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Abstract. We consider an uncoupled, modular regularization algorithm for approximation of the Navier-Stokes
equations. The method is: Step 1: Advance the NSE one time step, Step 2: Regularize to obtain the approximation
at the new time level. Previous analysis of this approach has been for simple time stepping methods in Step 1 and
simple stabilizations in Step 2. In this report we extend the mathematical support for uncoupled, modular stabilization
to (i) the more complex and better performing BDF2 time discretization in Step 1, and (ii) more general (linear or
nonlinear) regularization operators in Step 2. We give a complete stability analysis, derive conditions on the Step 2
regularization operator for which the combination has good stabilization effects, characterize the numerical dissipation
induced by Step 2, prove an asymptotic error estimate incorporating the numerical error of the method used in Step 1
and the regularizations consistency error in Step 2 and provide numerical tests.

1. Introduction. This report continues the numerical analysis of modular, uncoupled stabiliza-
tion/regularization methods for (primarily under-resolved) flow problems, extending their analytical
foundation from one step Crank-Nicolson (CN) method and linear filtering in [18] to the multi-step
BDF2 time discretization and more general regularization operators herein. For Ω a polyhedral
domain in Rd, d = 2, 3, the fluid velocity u(x, t) and pressure p(x, t) satisfy:

ut + u · ∇u− ν4u+∇p = f(x, t) and ∇ · u = 0, in Ω× (0, T ],
u = 0 on ∂Ω and u(x, 0) = u0(x) in Ω.

The unavoidability of underresolved simulations has led to numerous regularizations and stabi-
lizations in Computational Fluid Dynamics. The idea of “evolve one time step then regularize” fits
well with the modular development of complex codes and with legacy codes. It was initiated by Boyd
[8], Fischer and Mullen [19], [34], and used by Dunca [13]. A numerical analysis of the stability,
dissipation and error behaviour in linear filter based stabilization of the Crank-Nicolson method with
finite element discretization was performed in [18], including effects of deconvolution and relaxation.
The case of backward Euler time discretization plus nonlinear filtering, and relaxation was considered
in [31]. Mathew et al. [33] pointed that this stabilization induces a new implicit time relaxation term
that acts to damp oscillations in marginally resolved scales. See also Section 5.3.3 in Garnier, Adams
and Sagaut [20] and Visbal and Rizzetta [47]. The connection to time relaxation links the methods
herein to work of Schochet and Tadmor [38], Roseneau [36], Adams, Kleiser, Leonard and Stolz [1],
[2], [3], [40], [42], [41], [43], Dunca [13], [14], [15] and Layton, Neda, Manica, Rebholz, Ervin and
Connors [30], [29], [17], [27], [12].

Let X = (H1
0 (Ω))d, Q = L2

0(Ω); we let Xh ⊂ X,Qh ⊂ Q denote velocity, pressure finite element
spaces satisfying the usual discrete inf-sup condition, see Section 2 for full details. Let Vh ⊂ Xh

denote the discretely divergence free subspace of Xh. We shall denote the regularization operator by
the, possibly nonlinear, map Gh : X → Vh; see Section 2 for examples of Gh(·).

Algorithm 1.1. [BDF2, Regularize, Relax for NSE]
Choose χ with 0 ≤ χ ≤ 1.
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Step 1 : Given unh, u
n−1
h find wn+1

h ∈ Xh, p
n+1
h ∈ Qh satisfying(

3wn+1
h −4unh+un−1

h

24t , vh

)
+ b∗(wn+1

h , wn+1
h , vh) + ν(∇wn+1

h ,∇vh)

−(pn+1
h ,∇ · vh) = (fn+1, vh), for all vh ∈ Xh,

(∇ · wn+1
h , qh) = 0, for all qh ∈ Qh.

(1.1)

Step 2 : Regularize wn+1
h to give Gh(wn+1

h ), and relax

un+1
h = (1− χ)wn+1

h + χGh(wn+1
h ). (1.2)

Step 1, without Step 2 of Algorithm 1.1 is the classical BDF2-FEM (finite element method)
discretization of the Navier-Stokes equations analyzed in [4] (under a small data condition) and
[16, 35, 48, 6]. The relaxation in (1.2) in Step 2 was introduced by Fischer and Mullen in [19], [34]
to keep numerical diffusion from blowing up as ∆t→ 0. If we denote the regularization error by

ε(u) := ‖u−Gh(u)‖

then the temporal consistency error of Algorithm 1.1 is O(∆t3 +χε(u)) which forecasts a global error
of O(∆t2 + χ

∆tε(u) + spatial FEM error). Attaining this forecasted error depends on the stability of
Algorithm 1.1. The key requirements for stability of Algorithm 1.1 from Section 3 are: 0 ≤ χ ≤ 1
and

(Gh(v), v) > 0 for all v 6= 0,

(v −Gh(v), Gh(v)) > 0 for all v 6= 0.
(1.3)

We give five examples of computationally attractive Gh(·) satisfying (1.3) in Section 2.1, and a
complete numerical analysis of Algorithm 1.1 for general Gh(·) satisfying (1.3). Section 5 presents
extensive tests of Algorithm 1.1 of underresolved flows.

2. Preliminaries. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). The
Lp(Ω) and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p

, respectively and the semi-
norm by | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω), and ‖ · ‖k denotes the norm in
Hk. The space H−k denotes the dual space of Hk

0 . For functions v(x, t) defined on the entire time
interval (0, T ), we define (1 ≤ m <∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k , and ‖v‖m,k :=
(∫ T

0

‖v(t, ·)‖mk dt
)1/m

.

We shall assume that the solution to the NSE that is approximated is a strong solution and in
particular satisfies

u ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) ∩ L4(0, T ;X), (2.1)

p ∈ L2(0, T ;Q), ut ∈ L2(0, T ;X∗) , (2.2)

and

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) ∀v ∈ X, (2.3)
(∇ · u, q) = 0 ∀q ∈ Q. (2.4)

We take

X := (H1
0 (Ω))d, Q := L2

0(Ω).
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We use as the norm on X the H1 seminorm which, because of the boundary condition, is a norm,
i.e. for v ∈ X, ‖v‖X := ‖∇v‖L2 . The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

We shall denote conforming velocity, pressure finite element spaces based on an edge to edge trian-
gulations of Ω (with maximum triangle diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We shall assume that (Xh, Qh) satisfy the usual inf-sup condition necessary for the stability of the
pressure, e.g. [21, 22] and that the usual approximation properties of piecewise polynomials of degree
k, k − 1 hold for (Xh, Qh). The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

Taylor-Hood elements (see e.g. [9, 21]) are one common example of such a choice with k = 2 for
(Xh, Qh), and are also the elements we use in our numerical experiments. Define the usual explicitly
skew symmetrized trilinear form

b∗(u, v, w) :=
1
2

(u · ∇v, w)− 1
2

(u · ∇w, v).

To set notation, let

tn = n∆t, n = 0, 1, 2, . . . , NT , T := NT∆t, and dtf
n :=

f(tn)− f(tn−1)
4t

.

Introduce the following discrete norms

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k, ‖|v|‖m,k :=
(

∆t
NT∑
n=0

‖vn‖mk
)1/m

.

Proposition 2.1. Under assumptions (1.3), the regularization map Gh satisfies additionally:
for all v ∈ X

0 < (v −Gh(v), v), v 6= 0, (2.5)
(Gh(v), v) ≤ ‖v‖2, (2.6)
(v −Gh(v), v) ≤ ‖v‖2. (2.7)

Proof. For all v ∈ X we have that

(v −Gh(v), v) = ‖v −Gh(v)‖2 + (v −Gh(v), Gh(v)) ≥ (v −Gh(v), Gh(v))

and (2.5) follows immediately from (1.3). To prove the second claim, note that

(Gh(v), v) = ‖v‖2 − (v −Gh(v), v)

and use (2.5). Finally, by (1.3) we obtain

(v −Gh(v), v) = ‖v‖2 − (Gh(v), v) ≤ ‖v‖2.
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The work of computing the action of a general, nonlinear regularization operator G(φ) can be
considerable.

Assumption 2.2. We shall thus restrict Gh(·) to be semilinear, i.e.,

Gh(φ) = Gh(φ)φ

where ∀w ∈ X,Gh(w) ∈ L(Vh, Vh) is a linear and continuous operator.
This restriction means, given φ̂, computing the action φ → Gh(φ̂)φ (even for φ̂ = φ) requires

linear work. This restriction includes the case of Gh(·) being fixed linear operator (e.g. a linear filter)
and also plays a key role in the error analysis.

In the remainder we impose, instead of the positivity condition (1.3), the following related uniform
positivity assumption.

Assumption 2.3. For any w ∈ X, the linear operator Gh(w) ∈ L(Vh, Vh) satisfies

(Gh(w)φ, φ) > 0 for all φ 6= 0, (2.8)
(φ− Gh(w)φ,Gh(w)φ) > 0 for all φ 6= 0. (2.9)

Clearly Assumption 2.3 implies (1.3), and for linear regularizations they are equivalent. Following
the proof of Proposition 2.1, we note that, under Assumption 2.3, Gh(w) is non-expansive and

0 < ((I − Gh(w))v, v) ≤ ‖v‖2 for all v 6= 0. (2.10)

2.1. Examples of Regularization Operators. We collect several regularizations studied pre-
viously. Here δ > 0 denotes a regularization length scale and φ ∈ L2(Ω).
1. Discrete differential filter. The discrete differential filter Gh : L2(Ω) → Xh, is given as Gh(φ) :=
φh, where φh ∈ Xh is the unique solution of

δ2(∇φh,∇vh) + (φh, vh) = (φ, vh) ∀vh ∈ Xh. (2.11)

2. Discrete Stokes differential filter. The discrete Stokes differential filter is often necessary to pre-
serve discrete incompressibility. Gh : X∗ → Xh, and φh = Gh(φ) where (φh, ρ) ∈ Xh × Qh is the
unique solution of

δ2(∇φh,∇vh) + (φh, vh)− (ρ,∇ · vh) = (φ, vh) ∀vh ∈ Xh,

(∇ · φh, q) = 0 ∀q ∈ Qh.
(2.12)

The choices (2.11) and (2.12) of Gh satisfy (1.3), with regularization error (e.g. Lemma 2.1 in
[18])

ε(φ) + δ2‖∇(φ−Gh(φ))‖2 ≤ C inf
vh∈Vh

{
δ2‖∇(φ− vh)‖2 + ‖φ− vh‖2

}
+ Cδ4‖∆φ‖2.

3. Nonlinear filters. Select a smooth function a : X → R, a = a(φ,∇φ, · · · ) (denoted by a(φ)) with
the properties

0 < amin ≤ a(φ) ≤ 1 for any φ ∈ V,

see [31] for examples of such a(·). Define Gh(φ) := φh as the unique solution of: find (φh, λh) ∈
Xh ×Qh satisfying

(δ2a(φ)∇φh,∇vh) + (φ
h
, vh)− (λh,∇ · vh) = (φ, vh) ∀vh ∈ Xh , (2.13)

(∇ · φh, q) = 0 ∀q ∈ Qh. (2.14)
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Note that φh := Gh(φ) = Gh(φ)φ, where the linear and continuous operator Gh(w)φ := φ̃ is the
unique solution (φ̃h, λh) ∈ Xh ×Qh of

(δ2a(w)∇φ̃h,∇vh) + (φ̃h, vh)− (λh,∇ · vh) = (φ, vh) ∀vh ∈ Xh , (2.15)

(∇ · φ̃h, q) = 0 ∀q ∈ Qh. (2.16)

Lemma 2.4. Let Gh(·) be the nonlinear filter (2.13)-(2.14). Assumption 2.3 holds. Thus (1.3)
holds as well: for all φ ∈ Vh we have

(Gh(φ), φ) > 0, and (Gh(w)φ, φ) > 0 for all w, φ 6= 0
(φ−Gh(φ), Gh(φ)) > 0, and (φ− Gh(w)φ,Gh(w)φ) > 0 for all w, φ 6= 0.

Proof. It is sufficient to prove that any w ∈ X,Gh(w) satisfies (2.8), (2.9). For vh ∈ Vh (2.15)-
(2.16) are equivalent to:

(δ2a(w)∇φ̃h,∇vh) + (φ̃h, vh) = (φ, vh) ∀vh ∈ Vh.

To prove the first assertion, set vh = φ̃h. We then have

(Gh(w)φ, φ) = (φ, φ̃h) =
∫

Ω

δ2a(w)|∇φ̃h|2 + |φ̃h|2.

For the second claim, note that

(φ− φ̃h, φ̃h) =
∫

Ω

δ2a(w)|∇φ̃h|2dx ≥ δ2amin‖∇φ̃h‖2.

This is positive for φ 6= 0. Indeed, if ‖∇φ̃h‖2 = 0, then φ̃h ≡ 0 (due to the zero boundary conditions)
and then (φ, vh) = 0 ∀vh ∈ Vh.

It has been shown in [31] that the nonlinear filter (2.13)-(2.14) has the following regularization
error.

Theorem 2.5. Let Xh, Qh satisfy the inf-sup condition and φ ∈ V . Then the discrete nonlinear
filter Gh(φ) given by (2.13)-(2.14) satisfies

ε(φ) +
∫

Ω

δ2a(φ)|∇(φ−Gh(φ))|2dx

≤ C infbφ∈Vh
{∫

Ω

δ2a(φ)|∇(φ− φ̂)|2dx+ ‖φ− φ̂‖2
}

+ Cδ4
max‖∇ · (a(φ)∇φ)‖2.

For the frozen nonlinearity discrete nonlinear filter (2.15)-(2.16): for any given wh ∈ Vh, we have
that for all φ ∈ V∫

Ω

δ2a(wh)|∇(φ− Gh(wh)φ)|2dx+ ‖φ− Gh(wh)φ‖2 (2.17)

≤C infbφ∈Vh
{∫

Ω

δ2a(wh)|∇(φ−φ̂)|2dx+‖φ−φ̂‖2
}

+Cδ2min{‖∇φ‖2, δ2‖∇·(a(wh)∇φ)‖2}.

4. Modular VMS methods. Let XH ⊂ Xh, QH ⊂ Qh denote subspaces of the velocity-pressure FEM
spaces associated typically with either lower degree polynomials on the same mesh or the same finite
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element spaces on a coarser mesh. Define PH : ∇Xh → ∇XH to be the L2 projection operator.
Let νT be a bounded, positive, elementwise constant, eddy viscosity parametrization and δ > 0 the
filter lengthscale. The modular VMS regularization operator introduced in [32] is the linear operator
Gh(φ) = φ ∈ Vh, the solution of

(νT [I − PH ]∇φ, [I − PH ]∇vh) + (φ, vh) = (φ, vh) for all vh ∈ Vh. (2.18)

Lemma 2.6. Gh(·), defined by (2.18), satisfies (1.3): for all φ ∈ Xh

(Gh(φ), φ) > 0 and (φ−Gh(φ), Gh(φ)) ≥ 0.

Proof. The proof is similar to the Lemma 2.4. For the first claim set vh = φ in (2.18). For the second
claim set vh = φ again. We have

(φ− φ, φ) =
∫

Ω

νT |[I − PH ]∇φ|2dx ≥ 0. �

Note that ∇φ is the L2 projection into ∇XH , thus provided φ ∈ H2(Ω)

ε(φ) = ‖φ−Gh(φ)‖ ≤ CH‖∇φ‖.

5. Approximate Deconvolution. One rich source of high accuracy regularization operators is ap-
proximate deconvolution of a filter Fh. (such as the filters in examples 1 and 2). The van Cittert
deconvolution operator is defined using powers of (I − Fh) as follows.

Definition 2.7 (Discrete van Cittert deconvolution). Let φ = Fh(φ) be a linear filter satisfying
Assumption 2.3. Then the N th discrete van Cittert operator is:

DN
h φ :=

N∑
n=0

(I − Fh)nφ.

We then define Gh(φ) = DN
h φ. In [18] the conditions (1.3) were proven for Fh being the discrete

Stokes filter.
Lemma 2.8. We have DN

h : Vh → Vh and for all φ ∈ Vh

(DN
h (φ), φ) > 0 and (φ−DN

h (φ), DN
h (φ)) > 0 if φ 6= 0,

‖DN
h (φ)‖ ≤ ‖φ‖ and ‖φ−DN

h (φ)‖ ≤ ‖φ‖.

Proof. Using the symmetry and linearity of Fh, and Assumption 2.3 for Fh, we have

(DN
h (φ), φ)=

[N2 −1]∑
i=0

([
(I − Fh)2i + (I − Fh)2i+1

]
(φ), φ

)
+(1−2{N2 })

(
(I−Fh)N (φ), φ

)

=
[N2 −1]∑
i=0

(
2((I − Fh)(I − Fh)iφ, Fh(I − Fh)iφ) + ‖Fh(I − Fh)iφ‖2

)
+ (1− 2{N2 })

(
Fh(I − Fh)[N2 ]φ, (I − Fh)[N2 ]φ

)
> 0.

To prove the second estimate, we note first that φ−DN
h (φ) = (I − Fh)N+1φ, and therefore

(φ−DN
h (φ), DN

h (φ))

=
[N2 −1]∑
i=0

([
(I−Fh)2i+N+1+(I−Fh)2i+N+2

]
(φ),φ

)
+(1−2{N2 })

(
(I−Fh)2N+1(φ),φ

)
>0.
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The last two estimates follow as in the proof of Proposition 2.1. (See also [18] and Stanculescu [39].)
We also use the following from [29].

Lemma 2.9. For smooth φ the discrete N th order discrete approximate deconvolution regulariza-
tion operator satisfies for 0 ≤ s ≤ N

ε(φ)=‖φ−DN
h (φ)‖ ≤ C1 δ

2s+2 ‖φ‖H2s+2 + C2

(
δhk + hk+1

)N+1∑
n=1

|Fnh (φ)|k+1. (2.19)

The dependence of the |Fnh (φ)|k+1 terms in (2.19) upon the filter radius δ, for a general smooth
function φ, is not fully understood. In the case of φ periodic the |Fnh (φ)|k+1 are independent of δ.
Also, for φ satisfying homogeneous Dirichlet boundary conditions, with the additional property that
∆jφ = 0 on ∂Ω for 0 ≤ j ≤

[
k+1

2

]
− 1, the |Fnh (φ)|k+1 are also independent of δ, see [29], [28].

The Taylor-Hood elements are a common choice for (Xh, Qh) and correspond to k = 2 in (2.19).
For these we have the following corollary.

Corollary 2.10. Suppose φ ∈ H1
0 (Ω) ∩H4(Ω). Suppose the order of deconvolution is N = 1

and (Xh, Qh) are chosen to be the Taylor-Hood elements. We have

ε(φ) = ‖φ − DN
h (φ)‖ ≤ C1 δ

3‖φ‖3 + C2

(
δh2 + h3

)
‖φ‖3. (2.20)

Proof. This follows from Lemma 2.9 by taking s = 1/2, k = 2, N = 1 and thus
[
k+1

2

]
− 1 = 0.

We have then ‖φ‖3 ≤ C‖φ‖3 with uniform constant.
Motivated by the above result for Hood-Taylor elements, in the (even) higher order case we will

make the following assumption in the convergence analysis.
Assumption DG1: Let DN

h (·) be the van Cittert regularization operator. For some α, 0 <
α ≤ N

ε(φ) = ‖φ − DN
h (φ)‖ ≤ C1 δ

2α+2 ‖φ‖H2α+2 + C2

(
δhk + hk+1

)
‖φ‖k+1. (2.21)

3. Stability of Algorithm 1.1. We prove an energy equality, unconditional stability and give
the precise formula for the numerical dissipation induced by the regularization operator in Step 2 of
Algorithm 1.1. We begin the stability analysis with an algebraic identity.

Lemma 3.1. [18, 31] Assume χ ∈ [0, 1] and let uh = (1− χ)wh + χGh(wh). Then

‖wh‖2−‖uh‖2 = χ(2−χ)
(
wh −Gh(wh), wh

)
+ χ2

(
wh −Gh(wh), Gh(wh)

)
,

‖wh‖2−‖uh‖2 = −‖uh − wh‖2 + 2χ
(
wh −Gh(wh), wh

)
. (3.1)

Proof. The proof is the same as in the case where Gh is a linear operator in [18, 31].
Definition 3.2. Let ∦ · ∦χ,h denote the following functional (non-negative by Assumptions (1.3)

and Proposition 2.1)

∦ v ∦2
χ,h=

(
(1− χ)v + χGh(v), χ(v −Gh(v)

)
, for all v ∈ Xh.

While not a norm when Gh(·) is a nonlinear regularization, for Gh an SPD linear operator, ∦ · ∦χ,h
is a weighted norm on Xh.

Proposition 3.3. [Stability ] Suppose that Assumption 2.3 holds. Then the Algorithm 1.1 satis-
fies the energy equality
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1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − unh‖2 + ∆t
n∑
j=1

∆t3

4

∥∥∥uj+1
h − 2ujh + uj−1

h

∆t2

∥∥∥2

+ ∆t
n∑
j=1

3χ
2∆t

(wn+1
h −Gh(wn+1

h ), wn+1
h ) +

1
4

∦ wn+1
h ∦2

χ,h +
1
4

∦ 2wn+1
h − wnh ∦2

χ,h

+ ∆t
n∑
j=1

∆t3

4
∦
wj+1
h − 2wjh + wj−1

h

∆t2
∦2
χ,h +ν∆t

n∑
j=1

‖∇wn+1
h ‖2

=
1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 + ∆t

n∑
j=1

(f j+1, wj+1
h ),

and the stability bound

1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − unh‖2 + ∆t
n∑
j=1

∆t3

4

∥∥∥uj+1
h − 2ujh + uj−1

h

∆t2

∥∥∥2

+ ∆t
n∑
j=1

3χ
2∆t

(wj+1
h −Gh(wj+1

h ), wj+1
h ) +

1
4

∦ wn+1
h ∦2

χ,h +
1
4

∦ 2wn+1
h − wnh ∦2

χ,h

+ ∆t
n∑
j=1

∆t3

4
∦
wj+1
h − 2wjh + wj−1

h

∆t2
∦2
χ,h +

ν

2
∆t

n∑
j=1

‖∇wn+1
h ‖2

≤ 1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 +

∆t
2ν

n∑
j=1

‖f j+1‖2?.

Proof. In Step 1 in Algorithm 1.1 set vh = wn+1
h . Using the identity

1
4

[a2+ (2a− b)2]− 1
4

[b2+ (2b− c)2] +
1
4

(a−2b+c)2 =
1
2

(3a−4b+c)a, (3.2)

this gives

1
4∆t

(
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

)
− 1

4∆t
(
‖unh‖2 + ‖2unh − un−1

h ‖2
)

+
1

4∆t
‖un+1

h − 2unh + un−1
h ‖2 +

3
2∆t

(χ(wn+1
h −Gh(wn+1

h )), wn+1
h )

+
1

4∆t
(
∦ wn+1

h ∦2
χ,h + ∦ 2wn+1

h −wnh ∦2
χ,h

)
− 1

4∆t
(
∦ wnh ∦2

χ,h + ∦ 2wnh−wn−1
h ∦2

χ,h

)
+

1
4∆t

∦ wn+1
h −2wnh+wn−1

h ∦2
χ,h +ν‖∇wn+1

h ‖2

= (fn+1, wn+1
h ).
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Multiplying by ∆t and summing, with the assumption w0
h = w1

h = 0, we obtain the energy equality

1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − unh‖2 + ∆t
n∑
j=1

1
4∆t
‖uj+1

h − 2ujh + uj−1
h ‖2

+ ∆t
n∑
j=1

3χ
2∆t

(wn+1
h −Gh(wn+1

h ), wn+1
h ) +

1
4

∦ wn+1
h ∦2

χ,h +
1
4

∦ 2wn+1
h − wnh ∦2

χ,h

+ ∆t
n∑
j=1

1
4∆t

∦ wj+1
h − 2wjh + wj−1

h ∦2
χ,h +ν∆t

n∑
j=1

‖∇wn+1
h ‖2

=
1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 + ∆t

n∑
j=1

(f j+1, wj+1
h ).

Using the Cauchy-Schwarz-Young inequality on the right hand side and subsuming one term into the
LHS proves global stability.
Let denote

D+D−v
n−1 =

vn − 2vn−1 + vn−2

∆t2
.

The dissipation in Algorithm 1.1 is composed of the following terms in the energy equality:

Viscous / Molecular Dissipation:=ν‖∇wn+1
h ‖2,

Numerical Dissipation from Step 1:=
4t3

4

∥∥D+D−u
n
h

∥∥2

Numerical Dissipation from Step 2:=
3χ

2∆t
(wn+1

h −Gh(wn+1
h ), wn+1

h )+
4t3

4
∦ D+D−w

n
h ∦2.

4. Error Analysis of the Algorithm 1.1. In this section we present a detailed error analysis.
We first establish computability of the procedure.

Lemma 4.1. Assume χ ∈ [0, 1] and Assumptions 2.2, 2.3 hold. For Algorithm 1.1, wnh , u
n
h exist

at each time step.
Proof. The existence of a solution wnh to (1.1) follows from the Leray-Schauder Principle [49].

Specifically, with A : Vh → Vh, defined by y = A(w)

(y, v) := −2∆t
3
b∗(w,w, v)− 2∆t

3
ν(∇w,∇v) +

1
3

(4un−1
h − un−2

h , v) +
2∆t

3
(fn, v),

the operator A is compact and any solution of w = sA(w), for 0 ≤ s < 1, satisfies the bound ‖w‖ ≤ γ,
where γ is independent of s.

The existence and uniqueness of wnhh follows directly from the assumption on the well-posedness

of the regularization operator. The existence and uniqueness of unh follows from that for wnh and wnh
h

and the definition of Gh.
In order to establish the optimal asymptotic error estimates for the approximation we need to

assume that the true solution is more regular than that given by (2.1),(2.2).

u ∈ L∞(0,T ;W k+1
4 (Ω)) ∩H1(0,T ;Hk+1(Ω)) ∩H3(0,T ;L2(Ω)) ∩W 2

4(0,T ;H1(Ω)), (4.1)
p ∈ L∞(0, T ;Hs+1(Ω)) , and f ∈ H2(0, T ;L2(Ω)) . (4.2)

For clarity of presentation, we introduce the mesh dependent, nonnegative (energy dissipative) ho-
mogeneous weighted functionals

∦ v ∦2
χ,1:= (v − Gh(wnh)v, v), ∦ v ∦2

χ,2:= (v − Gh(wnh)v,Gh(wnh)v),

‖v‖2χ,3 := (v − Gh(wnh)v, v − Gh(wnh)v).
(4.3)
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These are defined on Xh, weighted by the computes wnh ; the dependence on wnh will be suppressed.
For the error between u(tn) and unh, and u(tn) and wnh , we have the following result.

Theorem 4.2. For u, p, and f as described by (4.1), (4.2), satisfying (2.3) - (2.4), and unh, wnh
given by Algorithm 1.1 we have that, for ∆t sufficiently small,

‖|u−uh|‖∞,0 ≤ F(∆t, h, χ) + Chk+1‖|u|‖∞,k+1 + C∆t2‖utt‖∞,0

+ C
(
1 +

χ

∆t
)(

∆t
n∑
j=2

[ε(uj)]2
) 1

2
, (4.4)

‖|u−wh|‖∞,0 ≤ F(∆t, h, χ) + Chk+1‖|u|‖∞,k+1 + C
(
1+

χ

∆t
)(

∆t
n∑
j=2

[ε(uj)]2
) 1

2
, (4.5)

χ(1−χ)‖u(tn)−wnh |‖χ,1+χ2‖u(tn)−wnh |‖χ,2 ≤ F(∆t, h, χ)+Chk+1‖|u|‖∞,k+1,(
∆t

n∑
j=2

(
∆t3‖D+D−(un−1−un−1

h )‖2+ν‖∇(un−wnh)‖2+
χ

∆t
‖un−wnh‖2χ,1

))
1/2

≤ F(∆t, h, χ) + C
(
1 +

χ

∆t
)(

∆t
n∑
j=2

[ε(uj)]2
) 1

2
,

for 2 ≤ n ≤ NT , where

F(∆t, h, χ) := C
(
‖u1−u1

h‖+ ‖2(u1−u1
h)− (u0−u0

h)‖
)

+ Cν−1/2
(
hk+1/2‖|u|‖24,k+1 + hk+1/2‖|∇u|‖24,0 + hs+1‖|p|‖2,s+1

)
+ C

(
hk+1 ‖ut‖2,k+1 + ν−1 hk‖|u|‖∞,k+1 +

χ

∆t
hk+1 ‖|u|‖2,k+1 + ∆t2‖uttt‖2,0

)
.

Remark 4.3 (The regularization error ε(u)).

1. For the nonlinear filter, the regularization error satisfies(
∆t

n∑
j=2

[ε(uj)]2
) 1

2 ≤ C(δhk + hk+1 + δ2 min{δ−1, ‖∇ · (a(wh)∇u)‖})‖|u|‖22,k+1.

2. For approximate deconvolution, provided u ∈L∞(0, T ;H2N+2(Ω)) for 2N + 2 ≥ k + 1,
under the assumption DG1, the regularization error satisfies(

∆t
n∑
j=2

[ε(uj)]2
) 1

2 ≤ C(δ2N+2 + δhk + hk+1)(‖|u|‖22,2N+2 + ‖|u|‖22,k+1).

Proof. [Proof of Theorem 4.2] At time tn = n∆t, u given by (2.3)-(2.4) satisfies(
3u(tn)−4u(tn−1)+u(tn−2), vh

)
+2∆tν(∇u(tn),∇vh)+2∆tb∗(u(tn), u(tn), vh)

− 2∆t(p(tn),∇ · vh) = 2∆t(f(tn), vh) + ∆tIntp(un; vh), (4.6)

for all vh ∈ Vh, where 1
2Intp(u

n; vh) is the local truncation error. Subtracting (1.1) from (4.6), we
have for εn = u(tn)− wnh , and the pointwise error en = u(tn)− unh, (recall that fn = f(tn))(

3εn − 4en−1 + en−2, vh
)

+ 2∆tν(∇εn,∇vh) = −2∆tb∗(εn, u(tn), vh) (4.7)
− 2∆tb∗(wnh , ε

n, vh) + 2∆t(p(tn)− pnh,∇ · vh) + ∆tIntp(un; vh),
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for all vh ∈ Vh.

Let Un ∈ Vh, εn = u(tn)−wnh = (u(tn)− Un) + (Un − wnh) := Λn +Fn, and en = u(tn)−unh =
(u(tn)− Un) + (Un − unh) := Λn + En. With the choice vh = Fn, using (∇ · Fn, qh) = 0,∀qh ∈ Qh,
and (3.2) we obtain

1
2
‖En‖2 +

1
2
‖2En − En−1‖2 − 1

2
‖En−1‖2 − 1

2
‖2En−1 − En−2‖2

+
1
2
‖En − 2En−1 + En−2‖2

+ 3(Fn − En, Fn) +
(
3En − 4En−1 + En−2, Fn − En

)
+ 2∆tν‖∇Fn‖2

= −
(
3Λn − 4Λn−1 + Λn−2, Fn

)
− 2∆tν(∇Λn,∇Fn)

− 2∆tb∗(Λn, u(tn), Fn)− 2∆tb∗(Fn, u(tn), Fn)− 2∆tb∗(wnh ,Λ
n, Fn)

+ 2∆t(p(tn)− pnh − qh,∇ · Fn) + ∆tIntp(un;Fn).

Summing for j = 2 to n yields

1
2
‖En‖2 +

1
2

∥∥2En − En−1
∥∥2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.8)

+3
n∑
j=2

(
F j−Ej , F j

)
+

n∑
j=2

(
3Ej−4Ej−1+Ej−2, F j − Ej

)
+2∆tν

n∑
j=2

‖∇F j‖2

=
1
2
‖E1‖2+ 1

2
‖2E1−E0‖2−

n∑
j=2

(
3Λj−4Λj−1+Λj−2, F j

)
−2∆tν

n∑
j=2

(∇Λj,∇F j)

−2∆t
n∑
j=2

b∗(Λj , u(tj), F j)−2∆t
n∑
j=2

b∗(F j , u(tj), F j)−2∆t
n∑
j=2

b∗(wjh,Λ
j , F j)

+ 2∆t
n∑
j=2

(p(tj)− pjh − qh,∇ · F
j) + ∆t

n∑
j=2

Intp(uj ;F j).

Next we estimate the terms on the RHS of (4.8).

(3Λj − 4Λj−1 + Λj−2, F j) = 2∆t
(3Λj − 4Λj−1 + Λj−2

2∆t
, F j

)
(4.9)

= 2∆t
(
Λt(tj), F j

)
≤ ∆t‖Λt(tj)‖2 + ∆t‖F j‖2,

2∆tν(∇Λj ,∇F j) ≤ ∆tν‖∇F j‖2 + ∆tν‖∇Λj‖2. (4.10)

Using b∗(u, v, w) ≤ C(Ω)
√
‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖, for u, v, w ∈ X, and Young’s inequality, we bound
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also

b∗(Λj , u(tj), F j) ≤ C
√
‖Λj‖ ‖∇Λj‖ ‖∇u(tj)‖ ‖∇F j‖

≤ ν

16
‖∇F j‖2 + Cν−1‖Λj‖‖∇Λj‖‖∇u(tj)‖2, (4.11)

b∗(F j , u(tj), F j) ≤ C‖F j‖1/2‖∇F j‖3/2‖∇u(tj)‖

≤ ν

16
‖∇F j‖2 + Cν−3‖∇u(tj)‖4‖F j‖2, (4.12)

b∗(wjh,Λ
j , F j) ≤ C‖∇wjh‖‖∇Λj‖‖∇F j‖

≤ ν

16
‖∇F j‖2 + Cν−1‖∇wjh‖

2‖∇Λj‖2, (4.13)

(p(tj)− pjh − qh,∇ · F
j) ≤ ‖p(tj)− pjh − qh‖‖∇ · F

j‖

≤ ν

16
‖∇F j‖2 + Cν−1 ‖p(tj)− pjh − qh‖

2. (4.14)

With the bounds (4.9)-(4.14), (4.8) becomes

1
2
‖En‖2 +

1
2
||2En − En−1||2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.15)

+ 3
n∑
j=2

(
F j−Ej , F j

)
+

n∑
j=2

(
3Ej−4Ej−1+Ej−2, F j − Ej

)
+

∆tν
2

n∑
j=2

‖∇F j‖2

≤ 1
2
‖E1‖2 +

1
2
||2E1 − E0||2 + ∆t

n∑
j=2

‖Λt(tj)‖2

+ C∆t
n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

)
‖F j‖2 + ∆tν

n∑
j=2

‖∇Λj‖2

+ Cν−1∆t
n∑
j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + Cν−1∆t
n∑
j=2

‖∇wjh‖
2‖∇Λj‖2

+ 2Cν−1∆t
n∑
j=2

‖p(tj)− pjh − qh‖
2 + ∆t

n∑
j=2

Intp(uj ;F j).

As unh and wnh are connected through Step 2 of Algorithm 1.1, we next use equation (1.2) to
obtain a relationship between ‖Fn‖ and ‖En‖. The true solution u(·, tn) = un satisfies

un = (1− χ)un + χGh(wnh)un + χ(un − Gh(wnh)un). (4.16)

Subtracting (1.2) evaluated at n from (4.16) yields

en = (1− χ)εn + χGh(wnh)εn + χ(un − Gh(wnh)un), (4.17)

and equivalently

En = (1− χ)Fn + χGh(wnh)Fn − χ(I − Gh(wnh))Λn + χ(I − Gh(wnh))un. (4.18)

Using the assumption (1.3) (χ ∈ [0, 1]) and (2.10), this implies

‖En‖ ≤ ‖Fn‖+ χ‖(I − Gh(wnh))Λn‖+ χ‖(I − Gh(wnh))un‖, (4.19)
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and squaring up and simplifying

‖En‖2 ≤ ‖Fn‖2 + ∆t‖Fn‖2 + 2χ2(1 + (∆t)−1)‖Λn − Gh(wnh)Λn‖2 (4.20)

+ 2χ2(1 + (∆t)−1)‖un − Gh(wnh)un‖2.

Note that by Cauchy-Schwarz inequality we have

1
2
‖Fn‖2 +

(
‖Fn‖2 − ‖En‖2

)
≤ 1

2
‖En‖2 + 3(Fn − En, Fn).

Then (4.20) and (4.15) yield

1
2
‖Fn‖2 +

1
2
||2En − En−1||2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.21)

+ 3
n−1∑
j=2

(
F j − Ej , F j

)
+

n∑
j=2

(
3Ej − 4Ej−1 + Ej−2, F j − Ej

)
+

∆tν
2

n∑
j=2

‖∇F j‖2

≤ ∆t‖Fn‖2 + 2χ2(1 + (∆t)−1)‖Λn−Gh(wnh)Λn‖2 + 2χ2(1 + (∆t)−1)‖un−Gh(wnh)un‖2

+
1
2
‖E1‖2 +

1
2
‖2E1 − E0‖2

+ ∆t
n∑
j=2

‖Λt(tj)‖2 + C∆t
n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

)
‖F j‖2 + ∆tν

n∑
j=2

‖∇Λj‖2

+ 2Cν−1∆t
n∑
j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + 2Cν−1∆t
n∑
j=2

‖∇wjh‖
2‖∇Λj‖2

+ 2Cν−1∆t
n∑
j=2

‖p(tj)− pjh − qh‖
2 + ∆t

n∑
j=2

Intp(uj ;F j).

Moreover, (4.18) yields

F j − Ej = χ(I − Gh(wnh))F j + χ(I − Gh(wnh))Λj − χ(I − Gh(wnh))uj

3Ej − 4Ej−1 + Ej−2 = (1− χ)(3F j − 4F j−1 + F j−2)

+ χGh(wnh)(3F j − 4F j−1 + F j−2)

− χ(I − Gh(wnh))(3Λj − 4Λj−1 + Λj−2)

+ χ(I − Gh(wnh))(3uj − 4uj−1 + uj−2).

Then using the identity (3.2), Cauchy-Schwarz, assumptions (2.8)-(2.9) (‖Gh(wjh)‖≤1, ‖I−Gh(wjh)‖≤
13



1), the assumption ‖F 1‖ = ‖2F 1 − F 0‖ = 0, the Minkowski inequality yields

3
n−1∑
j=2

(F j − Ej , F j) +
n∑
j=2

(3Ej − 4Ej−1 + Ej−2, F j − Ej)

≥ C1,χ,T −
χ2

2
‖Λn‖2χ,3 −

1
2
χ2‖2Λn −−Λn−1‖2χ,3

− χ2

2
‖un‖2χ,3 −

1
2
χ2‖2un − un−1‖2χ,3−

χ2

2
‖un − 2un−1 + un−2‖χ,3

−∆t
n∑
j=0

‖F j‖2 − C χ
2

∆t
(1 + χ)

n∑
j=2

‖(I − Gh(wjh))Λj‖2

− C∆t
(

1 + χ+
χ2

(∆t)2
+

χ3

(∆t)2
+

χ4

(∆t)2

) n∑
j=2

‖(I − Gh(wjh))uj‖2 (4.22)

where

C1,χ,T = 3χ
n−1∑
j=2

∦ F j ∦2
χ,1 +

(1− χ)χ
2

∦ Fn ∦2
χ,1 +

χ2

2
∦ Fn ∦2

χ,2 .

From (4.22) and (4.21) we obtain (use χ ∈ [0, 1], ∆t < 1, (2.7), (2.10) )

1
2
‖Fn‖2 + CT +

∆tν
2

n∑
j=2

‖∇F j‖2 (4.23)

≤ C0 + Cχ2(∆t)−1
n∑
j=2

‖Λj‖2 + C
(
1+χ2(∆t)−2

)
∆t

n∑
j=2

[ε(uj)]2

+ ∆t
n∑
j=2

‖Λt(tj)‖2 + C∆t
n∑
j=0

(
1 + ν−3‖∇u(tj)‖4

)
‖F j‖2 + ∆tν

n∑
j=2

‖∇Λj‖2

+ Cν−1∆t
n∑
j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + Cν−1∆t
n∑
j=2

‖∇wjh‖
2‖∇Λj‖2

+ Cν−1∆t
n∑
j=2

‖p(tj)− pjh − qh‖
2 + ∆t

n∑
j=2

Intp(uj ;F j),

where

C0 =
1
2
‖E1‖2 +

1
2
‖2E1 − E0‖2

CT =3χ
n−1∑
j=2

∦ F j ∦2
χ,1 +

(1− χ)χ
2

∦ Fn ∦2
χ,1

+
χ2

2
∦ Fn ∦2

χ,2 +
1
2
‖2En − En−1‖2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2.
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The terms on the RHS of (4.23) can be further simplified as follows.

C
χ2

∆t

n∑
j=2

‖Λj‖2 ≤ C χ
2

∆t

n∑
j=2

h2k+2|uj |2k+1 ≤ Cχ2(∆t)−2h2k+2‖|u|‖22,k+1, (4.24)

ν∆t
n∑
j=2

‖∇Λj‖2 ≤ Cν∆t
n∑
j=2

h2k|uj |2k+1 ≤ Cνh2k‖|u|‖22,k+1. (4.25)

For the next term

Cν−1∆t
n∑
j=2

‖∇uj‖2‖Λj‖‖∇Λj‖≤Cν−1h2k+1∆t
n∑
j=2

|uj |2k+1‖∇uj‖2 (4.26)

≤Cν−1h2k+1∆t
( n∑
j=2

|uj |4k+1+
n∑
j=2

‖∇uj‖4
)
≤Cν−1h2k+1

(
‖|u|‖44,k+1+‖|∇u|‖44,0

)
.

Using the boundedness of ν∆t
∑n
j=2 ‖∇w

j
h‖ (Proposition 3.3)

Cν−1∆t
n∑
j=2

‖∇wjh‖
2‖∇Λj‖2 ≤ Cν−2 h2k ‖|u|‖2∞,k+1. (4.27)

Next

∆t
n∑
j=2

‖Λt(tj)‖2 ≤ ∆t
n∑
j=2

h2k+2‖ut(tj)‖2k+1 ≤ h2k+2‖ut‖22,k+1. (4.28)

ν−1∆t
n∑
j=2

‖p(tj)−pjh−qh‖
2≤ν−1∆t

l∑
n=1

h2s+2‖p(tj)‖2s+1≤Cν−1h2s+2‖|p|‖22,s+1.

As in [21] the interpolation error in (4.23) can be bounded as

∆t
n∑
j=2

|Intp(un;Fn)| ≤ ∆t
n∑
j=2

‖F j‖2 + C(∆t)4‖uttt‖22,0. (4.29)

Combining (4.25)–(4.29), the inequality (4.23) simplifies to

1
2
‖Fn‖2 + CT +

∆tν
2

n∑
j=2

‖∇F j‖2 (4.30)

≤ C0 + C∆t
n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

)
‖F j‖2 + h2k+2‖ut‖22,k+1 + Cνh2k‖|u|‖22,k+1

+ Cν−1h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Cν−2h2k‖|u|‖2∞,k+1

+ Cν−1h2s+2‖|p|‖22,s+1 + Cχ2(∆t)−2h2k+2‖|u|‖22,k+1

+ C(1 + χ2(∆t)−2)∆t
n∑
j=2

[ε(uj)]2 + C(∆t)4‖uttt‖22,0.

15



Hence, with ∆t sufficiently small, i.e. ∆t < C(1+ν−3‖|∇u|‖4∞,0)−1, from the discrete Gronwall’s
Lemma [24], we have

‖Fn‖2 + (1− χ)χ ∦ Fn ∦2
χ,1 +χ2 ∦ Fn ∦2

χ,2 +
χ

∆t
∆t

n∑
j=2

∦ F j ∦2
χ,1 (4.31)

+ ||2En − En−1||2 + ∆t
n∑
j=2

∆t3‖E
j − 2Ej−1 + Ej−2

∆t2
‖2 + ∆tν

n∑
j=2

‖∇F j‖2

≤ C
(
‖E1‖2 + ||2E1 − E0||2

)
+ Ch2k+2‖ut‖22,k+1 + Cνh2k‖|u|‖22,k+1 + Cν−1h2k+1

(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Cν−2h2k‖|u|‖2∞,k+1 + Cν−1h2s+2‖|p|‖22,s+1 + Cχ2(∆t)−2h2k+2‖|u|‖22,k+1

+ C
(
1 + χ2(∆t)−2

)
∆t

n∑
j=2

[ε(uj)]2 + C(∆t)4‖uttt‖22,0.

The estimate given in (4.5) for ‖|u − wh|‖∞,0 then follows from the triangle inequality, Lemma
2.9 and (4.31). The estimate for ‖|u− uh|‖∞,0 follows similarly, after noting the extrapolation

‖En+1‖ ≤ ‖2En − En−1‖+ C∆t2‖En+1
tt ‖.

For the case of Taylor-Hood approximating elements, i.e. k = 2, s = 1, we have the following
asymptotic estimate.

Corollary 4.4. Under the assumptions of Theorem 4.2, with δ = Ch and (Xh, Qh) given by
the Taylor-Hood approximation elements, we have

‖|u − wh|‖∞,0 + ‖|u − uh|‖∞,0 (4.32)

+
[
∆t

n∑
j=2

(
∆t3‖D+D−(un − unh)‖2 + ν‖∇(un − wnh)‖2 +

χ

∆t
∦ un − wnh ∦2

χ,1

) ]1/2
≤ C(u, p, ν)

{
∆t2 + h2 +

h3

∆t
+

χ

∆t

(
∆t

n∑
j=2

[ε(uj)]2
) 1

2
}
.

The increase in stability involves the functional ∦ · ∦χ,1, defined in (4.3). This functional has the
property of measuring high frequency components of a function, while diminishing the influence of
low frequency components. For the two approximations uh and wh we have the following estimates.
Estimate (4.33) shows that the high frequency components of wnh , typically spurious oscillations,
are diminished in forming unh, i.e., ‖unh‖χ,1< ∦ wnh ∦χ,1. The second estimate (4.34) establishes a
relationship between the high frequency components of the error in unh and wnh , i.e. ∦ un − unh ∦χ,1
and ∦ un − wnh ∦χ,1, respectively. Note that taking φ := (I − Gh(wnh))v in assumptions (2.8)-(2.10)
we obtain

((I − Gh(wnh))v , (I − Gh(wnh))Gh(wnh) v) ≥ 0 ∀v ∈ Vh.

Theorem 4.5. Under the assumptions of Theorem 4.2, for n = 1, 2, . . . , NT , 0 ≤ δ ≤ 1,

∦ unh ∦2
χ,1= ∦ wnh ∦2

χ,1 −χ(2− χ)‖wnh‖2χ,3 − χ2
(
wnh−Gh(wnh)wnh , (I−Gh(wnh))Gh(wnh)wnh

)
, (4.33)

∦ un−unh ∦2
χ,1≤ ∦ un−wnh ∦2

χ,1 −χ2
(
(I−Gh(wnh))(un−wnh), (I−Gh(wnh))Gh(wnh)(un−wnh)

)
− 3

2
χ(1−χ)‖un−wnh‖2χ,3 + 2χ(1+χ)‖un‖2χ,3 + χ2 ∦ (I−Gh(wnh))un ∦2

χ,1 . (4.34)
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Proof. Taking the inner product of both sides of (1.2) at level n with unh − Gh(wnh)unh, we obtain

∦ unh ∦2
χ,1= (unh, (I − Gh(wnh))unh)

=
(
wnh − χ(I−Gh(wnh))wnh , (I−Gh(wnh))

[
wnh − χ(I −DhGh)wnh

])
=∦ wnh ∦2

χ,1 +χ2
(
(I−Gh(wnh))wnh , (I−Gh(wnh))2wnh

)
− χ

(
wnh , (I−Gh(wnh))2wnh

)
− χ

(
(I − Gh(wnh))wnh , (I − Gh(wnh))wnh

)
=∦ wnh ∦2

χ,1 +χ2‖wnh‖2χ,3 − χ2
(
(I−Gh(wnh))wnh , (I−Gh(wnh))Gh(wnh)wnh

)
− 2χ‖wnh‖2χ,3

=∦ wnh ∦2
χ,1 −χ(2− χ)‖wnh‖2χ,3 − χ2

(
(I − Gh(wnh))wnh , (I − Gh(wnh))Gh(wnh)wnh

)
,

which establishes (4.33).

To establish (4.34) we begin with (4.17). Taking the inner product of both sides with εn −
Gh(wnh)εn,

(en, (I − Gh(wnh))εn) = ∦ εn ∦2
χ,1 −χ‖εn‖2χ,3 + χ

(
(I − Gh(wnh))un, (I − Gh(wnh))εn

)
,

and by the polarization identity

1
2

∦ en ∦2
χ,1 +

1
2

∦ εn ∦2
χ,1 −

1
2

∦ en − εn ∦2
χ,1

= ∦ εn ∦2
χ,1 −χ‖εn‖2χ,3 + χ

(
(I − Gh(wnh))un, (I − Gh(wnh))εn

)
.

Thus,

∦ εn ∦2
χ,1= ∦ en ∦2

χ,1 – ∦ en– εn ∦2
χ,1 +2χ‖εn‖2χ,3– 2χ

(
(I–Gh(wnh))un, (I–Gh(wnh))εn

)
. (4.35)

In addition, rearranging (4.18) we have

en − εn = −χ(I − Gh(wnh))εn + χ(I − Gh(wnh))un

and thus,

∦ en − εn ∦2
χ,1=

(
(en − εn), (I − Gh(wnh))(en − εn)

)
(4.36)

= χ2 ∦ (I−Gh(wnh))εn ∦2
χ,1 +χ2 ∦ (I−Gh(wnh))un ∦2

χ,1

− χ2
(
(I−Gh(wnh))εn, (I−Gh(wnh))2un

)
− χ2

(
(I−Gh(wnh))un, (I−Gh(wnh))2εn

)
.

Substituting (4.36) into (4.35) and rearranging

∦ εn ∦2
χ,1 =∦ en ∦2

χ,1 −χ2 ∦ (I−Gh(wnh))εn ∦2
χ,1−χ2 ∦ (I−Gh(wnh))un ∦2

χ,1 (4.37)

+ χ2
(
(I−Gh(wnh))εn, (I−Gh(wnh))2un

)
+ χ2

(
(I−Gh(wnh))un, (I−Gh(wnh))2εn

)
+ 2χ‖εn‖2χ,3− 2χ

(
(I−Gh(wnh))un, (I−Gh(wnh))εn

)
.

Note that

− χ2 ∦ (I−Gh(wnh))εn ∦2
χ,1 +2χ‖εn‖2χ,3 (4.38)

= (2χ− χ2)‖εn‖2χ,3 + χ2
(
(I − Gh(wnh))εn,Gh(wnh)(I − Gh(wnh))εn

)
,

χ2
(
(I − Gh(wnh))εn, (I − Gh(wnh))2un

)
≤ χ2

4
‖εn‖2χ,3 + χ2‖(I − Gh(wnh))un‖2χ,3, (4.39)
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χ2
(
(I − Gh(wnh))un, (I − Gh(wnh))2εn

)
≤ χ2‖un‖2χ,3 +

χ2

4
‖(I − Gh(wnh))εn‖2χ,3, (4.40)

2χ
(
(I − Gh(wnh))un, (I − Gh(wnh))εn) ≤ 1

2
χ‖εn‖2χ,3 + 2χ‖un‖2χ,3. (4.41)

Thus, using (4.38)-(4.41) in (4.37), we obtain

∦ εn ∦2
χ,1≥∦ en ∦2

χ,1 +
3
2
χ(1−χ)‖εn‖2χ,3+χ2

(
(I−Gh(wnh))εn,Gh(wnh)(I−Gh(wnh))εn

)
− 2χ(1 + χ)‖un‖2χ,3 − χ2 ∦ (I − Gh(wnh))un ∦2

χ,1 .

5. Numerical Experiments. In this section we present four numerical experiments. Using
the Green-Taylor vortex problem and selecting regularization by deconvolution Gh(φ) = DN

h (φ), we
confirm the predicted convergence rates and compare the accuracy for deconvolution orders N =
0, 1, 2. We then consider the flow around a cylinder and Poisseuille benchmark problems and rotating
flow between offset cylinders.

We use FreeFEM++ [23] to run the numerical tests. Algorithm 1.1 is discretized in space using
Taylor-Hood elements (continuous piecewise quadratic polynomials for the velocity and continuous
linears for the pressure). The nonlinear system at each time step was solved by a fixed point iter-
ation. The Stokes filter and van Cittert deconvolution of orders N = 0, 1 or 2 were used in all the
computations. It was applied with the same boundary conditions as given for the problem being
solved.

m ‖|u− uh|‖∞,0 rate ‖|∇u−∇uh|‖2,0 rate
16 2.74021 · 10−2 1.64089 · 10−1

32 2.61947 · 10−2 0.06 1.50942 · 10−1 0.12
48 2.42064 · 10−2 0.19 1.3133 · 10−1 0.34
64 2.12955 · 10−2 0.45 1.09657 · 10−1 0.63
80 1.78571 · 10−2 0.79 9.03406 · 10−2 0.87
96 1.47115 · 10−2 1.06 7.46497 · 10−2 1.05

Table 5.1: Poor convergence without relaxation or deconvolution.

m ‖|u− uh|‖∞,0 rate ‖|∇u−∇uh|‖2,0 rate
16 2.60813 · 10−2 1.52619 · 10−1

32 1.4652 · 10−2 0.83 8.08192 · 10−2 0.96
48 5.61527 · 10−3 2.37 4.03054 · 10−2 1.72
64 2.49971 · 10−3 2.81 2.29939 · 10−2 1.95
80 1.27253 · 10−3 3.03 1.44953 · 10−2 2.07
96 7.14506 · 10−4 3.17 9.88172 · 10−3 2.10

Table 5.2: Errors and convergence rates for deconvolution N = 1, χ = 0.

5.1. Convergence Rate Verification. Our first test is designed to test (and does confirm) the
predicted rates of convergence. The problem of simulating decay of the Green-Taylor vortex, [46, 45],
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m ‖|u− uh|‖∞,0 rate ‖|∇u−∇uh|‖2,0 rate
16 1.00069 · 10−3 1.61231 · 10−2

32 1.48731 · 10−4 2.75 2.62388 · 10−3 2.62
48 4.19167 · 10−5 3.12 9.44449 · 10−4 2.52
64 1.63416 · 10−5 3.27 4.71362 · 10−4 2.42
80 7.71333 · 10−6 3.36 2.8071 · 10−4 2.32
96 4.12874 · 10−6 3.43 1.86365 · 10−4 2.25

Table 5.3: Errors and convergence rates for deconvolution N = 1 with χ = ∆t.

m ‖|u− uh|‖∞,0 rate ‖|∇u−∇uh|‖2,0 rate
16 4.98747 · 10−4 1.54581 · 10−2

32 4.63728 · 10−5 3.43 2.38295 · 10−3 2.70
48 1.0654 · 10−5 3.63 8.57864 · 10−4 2.52
64 3.66425 · 10−6 3.71 4.34974 · 10−4 2.36
80 1.59044 · 10−6 3.74 2.6326 · 10−4 2.25
96 8.04969 · 10−7 3.73 1.77074 · 10−4 2.18

Table 5.4: Errors and convergence rates for deconvolution N = 2 with χ = ∆t.

is an interesting test problem in which the true solution is known (which is required to compute the
errors to obtain rates of convergence). It is a commonly used test for accuracy experiments, e.g.,
[11, 44, 26]. For an insightful analysis see [5] and [7]. The prescribed solution in Ω = (0, 1)× (0, 1) is
given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ ,

p(x, y, t) = −1
4

(cos(2ωπx) + cos(2nπy))e−2ω2π2t/τ .

When τ = Re, this is a solution of the NSE with f = 0, consisting of an ω × ω array of oppositely
signed vortices that decay as t→∞.

In our tests we choose ω = 1, T = 1, Reynolds number Re = 100 and δ = h = 1/m, the interval
(0, 1). The results for Algorithm 1.1 are presented in Table 5.2, using order of deconvolution N = 1
without relaxation (i.e. χ = 0). Tables 5.3 and 5.4 present the results for N = 1 and N = 2 with
relaxation for χ = ∆t, respectively. Results using the simple averaging filter, i.e. deconvolution with
order N = 0 and χ = 0, are presented in Table 5.1. The convergence rate is calculated from the error
at two successive values of h in the usual manner by postulating e(h) = Chβ and solving for β via
β = ln(e(h1)/e(h2))/ ln(h1/h2).

From the tables we see the convergence rate approaches the second order rate predicted for ‖|∇u−
∇uh|‖2,0 and we also see what appears to be an L2 lift for ‖|u − uh|‖∞,0 for order of deconvolution
N = 1 and N = 2. The method with the simple averaging filter, order of deconvolution N = 0,
has much larger errors and slower rates of convergence, as expected. From this test it is clear that
(i)relaxation is important to control the loss of accuracy due to blow up of the numerical dissipation
as ∆t → 0, and (ii)regularization using filtering plus deconvolution is superior to filtering alone, as
predicted in Theorem 4.2.

5.2. Flow around a cylinder. Our next numerical illustration is for two dimensional under-
resolved flow around a cylinder. Thus, our goal is not to use a fine mesh and reproduce the benchmark
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Fig. 5.1: The velocity at t = 2, 4, 5, 6, 7, and 8 of Algorithm 1.1, with N = 1 and χ = ∆t = 0.005.

values from [37, 25] but rather to see how close to those values we can come on a mesh coarse enough
that accuracy cannot be reasonably expected. We compute values for the maximal drag cd,max and
lift cl,max coefficient at the cylinder, and for the pressure difference ∆p(t) between the front and back
of the cylinder at the final time T = 8. It is not turbulent but does have interesting features. The
flow patterns are driven by the interaction of a fluid with a wall which is an important scenario for
industrial flows. This flow is actually quite difficult to simulate successfully by a model with sufficient
regularization to handle higher Reynolds number problems.

The time dependent inflow profile is

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

No slip boundary conditions are prescribed along the top and bottom walls, ”do-nothing” at the
outflow, and the initial condition is u(x, y, 0) = 0. The viscosity is ν = 10−3 and the external force
f = 0. The Reynolds number of the flow, based on the diameter of the cylinder and on the mean
velocity inflow is 0 ≤ Re ≤ 100. A mesh with 62757 number of degrees of freedom is used for all
simulation for a clear comparison of the different parameter settings presented in this report. The
filter radius is chosen as the perimeter of the cylinder divided by the number of mesh points around
the cylinder.

From time t = 2 to t = 4 two vortices start to develop behind the cylinder. Between t = 4 and
t = 5, the vortices separate from the cylinder, so that a vortex street develops, and they continue to
be visible through the final time t = 8. This can be seen in Figure 5.1. The evolutions of cd,max,
cl,max and ∆p are presented in Figure 5.2.

For the computation of drag and lift coefficients we used the one dimensional method described
by John [25]. Results on the computations of maximal drag and lift coefficients and pressure drop,
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Fig. 5.2: The development of cd(t), cl(t) and ∆p(t) of Algorithm 1.1 with N = 1 and χ = ∆t = 0.005.

for N = 1, are presented in Table 5.5. The following reference intervals are given in [37]

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49], ∆pref ∈ [−0.115, −0.105]

and also the following reference values are given in [25]

t(crefd,max) = 3.93625, crefd,max = 2.950921575

t(crefl,max) = 5.693125, crefl,max = 0.47795

∆pref (8s) = −0.1116

relax. coeff. ∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8s)

0.02 3.94 2.81978 6.14 0.320677 -0.109436
χ = 0 0.01 3.93 2.75983 6.02 0.366276 -0.0996473

0.005 3.925 2.66524 6.03 0.325459 -0.098704
0.02 3.94 2.94149 6.12 0.360383 -0.106385

χ = ∆t 0.01 3.93 2.94231 5.96 0.454216 -0.108634
0.005 3.935 2.94268 5.925 0.477011 -0.111908

Table 5.5: Drag/lift coefficients and pressure difference for N = 1 deconvolution.

Table 5.5 shows that using a regularization operator in Step 2 of Algorithm 1.1 works well in
combination with the BDF2 time discretization in Algorithm 1.1. It computes the drag and lift
coefficients, and the pressure difference, within the benchmark intervals, and illustrates the positive
role of using relaxation in the approximation algorithm.

5.3. Poisseuille Flow. A discussion of this problem can be found in Canuto, Hussaini, Quar-
teroni, and Zang [10]. The goal of this test is to test the contribution of the BDF2 discretization
in Step 1 by comparing the sensitivity to perturbations over longer time intervals and higher Re of
Algorithm 1.1 to Algorithm 1.1 with Step 1 replaced by the CN method, studied in [18]. To do so
we initialize with a linearly stable equilibrium solution and take many steps with a large ∆t to check
for deviations from equilibrium. At each time step there are small perturbations due to discretiza-
tion effects. Thus we test if this linearly stable flow remains linearly stable under CN versus BDF2
methods used in Step 1 of Algorithm 1.1.
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Fig. 5.3: Incorrect velocity field when Step 1 uses Crank-Nicolson.

Fig. 5.4: Correct velocity field when Step 1 uses BDF2.

The results show that BDF2 increases the stability of Algorithm 1.1 over the CN time discretiza-
tion. In Ω = (−1, 1)× (−0.5, 0.5), a parabolic velocity v(x, t) = 0 and u(x, y, t) = (y+ 0.5) ∗ (0.5− y)
is prescribed at the inflow and outflow. No-slip boundary conditions are given at the top and bottom.
The exact solution is well known to be v(x, y) = 0, u(x, y) = (y + 0.5) ∗ (0.5 − y), p(x, y) = −2νx,
and we take it as our initial condition. We take the viscosity ν = 10−5, filter width δ = 0.1, order of
deconvolution N = 1 and relaxation parameter χ = 4t. A uniform mesh consisting of triangles with
1953 number of degrees of freedom was used.

For time step 4t = 1, the results of the velocity fields after 123 time steps show that Algorithm
1.1 is both more accurate and more stable. At T = 123 using CN in Algorithm 1.1 the flow lost its
features, see Figure 5.3, while the velocity field computed by the Algorithm 1.1 is properly simulated
even at T = 200, see Figure 5.4.

Relative velocity errors for the given initial condition with time step 4t = 0.5 and 1 and relative
velocity errors for a perturbed initial condition v(x, y) = 0, u(x, y) = (y+0.5)(0.5−y)+0.001 sin(4πy)
with time step 4t = 0.5 and 1 are given in Figure 5.5 and 5.6 from left to right, respectively.

The velocity errors from the CN method in Step 1 are larger, while the ones with BDF2 method
in 1 are smaller, especially in the left plot of Figure 5.5, where the error curve for BDF2 is very close
to the horizontal-axis, and thus hard to observe on the graph.

5.4. Rotating flow between offset cylinders. Finally we compare four options (CN with no
Step 2, BDF2 with no Step 2, CN with Step 2 and BDF2 with Step 2) on a problem motivated by the
classic problem of flow between rotating cylinders. We take the domain to be a disk with a smaller,
off center, obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) = (1

2 , 0),

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2}.

The boundary conditions are no slip, Re = 250 and the flow is driven by a body force (rather than
rotation of either cylinder)

f(x, y) = (−2y, 2x)

which induces a counter clockwise rotation. The flow rotates about (0, 0), interacts with the immersed
cylinder (x−c1)2+(y−c2)2 ≤ r2

2 which induces a von Kármán vortex street. This vortex street rotates
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Fig. 5.5: The development of relative velocity error in time for 4t = 0.5, 4t = 1, from left to right: CN large, and
BDF2 error came close to x-axis (very small).
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Fig. 5.6: The development of relative velocity error in time for 4t = 0.5, 4t = 1 with perturbed initial condition, from
left to right.

and itself re-interacts with the immersed cylinder, creating more complex structures. This flow also
contains complex structures in the boundary layer near x2 + y2 = r2

1 which are not resolved on the
mesh. (To resolve these would require a mesh with at least 3 points within O(1/Re) = O(1/250)
of each wall.) The mesh is parameterized by the number of mesh points around the outer cylinder
(n = 40 and 60) and n

4 mesh points around the immersed cylinder, and extended to all of Ω as a
Delaunay mesh. See Figure 5.7 for the coarsest n = 20 mesh. 1

We give plots over 0 ≤ t ≤ 40 of the following quantities:

A(t) := ‖x · u‖ .= angular momentum,

‖curl u‖ = RMS vorticity, ‖grad u‖2 =
1
ν
∗ enstrophy.

All four are inviscid invariants of 2d flows without boundaries. Three are interesting for rotational
flows. We selected ∆t = 0.01. Our observations on this interesting flow are preliminary, not intended
to describe flow details and only intended to test the effects of Step 2 on the global balance in four
important quantities.

1An expanded version of this report is available at http://www.mathematics.pitt.edu/research/technical-
reports.php containing plots of the n = 20 case and plots of energy vs. time for n = 40 and 60.
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Fig. 5.7: The coarsest mesh using n = 20 points around immersed cylinder.
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Fig. 5.8: Angular momentum Re = 250, N = 40 mesh points around outer cylinder.

For N = 40 points around outer cylinder, the increased resolution near the immersed cylinder
allows more rotational structures. This results in a 50% increase in angular momentum over the
N = 20 case (not given here). The plots of ‖grad u‖2 also increased by 50% over the N = 20 case
indicating that regularizations which dissipate energy are necessary to model the energy dissipated
by unresolved structures.

The plots of ‖curl u‖ do not seem to be over-smooted by the addition of Step 2. When N = 60
points around the outer cylinder, CN still show the effect of an initial transient in A(t) (present in all
previous angular momentum plots). This transient is nearly eliminated in the test of CN with Step
2 and BDF with Step 2.

For the CN method without Step 2 we also find the average value of enstrophy increases substan-
tially when N increases from 40 to 60. No evidence of under-diffusion is seen in the plots of global
enstrophy which include Step 2: the mean value of the enstrophy does not increase from N = 40 to
N = 60.

6. Conclusions. The BDF2 time discretization is second order, A-stable and has stability prop-
erties that are superior to those of Crank-Nicolson for underresolved flow simulations. We have seen
that modular stabilization by filter, then stabilize works well in combination with BDF2. The nu-
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Fig. 5.9: ‖grad u‖2, Re = 250, N = 40 mesh points around outer cylinder.
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Fig. 5.10: Vorticity, Re = 250, N = 40 mesh points around outer cylinder.

merical experiments confirm the stability and convergence theory and show that this combination
much better than unstabilized methods and somewhat better than Crank-Nicolson plus is the same
stabilization.

The correct scaling of the relaxation parameter χ seems to be χ = O(∆t). However, the precise
determination of χ step by step so as to match numerical dissipation to that occurring on unresolved
scales is an important open problem.
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Fig. 5.11: Angular momentum, Re = 250, N = 60 mesh points around outer cylinder.
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Fig. 5.12: ‖grad u‖2, Re = 250, N = 60 mesh points around outer cylinder.
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