞(Ω)

+‖∇ut(tθ)‖‖u(t1/2)‖L∞(Ω))‖φh
1/2‖

≤ Ck3 +
1
4k
‖φh

1/2‖2. (3.35)

Now use the bounds (3.33) and (3.35) in the error analysis at the first time level (note that
φh

1/2 = 1
2φh

1 , since φh
0 = 0) to get

‖φh
1‖2 + νk‖∇φh

1‖2 + αhk‖∇φh
1‖2 ≤ C[ν−1kh2m + ν−1kh2m + ν−1kh2m+2

+ν−1α2h2k3 + ν−1αh2m+1k2 + ν−1kh4m

+ν−1k5 + νk5 + k4]. (3.36)

If formulation (1.7) is used, then, instead of (3.37), we obtain, by adding and subtracting
b∗(uh

1+uh
0

2 − u(t1)+u(t0)
2 + u(t1/2),

u(t0)+u(t1)
2 ,vh) to the nonlinear terms in first time level

analog of (3.10), the following

b∗(u(t1/2),u(t1/2),v
h)− b∗(

uh
0 + uh

1

2
,
uh

0 + uh
1

2
,vh)

= b∗(u(t1/2),u(t1/2)−
u(t1) + u(t0)

2
,vh)

+b∗(
uh

0 + uh
1

2
, e1/2,v

h)− b∗(e0,
u(t0) + u(t1)

2
,vh)

+b∗(
u(t0) + u(t1)

2
− u(t1/2),

u(t0) + u(t1)
2

,vh) (3.37)

Taking vh = φh
1/2, the second and third terms in (3.37) can be treated exactly as in (3.16),

(3.20) and (3.21). The first and last are similar, since, after application of Lemma 2.1 and
regularity assumptions on u, both can be bounded as

C‖∇(u(t1/2 −
u(t0) + u(t1)

2
)‖‖∇φh

1/2‖ ≤ εν‖∇φh
1/2‖2 + Cν−1k4,
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with the help of Lemma 2.3 and Young’s inequality. This leads to the upper bound

‖φh
1‖2 + νk‖∇φh

1‖2 + αhk‖∇φh
1‖2 ≤ C[ν−1kh2m + ν−1kh2m + ν−1kh2m+2 + ν−1α2h2k3

+ν−1αh2m+1k2 + ν−1kh4m + ν−1k5 + νk5]. (3.38)

This bound is sharper than (3.36), but it will not contribute to a higher order estimate. We
thus insert the bound for ‖φh

1‖2 + αhk‖∇φh
1‖2, obtained in (3.36), into (3.31), which gives

‖φh
n+1‖2 + 2k

n∑

i=0

ν‖∇(
φh

i+1 + φh
i

2
)‖2 + 2αhk‖∇φh

n+1‖2

≤ C(ν + ν−1)
(
h2m + α2h2k2 + k4

)
+ Cν−1(k

n∑

i=0

‖φh
i ‖2). (3.39)

Hence, it follows from the discrete Gronwall Lemma, that there exists C = C(ν,Ω, T,u, p)
such that for any n ≥ 0

‖φh
n+1‖2 + k

n∑

i=0

ν‖∇(
φh

i+1 + φh
i

2
)‖2 + αhk‖∇φh

n+1‖2

≤ C
(
h2m + α2h2k2 + k4

)
. (3.40)

Finally, the statement of the theorem follows from the triangle inequality.

4 Error estimates for time derivatives and pressure

In order to prove pressure stability and convergence, we need to derive a bound on the time
difference of the velocity error ‖en+1−en

k ‖.
Theorem 4.1. Let the finite-element spaces (Xh, Qh) include continuous piecewise polyno-
mials of degree m and m− 1 respectively (m ≥ 2) and satisfy the discrete inf-sup condition.
Let the assumptions of Theorem 3.1 be satisfied and

∇utt ∈ L2(0, T ; L∞(Ω)), ∆utt ∈ L2(0, T ;L2(Ω)),

uttt ∈ L∞(0, T ;L2(Ω)),

∇ptt ∈ L2(0, T ;L2(Ω)).

Then, if the finite element approximation uh
n is defined by (1.5)-(1.6), there exists a constant

C = C(ν,u, p, T ) < ∞ such that

νk2‖∇(
en − en−1

k
)‖2 + ν‖∇(

en + en−1

2
)‖2

+ k
n−1∑

i=0

‖ei+1 − ei

k
‖2 + αhk · k

n−1∑

i=0

‖∇(
ei+1 − ei

k
)‖2

≤ C(h2m + α2h2k2 + h−3k8 + k3). (4.1)
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If the finite element approximation uh
n is defined via (1.7)-(1.6), then there exists a C =

C(ν,u, p, T ) < ∞ such that

νk2‖∇(
en − en−1

k
)‖2 + ν‖∇(

en + en−1

2
)‖2

+ k
n−1∑

i=0

‖ei+1 − ei

k
‖2 + αhk · k

n−1∑

i=0

‖∇(
ei+1 − ei

k
)‖2

≤ C(h2m + α2h2k2 + h−3k8 + k4). (4.2)

Proof. Consider the error decomposition (3.11). Take vh = φh
n+1−φh

n

k ∈ Vh in (3.12),(3.13)
to obtain

‖φh
n+1 − φh

n

k
‖2 + ν

‖∇φh
n+1‖2 − ‖∇φh

n‖2

2k
+ αhk‖∇(

φh
n+1 − φh

n

k
)‖2

= (
ηn+1 − ηn

k
,
φh

n+1 − φh
n

k
) + ν(∇(

ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))

−(
p(tn+1) + p(tn)

2
− qh,∇ · φh

n+1 − φh
n

k
)

+b∗(E[u(tn),u(tn−1)], en+1/2,
φh

n+1 − φh
n

k
)

−b∗(E[ηn, ηn−1], en+1/2,
φh

n+1 − φh
n

k
)

+b∗(E[φn,φn−1], en+1/2,
φh

n+1 − φh
n

k
)

+b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)

+T (u, p;
φh

n+1 − φh
n

k
), (4.3)

where, using Taylor expansion,

T (u, p;
φh

n+1 − φh
n

k
) = (

u(tn+1)− u(tn)
k

− ut(tn+1/2),
φh

n+1 − φh
n

k
)

+αhk(∇(
ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))

+Ck2ν(∇utt(tn+θ),∇(
φh

n+1 − φh
n

k
)) + Ck2(uttt(tn+θ),

φh
n+1 − φh

n

k
)

+Ck2b∗(utt(tn+θ),
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)

+Ck2b∗(u(tn+1/2),utt(tn+θ),
φh

n+1 − φh
n

k
)

+αhk(∇(
uh

n+1 − uh
n

k
),∇(

φh
n+1 − φh

n

k
))

+Ck2(ptt(tn+θ),∇ · (φ
h
n+1 − φh

n

k
)), (4.4)

for some θ ∈ (0, 1) and ∀qh ∈ Qh.
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Also it follows from the definition of Stokes Projection that

ν(∇(
ηn+1 − ηn

k
),∇(

φh
n+1 − φh

n

k
))− (

p(tn+1) + p(tn)
2

− qh,∇ · φh
n+1 − φh

n

k
) = 0. (4.5)

We bound the four nonlinear terms on the right-hand side of (4.3), using Lemma 2.1
and Cauchy-Schwarz and Young’s inequalities. For the first term integrating by parts and
applying Hölder’s inequality gives

|b∗(E[u(tn),u(tn−1)], en+1/2,
φh

n+1 − φh
n

k
)|

= |(E[u(tn),u(tn−1)] · ∇en+1/2,
φh

n+1 − φh
n

k
)

+
1
2
(∇ · E[u(tn),u(tn−1)], en+1/2 ·

φh
n+1 − φh

n

k
)|

= |(E[u(tn),u(tn−1)] · ∇en+1/2,
φh

n+1 − φh
n

k
)|

≤ C‖∇en+1/2‖‖
φh

n+1 − φh
n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2 + C‖∇(

en+1 + en

2
)‖2. (4.6)

Using the first bound from Lemma 2.1 and the inverse inequality (2.2), we obtain the bounds
on the second and third nonlinear terms

|b∗(E[ηn, ηn−1], en+1/2,
φh

n+1 − φh
n

k
)| ≤ Ch−1‖∇E[ηn,ηn−1]‖‖∇en+1/2‖‖

φh
n+1 − φh

n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2

+ Ch−2‖∇(
3
2
ηn −

1
2
ηn−1)‖2‖∇(

en+1 + en

2
)‖2,(4.7)

and, using also the intermediate result (3.40) of Theorem 3.1,

|b∗(E[φn,φn−1], en+1/2,
φh

n+1 − φh
n

k
)|

≤ Ch−3/2‖E[φn, φn−1]‖‖∇(
en+1 + en

2
)‖‖φh

n+1 − φh
n

k
‖

≤ ε‖φh
n+1 − φh

n

k
‖2 + Ch−3(h2m + α2h2k2 + k4)‖∇(

en+1 + en

2
)‖2. (4.8)

Finally, consider the fourth nonlinear term. Use the obvious identity 3
2en − 1

2en−1 =
en+en−1

2 +(en− en−1) and the regularity of u. It follows from the last inequality of Lemma
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2.1 that

|b∗(E[en, en−1],
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

≤ |b∗(en + en−1

2
,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

+|b∗(ηn − ηn−1,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

+|b∗(kφh
n − φh

n−1

k
,
u(tn+1) + u(tn)

2
,
φh

n+1 − φh
n

k
)|

≤ ε‖φh
n+1 − φh

n

k
‖2 + C‖∇(

en+1 + en

2
)‖2

+C(h2m + α2h2k2 + k4) + Ck2‖∇(
φh

n − φh
n−1

k
)‖2. (4.9)

Insert these bounds in (4.3). The bound on |T (u, p; φh
n+1−φh

n

k )| is obtained as in the proof
of Theorem 3.1. Choosing ε = 1

24 gives

1
2
‖φh

n+1 − φh
n

k
‖2 + ν

‖∇φh
n+1‖2 − ‖∇φh

n‖2

2k
+

αhk

2
‖∇(

φh
n+1 − φh

n

k
)‖2

≤ C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

φh
n − φh

n−1

k
)‖2 + C(h2m + α2h2k2 + k4)

+Ch−3(h2m + α2h2k2 + k4)‖∇(
en+1 + en

2
)‖2. (4.10)

At the first time level, take vh = φh
1−φh

0
k ; taking U0 = uh

0 in the initial error decomposition
gives φh

0 = 0. For the constant extrapolation (1.5) we obtain

1
2
‖φh

1 − φh
0

k
‖2 + ν

‖∇φh
1‖2 − ‖∇φh

0‖2

2k
+

αhk

2
‖∇(

φh
1 − φh

0

k
)‖2

≤ C(h2m + α2h2k2 + k4) + kb∗(ut(tθ),u1/2,
φh

1 − φh
0

k
). (4.11)

If we use (1.7) instead of (1.5) at the first time level, we have

1
2
‖φh

1 − φh
0

k
‖2 + ν

‖∇φh
1‖2 − ‖∇φh

0‖2

2k
+

αhk

2
‖∇(

φh
1 − φh

0

k
)‖2

≤ C(h2m + α2h2k2 + k4) + k2b∗(ut(tθ),u1/2,
φh

1 − φh
0

k
). (4.12)

Sum (4.10) over the time levels n ≥ 1 and add to (4.11) (or to (4.12) in the case of linear
extrapolation). Multiply by 2k to obtain

k
n∑

i=0

‖φh
i+1 − φh

i

k
‖2 + ν‖∇φh

n+1‖2 + αhk · k
n∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2

≤ Ck2 · k
n−1∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2 + C(h2m + α2h2k2 + k4 + h−3k8)

+k2+σb∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
), (4.13)
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where σ = 0 for the constant extrapolation (1.5) and σ = 1 for the linear extrapolation
(1.7).

For any n ≥ 1, add the inequalities (4.13) at the time levels n+1 and n. Use the identity

‖∇φh
n+1‖2 + ‖∇φh

n‖2 =
1
2
k2‖∇(

φh
n+1 − φh

n

k
)‖2 + 2‖∇(

φh
n+1 + φh

n

2
)‖2. (4.14)

At any time level n ≥ 1 we obtain

1
2
νk2‖∇(

φh
n+1 − φh

n

k
)‖2 + 2ν‖∇(

φh
n+1 + φh

n

2
)‖2

+k
n∑

i=0

‖φh
i+1 − φh

i

k
‖2 + αhk · k

n∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2

≤ Cν−1 · k
n−1∑

i=0

1
2
νk2‖∇(

φh
i+1 − φh

i

k
)‖2

+C(h2m + α2h2k2 + k4 + h−3k8)

+k2+σb∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
). (4.15)

Next, decompose the last term in the right-hand side of (4.15), using Lemma 2.1 and Young’s
inequality. This yields

k2+σ|b∗(ut(tθ),u(t1/2),
φh

1 − φh
0

k
)| ≤ 1

2
k‖φh

1 − φh
0

k
‖2 + Ck3+2σ. (4.16)

Hence it follows from the discrete Gronwall Lemma that

νk2‖∇(
φh

n+1 − φh
n

k
)‖2 + ν‖∇(

φh
n+1 + φh

n

2
)‖2 + k

n∑

i=0

‖φh
i+1 − φh

i

k
‖2

+αhk · k
n∑

i=0

‖∇(
φh

i+1 − φh
i

k
)‖2 ≤ C(h2m + α2h2k2 + k4 + k3+2σ + h−3k8). (4.17)

The proof of the theorem is now concluded by the triangle inequality.

For the stability of pressure we will need the following á priori bounds

Lemma 4.1. Let the assumptions of Theorem 4.1 hold. Then there exists a constant C =
C(ν,u, p, T ) such that for any n

k
n∑

i=0

‖u
h
i+1 − uh

i

k
‖ ≤ k

n∑

i=0

‖ei+1 − ei

k
‖+ k

n∑

i=0

‖u(ti+1)− u(ti)
k

‖ ≤ C,

k2‖∇(
uh

n+1 − uh
n

k
)‖2 ≤ k2‖∇(

en+1 − en

k
)‖2 + k2‖∇(

u(tn+1)− u(tn)
k

)‖2 ≤ C.

Proof. Use the decomposition uh
i = u(ti)− ei. The triangle inequality completes the proof.
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Theorem 4.2 (Pressure Stability). Let (uh
n, ph

n) satisfy (1.5)-(1.6) (or (1.7)-(1.6)). Let
f ∈ L2(0, T ;H−1(Ω)) and let the assumptions of Theorem 4.1 be satisfied. Then,

k
n−1∑

i=0

‖ph
i+1 + ph

i

2
‖ ≤ C(uh

0 , f , βh),

where βh is the constant from the discrete LBBh condition (2.1).

Proof. Consider (1.6). Using the Cauchy-Schwarz inequality, the first bound from Lemma

2.1, the discrete LBBh condition (2.1) and the identity 3
2u

h
n+1− 1

2u
h
n =

uh
n+1+uh

n

2 +k
uh

n+1−uh
n

k ,
we obtain

βh‖ph
n+1 + ph

n

2
‖ ≤ ‖u

h
n+1 − uh

n

k
‖−1 + ν‖∇(

uh
n+1 + uh

n

2
)‖

+αhk‖∇(
uh

n+1 − uh
n

k
)‖+ C‖∇(

uh
n+1 + uh

n

2
)‖2

+Ck2‖∇(
uh

n+1 − uh
n

k
)‖2 + ‖f(tn+1/2)‖−1.

Sum over all time levels; the bounds of Lemma 4.1 complete the proof.

We conclude this section by deriving the pressure error estimate.

Theorem 4.3 (Pressure Convergence). Let (uh
n, ph

n) satisfy (1.6) for n ≥ 2. Let (uh
1 , ph

1)
satisfy the constant extrapolation (1.5) or the linear extrapolation (1.7). Then, under the
assumptions of Theorem 4.1,

k

n−1∑

i=0

‖p(ti+1/2)− ph
i+1/2‖ ≤ C(ν,u, p, T )(hm + αhk + h−3/2k4 + k3/2+σ/2), (4.18)

where σ = 0 for the constant extrapolation and σ = 1 for the linear extrapolation.

Proof. Consider (3.10), which holds true for any vh ∈ Xh. Decompose the pressure approx-
imation error into

p(tn+1)− ph
n+1 = (p(tn+1)− I(p))− (ph

n+1 − I(p)) = η̃n+1 − φ̃h
n+1, (4.19)

where φ̃h
n+1 ∈ Qh, I(p) is a projection of p(tn+1) into Qh.

Use the error decomposition (4.19) in (3.10) and apply the discrete LBBh condition to
obtain for any n ≥ 1

βh‖ φ̃h
n+1 + φ̃h

n

2
‖ ≤ ‖en+1 − en

k
‖−1 + C‖∇(

en+1 + en

2
)‖

+C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

en − en−1

k
)‖2 + Ck‖∇(

en − en−1

k
)‖

+ν‖∇(
en+1 + en

2
)‖+ αhk‖∇(

en+1 − en

k
)‖

+‖ η̃n+1 + η̃n

2
‖+ Cνk2 + Ck2 + Cαhk. (4.20)
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Hence from the triangle inequality we get

βh‖(p(tn+1)− ph
n+1) + (p(tn)− ph

n)
2

‖ ≤ ‖en+1 − en

k
‖−1 + C‖∇(

en+1 + en

2
)‖

+C‖∇(
en+1 + en

2
)‖2 + Ck2‖∇(

en − en−1

k
)‖2

+Ck‖∇(
en − en−1

k
)‖+ ν‖∇(

en+1 + en

2
)‖

+αhk‖∇(
en+1 − en

k
)‖+ Cνk2 + Ck2 + Cαhk

+ inf
qh∈Qh

‖p(tn+1) + (p(tn)
2

− qh‖. (4.21)

On the first time level consider the constant extrapolation (1.5). Using the discrete
LBBh condition and (3.36), we obtain the following bound (which can be improved in the
case of linear extrapolation):

βhk‖(p(t1)− ph
1) + (p(t0)− ph

0)
2

‖ ≤ C(k2 + hm + αhk). (4.22)

Add the inequalities (4.21) for all n ≥ 1, multiply by k and add to (4.22). The proof is
concluded by applying the result of Theorem 4.1

5 Physical Fidelity: Conservation of Integral Invariants

We begin by proving that CNLEStab exactly conserves a modified kinetic energy.

Proposition 5.1. Let the boundary conditions be periodic; assume also f = ν = 0 . Define

Kinetic energy in (1.6)= KE(tn) :=
1

2L3
[||uh

n||2 + αkh||∇uh
n||2]

The method exactly conserves kinetic energy. Specifically, for all tn > 0

KE(tn) = KE(0).

Proof. Set vh =
uh

n+1+uh
n

2 and ν = f = 0 in (1.5)-(1.6).

Exact conservation of helicity likely does not hold for CNLEStab. We thus consider
approximate helicity conservation experimentally by considering and inviscid (ν = 0) fluid
with no forcing term (f = 0). A comparison of the CNLE and CNLEStab under these
conditions, in Figure 1, shows that, for a fixed mesh size, CNLEStab nearly conserves
helicity, while CNLE does not. Both conserve kinetic energies during these experiments.
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Figure 1: Conservation of helicity, CNLE (α = 0) versus CNLEStab (α = 1)

A comparison of the CNLEStab performance for different mesh sizes is shown in Figure
2, confirming that as the mesh is refined, conservation of helicity improves.

Figure 2: Conservation of helicity for different mesh sizes in CNLESTAB (with α = 1): as
h gets smaller, helicity is conserved longer.
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6 Physical Fidelity: Predictions of the Turbulent Energy
Cascade

We consider the energy cascade predicted by (1.1) in the case of homogeneous, isotropic
turbulence. Motivated by the consistency error argument, we consider the modified equa-
tion of the method (1.1). Since αh(∇u(tn+1),∇v)− αh(∇u(tn),∇v) = −αhk(∆ut,v), we
postulate a fluid with equations of motion given by: w : Ω× [0, T ] → Rd, q : Ω×(0, T ] → R
satisfying:

[w − αhk4w]t + w · ∇w − ν∆w +∇q = f , for x ∈ Ω, 0 < t ≤ T

∇ ·w = 0, x ∈ Ω, for 0 < t ≤ T,

periodic boundary conditions on ∂Ω, for 0 < t ≤ T , (6.1)
w(x, 0) = u0(x), for x ∈ Ω,

and the usual normalization condition in the periodic case that
∫
Ω φ(x, t) dx = 0 on φ =

w, q, f ,u0 for 0 < t ≤ T . Thus we explore more subtle effects of the stabilization in
Algorithm 1.1 through its modified equation (6.1).

We multiply (6.1) by w and integrate over the domain and time to obtain its precise
energy balance given by

1
2
{||w(t)||2 + αhk||∇w(t)||2}+

∫ T

0
ν||∇w(t)||2 =

1
2
{||w(0)||2 + αhk||∇w(0)||2}+ (f(t),w(t)).

We can clearly identify three physical quantities of kinetic energy, energy dissipation
rate and power input. Let L denote the global length scale, e.g., L = vol(Ω)1/3; then these
are given by

Modified equations kinetic energy: Emodel(w)(t) :=
1

2L3
{||w(t)||2 + αhk||∇w(t)||2}, (6.2)

Modified equations dissipation rate: εmodel(w)(t) :=
ν

L3
||∇w(t)||2, (6.3)

Modified equations power input: Pmodel(w)(t) :=
1
L3

(f(t),w(t)). (6.4)

The kinetic energy has an extra term which reflects extraction of energy from resolved
scales. The energy dissipation rate in the model (6.3) is the same as for NSE equations.

Equation (6.1) shares the common features of the Navier-Stokes equations which make
existence of an energy cascade likely, e.g. [F95], [P00]. First, (6.1) has the same nonlinearity
as the Navier-Stokes equations, which pumps energy from larger to smaller scales. Next,
the solution of (6.1) satisfies an energy equality in which its kinetic energy and energy
dissipation are readily discernible, and for ν = 0 the kinetic energy is conserved through a
large range of scales/wave-numbers. Since both conditions are satisfied we are to proceed
to develop a quantitative theory of energy cascade of (6.1).

6.1 Kraichnan’s Dynamic Analysis Applied to CNLEStab

The energy cascade will now be investigated more closely using the dynamical argument
of Kraichnan, [K71]. Let Πmodel(κ) be defined as the total rate of energy transfer from all
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wave numbers < κ to all wave numbers > κ (not to confuse the wave number κ with the
time step k). Following Kraichnan [K71] we assume that Πmodel(κ) is proportional to the
total energy (κEmodel(κ) ) in wave numbers of the order κ and to some effective rate of
shear σ(κ) which acts to distort flow structures of scale 1/κ. That is:

Πmodel(κ) ' σ(κ) κEmodel(κ) (6.5)

Furthermore, we expect

σ(κ)2 '
∫ κ

0
p2Emodel(p)dp (6.6)

The major contribution to (6.6) is from p ' κ, in accord with Kolmogorov’s localness
assumption, [Kol41]. This is because all wave numbers ≤ κ should contribute to the effective
mean-square shear acting on wave numbers of order κ, while the effects of all wave numbers
À κ can plausibly be expected to average out over the scales of order 1/κ and over times
the order of the characteristic distortion time σ(κ)−1.

Let E(κ) := lim supT→∞
1
T

∫ T
0 E(κ, t) is the distribution of the time averaged kinetic

energy by wave number. Here, we have E(κ, t) = L
2π

∑
|k|=κ

1
2 |û(k, t)|2 where L - the

reference length, k, κ - the wave number vector and the wave number respectively, and
û(k, t) - the Fourier modes of the Navier-Stokes velocity.

We shall say that there is an energy cascade if in some “inertial” range, Πmodel(κ) is
independent of the wave number, i.e., Πmodel(κ) = εmodel. Using the equations (6.5) and
(6.6) we get

Emodel(κ) ' ε
2/3
modelκ

−5/3

We have the relation

E model(κ) ' (1 + αhkκ2)E(κ). (6.7)

Using (6.7) we obtain:

Model’s cutoff lengthscale :
√

αhk,

E(κ) ' ε
2/3
modelκ

−5/3, for κ ¿ 1
(αhk)1/2

,

E(κ) ' ε
2/3
model(αhk)−1κ−11/3 , for κ À 1

(αhk)1/2
.

Therefore, (6.1) possesses an energy cascade with an enhanced kinetic energy. The extra
term in (6.1) triggers an accelerated energy decay of O(κ−11/3) beyond the cutoff length
scale. Above the cutoff length scale (6.1) predicts the correct energy cascade of O(κ−5/3).

7 Computational Tests

We first test convergence rates for a problem with a known exact solution. The example is
one for which the true solution is known,

u =




cos(2π(z + t))
sin(2π(z + t))
sin(2π(x + t))


 , (7.1)
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and then the right-hand side f and initial condition u0 are computed such that (7.1) satisfies
(1.1). We selected this test problem because it is simple but already possesses complex
rotational structures.

For α = 1, ν = 1 and final time T = 0.5, the calculated convergence rates in Table 1
confirm what is predicted by Theorem 3.1 for (P2, P1) discretization in space.

h ||u− uh ||H1(Ω) ratio rate
1/8 0.6910 - -
1/16 0.1772 3.8995 1.9633
1/32 0.0447 3.9642 1.9870

Table 1: Experimental convergence rates.

Next we give a simple test of the positive effects of the stabilization on the methods
complexity. The linear solver used in the simulations was (unpreconditioned) Conjugate
Gradient Squared (CGS). On a h = 1/16 mesh in R3, with ν = 1

500 and the same true
solution (7.1), the number of CGS iterates needed for the first 8 solves of Crank-Nicolson
with Linear Extrapolation (CNLE), i.e. α = 0, and CNLE with stabilization (CNLEStab,
α > 0) are compared in Table 2.

time level CNLE CNLEStab
1 349 193
2 350 199
3 347 200
4 372 212
5 348 206
6 347 206
7 351 205
8 365 192

Table 2: Number of CGS iterations for CNLE versus CNLEStab.

The linear system to be solved at each time step is also better conditioned when α > 0.

8 Conclusions

A simple second order time stepping algorithm for the Navier-Stokes equations was ana-
lyzed. It is a modification (by introduction of artificial viscosity stabilization and correction
for the associated loss of accuracy) of the commonly used Crank-Nicolson scheme that re-
quires the solution of only one linear system per time step. We not only proved that it
is unconditionally stable and investigated how the rates of convergence for velocity and
pressure behave, but we also went beyond error analysis. We showed that this scheme con-
serves kinetic energy exactly, and provided experimental numerical evidence that it nearly
conserves helicity, an important integral invariant in three dimensional rotational flows.
Dynamic analysis applied to their algorithm reveals the existence of an energy cascade with
the correct statistics up to a cutoff length scale and with an accelerated energy decay above
the cutoff length scale. Lastly, we presented more computational tests. The first confirms
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the velocity convergence rates obtained in the analysis in Section 3, and the second shows
that even with a simple, unpreconditioned iterative method the linear system to be solved
at each time step is better conditioned than the corresponding system without stabilization.
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