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Abstract. The most effective simulations of the multi-physics coupling of
groundwater to surface water must involve employing the best groundwater
codes and the best surface water codes. Partitioned methods, which solve
the coupled problem by successively solving the sub-physics problems, have
recently been studied for the Stokes-Darcy coupling with convergence estab-
lished over bounded time intervals (with constants growing exponentially in
t). This report analyzes and tests two such partitioned (non-iterative, domain
decomposition) methods for the fully evolutionary Stokes-Darcy problem. Un-
der a modest time step restriction of the form Δt ≤ C where C = C(physical
parameters) we prove unconditional asymptotic (over 0 ≤ t < ∞) stability of
both partitioned methods. From this we derive an optimal error estimate that
is uniform in time over 0 ≤ t < ∞.

1. Introduction

Many important applications require the accurate solution of multi-domain,
multi-physics coupling of groundwater flows with surface flows (the Stokes-Darcy
problem). The essential problems of estimation of the penetration of a plume of
pollution into groundwater and remediation after such a penetration are that (i)
the coupled problem in both sub-regions are inherently time dependent, (ii) the
different physical processes suggest that codes optimized for each sub-process need
to be used for solution of the coupled problem and (iii) the large domains plus the
need to compute for several turn-over times for reliable statistics require calculations
over long time intervals. With these issues in mind, we give a complete analysis of
the stability and errors over long time intervals of two partitioned methods (which
require only one uncoupled Stokes and one Darcy subdomain solve per time step)
for the coupled, fully time dependent Stokes-Darcy problem. This builds upon re-
cent studies of partitioned methods over bounded time intervals (with constants
C(T ) ∼ eaT ) of Mu and Zhu [MZ10] who studied the first (first order) partitioned
method for the Stokes-Darcy coupling. The method was extended to allow different
time steps in the two subregions [SZL11]. This work used Gronwall’s inequality in
an essential way for analyzing both stability and convergence. Thus, the stability
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and error behaviour over the required long time intervals is important for both
algorithm development and analysis.

In this report we analyze the stability and error behaviour over long time intervals
(0 ≤ t < ∞ ) of two partitioned methods for uncoupling the evolutionary Stokes-
Darcy problem. The first method we study is the first order method of [MZ10]
consisting of first order implicit discretization of subdomain terms and explicit
discretization of coupling terms. The stability regions of the explicit method used
for the anti-symmetric coupling terms suggest that exponential growth of errors
and perturbations is inevitable for the combination. Surprisingly, we show that
this is not the case: the method is stable and optimally convergent uniformly over
0 ≤ t < ∞. The second method we study is a new, two step partitioned scheme
motivated by the form of the coupling. It involves first order implicit discretization
of the subdomain terms and leap frog discretization of the exactly skew symmetric
coupling terms. We prove that this combination has superior stability properties
and is optimally accurate and convergent uniformly over 0 ≤ t < ∞. We also
present numerical experiments verifying the numerical analysis and comparing the
accuracy of the two approaches.

To specify the problem considered, let the two domains be denoted by Ωf ,Ωp

and lie across an interface I from each other. The fluid velocity and porous media
piezometric head (Darcy pressure) satisfy

ut − �Δu +∇p = ff (x, t),∇ ⋅ u = 0, in Ωf ,

S0�t −∇ ⋅ (K∇�) = fp, in Ωp,

�(x, 0) = �0, in Ωp and u(x, 0) = u0, in Ωf ,

�(x, t) = 0, in ∂Ωp∖I and u(x, t) = 0, in ∂Ωf∖I,
+ coupling conditions across I.

The exact boundary conditions chosen above on the exterior boundaries (∂Ωf/p∖I)
are not essential to either the analysis or algorithms studied herein. Let n̂f/p denote
the indicated, outward pointing, unit normal vector on I. The coupling conditions
are conservation of mass and balance of forces on I

u ⋅ n̂f + up ⋅ n̂p = 0, on I ⇔ u ⋅ n̂f − 1

�
K∇� ⋅ n̂p = 0, on I,

p− � n̂f ⋅ ∇u ⋅ n̂f = �g� on I.

The last condition needed is a tangential condition on the fluid region’s velocity
on the interface. The most correct condition is not completely understood (possi-
bly due to matching a pointwise velocity in the fluid region with an averaged or
homogenized velocity in the porous region). We take the Beavers-Joseph-Saffman
(-Jones) interfacial coupling

−� ∇u ⋅ n̂f =
�√

�̂i ⋅ K ⋅ �̂i
u ⋅ �̂i, on I for any �̂i tangent vector on I.

See [BJ67], [Saf71], [JM00]. This is a simplification of the original and more physi-
cally realistic Beavers-Joseph conditions (in u ⋅ �̂i which is replaced by (u−up) ⋅ �̂i),
studied in [CGHW10], [CGH+10]. Here �, �, g are the volumetric porosity, density



UNCOUPLING STOKES-DARCY FLOWS 3

and gravitational acceleration constant. Further

� = Darcy pressure + elevation induced pressure = piezometric head

up = fluid velocity in porous media region, Ωp,

u = fluid velocity in Stokes region, Ωf ,

ff , fp = body forces in fluid region and source in porous region,

K = hydraulic conductivity tensor,

� = kinematic viscosity of fluid

S0 = specific mass storativity coefficient.

We shall assume that all material and fluid parameters above are positive and O(1),
in particular that

�min(K) ≥ kmin > 0.

1.1. Previous work. The literature on numerical analysis of methods for the
Stokes-Darcy coupled problem has grown extensively since [DMQ02], [LSY02].
See [DQ09] for a recent survey and [BJ67], [CGHW10], [PSS99], [PS98], [Saf71],
[Wan10] and [LSY02] for theory of the continuum model. There is less work on the
fully evolutionary Stokes-Darcy problem. One approach [CGHW10], [CGH+10],
[CMX07], [MX07] is monolithic discretization by an implicit method followed by
iterative solution of the non-symmetric system with subregion uncoupling in the
preconditioner. Partitioned methods allow parallel, non-iterative uncoupling into
one (SPD) Stokes and one (SPD) Darcy system per time step. The first such parti-
tioned method was studied in 2010 by Mu and Zhu [MZ10]. This has been followed
by an asynchronous (allow different time steps in the two subregions) partitioned
method in [SZL11] and higher order partitioned methods in [CGHW11], [LT11].
In most of this work, stability and convergence were studied over bounded time
intervals 0 ≤ t ≤ T < ∞ and the estimates included e�T multipliers. Partitioned
methods also have the key large advantage that the subdomain problems can be
solved by legacy codes, each optimized for the physics of the individual subprocess.

Alternate approaches for coupling surface water flows with groundwater flows
include Brinkman one-domain models, Angot [Ang99], Ingram [Ing10], which are a
more accurate description of the physical processes. One-domain Brinkman models
are also more computationally expensive. Monolithic quasi-static models (one do-
main evolutionary and the other assumed to instantly adjust back to equilibrium)
have also been studied, e.g., [CR]. While they are not considered herein in detail,
the methods considered also give non-iterative, domain decomposition schemes for
quasi-static models (e.g., set S0 ≡ 0 in (3.1), (3.2) below).

Partitioned methods employ implicit discretizations of the sub-physics/ sub-
domain problems and explicit time discretizations of the coupling terms, e.g.,
[VCC08], [MZ10], [BF07], [BF09], [CGN05], [CM10], [CHL09a], [CHL09b]. Thus
there is a very strong connection between application-specific partitioned meth-
ods and more general IMEX (IMplicit - EXplicit) methods; the latter developed
in, e.g., [Ver09], [Var80], [ARW95], [Cro80], [FHV96], [HV03], [FHV96], [APL04],
[CM10] and [Ver10]. On the other hand, application-specific partitioned methods
are often motivated by available codes for subproblems, [VCC08]. Examples of
partitioned methods include ones designed for fluid-structure interaction [BF07],
[BF09], [CGN05], Maxwell’s equations, [Ver10] and atmosphere-ocean coupling,
[CM10], [CHL09a].
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2. The continuous problem and semi-discrete approximation

We denote the L2(I) norm by ∥ ⋅ ∥I and the L2(Ωf/p) norms by ∥ ⋅ ∥f/p, respec-
tively; the corresponding inner products are denoted by (⋅, ⋅)f/p. Define

Xf = {v ∈
(
H1(Ωf )

)d
: v = 0 on ∂Ωf∖I},

Xp = { ∈ H1(Ωp) :  = 0 on ∂Ωp∖I},
Qf = L2

0(Ωf ).

Throughout this paper, we will use C0 to denote a generic positive constant whose
value may be different from place to place but which is independent of mesh size,
time step and final time. We will use the combined trace, interpolation and Poincaré
inequality

(2.1) ∥�∥I ≤ C(Ωp)
√
∥�∥p∥∇�∥p and ∥u∥I ≤ C(Ωf )

√
∥u∥f∥∇u∥f

where, by a scaling argument, C(Ωf/p) = O(
√
Lf/p), Lf/p = diameter(Ωf/p).

Define the bilinear forms

af (u, v) = (�∇u,∇v)f +
∑

i

∫

I

�√
�̂i ⋅ K ⋅ �̂i

(u ⋅ �̂i)(v ⋅ �̂i)ds,

ap(�,  ) = (K∇�,∇ )p,

cI(u, �) = ��g

∫

I

�u ⋅ n̂fds.

The bilinear forms af/p(⋅, ⋅) are continuous and coercive. The key to uncoupling
the problem is the treatment of coupling term through the bilinear form cI(u, �).

Lemma 1. We have for (u, �) ∈ Xf ×Xp,

∣cI(u, �)∣ ≤
�

2
∥∇u∥2f +

kmin

2
∥∇�∥2p +

[C(Ωf )C(Ωp)��g]
2

8
√
�kmin

(
∥u∥2f + ∥�∥2p

)
,(2.2)

∣cI(u, �)∣ ≤
1

4"1
∥�∥2p +

"1
�2
C2

P,f (��gC(Ωf )C(Ωp))
4∥∇�∥2p +

�

4
∥∇u∥2f ,(2.3)

∣cI(u, �)∣ ≤
1

4"2
∥u∥2f +

"2
k2min

C2
P,p(��gC(Ωf )C(Ωp))

4∥∇u∥2f +
kmin

4
∥∇�∥2p.(2.4)

for every "1, "2 > 0, where CP,f and CP,p are Poincaré constants of the indicated
domains.

Proof. Using basic estimates and the arithmetic geometric mean inequality twice
we obtain

cI(u, �) = ��g

∫

I

�u ⋅ n̂ds

≤ ��gC(Ωf )C(Ωp)
√
∥�∥p∥∇�∥p ⋅

√
∥u∥f∥∇u∥f

≤ ��gC(Ωf )C(Ωp)
√
∥∇u∥f∥∇�∥p ⋅

√
∥u∥f∥�∥p

≤ �

2
∥∇u∥2f +

kmin

2
∥∇�∥2p +

[C(Ωf )C(Ωp)��g]
2

8
√
�kmin

(
∥u∥2f + ∥�∥2p

)
.
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For (2.3), observe that

cI(u, �) = ��g

∫

I

�u ⋅ n̂ds ≤ ��gC(Ωf )C(Ωp)
√
∥�∥p∥∇�∥p ⋅

√
∥u∥f∥∇u∥f

≤
(

1

"
1/4
1

∥�∥1/2p

)(
��gC(Ωf )C(Ωp)"

1/4
1

(
2

�

)1/2

C
1/2
P,f ∥∇�∥1/2p

)((�
2

)1/2
∥∇u∥f

)

≤ 1

4"1
∥�∥2p +

"1
�2
CP,f (��gC(Ωf )C(Ωp))

4∥∇�∥2p +
�

4
∥∇u∥2f .

Finally, (2.4) comes from a similar argument. □

A (monolithic) variational formulation of the coupled problem is to find (u, p, �) :
[0,∞) → Xf×Qf×Xp satisfying the given initial conditions and, for all v ∈ Xf , q ∈
Qf ,  ∈ Xp

(ut, v)f + af (u, v)− (p,∇ ⋅ v)f + cI(v, �) = (ff , v)f ,

(q,∇ ⋅ u)f = 0,(2.5)

S0(�t,  )p + ap(�,  ) − cI(u,  ) = (fp,  )p.

Note that, setting v = u,  = � and adding, the coupling terms exactly cancel in
the monolithic sum yielding the energy estimate for the coupled system.

To discretize the Stokes-Darcy problem in space by the finite element method,
we select finite element spaces

velocity: Xℎ
f ⊂ Xf , Darcy pressure: Xℎ

p ⊂ Xp, Stokes pressure: Q
ℎ
f ⊂ Qf

based on a conforming FEM triangulation with maximum triangle diameter de-
noted by ”ℎ”. No mesh compatibility or interdomain continuity at the interface I
between the FEM meshes in the two subdomains is assumed. The Stokes velocity-
pressure FEM spaces are assumed to satisfy the usual discrete inf-sup condition for
stability of the discrete pressure, e.g., [GR86], and Xℎ

f , X
ℎ
p , Q

ℎ
f satisfy approxima-

tion properties of piecewise polynomials on quasi-uniform meshes of local degrees
k, k, k − 1 respectively. We denote the discretely divergence free velocities by

V ℎ := Xℎ
f ∩ {vℎ : (qℎ,∇ ⋅ vℎ)f = 0, for all qℎ ∈ Qℎ

f}.

The semi-discrete approximations are maps (uℎ, pℎ, �ℎ) : [0,∞) → Xℎ
f ×Qℎ

f ×Xℎ
p

satisfying the given initial conditions and, for all vℎ ∈ Xℎ
f , qℎ ∈ Qℎ

f ,  ℎ ∈ Xℎ
p

(uℎ,t, vℎ)f + af (uℎ, vℎ)− (pℎ,∇ ⋅ vℎ)f + cI(vℎ, �ℎ) = (ff , vℎ)f ,

(qℎ,∇ ⋅ uℎ)f = 0,(2.6)

S0(�ℎ,t,  ℎ)p + ap(�ℎ,  ℎ)− cI(uℎ,  ℎ) = (fp,  ℎ)p.

Note in particular the exactly skew symmetric coupling between the Stokes and the
Darcy sub-problems.

3. The Partitioned Methods

The first method we analyzed is BEFE = Backward Euler - Forward Euler,
the original method of Mu and Zhu [MZ10]. Since we focus on the long time
error and stability, we shall use the same time step in both subdomains. Let
tn := nΔt and let superscripts denote the time level of the approximation. The
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BEFE partitioned approximations are maps (unℎ, p
n
ℎ, �

n
ℎ) ∈ Xℎ

f ×Qℎ
f ×Xℎ

p for n ≥ 1

satisfying, for all vℎ ∈ Xℎ
f , qℎ ∈ Qℎ

f ,  ℎ ∈ Xℎ
p

(
un+1
ℎ − unℎ

Δt
, vℎ)f + af (u

n+1
ℎ , vℎ)− (pn+1

ℎ ,∇ ⋅ vℎ)f + cI(vℎ, �
n
ℎ) = (fn+1

f , vℎ)f ,

(qℎ,∇ ⋅ un+1
ℎ )f = 0,(3.1)

S0(
�n+1
ℎ − �nℎ

Δt
,  ℎ)p + ap(�

n+1
ℎ ,  ℎ)− cI(u

n
ℎ,  ℎ) = (fn+1

p ,  ℎ)p.

The second method we consider is BELF = Backward Euler Leap Frog, a
combination of the three level implicit method with the coupling terms treated by
the explicit Leap-Frog method. We shall use the same time step, Δt, in both sub
domains; extension to asynchronous time stepping, e.g. [SZL11], is an important
open problem. The BELF partitioned approximations are maps (unℎ, p

n
ℎ, �

n
ℎ) ∈ Xℎ

f ×
Qℎ

f ×Xℎ
p for n ≥ 2 satisfying, for all vℎ ∈ Xℎ

f , qℎ ∈ Qℎ
f ,  ℎ ∈ Xℎ

p

(
un+1
ℎ − un−1

ℎ

2Δt
, vℎ)f + af (u

n+1
ℎ , vℎ)− (pn+1

ℎ ,∇ ⋅ vℎ)f + cI(vℎ, �
n
ℎ) = (fn+1

f , vℎ)f ,

(qℎ,∇ ⋅ un+1
ℎ )f = 0,(3.2)

S0(
�n+1
ℎ − �n−1

ℎ

2Δt
,  ℎ)p + ap(�

n+1
ℎ ,  ℎ)− cI(u

n
ℎ,  ℎ) = (fn+1

p ,  ℎ)p.

BELF is a 3 level method and approximations are needed at the first two time steps
to begin. We shall suppose these are computed to appropriate accuracy, such as by
BEFE (the first method above). See Verwer [Ver09] for subtle effects that depend on
the starting values. The stability region of the usual Leap-Frog time discretization
for y′ = �y is exactly the interval of the imaginary axis −1 ≤ Im(Δt�) ≤ +1 .
Thus, LF is unstable for every problem except for ones which are exactly skew
symmetric such as the coupling herein. For them, as with any explicit scheme, it
inherits a time step restriction.

3.1. Asymptotic stability of the two partitioned methods. In this section
we analyze the asymptotic stability, uniform in tn stability over 0 ≤ tn < ∞.
We derive the restriction needed as the time step, of the form Δt ≤ C(physical
parameter) under which

(1) the approximate solutions are uniform in time stable and convergent,
(2) if f = g = 0, un, �n → 0 as tn → ∞, and
(3) if ∥f(t)∥, ∥g(t)∥ are uniformly bounded in time then suptn (∥un∥+ ∥�n∥) <

∞.

3.1.1. BEFE Stability. The analysis of Mu and Zhu includes (inside the error es-
timation) a proof (which also extends to BELF as well) of stability over bounded
time intervals of the form: for any Δt and 0 ≤ tn < T <∞

∥unℎ∥2f+∥�nℎ∥2p ≤ C(T )

[
sup

0≤tn≤T

{
∥ff (tn)∥2f + ∥fp(tn)∥2p

}
+ ∥u0ℎ∥2H1(Ωf )

+ ∥�0ℎ∥2H1(Ωp)

]

where C(T ) arises from Gronwall’s inequality and thus grows exponentially with
T . We prove a strong, asymptotic and uniform in time stability of the BEFE
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partitioned approximation (3.1) under the time step restriction

(3.3) Δt ≤ ΔtBEFE := min

{
kmin

C2
P,p

,
S0�

C2
P,f

}
�kmin

8(��gC(Ωf )C(Ωp))4
.

Note that the RHS of (3.3) is independent of ℎ so that, in the usual terminology
of numerical PDEs, BEFE is unconditionally stable. Our experiments in Section 5
with kmin = 10−6 show that there is some dependence of ΔtBEFE on kmin but the
dependence indicated in (3.3) is likely not sharp.

Theorem 1. (BEFE asymptotic stability) Consider BEFE method (3.1). Under
the time step condition (3.3) it is uniformly in time and asymptotically stable

1

2
∥uNℎ ∥2f +

S0

2
∥�Nℎ ∥2p +Δt

N−1∑

n=0

(
�

4
∥∇un+1

ℎ ∥2f +
kmin

4
∥∇�n+1

ℎ ∥2p
)

+
Δt�

8
∥∇uNℎ ∥2f +

Δtkmin

8
∥∇�Nℎ ∥2p

≤ 1

2
∥u0ℎ∥2f +

S0

2
∥�0ℎ∥2p +Δt

N−1∑

n=0

(
C2

P,f

�
∥fn+1

f ∥2f +
C2

P,p

kmin
∥fn+1

p ∥2p

)

+
Δt�

8
∥∇u0ℎ∥2f +

Δtkmin

8
∥∇�0ℎ∥2p.

(3.4)

There is a C0 <∞ such that if ff ∈ L∞(L2(Ωf )), fp ∈ L∞(L2(Ωp)) then

sup
0≤N≤∞

{
∥uNℎ ∥2f + S0∥�Nℎ ∥2p

}
≤C0

(
sup

0≤N≤∞

{
∥fN+1

f ∥2f + ∥fN+1
p ∥2p

}
(3.5)

+ ∥u0ℎ∥2H1(Ωf )
+ ∥�0ℎ∥2H1(Ωp)

)
,

and if ff ≡ 0, fp ≡ 0 then

uNℎ → 0, �Nℎ → 0(3.6)

in H1(Ωf ) and H
1(Ωp) respectively as N → ∞.

Proof. In (3.1), set vℎ = un+1
ℎ and  ℎ = �n+1

ℎ and add. This gives

1

2Δt
∥un+1

ℎ ∥2f − 1

2Δt
∥unℎ∥2f +

1

2Δt
∥un+1

ℎ − unℎ∥2f +
S0

2Δt
∥�n+1

ℎ ∥2p −
S0

2Δt
∥�nℎ∥2p

+
S0

2Δt
∥�n+1

ℎ − �nℎ∥2p + af (u
n+1
ℎ , un+1

ℎ ) + ap(�
n+1
ℎ , �n+1

ℎ ) + cI(u
n+1
ℎ − unℎ, �

n+1
ℎ )

− cI(u
n+1
ℎ , �n+1

ℎ − �nℎ) = (fn+1
f , un+1

ℎ ) + (fn+1
p , �n+1

ℎ ).
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Applying (2.3) and (2.4) with "1 = Δt
2S0

and "2 = Δt
2 we have

cI(u
n+1
ℎ − unℎ, �

n+1
ℎ )− cI(u

n+1
ℎ , �n+1

ℎ − �nℎ)

≥ − S0

2Δt
∥�n+1

ℎ − �nℎ∥2p −
Δt

2S0�2
C2

P,f (��gC(Ωf )C(Ωp))
4∥∇(�n+1

ℎ − �nℎ)∥2p

− �

4
∥∇un+1

ℎ ∥2f − 1

2Δt
∥un+1

ℎ − unℎ∥2f

− Δt

2k2min

C2
P,p(��gC(Ωf )C(Ωp))

4∥∇(un+1
ℎ − unℎ)∥2f − kmin

4
∥∇�n+1

ℎ ∥2p

≥ − S0

2Δt
∥�n+1

ℎ − �nℎ∥2p −
Δt

S0�2
C2

P,f (��gC(Ωf )C(Ωp))
4(∥∇�n+1

ℎ ∥2p + ∥∇�nℎ∥2p)

− �

4
∥∇un+1

ℎ ∥2f − 1

2Δt
∥un+1

ℎ − unℎ∥2f

− Δt

k2min

C2
P,p(��gC(Ωf )C(Ωp))

4(∥∇un+1
ℎ ∥2f + ∥∇unℎ∥2f)−

kmin

4
∥∇�n+1

ℎ ∥2p

≥ − S0

2Δt
∥�n+1

ℎ − �nℎ∥2p −
kmin

8
(∥∇�n+1

ℎ ∥2p + ∥∇�nℎ∥2p)−
�

4
∥∇un+1

ℎ ∥2f

− 1

2Δt
∥un+1

ℎ − unℎ∥2f − �

8
(∥∇un+1

ℎ ∥2f + ∥∇unℎ∥2f)−
kmin

4
∥∇�n+1

ℎ ∥2p.

Furthermore, a combination of Schwarz inequality and Poincaré inequality yields

(fn+1
f , un+1

ℎ ) + (fn+1
p , �n+1

ℎ )

≤
C2

P,f

�
∥fn+1

f ∥2f +
�

4
∥∇un+1

ℎ ∥2f +
C2

P,p

kmin
∥fn+1

p ∥2p +
kmin

4
∥∇�n+1

ℎ ∥2p.

Thus

1

2Δt
∥un+1

ℎ ∥2f − 1

2Δt
∥unℎ∥2f +

S0

2Δt
∥�n+1

ℎ ∥2p −
S0

2Δt
∥�nℎ∥2p(3.7)

+
�

4
∥∇un+1

ℎ ∥2f +
kmin

4
∥∇�n+1

ℎ ∥2p +
�

8

(
∥∇un+1

ℎ ∥2f − ∥∇unℎ∥2f
)

+
kmin

8

(
∥∇�n+1

ℎ ∥2p − ∥∇�nℎ∥2p
)
≤

C2
P,f

�
∥fn+1

f ∥2f +
C2

P,p

kmin
∥fn+1

p ∥2p.

Summing this up from n = 0 to n = N − 1 results in

1

2
∥uNℎ ∥2f +

S0

2
∥�Nℎ ∥2p +

Δt�

8
∥∇uNℎ ∥2f +

Δtkmin

8
∥∇�Nℎ ∥2p

+Δt

N−1∑

n=0

(
�

4
∥∇un+1

ℎ ∥2f +
kmin

4
∥∇�n+1

ℎ ∥2p
)

≤ 1

2
∥u0ℎ∥2f +

S0

2
∥�0ℎ∥2p +

Δt�

8
∥∇u0ℎ∥2f +

Δtkmin

8
∥∇�0ℎ∥2p

+Δt

N−1∑

n=0

(
C2

P,f

�
∥fn+1

f ∥2f +
C2

P,p

kmin
∥fn+1

p ∥2p

)
.

For the second part, let

Q(Δt) = min

{
2C2

P,f�Δt

4 + C2
P,f�Δt

,
2C2

P,pkminΔt

4S0 + C2
P,pkminΔt

}
.
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After simple calculations and applying Poincaré inequality

�

4
∥∇un+1

ℎ ∥2f ≥ Q(Δt)

(
1

2Δt
∥un+1

ℎ ∥2f +
�

8
∥∇un+1

ℎ ∥2f
)
,

kmin

4
∥∇�n+1

ℎ ∥2p ≥ Q(Δt)

(
S0

2Δt
∥�n+1

ℎ ∥2p +
kmin

8
∥∇�n+1

ℎ ∥2p
)
.

(3.8)

Denote

sn+1 =
1

2Δt
∥un+1

ℎ ∥2f +
�

8
∥∇un+1

ℎ ∥2f +
S0

2Δt
∥�n+1

ℎ ∥2p +
kmin

8
∥∇�n+1

ℎ ∥2p

and P =
C2

P,f

�
sup

0≤N≤∞

∥fN+1
f ∥2f +

C2
P,p

kmin
sup

0≤N≤∞

∥fN+1
p ∥2p.

From (3.7) and (3.8), we have

(1 +Q(Δt))sn+1 − sn ≤ P,

which yields

sn+1 ≤ P

Q(Δt)
+

1

(1 +Q(Δt))n+1
s0.

Plugging the expression defining sn+1 in, it gives

1

2Δt
∥un+1

ℎ ∥2f +
S0

2Δt
∥�n+1

ℎ ∥2p ≤ P

Q(Δt)
+

1

(1 +Q(Δt))n+1
s0.

Hence

∥un+1
ℎ ∥2f + S0∥�n+1

ℎ ∥2p ≤ 2ΔtP

Q(Δt)
+ 2Δts0

≤max

{
4 + C2

P,f�Δt

C2
P,f�

,
4S0 + C2

P,pkminΔt

C2
P,pkmin

}
P + 2Δts0

≤max

{
4 + C2

P,f�ΔtBEFE

C2
P,f�

,
4S0 + C2

P,pkminΔtBEFE

C2
P,pkmin

}
P

+ ∥u0ℎ∥2f +
�ΔtBEFE

4
∥∇u0ℎ∥2f + S0∥�0ℎ∥2p +

kminΔtBEFE

4
∥∇�0ℎ∥2p,

which proves (3.5).
Finally, if ff ≡ 0, fp ≡ 0, from (3.4), the series

∞∑

n=0

(
�

4
∥∇un+1

ℎ ∥2f +
kmin

4
∥∇�n+1

ℎ ∥2p
)

is convergent and conclusion (3.6) follows. □

3.1.2. BELF Stability. As noted above, stability over bounded time intervals (al-
lowing exponential growth in time) follows for BELF as for BEFE without any time
step restriction. We thus turn to long time stability. Define

ΔtBELF :=
2
√
�kmin min{1, S0}

[C(Ωf )C(Ωp)��g]
2 .

We prove unconditional (no relation needed coupling Δt and ℎ) uniform in time
stability of BELF (3.2) over 0 ≤ t <∞ under the time step condition

(3.9) Δt < ΔtBELF .
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Our experiments in Section 5 with kmin = 10−6 also suggest that the dependence
of ΔtBELF , while better than for ΔtBEFE , is too pessimistic. However, the exper-
iments are consistent with the analysis in that BELF is stable for smaller values of
kmin than BEFE.

Theorem 2. (BELF uniform in t stability) Consider BELF method (3.2). Under
the time step condition (3.9) above, it is uniformly in t stable over 0 ≤ tn <∞:

∥uNℎ ∥2f + ∥uN−1
ℎ ∥2f + S0∥�Nℎ ∥2p + S0∥�N−1

ℎ ∥2p(3.10)

+Δt

N−1∑

n=1

[
�∥∇

(
un+1
ℎ + un−1

ℎ

)
∥2f + kmin∥∇

(
�n+1
ℎ + �n−1

ℎ

)
∥2p
]

≤ 4Δt

N−1∑

n=1

(
C2

P,f

�

∥∥∥fn+1
f

∥∥∥
2

f
+
C2

P,p

kmin

∥∥fn+1
p

∥∥2
p

)
+ 2∥u1ℎ∥2f + 2∥u0ℎ∥2f

+2S0∥�1ℎ∥2p + 2S0∥�0ℎ∥2p + 2Δt
(
af (u

1
ℎ, u

1
ℎ) + ap(�

1
ℎ, �

1
ℎ) + af (u

0
ℎ, u

0
ℎ) + ap(�

0
ℎ, �

0
ℎ)
)

+4Δt��g

∫

I

(
�0ℎu

1
ℎ ⋅ n̂f − �1ℎu

0
ℎ ⋅ n̂

)
ds.

Proof. Define

En :=
1

2
∥unℎ∥2f +

S0

2
∥�nℎ∥2p.

In (3.2) set vℎ = un+1
ℎ +un−1

ℎ , qℎ = pn+1
ℎ ,  ℎ = �n+1

ℎ +�n−1
ℎ respectively and add1.

This gives

1

Δt

(
En+1 − En−1

)
+ af (u

n+1
ℎ , un+1

ℎ + un−1
ℎ ) + ap(�

n+1
ℎ , �n+1

ℎ + �n−1
ℎ )

+ cI(u
n+1
ℎ + un−1

ℎ , �nℎ)− cI(u
n
ℎ, �

n+1
ℎ + �n−1

ℎ )

= (fn+1
f , un+1

ℎ + un−1
ℎ )f + (fn+1

p , �n+1
ℎ + �n−1

ℎ )p.

Since af (⋅, ⋅) and ap(⋅, ⋅) are symmetric we have

af (u
n+1
ℎ , un+1

ℎ + un−1
ℎ ) =

1

2
af (u

n+1
ℎ , un+1

ℎ )− 1

2
af (u

n−1
ℎ , un−1

ℎ )

+
1

2
af (u

n+1
ℎ + un−1

ℎ , un+1
ℎ + un−1

ℎ ),(3.11)

ap(�
n+1
ℎ , �n+1

ℎ + �n−1
ℎ ) =

1

2
ap(�

n+1
ℎ , �n+1

ℎ )− 1

2
ap(�

n−1
ℎ , �n−1

ℎ )

+
1

2
ap(�

n+1
ℎ + �n−1

ℎ , �n+1
ℎ + �n−1

ℎ ).

Let us denote

An =
1

2
af (u

n
ℎ, u

n
ℎ) +

1

2
ap(�

n
ℎ , �

n
ℎ),

Bn =
1

2
af (u

n+1
ℎ + un−1

ℎ , un+1
ℎ + un−1

ℎ ) +
1

2
ap(�

n+1
ℎ + �n−1

ℎ , �n+1
ℎ + �n−1

ℎ ),

Cn+1/2 = cI(u
n+1
ℎ , �nℎ)− cI(u

n
ℎ, �

n+1
ℎ ).

1This first step already diverges from the normal method of analyzing stability of the implicit
method.
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Adding and subtracting En and ΔtAn in the first two terms below and rearranging
the remainder gives

[
En+1 + En +ΔtAn+1 +ΔtAn +ΔtCn+1/2

]

−
[
En−1 + En +ΔtAn +ΔtAn−1 +ΔtCn−1/2

]

+ΔtBn = Δt
(
(fn+1

f , un+1
ℎ + un−1

ℎ )f + (fn+1
p , �n+1

ℎ + �n−1
ℎ )p

)
.

Summing this up from n = 1 to n = N − 1 results in

EN + EN−1 +Δt(AN +AN−1) + ΔtCN−1/2 +Δt

N−1∑

n=1

Bn

= E1 + E0 +Δt(A1 +A0) + ΔtC1−1/2

+Δt
N−1∑

n=1

(fn+1
f , un+1

ℎ + un−1
ℎ )f +Δt

N−1∑

n=1

(fn+1
p , �n+1

ℎ + �n−1
ℎ )p.

We have already shown that

An ≥ �

2
∥∇unℎ∥2f +

kmin

2
∥∇�nℎ∥2p,

Bn ≥ �

2
∥∇
(
un+1
ℎ + un−1

ℎ

)
∥2f +

kmin

2
∥∇
(
�n+1
ℎ + �n−1

ℎ

)
∥2p,

Cn−1/2 ≥ −�
2
∥∇unℎ∥2f − �

2
∥∇un−1

ℎ ∥2f − kmin

2
∥∇�nℎ∥2p −

kmin

2
∥∇�n−1

ℎ ∥2p

− [C(Ωf )C(Ωp)��g]
2

8
√
�kmin

(
∥unℎ∥2f + ∥un−1

ℎ ∥2f + ∥�nℎ∥2p + ∥�n−1
ℎ ∥2p

)
.

From Schwarz inequality and Poincaré inequality

(fn+1
f , un+1

ℎ + un−1
ℎ )f ≤

C2
P,f

�
∥fn+1

f ∥2f +
�

4
∥∇
(
un+1
ℎ + un−1

ℎ

)
∥2f ,

(fn+1
p , �n+1

ℎ + �n−1
ℎ )p ≤

C2
P,p

kmin

∥∥fn+1
p

∥∥2
p
+
kmin

4
∥∇(�n+1

ℎ + �n−1
ℎ )∥2p.

Applying the last five inequalities into the energy estimate, summing and rearrang-
ing terms yield the result. □

Interestingly, our proof of exponential, asymptotic stability of BELF requires a
different additional time step condition. We impose the following time step condi-
tion

Δt ≤ min

{
kmin

C2
P,p

,
S0�

C2
P,f

}
�kmin

4(��gC(Ωf )C(Ωp))4
(3.12)

to prove asymptotic stability over 0 ≤ t <∞.



12 WILLIAM LAYTON, HOANG TRAN, AND CATALIN TRENCHEA

Theorem 3. (BELF exponential asymptotic stability) Consider BELF method
(3.2). Under the time step conditions (3.9) and (3.12),

∥uNℎ ∥2f + S0∥�Nℎ ∥2p +Δt

N−1∑

n=1

�∥∇un+1
ℎ ∥2f +Δt

N−1∑

n=1

kmin∥∇�n+1
ℎ ∥2p(3.13)

≤ 2∥u1ℎ∥2f + 2S0∥�1ℎ∥2p + 2∥u0ℎ∥2f + 2S0∥�0ℎ∥2p + 4Δt��g

∫

I

(�0ℎu
1
ℎ ⋅ n̂f − �1ℎu

0
ℎ ⋅ n̂f )ds

+Δt�(2∥∇u1ℎ∥2f + ∥∇u0ℎ∥2f ) + Δtkmin(2∥∇�1ℎ∥2p + ∥∇�0ℎ∥2p)

+4Δt

N−1∑

n=1

C2
P,f

�
∥fn+1

f ∥2f + 4Δt

N−1∑

n=1

C2
P,p

kmin
∥fn+1

p ∥2p.

As a consequence, if ff ≡ 0, fp ≡ 0 then

uNℎ → 0, �Nℎ → 0(3.14)

exponentially fast in H1(Ωf ) and H
1(Ωp) respectively as N → ∞.

Proof. In (3.2) set vℎ = un+1
ℎ , qℎ = pn+1

ℎ ,  ℎ = �n+1
ℎ respectively and add. This

gives

1

2Δt

(
En+1 − En−1

)
+

1

4Δt
∥un+1

ℎ − un−1
ℎ ∥2f +

S0

4Δt
∥�n+1

ℎ − �n−1
ℎ ∥2p

+ �∥∇un+1
ℎ ∥2f + kmin∥∇�n+1

ℎ ∥2p + cI(u
n+1
ℎ , �nℎ)− cI(u

n
ℎ, �

n+1
ℎ )

≤ (fn+1
f , un+1

ℎ )f + (fn+1
p , �n+1

ℎ )p.

Write

cI(u
n+1
ℎ , �nℎ) =

1

2
cI(u

n+1
ℎ , �nℎ) +

1

2
cI(u

n−1
ℎ , �nℎ) +

1

2
cI(u

n+1
ℎ − un−1

ℎ , �nℎ),

cI(u
n
ℎ, �

n+1
ℎ ) =

1

2
cI(u

n
ℎ, �

n+1
ℎ ) +

1

2
cI(u

n
ℎ, �

n−1
ℎ ) +

1

2
cI(u

n
ℎ, �

n+1
ℎ − �n−1

ℎ ).

Let us denote Cn+1/2 = cI(u
n+1
ℎ , �nℎ) − cI(u

n
ℎ, �

n+1
ℎ ). Adding and subtracting En

in the first two terms below and rearranging the remainder gives

1

Δt

[
En+1 + En +ΔtCn+1/2

]
− 1

Δt

[
En + En−1 +ΔtCn−1/2

]

+
1

2Δt
∥un+1

ℎ − un−1
ℎ ∥2f +

S0

2Δt
∥�n+1

ℎ − �n−1
ℎ ∥2p + 2�∥∇un+1

ℎ ∥2f + 2kmin∥∇�n+1
ℎ ∥2p

+ cI(u
n+1
ℎ − un−1

ℎ , �nℎ)− cI(u
n
ℎ, �

n+1
ℎ − �n−1

ℎ )

≤ 2
(
(fn+1

f , un+1
ℎ )f + (fn+1

p , �n+1
ℎ )p

)
.
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Applying (2.3) and (2.4) with "1 = Δt
2S0

and "2 = Δt
2 we have

cI(u
n+1
ℎ − un−1

ℎ , �nℎ)− cI(u
n
ℎ, �

n+1
ℎ − �n−1

ℎ )

≥ − S0

2Δt
∥�n+1

ℎ − �n−1
ℎ ∥2p −

Δt

2S0�2
C2

P,f (��gC(Ωf )C(Ωp))
4∥∇(�n+1

ℎ − �n−1
ℎ )∥2p

− �

4
∥∇unℎ∥2f − 1

2Δt
∥un+1

ℎ − un−1
ℎ ∥2f

− Δt

2k2min

C2
P,p(��gC(Ωf )C(Ωp))

4∥∇(un+1
ℎ − un−1

ℎ )∥2f − kmin

4
∥∇�nℎ∥2p

≥ − S0

2Δt
∥�n+1

ℎ − �n−1
ℎ ∥2p −

Δt

S0�2
C2

P,f (��gC(Ωf )C(Ωp))
4(∥∇�n+1

ℎ ∥2p + ∥∇�n−1
ℎ ∥2p)

− �

4
∥∇unℎ∥2f − 1

2Δt
∥un+1

ℎ − un−1
ℎ ∥2f

− Δt

k2min

C2
P,p(��gC(Ωf )C(Ωp))

4(∥∇un+1
ℎ ∥2f + ∥∇un−1

ℎ ∥2f)−
kmin

4
∥∇�nℎ∥2p

≥ − S0

2Δt
∥�n+1

ℎ − �n−1
ℎ ∥2p −

kmin

4
(∥∇�n+1

ℎ ∥2p + ∥∇�n−1
ℎ ∥2p)−

�

4
∥∇unℎ∥2f

− 1

2Δt
∥un+1

ℎ − un−1
ℎ ∥2f − �

4
(∥∇un+1

ℎ ∥2f + ∥∇un−1
ℎ ∥2f)−

kmin

4
∥∇�nℎ∥2p.

From Schwarz inequality and Poincaré inequality

2(fn+1
f , un+1

ℎ )f ≤
C2

P,f

�
∥fn+1

f ∥2f + �∥∇un+1
ℎ ∥2f ,

2(fn+1
p , �n+1

ℎ )p ≤
C2

P,p

kmin

∥∥fn+1
p

∥∥2
p
+ kmin∥∇�n+1

ℎ ∥2p.

Thus

1

Δt

[
En+1 + En +ΔtCn+1/2

]
− 1

Δt

[
En + En−1 +ΔtCn−1/2

]

+
�

4
∥∇un+1

ℎ ∥2f +
�

4
(∥∇un+1

ℎ ∥2f − ∥∇unℎ∥2f ) +
�

4
(∥∇un+1

ℎ ∥2f − ∥∇un−1
ℎ ∥2f)

+
kmin

4
∥∇�n+1

ℎ ∥2p +
kmin

4
(∥∇�n+1

ℎ ∥2p − ∥∇�nℎ∥2p) +
kmin

4
(∥∇�n+1

ℎ ∥2p − ∥∇�n−1
ℎ ∥2p)

≤
C2

P,f

�
∥fn+1

f ∥2f +
C2

P,p

kmin

∥∥fn+1
p

∥∥2
p
.

Summing this up from n = 1 to n = N − 1 results in

EN + EN−1 +ΔtCN−1/2 +Δt

N−1∑

n=1

�

4
∥∇un+1

ℎ ∥2f +Δt

N−1∑

n=1

kmin

4
∥∇�n+1

ℎ ∥2p

+
Δt�

4
(2∥∇uNℎ ∥2f + ∥∇uN−1

ℎ ∥2f ) +
Δtkmin

4
(2∥∇�Nℎ ∥2p + ∥∇�N−1

ℎ ∥2p)

=E1 + E0 +ΔtC1/2 +
Δt�

4
(2∥∇u1ℎ∥2f + ∥∇u0ℎ∥2f) +

Δtkmin

4
(2∥∇�1ℎ∥2p + ∥∇�0ℎ∥2p)

+ Δt
N−1∑

n=1

C2
P,f

�
∥fn+1

f ∥2f +Δt
N−1∑

n=1

C2
P,p

kmin
∥fn+1

p ∥2p.
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Applying (2.2), under the time step condition (3.9) we have

CN−1/2 ≥ −�
2
∥∇uNℎ ∥2f − �

4
∥∇uN−1

ℎ ∥2f − kmin

2
∥∇�Nℎ ∥2p −

kmin

4
∥∇�N−1

ℎ ∥2p

− [C(Ωf )C(Ωp)��g]
2

8
√
�kmin

(
∥uNℎ ∥2f + ∥�Nℎ ∥2p

)

− [C(Ωf )C(Ωp)��g]
2

4
√
�kmin

(∥uN−1
ℎ ∥2f + ∥�N−1

ℎ ∥2p)

≥ −�
2
∥∇uNℎ ∥2f − �

4
∥∇uN−1

ℎ ∥2f − kmin

2
∥∇�Nℎ ∥2p −

kmin

4
∥∇�N−1

ℎ ∥2p

− 1

4Δt
∥uNℎ ∥2f − S0

4Δt
∥�Nℎ ∥2p −

1

2Δt
∥uN−1

ℎ ∥2f − S0

2Δt
∥�N−1

ℎ ∥2p.

Applying this inequality into the energy estimate, it gives

1

4
∥uNℎ ∥2f +

S0

4
∥�Nℎ ∥2p +Δt

N−1∑

n=1

�

4
∥∇un+1

ℎ ∥2f +Δt
N−1∑

n=1

kmin

4
∥∇�n+1

ℎ ∥2p

≤1

2
∥u1ℎ∥2f +

S0

2
∥�1ℎ∥2p +

1

2
∥u0ℎ∥2f +

S0

2
∥�0ℎ∥2p +Δt��g

∫

I

(�0ℎu
1
ℎ ⋅ n̂f − �1ℎu

0
ℎ ⋅ n̂f )ds

+
Δt�

4
(2∥∇u1ℎ∥2f + ∥∇u0ℎ∥2f ) +

Δtkmin

4
(2∥∇�1ℎ∥2p + ∥∇�0ℎ∥2p)

+ Δt
N−1∑

n=1

C2
P,f

�
∥fn+1

f ∥2f +Δt
N−1∑

n=1

C2
P,p

kmin
∥fn+1

p ∥2p.

Rearranging terms yields (3.13). □

4. Error analysis over 1 ≤ tn <∞
We proceed to analyze the error over long time intervals. Recall that our FEM

spaces are assumed to satisfy the usual approximation properties and the Stokes
velocity-pressure spaces satisfy the discrete inf-sup condition. For compactness,
we only analyze the error of the newer method BELF. With minor modifications
in our proof, we will get the analogous results of convergence rates and long time
behaviour for BEFE. Recall that the discretely divergence free velocities by

V ℎ := Xℎ
f ∩ {vℎ : (qℎ,∇ ⋅ vℎ)f = 0, for all qℎ ∈ Qℎ

f}
Let tn = nΔt and T = NΔt (if T = ∞ then N = ∞). Also denote un := u(tn)
(and similarly for other variables). We introduce the following discrete norms:

∥∣v∣∥L∞(0,T ;Hk(Ωf∣p)) := max
0≤n≤N

∥vn∥Hk(Ωf∣p)

∥∣v∣∥L2(0,T ;Hk(Ωf∣p)) :=

(
N∑

n=0

∥vn∥2Hk(Ωf∣p)
Δt

)1/2

.

In order to establish the optimal error estimates for the approximation we need
to assume the following regularity of the true solution:

u ∈ L∞(0, T ;Hk+1(Ωf )) ∩H1(0, T ;Hk+1(Ωf )) ∩H2(0, T ;L2(Ωf )),

� ∈ L∞(0, T ;Hk+1(Ωp)) ∩H1(0, T ;Hk+1(Ωp)) ∩H2(0, T ;L2(Ωp)).
(4.1)
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Denote the errors by enf := un − unℎ, e
n
p := �n − �nℎ. The variational formula-

tion of the continuous problem is first rewritten as the discrete problem driven by
consistency errors as

(
un+1 − un−1

2Δt
, vℎ)f + af (u

n+1, vℎ)− (pn+1 − �ℎ,∇ ⋅ vℎ)f + cI(vℎ, �
n) =

= (fn+1
f , vℎ)f + "n+1

f (vℎ),

S0(
�n+1 − �n−1

2Δt
,  ℎ)p + ap(�

n+1,  ℎ)− cI(u
n,  ℎ) =(4.2)

= (fn+1
p ,  ℎ)p + "n+1

p ( ℎ),

for all vℎ ∈ V ℎ,  ℎ ∈ Xℎ
p and any �ℎ ∈ Qℎ

f .

The consistency errors, "n+1
f (vℎ), "

n+1
p ( ℎ), are defined, as usual, by

"n+1
f (vℎ) : = (

un+1 − un−1

2Δt
− un+1

t , vℎ)f + cI(vℎ, �
n − �n+1),

"n+1
p ( ℎ) : = S0(

�n+1 − �n−1

2Δt
− �n+1

t ,  ℎ)p − cI(u
n − un+1,  ℎ).

Subtraction gives the error equations:

(
en+1
f − en−1

f

2Δt
, vℎ)f + af (e

n+1
f , vℎ) + cI(vℎ, e

n
p ) = "n+1

f (vℎ) + (pn+1 − �ℎ,∇ ⋅ vℎ)f ,

S0(
en+1
p − en−1

p

2Δt
,  ℎ)p + ap(e

n+1
p ,  ℎ)− cI(e

n
f ,  ℎ) = "n+1

p ( ℎ),

for all vℎ ∈ V ℎ,  ℎ ∈ Xℎ
p and any �ℎ ∈ Qℎ

f .

Theorem 4. Consider BELF method (3.2). Suppose the time step condition (3.9)
holds and u and � satisfy regularity condition (4.1). Then, for any 0 ≤ tN < ∞,
there is a positive constant C0 such that

∥eNf ∥2f + ∥eN−1
f ∥2f + S0∥eNp ∥2p + S0∥eN−1

p ∥2p(4.3)

+Δt

N−1∑

n=1

[
�
∥∥∥∇(en+1

f + en−1
f )

∥∥∥
2

f
+ kmin

∥∥∇(en+1
p + en−1

p )
∥∥2
p

]

≤ C0

{
∥∥u1 − u1ℎ

∥∥2
f
+
∥∥u0 − u0ℎ

∥∥2
f
+ S0

∥∥�1 − �1ℎ
∥∥2
p
+ S0

∥∥�0 − �0ℎ
∥∥2
p

+Δt

(∥∥∇
(
u1 − u1ℎ

)∥∥2
f
+
∥∥∇
(
u0 − u0ℎ

)∥∥2
f
+
∥∥∇
(
�1 − �1ℎ

)∥∥2
p
+
∥∥∇
(
�0 − �0ℎ

)∥∥2
p

)

+ ℎ2k
(
∥∣u∣∥2L∞(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L∞(0,T ;Hk+1(Ωp))

)

+ ℎ2k+2
(
∥ut∥2L2(0,T ;Hk+1(Ωf ))

+ ∥�t∥2L2(0,T ;Hk+1(Ωp))

)

+Δt2
(
∥utt∥2L2(0,T ;L2(Ωf ))

+ ∥�tt∥2L2(0,T ;L2(Ωp))

)

+Δt2
(
∥ut∥2L2(0,T ;H1(Ωf ))

+ ∥�t∥2L2(0,T ;H1(Ωp))

)

+ ℎ2k
(
∥∣u∣∥2L2(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L2(0,T ;Hk+1(Ωp))

)}
.
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Proof. Subtracting (2.5) to (3.2) gives

(un+1
t − un+1

ℎ − un−1
ℎ

2Δt
, vℎ)f + af (u

n+1 − un+1
ℎ , vℎ)− (pn+1 − pn+1

ℎ ,∇ ⋅ vℎ)f
+cI(vℎ, �

n+1 − �nℎ) = 0,

(qℎ,∇ ⋅ (un+1 − un+1
ℎ ))f = 0,

S0(�
n+1
t − �n+1

ℎ − �n−1
ℎ

2Δt
,  ℎ)p + ap(�

n+1 − �n+1
ℎ ,  ℎ)− cI(u

n+1 − unℎ,  ℎ) = 0.

After rearranging terms

(
un+1 − un+1

ℎ

2Δt
− un−1 − un−1

ℎ

2Δt
, vℎ)f + af (u

n+1 − un+1
ℎ , vℎ) + cI(vℎ, �

n − �nℎ)

−(pn+1 − pn+1
ℎ ,∇ ⋅ vℎ)f = "n+1

f (vℎ),

(qℎ,∇ ⋅ (un+1 − un+1
ℎ ))f = 0,(4.4)

S0(
�n+1 − �n+1

ℎ

2Δt
− �n−1 − �n−1

ℎ

2Δt
,  ℎ)p + ap(�

n+1 − �n+1
ℎ ,  ℎ)

−cI(un − unℎ,  ℎ) = "n+1
p ( ℎ).

Let Un+1, Φn+1 be the interpolation of un+1 and �n+1 in V ℎ and Xℎ
p correspond-

ingly. Denote

(un+1 − Un+1) + (Un+1 − un+1
ℎ ) = �n+1

f + �n+1
f ,

(�n+1 − Φn+1) + (Φn+1 − �n+1
ℎ ) = �n+1

p + �n+1
p .

For every vℎ ∈ V ℎ and  ℎ ∈ Xℎ
p , (4.4) becomes

1

2Δt

(
�n+1
f − �n−1

f , vℎ

)
f
+ af (�

n+1
f , vℎ) + cI(vℎ, �

n
p ) = − 1

2Δt

(
�n+1
f − �n−1

f , vℎ

)
f

− af (�
n+1
f , vℎ)− cI(vℎ, �

n
p ) + "n+1

f (vℎ),

S0

2Δt

(
�n+1
p − �n−1

p ,  ℎ

)
p
+ ap(�

n+1
p ,  ℎ)− cI(�

n
f ,  ℎ) = − S0

2Δt

(
�n+1
p − �n−1

p ,  ℎ

)
p

− ap(�
n+1
p ,  ℎ) + cI(�

n
f ,  ℎ) + "n+1

p ( ℎ).
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Choosing vℎ = �n+1
f + �n−1

f and  ℎ = �n+1
p + �n−1

p yields

1

2Δt

(
∥�n+1

f ∥2f − ∥�n−1
f ∥2f

)
+

1

2

(
af (�

n+1
f , �n+1

f )− af (�
n−1
f , �n−1

f )
)

+
1

2
af

(
�n+1
f + �n−1

f , �n+1
f + �n−1

f

)
+ cI(�

n+1
f + �n−1

f , �np )

= − 1

2Δt

(
�n+1
f − �n−1

f , �n+1
f + �n−1

f

)
f
− af (�

n+1
f , �n+1

f + �n−1
f )

−cI(�n+1
f + �n−1

f , �np ) + "n+1
f (�n+1

f + �n−1
f ),

S0

2Δt

(
∥�n+1

p ∥2p − ∥�n−1
p ∥2p

)
p
+

1

2

(
ap(�

n+1
p , �n+1

p )− ap(�
n−1
p , �n−1

p )
)

+
1

2
ap
(
�n+1
p + �n−1

p , �n+1
p + �n−1

p

)
− cI(�

n
f , �

n+1
p + �n−1

p )

= − S0

2Δt

(
�n+1
p − �n−1

p , �n+1
p + �n−1

p

)
p
− ap(�

n+1
p , �n+1

p + �n−1
p )

+cI(�
n
f , �

n+1
p + �n−1

p ) + "n+1
p (�n+1

p + �n−1
p ).

(4.5)

Let us denote

An =
1

2
af (�

n
f , �

n
f ) +

1

2
ap(�

n
p , �

n
p ),

ℬn =
1

2
af (�

n+1
f + �n−1

f , �n+1
f + �n−1

f ) +
1

2
ap(�

n+1
p + �n−1

p , �n+1
p + �n−1

p ),

Cn+1/2 = cI(�
n+1
f , �np )− cI(�

n
f , �

n+1
p ),

ℰn =
1

2
∥�nf ∥2f +

S0

2
∥�np ∥2p.

Adding sides by sides, the LHS of the sum (4.5) can be rearranged to take the form

LHS =
1

Δt

(
ℰn+1 − ℰn−1

)
+An+1 −An−1 + ℬn + Cn+1/2 − Cn−1/2.(4.6)

Now we start to bound the right hand side of (4.5). First,

− 1

2Δt

(
�n+1
f − �n−1

f , �n+1
f + �n−1

f

)
f
− S0

2Δt

(
�n+1
p − �n−1

p , �n+1
p + �n−1

p

)
p

≤
4C2

P,f

�

∥∥∥∥∥
�n+1
f − �n−1

f

2Δt

∥∥∥∥∥

2

f

+
�

16
∥∇(�n+1

f + �n−1
f )∥2f(4.7)

+
4C2

P,pS
2
0

kmin

∥∥∥∥∥
�n+1
p − �n−1

p

2Δt

∥∥∥∥∥

2

p

+
kmin

16

∥∥∇
(
�n+1
p + �n−1

p

)∥∥2
p
.

The next terms can be controlled as follows

− af (�
n+1
f , �n+1

f + �n−1
f )− ap(�

n+1
p , �n+1

p + �n−1
p )

≤ C0

(
∥∇�n+1

f ∥2f + ∥∇�n+1
p ∥2p

)
+

�

16
∥∇
(
�n+1
f + �n−1

f

)
∥2f

+
kmin

16
∥∇
(
�n+1
p + �n−1

p

)
∥2p.

(4.8)



18 WILLIAM LAYTON, HOANG TRAN, AND CATALIN TRENCHEA

Using the trace inequality, Young’s inequality and Poincare’s inequality, we obtain

− cI(�
n+1
f + �n−1

f , �np ) + cI(�
n
f , �

n+1
p + �n−1

p )

≤ C0∥∇�np ∥2p + C0∥∇�nf ∥2f +
�

16
∥∇
(
�n+1
f + �n−1

f

)
∥2f

+
kmin

16
∥∇
(
�n+1
p + �n−1

p

)
∥2p.

(4.9)

The consistency errors are bounded as follows:

∣"n+1
f (�n+1

f + �n−1
f )∣ ≤ C0

∥∥∥∥u
n+1
t − un+1 − un−1

2Δt

∥∥∥∥
2

f

+ C0∥∇(�n+1 − �n)∥2p

+
�

16
∥∇(�n+1

f + �n−1
f )∥2f ,

∣"n+1
p (�n+1

p + �n−1
p )∣ ≤ C0

∥∥∥∥�
n+1
t − �n+1 − �n−1

2Δt

∥∥∥∥
2

p

+ C0∥∇(un+1 − un)∥2f

+
�

16
∥∇(�n+1

p + �n−1
p )∥2p.

(4.10)

A combination of estimates (4.6)–(4.10) gives

1

Δt

(
ℰn+1 − ℰn−1

)
+An+1 −An−1 + ℬn + Cn+1/2 − Cn−1/2

≤
4C2

P,f

�

∥∥∥∥∥
�n+1
f − �n−1

f

2Δt

∥∥∥∥∥

2

f

+
4C2

P,pS
2
0

kmin

∥∥∥∥∥
�n+1
p − �n−1

p

2Δt

∥∥∥∥∥

2

p

+C0

∥∥∥∥u
n+1
t − un+1 − un−1

2Δt

∥∥∥∥
2

f

+ C0

∥∥∥∥�
n+1
t − �n+1 − �n−1

2Δt

∥∥∥∥
2

p

+C0

(
∥∇�n+1

f ∥2f + ∥∇�nf ∥2f + ∥∇�n+1
p ∥2p + ∥∇�np ∥2p

)

+C0

(
∥∇(un+1 − un)∥2f + ∥∇(�n+1 − �n)∥2p

)

+
�

4
∥∇
(
�n+1
f + �n−1

f

)
∥2f +

kmin

4
∥∇
(
�n+1
p + �n−1

p

)
∥2p.

Summing this from n = 1 to n = N − 1 and rearranging terms yields

ℰN + ℰN−1 +Δt(AN +AN−1) + Δt

N−1∑

n=1

ℬn +ΔtCN−1/2

≤ℰ1 + ℰ0 +Δt(A1 +A0) + ΔtC1/2

+Δt
N−1∑

n=1

{
4C2

P,f

�

∥∥∥∥∥
�n+1
f − �n−1

f

2Δt

∥∥∥∥∥

2

f

+
4C2

P,pS
2
0

kmin

∥∥∥∥∥
�n+1
p − �n−1

p

2Δt

∥∥∥∥∥

2

p

+C0

∥∥∥∥u
n+1
t − un+1 − un−1

2Δt

∥∥∥∥
2

f

+ C0

∥∥∥∥�
n+1
t − �n+1 − �n−1

2Δt

∥∥∥∥
2

p

+C0

(
∥∇�n+1

f ∥2f + ∥∇�nf ∥2f + ∥∇�n+1
p ∥2p + ∥∇�np ∥2p

)

+C0

(
∥∇(un+1 − un)∥2f + ∥∇(�n+1 − �n)∥2p

)

+
�

4
∥∇
(
�n+1
f + �n−1

f

)
∥2f +

kmin

4
∥∇
(
�n+1
p + �n−1

p

)
∥2p

}
.
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Similar to Theorem 2, we can prove that

ℰN + ℰN−1 +Δt(AN +AN−1) + Δt

N−1∑

n=1

ℬn +ΔtCN−1/2

≥ 1

4

(
∥�Nf ∥2f + ∥�N−1

f ∥2f + S0∥�Np ∥2p + S0∥�N−1
p ∥2p

)

+
Δt

2

N−1∑

n=1

(
�∥∇

(
�n+1
f + �n−1

f

)
∥2f + kmin∥∇

(
�n+1
p + �n−1

p

)
∥2p
)
.

Thus,

1

4

(
∥�Nf ∥2f + ∥�N−1

f ∥2f + S0∥�Np ∥2p + S0∥�N−1
p ∥2p

)

+
Δt

4

N−1∑

n=1

(
�∥∇

(
�n+1
f + �n−1

f

)
∥2f + kmin∥∇

(
�n+1
p + �n−1

p

)
∥2p
)

≤ ℰ1 + ℰ0 +Δt(A1 +A0) + ΔtC1/2

+ Δt

N−1∑

n=1

{
4C2

P,f

�

∥∥∥∥∥
�n+1
f − �n−1

f

2Δt

∥∥∥∥∥

2

f

+
4C2

P,pS
2
0

kmin

∥∥∥∥∥
�n+1
p − �n−1

p

2Δt

∥∥∥∥∥

2

p

+ C0

∥∥∥∥u
n+1
t − un+1 − un−1

2Δt

∥∥∥∥
2

f

+ C0

∥∥∥∥�
n+1
t − �n+1 − �n−1

2Δt

∥∥∥∥
2

p

+ C0

(
∥∇�n+1

f ∥2f + ∥∇�nf ∥2f + ∥∇�n+1
p ∥2p + ∥∇�np ∥2p

)

+ C0

(
∥∇(un+1 − un)∥2f + ∥∇(�n+1 − �n)∥2p

)
}
.

(4.11)

The terms on the right hand side of (4.11) can be bounded as below

ℰ1 + ℰ0 +Δt(A1 +A0) + ΔtC1/2

≤
∥∥�1f
∥∥2
f
+
∥∥�0f
∥∥2
f
+ S0

∥∥�1p
∥∥2
p
+ S0

∥∥�0p
∥∥2
p
+
∥∥u1 − u1ℎ

∥∥2
f

+
∥∥u0 − u0ℎ

∥∥2
f
+ S0

∥∥�1 − �1ℎ
∥∥2
p
+ S0

∥∥�0 − �0ℎ
∥∥2
p

+C0Δt

(
∥∥∇�1f

∥∥2
f
+
∥∥∇�0f

∥∥2
f
+
∥∥∇�1p

∥∥2
p
+
∥∥∇�0p

∥∥2
p
+
∥∥∇
(
u1 − u1ℎ

)∥∥2
f

+
∥∥∇
(
u0 − u0ℎ

)∥∥2
f
+
∥∥∇
(
�1 − �1ℎ

)∥∥2
p
+
∥∥∇
(
�0 − �0ℎ

)∥∥2
p

)

≤
∥∥u1 − u1ℎ

∥∥2
f
+
∥∥u0 − u0ℎ

∥∥2
f
+ S0

∥∥�1 − �1ℎ
∥∥2
p
+ S0

∥∥�0 − �0ℎ
∥∥2
p

+C0Δt

(∥∥∇
(
u1 − u1ℎ

)∥∥2
f
+
∥∥∇
(
u0 − u0ℎ

)∥∥2
f
+
∥∥∇
(
�1 − �1ℎ

)∥∥2
p

+
∥∥∇
(
�0 − �0ℎ

)∥∥2
p

)
+C0

(
max

n=0,...,N

∥∥∇�nf
∥∥2
f
+ max

n=0,...,N

∥∥∇�np
∥∥2
p

)

(4.12)
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≤
∥∥u1 − u1ℎ

∥∥2
f
+
∥∥u0 − u0ℎ

∥∥2
f
+ S0

∥∥�1 − �1ℎ
∥∥2
p
+ S0

∥∥�0 − �0ℎ
∥∥2
p

+C0Δt

(∥∥∇
(
u1 − u1ℎ

)∥∥2
f
+
∥∥∇
(
u0 − u0ℎ

)∥∥2
f
+
∥∥∇
(
�1 − �1ℎ

)∥∥2
p
+
∥∥∇
(
�0 − �0ℎ

)∥∥2
p

)

+C0ℎ
2k

(
∥∣u∣∥2L∞(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L∞(0,T ;Hk+1(Ωp))

)
,

also

Δt
N−1∑

n=1

{
4C2

P

�

∥∥∥∥∥
�n+1
f − �n−1

f

2Δt

∥∥∥∥∥

2

f

+
4C2

PS
2
0

kmin

∥∥∥∥∥
�n+1
p − �n−1

p

2Δt

∥∥∥∥∥

2

p

}
(4.13)

≤ C0

(∫ tN

0

∥�f,t∥2fdt+
∫ tN

0

∥�p,t∥2pdt
)

≤ C0

(
∥�f,t∥2L2(0,T ;L2(Ωf ))

+ ∥�p,t∥2L2(0,T ;L2(Ωp))

)

≤ C0ℎ
2k+2

(
∥ut∥2L2(0,T ;Hk+1(Ωf ))

+ ∥�t∥2L2(0,T ;Hk+1(Ωp))

)
,

and

Δt

N−1∑

n=1

(
C0

∥∥∥∥u
n+1
t − un+1 − un−1

2Δt

∥∥∥∥
2

f

+ C0

∥∥∥∥�
n+1
t − �n+1 − �n−1

2Δt

∥∥∥∥
2

p

)

≤ C0Δt
2

(∫ tN

0

∥utt∥2fdt+
∫ tN

0

∥�tt∥2pdt
)

(4.14)

≤ C0Δt
2
(
∥utt∥2L2(0,T ;L2(Ωf ))

+ ∥�tt∥2L2(0,T ;L2(Ωp))

)
.

Furthermore

Δt

N−1∑

n=1

(
∥∇(un+1 − un)∥2f + ∥∇(�n+1 − �n)∥2p

)

≤ Δt2

(∫ tN

0

∥ut∥2H1(Ωf )
dt+

∫ tN

0

∥�t∥2H1(Ωp)
dt

)
(4.15)

≤ Δt2
(
∥ut∥2L2(0,T ;H1(Ωf ))

+ ∥�t∥2L2(0,T ;H1(Ωp))

)
,

and

Δt
N−1∑

n=1

(
∥∇�n+1

f ∥2f + ∥∇�nf ∥2f + ∥∇�n+1
p ∥2p + ∥∇�np ∥2p

)

≤ C0Δt

N∑

n=0

ℎ2k
(
∥un∥2Hk+1(Ωf )

+ ∥�n∥2Hk+1(Ωp)

)
(4.16)

≤ C0ℎ
2k
(
∥∣u∣∥2L2(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L2(0,T ;Hk+1(Ωp))

)
.
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Combining (4.11)–(4.16), there follows

1

4

(
∥�Nf ∥2f + ∥�N−1

f ∥2f + S0∥�Np ∥2p + S0∥�N−1
p ∥2p

)
(4.17)

+
Δt

4

N−1∑

n=1

(
�∥∇

(
�n+1
f + �n−1

f

)
∥2f + kmin∥∇

(
�n+1
p + �n−1

p

)
∥2p
)

≤
∥∥u1 − u1ℎ

∥∥2
f
+
∥∥u0 − u0ℎ

∥∥2
f
+ S0

∥∥�1 − �1ℎ
∥∥2
p
+ S0

∥∥�0 − �0ℎ
∥∥2
p

+C0Δt
(∥∥∇

(
u1 − u1ℎ

)∥∥2
f
+
∥∥∇
(
u0 − u0ℎ

)∥∥2
f
+
∥∥∇
(
�1 − �1ℎ

)∥∥2
p
+
∥∥∇
(
�0 − �0ℎ

)∥∥2
p

)

+C0ℎ
2k
(
∥∣u∣∥2L∞(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L∞(0,T ;Hk+1(Ωp))

)

+C0ℎ
2k+2

(
∥ut∥2L2(0,T ;Hk+1(Ωf ))

+ ∥�t∥2L2(0,T ;Hk+1(Ωp))

)

+C0Δt
2
(
∥utt∥2L2(0,T ;L2(Ωf ))

+ ∥�tt∥2L2(0,T ;L2(Ωp))

)

+Δt2
(
∥ut∥2L2(0,T ;H1(Ωf ))

+ ∥�t∥2L2(0,T ;H1(Ωp))

)

+C0ℎ
2k
(
∥∣u∣∥2L2(0,T ;Hk+1(Ωf ))

+ ∥∣�∣∥2L2(0,T ;Hk+1(Ωp))

)
.

The estimate given in (4.3) follows from the triangle inequality and (4.17) with the
notice that the upcoming new terms are already contained in the right hand side
of the model. □

If u and � satisfy (4.1) with T = ∞, we have the following asymptotic estimate

Corollary 1. Consider BELF method (3.2). Under the assumptions of Theorem 4
with k = 1 and T = ∞, suppose that the first two time steps are first-order accurate.
Also suppose that (Xℎ

f , Q
ℎ
f ) is given by P2-P1 Taylor-Hood approximation elements

and Xℎ
p is P2 finite element. Then, there is a positive constant C0 such that

sup
1≤N≤∞

{
∥eNf ∥2f + ∥eN−1

f ∥2f + S0∥eNp ∥2p + S0∥eN−1
p ∥2p

}
≤ C0((Δt)

2 + ℎ2).

5. Numerical Experiments

We present numerical experiments to test the algorithms presented herein. First,
using the exact solutions introduced in [MZ10], we confirm the predicted conver-
gence rates from the theory. Second, we will look at errors over longer time intervals
and small values of kmin to see the asymptotic stability of our proposed methods
for kmin smaller than covered by the theory. The code was implemented using the
software package FreeFEM++ [HP].

5.1. Test 1. For the first test we select the velocity and pressure field given in
[MZ10]. Let the domain Ω be composed of Ωf = (0, 1)×(1, 2) and Ωp = (0, 1)×(0, 1)
with the interface Γ = (0, 1)× {1}. The exact velocity field is given by

u1(x, y, t) = (x2(y − 1)2 + y) cos t ,

u2(x, y, t) =

(
−2

3
x(y − 1)3 + 2− � sin(�x)

)
cos t ,

p(x, y, t) = (2− � sin(�x)) sin
(�
2
y
)
cos t ,

�(x, y, t) = (2− � sin(�x))(1 − y − cos(�y)) cos t.
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We take the time interval 0 ≤ t ≤ 3 and all the physical parameters �, �, g, �,K, S0

and � are simply set to 1. We utilize Taylor-Hood P2-P1 finite elements for the
Stokes equations and continuous piecewise quadratic finite element for the Darcy
equation. The boundary condition on the problem is inhomogeneous Dirichlet:
uℎ = uexact on ∂Ω. The initial data and source terms are chosen to correspond
the exact solution.

For convenience, we denote ∥.∥∞ = ∥.∥L∞(0,T ;L2(Ωf∣p)) and ∥.∥2 = ∥.∥L2(0,T ;L2(Ωf∣p)).
The errors and rates of convergence are presented below in Table 1 and 2.

ℎ ∥u−uℎ∥∞ ∥∇u−∇uℎ∥2 ∥∇⋅(p−pℎ)∥∞ ∥�−�ℎ∥∞ ∥∇�−∇�ℎ∥2
1/5 3.565e-3 1.230e-1 1.179e+0 1.142e-2 2.050e-1
1/10 1.814e-3 3.563e-2 5.774-1 5.760e-3 6.172e-2
1/20 9.113e-4 1.359e-2 3.127e-1 2.891e-3 2.42e-2
1/40 4.56e-4 6.166e-3 1.408e-1 1.448e-3 1.125e-2
1/80 2.280e-4 2.989e-3 6.979e-2 7.248e-4 5.506e-3

Table 1. The convergence performance for BEFE method. The
time step Δt is set to be equal to mesh size ℎ.

ℎ ∥u−uℎ∥∞ ∥∇u−∇uℎ∥2 ∥∇⋅(p−pℎ)∥∞ ∥�−�ℎ∥∞ ∥∇�−∇�ℎ∥2
1/5 4.484e-3 1.176e-1 1.234e+0 1.210e-2 1.937e-1
1/10 1.947e-3 3.680e-2 5.930e-1 6.038e-2 6.121e-2
1/20 9.805e-4 1.481e-2 3.356e-1 3.026e-3 2.451e-2
1/40 4.922e-4 6.883e-3 1.461e-1 1.515e-3 1.146e-2
1/80 2.467e-4 3.367e-3 7.260e-2 7.578e-4 5.615e-3

Table 2. The convergence performance for BELF method. The
time step Δt is set to be equal to mesh size ℎ.

From the tables, we see that the rates of convergence of both algorithms confirm
the predicted convergence rates from theory, that BEFE and BELF are first order
methods. Indeed, using linear regression, the errors in Table 1 satisfy

∥u− uℎ∥∞ ≈ 0.0177 ℎ0.9926, ∥∇u−∇uℎ∥2 ≈ 0.8564 ℎ1.3256,

∥∇ ⋅ (p− pℎ)∥∞ ≈ 6.1617 ℎ1.0190, ∥�− �ℎ∥∞ ≈ 0.0568 ℎ0.9946,

∥∇�−∇�ℎ∥2 ≈ 1.3574 ℎ1.2891.

The errors in Table 2 satisfy

∥u− uℎ∥∞ ≈ 0.0224 ℎ1.0352, ∥∇u−∇uℎ∥2 ≈ 0.7638 ℎ1.2672,

∥∇ ⋅ (p− pℎ)∥∞ ≈ 6.4491 ℎ1.0194, ∥�− �ℎ∥∞ ≈ 0.0603 ℎ0.9988,

∥∇�−∇�ℎ∥2 ≈ 1.2534 ℎ1.2634.

The performance of numerical methods we studied herein is also compared with the
monolithic, uncoupled implicit method. Using the same test problem, the errors
∥u−uℎ∥∞+∥�−�ℎ∥∞ produced by three methods (Fully coupled Backward Euler,
BEFE and BELF) are shown in Table 3.
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ℎ Fully uncoupled implicit method BEFE BELF
1/5 9.305e-3 1.499e-2 1.658e-2
1/10 2.083e-3 7.574e-3 7.985e-3
1/20 9.604-4 3.802e-3 4.007e-3
1/40 4.797e-4 1.904e-3 2.007e-3
1/80 2.463e-4 9.528e-4 1.005e-3

Table 3. Errors ∥u − uℎ∥∞ + ∥� − �ℎ∥∞ of the fully coupled
implicit method, BEFE and BELF.

Next we take the source terms ff ≡ 0, fp ≡ 0 and the same initial condition

u1(x, y, 0) = (x2(y − 1)2 + y) ,

u2(x, y, 0) =

(
−2

3
x(y − 1)3 + 2− � sin(�x)

)
,

p(x, y, 0) = (2 − � sin(�x)) sin
(�
2
y
)
,

�(x, y, 0) = (2− � sin(�x))(1 − y − cos(�y)).

We take ℎ = 1
20 , Δt =

1
20 and compute En = ∥unℎ∥2f+∥�nℎ∥2p using all three methods,

then plot the graphs of En versus n. We note that all three graphs predict that
En → 0 as tn → ∞, which is completely consistent with our theoretical results
when ff , fp ≡ 0.
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Figure 1. The decay of energy with time for different methods.

5.2. Test 2. Stokes-Darcy flows with very small hydraulic conductivity tensor K
are of special interest in some applications, see [DQV07]. We test herein and com-
pare the performance of our two proposed methods with that of the fully implicit
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method for such flows. In the following numerical experiment, we keep all initial
condition, boundary condition, source data and parameters unchanged from the
last test, except kmin now is set to be 10−6 and final time T is switched to 5.0, for
a clearer representation of behavior of En over a longer time. The mesh size ℎ is
1/10 and the graphs showing energy En versus n are plotted below in four different
time steps Δt = 1/5, 1/8, 1/10, 1/20.
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Figure 2. A comparison of En’s computed using three different
methods: BEFE, BELF and Coupled Backward Euler with � = 1
and kmin = 10−6.
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Figure 3. A zoom into the graphs in Figure 2 with Δt = 1/10 and 1/20.
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We observe that the fully implicit method is stable with no restriction on Δt.
However, BELF and BEFE are already as stable as the implicit method for Δt =
1/10, which is a very mild constraint and far larger than predicted by the theory.
For clarity, Figure 3 shows a zoom into the graphs in cases that all three methods
are stable, i.e.., Δt = 1/10 and 1/20.

Finally, we repeat the above experiment with � and kmin set to be 10−1 and
10−6 correspondingly. We present visualization of the results for various values of
Δt, purposely chosen to show the difference of the studied methods.
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Figure 4. A comparison of En’s computed using three different
methods: BEFE, BELF and Coupled Backward Euler with � =
10−1 and kmin = 10−6.
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We see that the fully coupled Backward Euler method is the most stable, followed
by BELF and then BEFE, as expected. We also note that BELF is already stable for
Δt = 1/30 and so is BEFE for Δt = 1/50, far better than the condition proposed in
the theory. The problem of finding optimal conditions for the asymptotic stability
of BEFE and BELF is thus an open question.

6. Conclusions

The evolutionary coupled Stokes-Darcy problem is a complex and high impact
problem for which detailed numerical analysis can have a direct impact on algo-
rithm development and solution strategies. Partitioned methods, which require
one (per sub domain) SPD solve per time step are very attractive in computational
complexity compared to monolithic methods (requiring one coupled, non symmetric
system of roughly double in size). However, because the coupling is exactly skew
symmetric, care must be taken in devising an appropriate uncoupling strategy. We
have analyzed two first order partitioned methods which are also comparable in
stability and accuracy to fully coupled, monolithic methods. Many open questions
remain such as higher order partitioned methods that are long time stable and
the precise behaviour of ΔtBEFE ,ΔtBELF with respect to the physical parameters
(which we have attempted to indicate but not optimize). The question of depen-
dence on physical parameters is important since many problems from motivating
applications arise with kmin small, S0 small, � small or in large but thin domains.
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