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Abstract. This is an expanded version of a report with the same title. It includes as appendices
motivation, connections to related work and background material. This expanded version’s purpose
is to provide a fuller picture of the work presented in the shorter version submitted for publication.

We consider the Navier-Stokes-omega model, given by

ut − u× ω − ν△u+∇P = f, ω = ∇× u,∇ · u = 0

subject to periodic boundary conditions with zero mean.The NS-omega model is an outgrowth of
ideas in approximate deconvolution models and in NS-alpha models. Like the NS-alpha model, it
is simple and conserves, in the appropriate context, kinetic energy and helicity (3d) or energy and
enstrophy (2d). In first tests NS-omega appears to be accurate, robust and amenable to efficient
numerical simulation. In this note we prove existence of a global attractor for the model.
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A short summary of the report
1. Introduction,
This report considers the NSE regularization

ut − u× (∇×Du)− ν△u+∇P = f,∇ · u = 0, u = (−α2△+ 1)−1u.

We prove under periodic boundary conditions:
Theorem [existence of an attractor).
Suppose D is a bounded, linear deconvolution operator that is smoothing in the

sense that

||D(v)||H2
#
≤ C||v||.

Suppose

u0, f ∈H1
#(Ω),∇ · u0 = ∇ · f = 0,

∫

Ω

fdx =

∫

Ω

u0dx = 0.

Then the NS-omega deconvolution model (1.2), including the NS-omega model (1.1)
when D = I) has a maximal global attractor in H.

2. Notation and preliminaries,
Basic notation is recalled.
2.1. Filtering and deconvolution,
Examples and properties of filtering and deconvolution operators recalled.
2.2. A priori bounds and two Gronwall type lemmas,
The uniform Gronwall lemma of Foias and Prodi [FP67] is recalled and a (new to

our knowledge but the subject is old so it is likely to be known somewhere explicitly
or implicitly) lemma of the same type given.

Lemma (uniform Gronwall lemma).
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Assume that y, g, h are positive, locally integrable functions on (t0,∞), and that
for t ≥ t0

y′ ≤ gy + h, with
∫ t+r

t

y(s)ds ≤ k1,
∫ t+r

t

g(s)ds ≤ k2,
∫ t+r

t

h(s)ds ≤ k3,

where k1, k2, k3, and r are four positive constants. Then,

y(t+ r) ≤ (
k1
r

+ k3)e
k2 , for all t ≥ t0.

Lemma (another Gronwall like lemma).
Let y(t) be a positive smooth function satisfying

y′ + νλ1y ≤ A+By
3
4 , for t > 0, y(0) = y0,

where A,B, y0, ν, λ1 are positive constants. Let t0 := max{ 2
νλ1

ln(νλ1y02A ), 0}. Then,

y(t) ≤ max{y0, (
2B

νλ1
)4,

4A

νλ1
}, for t ≥ 0,

y(t) ≤ max{( 2B
νλ1

)4,
4A

νλ1
}, for t ≥ t0.

3. Existence of an attractor,
Existence of an attractor in H is proven.
3.1. Basic properties of attractors,
3.2. Proof of Theorem 1.1,
4. Smoothness of the attractor,
This section proves regularity of the maximal attractor by showing that an at-

tractor of the NS-omega model exists in each space Hs# . We first prove uniform
boundedness of spacial derivatives.

Lemma (a priori bounds).
Consider the NS-omega model with u0 ∈ Hs#, f ∈ Hs#, s ≥ 0. Then there is a

finite constant C such that

sup
[0,∞)

||u(t)||s ≤ ρs <∞, .

Further, for every s there is a finite constant C(||∇sf ||, ν, α, s) such that

∫ t+r

t

||∇∂su(t′)||2dt′ ≤ 2rC(||∇sf ||, ν, α, s) + 2ρ2s
ν
<∞. (0.1)

The main result of this section is:
Theorem (smoothness of the attractor).
Suppose

u0, f ∈Hs#(Ω),∇ · u0 = ∇ · f = 0,

∫

Ω

fdx =

∫

Ω

u0dx = 0.

Then A is an attractor of the NS-omega model (1.1) in each Hs#(Ω) and thus consists
of C∞# (Ω) functions.
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References,
Appendices:
The appendices give background material about filtering, the motivation for the

regularization and deconvolution.
5. Motivation for the NS-omega model,
As one example, the NS-omega model can be solved much more economically by,

simplifying and suppressing spatial discretizations,

1

∆t
(un+1 − un) + (

3

2
ωn −

1

2
ωn−1)× un+1/2 +∇Pn+1/2 − ν△hun+1/2 = fn+1/2,

(0.2)

where ωn = ∇× un (0.3)

and (∇ · uhn+1, χh) = 0 ,∀χh ∈ Qh. (0.4)

This method filters an explicitly known (from previous time levels) variable. This
simple method is second order accurate, unconditionally and nonlinearly stable and
requires only the solution of one smaller (Nvelocity+Npressure unknowns) linear system
at every time step

6. More about averaging or filtering,
The sections recalls the 1984 result of Koenderink. It begins by assuming the

filter is
C�������� 0.1. linearity:

αu+ βv = αu+ βv

C�������� 0.2. spacial invariance (no preferred location):

u(x− a) = u(x− a)

C�������� 0.3. isotropy (no preferred orientation): for all rotations R :

u(x) = R∗u(Rx)

C�������� 0.4. scale invariance, or the semigroup property (no preferred size):
if u(x, t) := gα ⋆ u(x, t) (so u := gα ⋆ gα ⋆ u) then

u = g√2α ⋆ u.

Theorem (Koenderink’s theorem on uniqueness of the filter).
The only filter satisfying C1, C2, C3 and C4 is the Gaussian filter.
Thus, there is really only one mathematical correct filter: the Gaussian. Convolu-

tion with the Gaussian is quite expensive computationally so for large eddy simulation
the differential filter is assessed as approximations to the Gaussian.

7. More on deconvolution.
This section recalls that the deconvolution problem

given u (+ noise) solve u = Gu for u,

3



is ill-posed. Indeed:
Theorem (deconvolution is ill-posed).
Let Gφ = φ denote the filtering operator. If G is smoothing so G : L2(Ω) →

Hs(Ω) is bounded for some s > 0 then G cannot have an exact inverse that is a
bounded linear operator : L2(Ω)→ L2(Ω).

Next some commonly used deconvolution operators are presents from the point
of view as approximations to this ill-posed problem.

1. Introduction. The problem of inverting the filter G is is ill-posed and thus
the closure problem itself must be ill posed. This does not mean that accurate approx-
imate closure is impossible. There are after all many good methods for approximate
solution of ill posed problems!

The Navier-Stokes-omega model, [LST08] [LMNR08b], is a development from the
NS-alpha circle of ideas, e.g., [FHT02], and approximate deconvolution large eddy
simulation models, e.g., [SA99], [SAK01], [BIL06], [Geu97], [LL03], [Dunca04], [R08].
In rotational form, it is to find a velocity u and Bernoulli or dynamic pressure P
satisfying

ut − u× ω − ν△u+∇P = f, ω = ∇× u,∇ · u = 0. (1.1)

In (1.1) ω = ∇×u denotes the filtered / averaged / smoothed vorticity, where the filter
is defined precisely in Section 2 in (2.1). We consider (1.1) in Ω = (0, 2π)3 subject
to periodic with zero mean boundary conditions on u, P, f and the initial condition
u(x, 0) = u0(x). Here u0, f are smooth, zero-mean periodic functions. Minimally we
suppose

u0, f ∈ L20(Ω),∇ · u0 = ∇ · f = 0, and

∫

Ω

fdx =

∫

Ω

u0dx = 0.

The NS-omega model (1.1) (nonlinearity −u × ∇ × u) is a basic regularization of
the NSE similar in spirit to the Leray regularization (nonlinearity +u · ∇u, [L34a],
[L34b], [CHOT05]) and the NS-alpha model (nonlinearity −u×∇× u, [FHT01]). It
also can be extended to a family of NS-omega-deconvolution models of arbitrary high
accuracy. The idea of using deconvolution operators to obtain high order accurate
regularizations is an idea of A. Dunca (private communication) developed for the
Leray model in [LL08], [LMNR08a], the NS—α model in [R08] and the NS-omega
model in [LMNR08a]. The NS-omega deconvolution family, including (1.1) as the
zeroth order case, is given by

ut − u×D(ω)− ν△u+∇P = f, ω = ∇× u,∇ · u = 0. (1.2)

where D : L2(Ω)→ L2(Ω) is a deconvolution operator.
In this report we prove existence of an attractor for (1.1), (1.2). Let H denote

the closure of the smooth, periodic, zero mean, divergence free, vector functions in
L2(Ω) and Hs#(Ω) their closure in the Hs norm; see Section 2.

T������ 1.1 (Existence of an Attractor). Let u = (−α2△+1)−1u. Suppose D
is a bounded, linear deconvolution operator that is smoothing in the sense that

||D(v)||H2
#
≤ C||v||. (1.3)

Suppose

u0, f ∈H1
#(Ω),∇ · u0 = ∇ · f = 0,

∫

Ω

fdx =

∫

Ω

u0dx = 0.
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Then the NS-omega deconvolution model (1.2), including the NS-omega model (1.1)
when D = I) has a maximal global attractor in H.

In Section 4 we show that the maximal attractor is also an attractor in each
H
s
#(Ω) and thus consists of C∞# (Ω) functions. This parallels known results for the 2d

NSE, Temam Chapter IV, Section 6.3 in [T88]; in the latter case, it is proven through
establishing regularity of time derivatives and herein through space derivatives. Some
preliminaries and the (standard) notation used are collected in Section 2. The proof of
the above theorem is given in Section 3. The theory of attractors is highly developed,
e.g., Temam [T88], Robinson [R01] and applied to the Leray and Leray deconvolu-
tion model in [CHOT05], and by Lewandowski and Preaux [LP08] (the report which
inspired this effort). Under this theory, the proof of the above theorem reduces to
verifying (i) existence of a bounded, absorbing set in H and (ii) compactness of the
semigroup generated by (1.1), (1.2). The question of the dimension of the attractor
and its dependence on the averaging radius α and deconvolution operator D (and
how it compares with estimates of length scales of persistent eddies from turbulence
phenomenology as well as estimates of attractor dimension of the Leray and NS-alpha
regularizations) is a very important open problem.

2. Notation and preliminaries. (·, ·), ||·|| denotes the usual L2(Ω) inner prod-
uct and norm. The subscript # denotes the 2π periodic so the C∞# (Ω) denotes the
C∞ functions v with v and all derivatives 2π periodic. Let

Hdiv(Ω) : = closure in || · ||div :=
√
|| · ||2 + ||div ·||2 of {v ∈ C∞# (Ω)3 :

∫

Ω

vdx = 0},

H
s
#(Ω) : = closure in ||∇s · || of {v ∈ C∞# (Ω)3 :

∫

Ω

vdx = 0 and ∇ · v = 0}.

The norm on Hs#(Ω) can be defined succinctly via Fourier series as

||v||2s =
∑

k

|k|2s|v̂(k)|2.

Define

H = {v ∈Hdiv : ∇ · v = 0} , and V :=H1
#(Ω).

Let PL denote the Helmholtz-Leray orthogonal projection of L2(Ω) onto H. The
Stokes operator A is then A = −PL△ with Domain(A) = H ∩H2

#(Ω), e.g., Galdi
[Gal94]. In the periodic case the vector Laplacian and Stokes operator coincide apart
from their domains of definition. Let

λ1 = λmin(A) = min
v∈V

(∇v,∇v)
||v||2 so that (f, v) ≤ 1

λ1
||f ||||∇v||.

2.1. Filtering and deconvolution. Koenderink [Koe84], see also [Lin94], has
proven that the only filter satisfying the basic requirements of linearity, frame invari-
ance and scale invariance is the Gaussian filter. Calculations with Gaussian filters
can be expensive so approximations to the Gaussian are often used, such as the Pao
filter, Pope [P00], Sagaut [S01],

v(x) :=
∑

k

(α2|k|2 + 1)−1v̂(k)eik·x , α := filter radius.
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The Pao filter is equivalent to a simple differential filter, Germano [Ger86], used in
theoretical studies of deconvolution models, e.g., [Dunca04], [DE06], [BIL06], [LL03],
and the NS-alpha model [FHT01]. The equivalent differential filter to the Pao filter
is

v = (−α2△+ 1)−1v, (2.1)

subject to periodic boundary conditions. In the periodic case, this differential filter
preserves zero mean and incompressibility.

A deconvolution operator D is an approximate filter inverse. Typically D is a
high order approximate inverse on the low Fourier modes and includes some sort of
truncation or regularization to suppress the growth of noise in higher modes. Since
many examples exist (due to approximate deconvolution’s centrality in image process-
ing, Bertero and Boccacci [BB98]) we assume some basic properties of D common to
many used in practice.

• stability: D :H→H is a bounded linear operator,
• accuracy: ||v −D(v)|| ≤ C(v)αβ , for smooth v and some β > 2.
• smoothing: ||D(v)||2 + ||D(v)||1 + ||D(v)|| ≤ C(α)||v||, for all v ∈ H.

Examples of filters satisfying these minimal conditions include van Cittert de-
convolution [BB98], D =

∑J
j=0(−α2△ + 1)−j , (and its optimized variants, [LS07],

[LS08b]), Tikhonov regularized deconvolution, D = [(−α2△ + 1)−1 + µI]−1, and
truncated SVD methods (which simplify in the periodic case to spectral methods)
such as

Dv :=
∑

0<|k|<π/α
(α2|k|2 + 1)v̂(k)eik·x +

∑

|k|≥π/α
v̂(k)eik·x.

2.2. Á priori bounds and two Gronwall type lemmas. The uniform Gron-
wall lemma of Foias and Prodi [FP67] is a fundamental tool in the study of attractors
and used to complete the proof of existence of an attractor from (3.11) below..

L���� 2.1 (Uniform Gronwall Lemma). Assume that y, g, h are positive, locally
integrable functions on (t0,∞), and that for t ≥ t0

y′ ≤ gy + h, with∫ t+r

t

y(s)ds ≤ k1,
∫ t+r

t

g(s)ds ≤ k2,
∫ t+r

t

h(s)ds ≤ k3,

where k1, k2, k3, and r are four positive constants. Then,

y(t+ r) ≤ (
k1
r

+ k3)e
k2 , for all t ≥ t0. (2.2)

Because the differential inequality (3.10) has sublinear growth in the nonlinear
term, other related bounds can be obtained using an alternate Gronwall-type inequal-
ity.

L���� 2.2. Let y(t) be a positive smooth function satisfying

y′ + νλ1y ≤ A+By
3
4 , for t > 0, y(0) = y0,

where A,B, y0, ν, λ1 are positive constants. Let t0 := max{ 2
νλ1

ln(νλ1y02A ), 0}. Then,

y(t) ≤ max{y0, (
2B

νλ1
)4,

4A

νλ1
}, for t ≥ 0,

y(t) ≤ max{( 2B
νλ1

)4,
4A

νλ1
}, for t ≥ t0.
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Proof. Define Y := max{( 2Bνλ1 )
4, 4Aνλ1 } and divide (0,∞) into two collections of

subintervals by

IS := {t : y(t) < Y } and IL := {t : y(t) ≥ Y },

so that y(t) < Y for all t ∈ IS. Thus, consider t ∈ IL. Let [a, b] be a maximal interval
in IL so either a = 0 and y(a) = y0 or a > 0 and y(a) = Y . By construction, on IL

1

2
νλ1y(t) ≥ By(t)

3
4 ,

so that for t ∈ [a, b], a > 0, y(t) satisfies

y′ +
1

2
νλ1y ≤ A, a ≤ t ≤ b, y(a) = Y.

An integrating factor then gives for t ∈ [a, b],

y(t) ≤ e−1
2
νλ1(t−a)Y +

2A

νλ1
[1−e− 1

2
νλ1(t−a)] ≤ e− 1

2
νλ1(t−a)Y +Y [1−e−1

2
νλ1(t−a)] ≤ Y

There remains the case a = 0, i.e., [a, b] = [0, b]. The same analysis as the last case
gives the bound

y(t) ≤ e− 1
2
νλ1(t−a)y0 +

2A

νλ1
[1− e− 1

2
νλ1(t−a)] (2.3)

≤ e− 1
2
νλ1(t−a)max{y0, Y }+max{y0, Y }[1− e−

1
2
νλ1(t−a)], or

y(t) ≤ max{y0, Y }

completing the proof of the first bound. For the second, by a direct calculation we
have

e−
νλ1
2
ty0 ≤

2A

νλ1
, for t ≥ t0.

Thus, from (2.3) for t ≥ t0, the second follows since

y(t) ≤ 2A

νλ1
+

2A

νλ1
[1− e− 1

2
νλ1t] ≤ 4A

νλ1
.

3. Existence of an attractor. The following was proven about the NS-omega
model in [LST08]. The same proof can be used to prove existence for the NS-omega
deconvolution model with van Cittert or Tikhonov deconvolution.

T������ 3.1 (Existence, Uniqueness and Regularity). Let α > 0 and T > 0
be fixed. Let the filter be the differential filter (2.1). For and u0 ∈ V, f ∈ H , there
exists a unique strong solution u to the NS-omega model (1.1) with

u ∈ L∞(0, T ;V) ∩ L2(0, T ;H2
#(Ω)) and ut ∈ L2((0, T )×Ω).

Further, u satisfies the energy equality. If the data is more regular

u0 ∈ V ∩Hm+1# (Ω), and f ∈ L2(0, T ;Hm#(Ω)),
7



then

u ∈ L∞(0, T ;Hm+1# (Ω)) ∩ L2(0, T ;Hm+2# (Ω)), P ∈ L2(0, T ;Hm+2# (Ω)).

The NS-omega model is thus a well defined dynamical system and determines a
(nonlinear) semi-group defined by

u(t; ·) := S(t)u0.

P���������� 3.2. Suppose ||∇u||+ ||△u|| ≤ C(α)||u|| and let

t1 := max{ 2

νλ1
ln(
ν2λ1||∇u0||2

4||f ||2 ), 0}.

Then, solutions to the NS-omega model satisfy the á priori bounds

||u(t)||2 ≤ ||u0||2e−νλ1t + (
1

νλ1
||f ||)2(1− e−νλ1t), for t ≥ 0, (3.1)

||∇u(t)||2 ≤ max{||∇u0||2,
16C(α)4(sup0,∞) ||u||)10

ν8λ41
,
8||f ||2
ν2λ1

}, for t ≥ 0, (3.2)

||∇u(t)||2 ≤ max{
16C(α)4(sup[0,∞) ||u||)10

ν8λ41
,
8||f ||2
ν2λ1

}, for t ≥ t1. (3.3)

Proof. Since the NS-omega model has a unique strong solution, we may multiply
(1.1) by u and ∇u and integrate over Ω. The first choice yields

1

2

d

dt
||u||2 + ν||∇u||2 = (f, u) (3.4)

Since ||u||2 ≤ λ1||∇u||2, we have

d

dt
||u||2 + νλ1||u||2 ≤

1

νλ1
||f ||2

and thus the first bound follows:

||u(t)||2 ≤ ||u0||2e−νλ1t + (
1

νλ1
||f ||)2(1− e−νλ1t). (3.5)

For the second and third, take the inner product of (1.1) with −△u. This gives

1

2

d

dt
||∇u||2 +

∫

Ω

u×∇× u · (−△u)dx+ ν||∇u||2 = (f,−△u) ≤ ||f ||||△u||.

For the nonlinear term we use the following bound (which follows via Holder’s in-
equality and the Sobolev embedding theorem as in the normal bounds on the NSE
nonlinearity, e.g., Constantine and Foias [CF88], Temam [T88])

|
∫

Ω

u×∇× u · (−△u)dx| ≤ C||u|| 14 ||∇u|| 34 ||∇u|| 14 ||△u|| 34 ||△u||.
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Since the filter is smoothing ||∇u||+ ||△u|| ≤ C(α)||u|| so

|
∫

Ω

u×∇×u · (−△u)dx| ≤ C||u|| 54 ||∇u|| 34 ||△u|| ≤ ν
2
||△u||2+C(α)ν−1||u|| 52 ||∇u|| 32 .

Thus,

d

dt
||∇u||2 + ν||△u||2 ≤ 2

ν
||f ||2 +C(α)ν−1||u|| 52 ||∇u|| 32 , or (3.6)

d

dt
||∇u||2 + νλ1||∇u||2 ≤

2

ν
||f ||2 +C(α)ν−1||u|| 52 ||∇u|| 32 . (3.7)

Lemma 2.2 with y0 = ||∇u0||2, A = 2
ν ||f ||2 and B = C(α)ν−1 sup[0,∞) ||u||

5
2 gives

y(t) ≤ max{||∇u0||2,
16C(α)4(sup[0,∞) ||u||)10

ν8λ41
,
8||f ||2
ν2λ1

}, t ≥ 0,

and for t ≥ t1 := max{ 2
νλ1

ln(ν
2λ1||∇u0||2
4||f ||2 ), 0},

y(t) ≤ max{
16C(α)4(sup[0,∞) ||u||)10

ν8λ41
,
8||f ||2
ν2λ1

}.

3.1. Basic properties of attractors. To prepare for the proof of Theorem
1.1 we collect some information about attractors from, for example, Temam [T88] ,
Robinson [R01], Doering and Gibbon [DG95].

D��������� 3.3. We say A ⊂ H is a global or maximal attractor in H for the
dynamical system (1.1) if and only if

(i) A is compact in H.
(ii) For all t > 0, S(t)A ⊂ A.
(iii) For every bounded set B ⊂H, ρ(S(t)B,A) := supv∈B infu∈A ||u−v|| goes to

zero as t→∞.
D��������� 3.4. The set A ⊂ H is an absorbing set if and only if, for every

bounded subset B ⊂H there exists t1 > 0 such that for all t ≥ t1 one has S(t)(B) ⊂ A.
The semigroup S(t) is uniformly compact if and only if for every bounded subset

B ⊂H, there exists t2 = t2(B) such that ∪t≥t2S(t)(B) is compact.

Let ̟(A) denote the set ̟(A) := ∩s≥0∪t≥sS(t)(B).
The proof of the following can be found in Temam [T88] , Robinson [R01].
T������ 3.5. Suppose that there exists an absorbing bounded set A and that

the semigroup S(t) is uniformly compact. Then, A0 = ̟(A) is the global attractor
for the dynamical system defined by S(t).

3.2. Proof of Theorem 1.1. We shall show that S(t) has an absorbing set and
is compact. First we establish existence of an absorbing set. (This step follows the
NSE case closely.) From Proposition 3.2, the estimate (3.1) gives

||u(t)||2 ≤ ||u0||2e−νλ1t + (
1

νλ1
||f ||)2(1− e−νλ1t). (3.8)

As for the NSE (e.g., Temam [T88] , Robinson [R01]), let ρ0 =
1
νλ1
||f || and ρ′ > ρ0.

Then, from (3.1), given u0 in H for t > T := max{ 1
νλ1

ln( ||u0||
2

ρ′2−ρ20
), 0}, it follows that

||u(t)|| ≤ ρ′. In other words, Bρ′(0) = {v ∈ H : ||v|| < ρ′} is an absorbing set in H.
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For the second step we show S(t) is uniformly compact by obtaining a uniform
estimate on the V norm of solutions. To prove compactness the second and third
bounds in Proposition 3.2 do not suffice because they require u0 ∈ V instead of H.
Thus we shall apply the uniform Gronwall lemma. Integrating (3.4) over (t, t+r) and
using standard inequalities gives

1

2
(||u(t+ r)||2 − ||u(t)||2) + 1

2

∫ t+r

t

ν||∇u(t′)||2dt′ ≤ r

2νλ1
||f ||2.

For t > T , u(t) ∈ Bρ′(0) so ||u(t)|| < ρ′ and ||u(t+ r)|| < ρ′. Thus for t > T
∫ t+r

t

||∇u(t′)||2dt′ ≤ r

ν2λ1
||f ||2 + 2ρ′2

ν
. (3.9)

We begin with (3.6), (3.7) from the proof of Proposition 3.2:

d

dt
||∇u||2 + ν||△u||2 ≤ 2

ν
||f ||2 +C(α)ν−1||u|| 52 ||∇u|| 32 . (3.10)

The Poincaré-Friedrichs inequality can be used on the last term on the RHS to give

d

dt
||∇u||2 + ν||∇u||2 ≤ 2

ν
||f ||2 +C(α)ν−1||u||2||∇u||2. (3.11)

The proof can now be completed by applying the uniform Gronwall lemma. With the
following identifications of y, g and h we calculate

y(t) = ||∇u||2, g(t) = C(α)ν−1||u||2, h =
2

ν
||f ||2,

∫ t+r

t

y(t′)dt′ =

∫ t+r

t

||∇u(t′)||2dt′ ≤ r

ν2λ1
||f ||2 + 2ρ′2

ν
=: k1,

∫ t+r

t

g(t′)dt′ =

∫ t+r

t

C(α)

ν
||u(t′)||2dt′ ≤ C(α)

ν
ρ′2r =: k

∫ t+r

t

h(t′)dt′ =

∫ t+r

t

||∇u(t′)||2dt′ ≤ 2

ν
||f ||2r =: k3,

and thus

||∇u(t)||2 ≤ { 1

ν2λ1
||f ||2 + 2ρ′2

νr
+
C(α)

ν
ρ′2r}e 2ν ||f ||2r =: R1 (3.12)

Thus for t ≥ T + r, u(t) lies in a ball of radius R1 in V. Since R1 is independent of
u0, (3.12) implies that for any bounded set B ⊂ V,

∪t≥T+rS(t)B

is a bounded set in V. By the Reillich Lemma (e.g., [Gal94]), this set is compact
in H and so S(t) is uniformly compact. This completes the proof of existence of an
absorbing set and compactness of S(t) and thus of a global attractor.
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4. Smoothness of the Attractor. This section proves regularity of the max-
imal attractor by showing that an attractor of the NS-omega model exists in each
space Hs# . As in [T88], this implies that A consists of C∞# functions. So as to not
overburden the presentation with further assumptions on the deconvolution operator,
we consider the base model (1.1). The results in this section extend to the examples
of deconvolution operators given above and to general deconvolution operators under
mild assumptions on smoothing in Hs#(Ω), such as

||D(v)||
H
s+2
#

≤ C||v||Hs
#
. (4.1)

To prove regularity of the attractor we use a bootstrap argument to prove existence
for each s, sharpening the regularity proof in Theorem 3.4 in [LST08]. We first prove
uniform boundedness of spacial derivatives.

L���� 4.1. Consider the NS-omega model with u0 ∈ Hs#, f ∈ Hs#, s ≥ 0. Then
there is a finite constant C such that

sup
[0,∞)

||u(t)||s ≤ ρs <∞, .

Further, for every s there is a finite constant C(||∇sf ||, ν, α, s) such that

∫ t+r

t

||∇∂su(t′)||2dt′ ≤ 2rC(||∇sf ||, ν, α, s) + 2ρ2s
ν
<∞. (4.2)

Proof. We have proven this form = 0, 1 in the previous section. Thus we consider
m ≥ 2. Letting ∂m denote any partial derivative of orderm, take anm+1st derivative
∂m+1 of the NS-omega model. This gives

(∂m+1u)t − ∂m+1(u× ω)− ν△∂m+1u+∇∂m+1P = ∂m+1f,∇ · ∂m+1u = 0 (4.3)

with periodic and zero mean boundary conditions. Multiplying by ∂m+1u, integrating
and using basic inequalities gives

1

2

d

dt
||∂m+1u||2 + ν

2
||∇∂m+1u||2 ≤ C||∇mf ||2 + (∂m+1(u× ω), ∂m+1u), (4.4)

where the last term is the critical one. Expanding gives

(∂m+1(u× ω), ∂m+1u) =
∑

|β|≤m+1

(
m+ 1

β

)∫

Ω

∂βω × ∂m+1−βu · ∂m+1udx =

=

∫

Ω

{∂m+1ω × u · ∂m+1u+ (m+ 1)∂mω × ∂1u · ∂m+1u+
+ · · ·+
+(m+ 1)∂1ω × ∂mu · ∂m+1u+ ω × ∂m+1u · ∂m+1u}dx.

11



By the smoothing property of the filter we have for 0 ≤ θ ≤ 1
2 that

(∂m+1(u× ω), ∂m+1u) ≤ C(m)
∑

|β|≤m+1

∫

Ω

|∂βω × ∂m+1−βu · ∂m+1u|dx

≤ C(m)
∑

|β|≤m+1
||∂βω||θ||∂m+1−βu|| 1

2
−θ||u||m+2,

≤ ν
8
||u||2m+2 +C(m, ν)

∑

|β|≤m+1
||∂βω||2θ||∂m+1−βu||21

2
−θ

≤ ν
8
||u||2m+2 +C(m, ν, α)

∑

|β|≤m+1
||u||2θ+|β|+1−2||u||2m+ 3

2
−β−θ.

We thus have for t large enough and 0 ≤ θ ≤ 1
2

1

2

d

dt
||∂m+1u||2 + 7ν

8
||∇∂m+1u||2 ≤ C||∇mf ||2

+C(m, ν, α)
∑

|β|≤m+1
||u||2|β|+θ−1||u||2(m+1−|β|)+( 1

2
−θ).

The result will be proved using the induction hypothesis provided for each β, 0 ≤
|β| ≤m+ 1, we can pick θ, 0 ≤ θ ≤ 1

2 , with

|β|+ θ − 1 ≤ m, and (m+ 1− |β|) + (
1

2
− θ) ≤ m.

(As then each term in the above sum is uniformly bounded in t for t large enough.)
From the first inequality we pick

θ = 0 if |β| = m+ 1 and θ =
1

2
if |β| ≤m.

If θ = 0, |β| =m+ 1 then the second inequality becomes

1 +
1

2
≤ m+ 1

which holds since m ≥ 1. If θ = 1
2 , |β| ≤ m the second constraint becomes

(m+ 1− |β|) ≤ m

which also holds because m ≥ 1. This shows that

d

dt
||∂m+1u||2 + ν||∇∂m+1u||2 ≤ C(||∇mf ||, ν, α,m)(<∞), (4.5)

from which the result follows using the Poincaré-Friedrichs inequality and an inte-
grating factor. The second claim follows by integrating (4.5) over (t, t+ r) and using
standard inequalities gives

||∂m+1u(t+ r)||2− ||∂m+1u(t)||2+
∫ t+r

t

ν||∇∂m+1u(t′)||2dt′ ≤ 2rC(||∇mf ||, ν, α,m).
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For ||∂m+1u(t)|| and |||∂m+1u(t+ r)|| ≤ ρm+1 we have
∫ t+r

t

||∇∂m+1u(t′)||2dt′ ≤ 2rC(||∇mf ||, ν, α,m) +
2ρ2m+1
ν

<∞. (4.6)

completing the proof.
The above lemma gives the necessary á priori bounds to apply the uniform Gron-

wall lemma as in the s = 0 case. Thus we can conclude existence of an attractor.
T������ 4.2 (Smooth Attractors). Suppose

u0, f ∈Hs#(Ω),∇ · u0 = ∇ · f = 0,

∫

Ω

fdx =

∫

Ω

u0dx = 0.

Then A is an attractor of the NS-omega model (1.1) has a global attractor in each
H
s
#(Ω) and thus consists of C∞# (Ω) functions.
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5. Motivation for the NS-omega model. In 1934, J. Leray introduced the
following NSE regularization (now known as the Leray model) as a theoretical tool:

ut + u · ∇u− ν∆u+∇p = f and ∇ · u = 0 , in Ω× (0, T ).

He chose u = gα ⋆ u, where gα is a Gaussian associated with a length scale α, and
proved existence and uniqueness of strong solutions to it and that a subsequence uαj
converges to a weak solution of the NSE as αj → 0. If that weak solution is a smooth,
strong solution it is not difficult to prove additionally that ||uNSE−uLerayModel|| = O(
α2) using only ||u− u|| = O( α2).

The Camassa-Holm / Navier-Stokes-alpha NSE regularization, proposed as a pos-
sible basis for simulation of under-resolved flows, is analogous to the above Leray reg-
ularization when the Navier-Stokes equations (NSE) are written in rotational form.
Indeed, the NSE, with nonlinear term in rotational form, are given by

ut + ω × u− ν∆u+∇P = f, (5.1)

ω = ∇× u, P = p+
1

2
|u|2, and (5.2)

∇ · u = 0 , in Ω× (0, T ). (5.3)

The NS-alpha model is given by

ut + ω × u− ν∆u+∇P = f, (5.4)

ω = ∇× u, and (5.5)

∇ · u = 0 , in Ω× (0, T ). (5.6)

Here u is the differentially filtered / smoothed / mollified model velocity, given by

−α2∆u+ u = u , in Ω and (5.7)

+ boundary conditions on ∂Ω. (5.8)
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Motivated by the requirements of practical computing with NSE regularizations
we have considered a related (and to our limited knowledge new) regularization, the
NS-omega model1 . The related NS-omega model is (to my knowledge) not previously
studied but emerges naturally from the above similarities between the NS-alpha model
and rotational Leray regularizations. The first averages the vorticity term instead of
the velocity (hence calling it the NS-omega model seemed natural). It is given by

ut + ω × u− ν∆u+∇P = f, (5.9)

ω : = ∇× u, and (5.10)

∇ · u = 0 , in Ω× (0, T ). (5.11)

With that said, one can also study combinations such as the following; the NS-alpha
and omega model is then naturally

ut + ω × u− ν∆u+∇P = f, (5.12)

ω = ∇× u, and (5.13)

∇ · u = 0 , in Ω× (0, T ). (5.14)

Concerning the precise formulation of the above nonlinear terms: here is no differ-
ence between ∇× u and in the periodic case. However, in the non-periodic case
there can be a very significant difference. On the simplest level, computing ∇× u re-
quires boundary conditions for the velocity (which are known) whereas∇× u requires
boundary conditions for the vorticity, which are unknown. There are both similarities
and differences among the above five (Leray, NSE, NS-alpha, NS-omega and NS-alpha
and omega). One is the above difference in the treatment of the incompressibility con-
dition in the non-periodic case.

One main motivation for the above variations is that the perfect model of fluid
motion is already known: the Navier-Stokes equations. Thus "models" like those
discussed above exist only as an intermediate step to an under resolved numerical
simulation of turbulent flow. Thus, two critical features of any such model / regular-
ization are

• its solutions must faithfully represent the qualitative properties of solutions
of the NSE, and

• it must be amenable to efficient numerical simulation with robust methods.
As an example of the motivation for the NS-omega model consider two standard,

robust, fully discrete unconditionally stable algorithms, the CN (Crank-Nicolson) and
CNLE (Crank-Nicolson with linear extrapolation) methods2 . Suppressing the spacial
discretization, the CN method for un ≃ u(tn) is for any of the three models

1

∆t
(un+1− un) + bh(ωn+1/2, un+1/2) +∇Pn+1/2− ν△hun+1/2 = fn+1/2, and (5.15)

1 In joint work with C Trenchea and I Stanculescu, W. L�#���, I. S���-
 !��� ! ��� C. T��� ���, Theory of the NS-omega model of turbulence, (submitted,
http://www.math.pitt.edu/techreports.html), 2008., a Leray-type theory has been established
for for the NS-omega model and estimates of compolexity made based on turbulence phenomenol-
ogy.

2The numerical analysis of these two is developed in W. L�#���, C. M��� �, M. N��� ���
L. R�0���6, Numerical analysis and computational comparisons of the NS-alpha and NS-omega
regularizations, to appear: CMAME, 2008.
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for the alpha model: ∇ · un+1 = 0 , (5.16)

for the omega model: ∇ · un+1 = 0 (5.17)

for the alpha-and-omega model: ∇ · un+1 = 0 . (5.18)

Briefly, this method requires the solution of a large (2Nvelocity+Npressure unknowns)
coupled nonlinear system at every time step. The NS-omega model can be solved
much more economically by Baker’s CNLE method (again, simplifying and suppress-
ing spatial discretizations), given by

1

∆t
(un+1 − un) + (

3

2
ωn −

1

2
ωn−1)× un+1/2 +∇Pn+1/2 − ν△hun+1/2 = fn+1/2,

(5.19)

where ωn = ∇× un (5.20)

and (∇ · uhn+1, χh) = 0 ,∀χh ∈ Qh. (5.21)

This method filters an explicitly known (from previous time levels) variable. This
simple method is second order accurate, unconditionally and nonlinearly stable and
requires only the solution of one smaller (Nvelocity+Npressure unknowns) linear system
at every time step. To our knowledge, no comparable simplification exists for the NS-
alpha model which shares all these favorable properties.

The remaining critical question concerns physical fidelity of the NS-omega model.

The ideas we study are outgrowths of the seminal work of J. Leray, the recent
work on the NS-αmodel, the early work of G. Baker from 1976 on extrapolated Crank-
Nicolson methods and our previous work on the numerical analysis of approximate
deconvolution models of turbulence.

The "models" discussed above are, strictly speaking, not models as such. Their
solutions have no intrinsic meaning other than as approximations to the solutions of
the NSE. Thus, they are important as are regularizations of the NSE and proposed
as a basis for reliable simulation of turbulent flows. Thus, we stress that the ultimate
question is to study convergence of discretizations the continuum regularizations to
solutions of the NSE as the spatial mesh widths (typically h and △t ), time steps and
filter width α all → 0 .

6. More about Averaging or Filtering. Averaging is a very common pro-
cedure in turbulence modeling. The classic example is time averaging or Reynolds
averaging (after Osbourne Reynolds) over a finite time window :

〈u〉[0,T ] (x, T ) :=
1

T

∫ T

0

u(x, t)dt, or 〈u〉[t−T,t] (x, t) :=
1

T

∫ t

t−T
u(x, t′)dt′.

Motivated by practical computations, the key idea is that in an under resolved simu-
lation a computed velocity should properly represent an average over one (or a few)
mesh cells. This leads to a space filtered u(x, t), such as

u(x, t) :=
1

α3

∫

[−α
2
,+α

2
]3
u(x− x′, t)dx′. (6.1)

Alternately, equivalently and mathematically clearer, weighed local averages are de-
fined by convolution or filtering with the chosen filter kernel, such as a top hat kernel
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for the above average or a Gaussian:

u(x, t) : = gα ⋆ u(x, t), where gα ⋆ u(x, t) :=

∫

R3

gα(x
′)u(x− x′, t)dx′,

gα(x) : = α
−3g(x/α), and g(x) := Gaussian.

Viewing averaging from the point of view of scale space, one thinks of a fluid velocity
as naturally composed of a scale of velocities (scaled by the filter length scale α)

u = u(x, t;α)(= (gα ⋆ u)(x, t)).

In practical computing, the averaging radius α is related to the (possibly locally
varying) mesh width and filters are often chosen based on computational convenience.

6.1. What is the right filter?. Ignoring computational convenience for the
moment, it is interesting also to consider filtering from the ideal continuum point of
view. If the averages are viewed as containing information of physical meaning, there
already results on acceptable filters beginning with the famous paper of Koenderink3 .
Scale space analysis4 begins with some basic postulates that any physically reasonable
filter should satisfy. There are various ways to develop the essential result. One begins
by assuming the filter is

C�������� 6.1. linearity:

αu+ βv = αu+ βv

C�������� 6.2. spacial invariance (no preferred location):

u(x− a) = u(x− a)

C�������� 6.3. isotropy (no preferred orientation): for all rotations R :

u(x) = R∗u(Rx)

C�������� 6.4. scale invariance, or the semigroup property (no preferred size):
if u(x, t) := gα ⋆ u(x, t) (so u := gα ⋆ gα ⋆ u) then

u = g√2α ⋆ u.

For example, in 1984 Koenderink proved the following.
T������ 6.5 (Koenderink 1984). The only filter satisfying C1, C2, C3 and C4

is the Gaussian filter.
Thus, there is really only one mathematical correct filter: the Gaussian. The same

conclusion can be arrived at by other plausible conditions on the filter such as filtering
not creating new structures such as local extrema and causality in the scale variable α.
Convolution with the Gaussian is quite expensive computational so that in spite of this
strong uniqueness result usually other filters are used. Koenderink’s result indicate

3J.J. K��������&, The structure of images, Biol. Cybernetics, 50 (1984) 363-370.
4See, e.g., T. L����0��-, Scale-space theory in computer vision, Kluwer, Dordrecht, 1994.
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that other filters for large eddy simulation must be assessed as approximations to the
Gaussian. One filtering method which is very convenient mathematical and not too
unreasonable computational is a special differential filter. Define the velocity averages
by:

u(x, t) := (−α2△+ 1)−1u(x, t). (6.2)

Differential filters were proposed for large eddy simulation by Germano5 and the
above differential filter is a well known regularization of evolution equations. The
close connection of the above differential filter to the Gaussian filter can be seen two
ways. In Galdi and Layton6 , it was derived as an approximation of the Gaussian filter
by Padé approximations of exponentials as follows. Fourier transformation of

u(x, t) := gα ⋆ u(x, t)

gives

û(k, t) := ĝαû(k, t) , where ĝα = e−|αk|
2

.

Since e−|αk|
2 → 0 as |k| → ∞, the filter suppresses fluctuations; in other words

it is smoothing. This is a fundamental property that must be preserved under ap-
proximation. The simplest rational approximation preserving this is the (0, 1) Padé
approximation given by

e−θ =
1

1 + θ
+O(θ2) , as θ→ 0, so

e−|αk|
2

=
1

1 + |αk|2 +O(|αk|4).

Using this approximation in the above for ĝα and inverting the Fourier transform
recovers the differential filter (#).

Alternately, the Gaussian is the heat kernel. Thus, one way to compute the
average velocity u(x, t) = gα ⋆ u(x, t) is to solve the following evolution equation:

vs(x, s) = △v(x, s) for s > 0,

v(x, 0) = u(x),

then set

u(x, t) := v(x, s)|s=α2 .

This gives the exact Gaussian filtered velocity u(x, t) := gα ⋆u(x, t). Since the averag-
ing radius α is small, α2 is smaller still and we can reasonably approximate v(x, α2)
by one step of backward Euler, leading back to the differential filter

u(x, t) := (−α2△+ 1)−1u(x, t).

In comparison with the Gaussian, the differential filter is only approximately scale
invariant. Indeed, if we compute u we find that it fails the semigroup property by

5M. G������, Differential filters of elliptic type, Phys. Fluids, 29(1986), 1757-1758.
6G. P. G���� ��� W. J. L�#���, Approximation of the large eddies in fluid motion II: A model

for space-filtered flow, Math. Models and Methods in the Appl. Sciences, 10(2000), 343-350.
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O(α4)

u = (−α2△+ 1)−1(−α2△+ 1)−1u

�= (−(
√
2α)2△+ 1)−1u,

but rather for smooth u,

u = (−(
√
2α)2△+ 1)−1u+O(α4).

Many important theoretical and practical questions remain at this very first step.

7. More on Deconvolution. If we can invert the filter exactly (so called, exact
deconvolution), then the closure problem is solved in principle. For example, the
differential filter has an exact filter inverse7

A := −α2△+ 1

which exists as an unbounded operator on L2(Ω) with dense domain and closed range.
To obtain a useful regularization, however, information must be lost by approximate
deconvolution. This means that the extra terms should be smoothing in some sense.
Our intuition is that this is accomplished when the approximate deconvolution oper-
ator is a bounded operator.

Alternately, an unbounded deconvolution operator will suffer from small divisor
problems: the (inevitable) noise from data and discretization will be magnified by
the model rather than damped. Unfortunately, it is well-known to be impossible for
an interesting filter to have a bounded (exact) inverse8 . Consider the deconvolution
problem

given u (+ noise) solve u = Gu for u.

T������ 7.1. Let X be a Hilbert space and G : X → X be a compact linear
operator. Then, if G−1 is bounded then dim(X) is finite.

The following is an immediate consequence.
C�������# 7.2. Let Gφ = φ denote the filtering operator. If G is smoothing so

G : L2(Ω) → Hs(Ω) is bounded for some s > 0 then G cannot have an exact inverse
that is a bounded linear operator : L2(Ω)→ L2(Ω).

The problem of inverting the filter G is is ill-posed and thus the closure problem
itself must be ill posed. This does not mean that accurate approximate closure is
impossible. There are after all many good methods for approximate solution of ill
posed problems!

7.1. Approximate deconvolution as an ill-posed a problem. The filtering
or convolution problem is: given φ compute φ → Gφ = φ := g ⋆ φ. The de-filtering
or deconvolution problem is: given φ (possibly +noise ) solve the following equation
approximately for φ

given φ solve φ = Gφ for φ.

7The same argument can be made for any filter with ĝ(k) �= 0. Filters which do not satisfy this
are often called "lossy" filters.

8L. C. Berselli, T. Iliescu, and W. Layton, Mathematics of Large Eddy Simulation of Turbulent
Flows. Springer, Berlin, 2006.

���
M. Bertero and B. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing Ltd.,

1998.
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D��������� 7.3. An approximate deconvolution operator D is a bounded linear
operator D : L2(Ω)→ L2(Ω) satisfying

for smooth functions φ :

φ = D φ+O(αα) α→ 0 for some α ≥ 2.

The deconvolution error is

eDCV (φ) = φ−DNφ.

The deconvolution problem is an important problem in image processing so there
are many methods specifically directed at the deconvolution problem. We shall con-
sider a few examples.

E7����� 7.4. Tikhonov-Lavrentiev regularization.
Let X = L2(Ω) and (·, ·), || · || denote the inner product and induced norm on X.

If G is a symmetric, positive definite operator, solving the deconvolution problem

given φ solve φ = Gφ for φ.

in the Hilbert space X is formally equivalent to minimizing the quadratic functional

φ = argmin
v∈X

J(v)

J(v) : =
1

2
(Gv, v)− (φ, v).

The exact solution is obviously v = φ. However, when noise ε ∈ X is present it is
easy to construct simple examples in which the minimization problem

φ = argmin
v∈X

1

2
(Gv, v)− (φ+ ε, v)

has no solution.
Tikhonov-Lavrentiev regularization picks a regularization parameter µ > 0 and

computes the approximation of the deconvolution problem by the approximate mini-
mization problem:

φµ = argmin
v∈X

1

2
(Gv, v)− (φ, v) +

µ

2
||v||2.

The classical Tikhonov-Lavrentiev method has error even on the largest scales. C.
Manica and I. Stanculescu recently gave an important refinement which reduces the
associated error on the large scales significantly. The modification is

φµ = argmin
v∈X

Jµ(v)

Jµ(v) =
def (1− µ){1

2
(Gv, v)− (φ, v)}+ µ

2
||v||2.

The Euler-Lagrange equations of the above is

φµ = ((1− µ)G+ µI)−1φ

20



so the approximate deconvolution operator induced by Tikhonov regularization is

Dµ = ((1− µ)G+ µI)−1.

When the filter operator is not a SPD, the deconvolution problem is converted
into the SPD deconvolution problem

given φ solve G∗φ = G∗Gφ for φ.

by least squares and the associated deconvolution operator of this is then

Dµ = (G∗G+ µI)−1G∗.

This is the (full) Tikhonov regularization. For example, with the differential filter

u(x, t) := (−α2△+ 1)−1u(x, t),

we have formally

Dµ = ((−α2△+ 1)−1 + µI)−1.

Thus given a filtered variable φ, its deconvolved variable is calculated by solving:

{µ(−α2△+ 1) + 1}φµ = (−α2△+ 1)φ , or, equivalently

φµ =
1

µ
φ− 1

µ
{µ(−α2△+ 1) + 1}−1φ.

E7����� 7.5 (The van Cittert algorithm). In 1931 (!) van Cittert studied a very
simple approximate deconvolution algorithm. The van Cittert algorithm is equivalent
to first order Richardson iteration for solving the ill posed operator equation Gφ = φ
or simple iteration in

given u solve u = u+ {u−A−1u} for u.

A�-������ 7.6 (van Cittert Approximate Deconvolution). Set v0 = u ,
for n = 0, 1, 2, ...,N − 1, perform
vn+1 = vn + {u−A−1vn}
Define DNu := vN .
By eliminating the intermediate steps, the N th de-convolution operator DN is

given explicitly by

DNφ :=
N∑

n=0

(I −A−1)nφ. (7.1)

For example, the approximate de-convolution operator corresponding to N = 0, 1, 2
are:

D0u = u,

D1u = 2u− u,
D2u = 3u− 3u+ u.

21



It is known that DN is bounded, SPD and an asymptotic filter inverse of accuracy
O(α2N+2):

φ = DNφ+O(α
2N+2) , for smooth φ.

P���������� 7.7. Let G = A−1 be the differential filter 6.2. Then, both G and
I −G are SPD; further 0 ≤ λ(G) ≤ 1 and 1 ≤ λ(DN) ≤ N + 1. The operator DN is
bounded

||DN ||L(L2(Ω)→L2(Ω)) ≤ N + 1.

Further,

φ = DNφ+O(α
2N+2) , for smooth φ.

One immediate consequence of the above asymptotic result is convergence as
α→ 0 for fixed N . This is typical for filtering, (see the recent work of Stanculescu).

C�������# 7.8. For φ ∈ L2(Ω),DNφ→ φ as α→ 0 for fixed N .
Proof. Let ε > 0 be given and let ψ be a smooth function with ||φ − ψ|| <

[1 + (N + 1)||G||]−1 ε3 . Write

||φ−DNφ|| ≤ ||φ− ψ||+ ||ψ −DNψ||+ ||DN(φ− ψ)||,

so that

||φ−DNφ|| ≤ ||φ− ψ||+O(α2N+2) + ||DN ||||G||||φ− ψ|| ≤
≤ ε

3
+O(α2N+2) < ε, for α small enough.

E7����� 7.9 (Optimized van Cittert deconvolution). Since the van Cittert
algorithm is equivalent to first order Richardson for the operator equation Gφ = φ,
relaxation parameters can be introduced and no extra cost. with proper choice of the
optimization parameters significant improvement of accuracy is possible.

A�-������ 7.10 (van Cittert deconvolution with relaxation). Set v0 = u ,
For n = 0, 1, 2, ..., N − 1,
select relaxation parameter ωn and compute
vn+1 = vn + ωn{u−A−1vn}

Define DωNu := vN .
Optimization of the parameters ωn depends on the objective and the exact choice

of filters two cases have been studied by Stanculescu.
C��� 7.11 (K41 optimized deconvolution). In the work of Stanculescu the

optimal parameters were derived to minimize the norm of the deconvolution error
||φ − DNφ|| over the resolved scales for velocity fields coming from turbulent flows
with the inertial range energy spectrum typical of homogeneous isotropic turbulence:

Find (ω0, ω1, · · ·, ωN) minimizing

||u−DNu||
subject to Ê(k) = αKolmogorovε

2
3 k−

5
3 .
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C��� 7.12 (Optimization for general velocity fields). Another possibility is to
optimize the norm of the deconvolution error over general, square integrable velocity
fields. This leads to the minimax problem

min
ωj

max
φ∈L2

||φ−DNφ||

which was solved by Stanculescu as well.
E7����� 7.13 (Geurts’ approximate filter inverse operators). Exploiting special

features of the top hat filter, Geurts9 constructed efficient and ingenious approximate
filter inverses of varying degrees of accuracy of the top hat filter.

9B. J. G�!���, Inverse modeling for large eddy simulation, Phys. Fluids, 9(1997), 3585.
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