A NON-ITERATIVE, DOMAIN DECOMPOSITION METHOD WITH DIFFERENT
TIME STEP SIZES FOR THE EVOLUTIONARY STOKES-DARCY MODEL
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Abstract. This report analyzes a partitioned time stepping algorithm, meaning a non-iterative, domain decomposition
method, which allows different time steps in the fluid region and the porous region for the fully evolutionary Stokes-Darcy
problem. The method presented requires only one, uncoupled Stokes and Darcy sub-physics and sub-domain solve per time
step. Under a time step restriction of the form At < C (physical parameters) we prove stability and convergence of the method.
Numerical tests are given confirming the convergence theory and demonstrating the computational efficiency of the partitioned
method. They also show that in (the expected case) of greater fluid velocities in the free-flow region than in the porous media
region, allowing smaller timesteps in the subregion with the faster velocities increases both accuracy and efficiency.
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1. Introduction. The transport of substances between surface water and groundwater is an important
problem of great current interest. The essential features of estimating penetration of a plume of pollution
from surface water to ground water and remediation thereafter are that (i) the coupled problems in the
fluid and porous media sub-regions are both inherently time dependent, (ii) the flows in the two regions
act with different characteristic speeds, and (iii) the physical processes are sufficiently different that codes
optimized for each individual sub-process ultimately will need to be used to solve the coupled problem.
Thus, there are many open questions (beyond the results we present herein) connected to limiting cases of
the various physical parameters. With these issues in mind, we analyze herein an asynchronous, uncoupled,
partitioned method for the fully evolutionary Stokes-Darcy problem. The method allows different time steps
in the two subregions (such methods are often called ”asynchronous coupling” in geophysics) and requires
only one, uncoupled Stokes solve and one Darcy solve per time step (with no iteration or construction
of a fully coupled problem). The partitioning is based on simply lagging the interfacial coupling terms
following a method analyzed by Mu and Zhu [17], see also [1] for its use in other applications. Connecting
the different time steps at the interface adapts of Connors and Howell [7] for atmosphere-ocean coupling.
The essential difficulty of both lagging terms and interpolation between meshes and time steps is doing so
without creation of non-physical system energy. Partitioned methods have obvious and large advantages in
efficiency over monolithic (fully coupled) discretizations followed by domain decomposition iteration at each
timestep. However, partitioned methods for the Stokes-Darcy problem are in their infancy. We believe that
partitioned methods will continue to evolve and improve.

The algorithms we present are an extension of the partitioned method in Mu and Zhu [17]. We shall
thus follow the notations in [17] in specifying the problem (next). The mathematical model consists of the
evolutionary Stokes equations in the fluid region coupled with the evolutionary Darcy equations in the porous
medium, [9, 13, 15, 18, 19]. The key part is the interface coupling conditions of conservation of mass across
the interface, balance of forces and the (tangential) Beavers-Joseph-Saffman conditions [2]. Consider thus
a Stokes flow in Q¢ coupled with a porous media flow in €, where Q,Q, C R%(d = 2 or 3) are bounded
domains, Oy NQ, = O, and ﬁf N ﬁp =T. Denote by Q = ﬁf U ﬁp, ny and n, the unit outward normal
vectors on J€)y and 0%, respectively, and 7;,4 = 1,--- ,d — 1, the unit tangential vectors on the interface
I'. Note that n, = —ny on I, see Figure 1.1 below. Let T' > 0 be a finite time, the fluid flow is governed by
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Fi6. 1.1. The global domain §2 consisting of the fluid region Qf and the porous media region Qp separated by the interface T'.

the Stokes equations for the fluid velocity and pressure in Q¢, u(z,t) and p(z,t) :

w—vAu+Vp=fi in Qy x (0,77, (
V.-u=0 1in Qs x (0,7T], (

u(z,0) =wup in Qy, (

u=0 on 00y \T. (

Here f;(z,t) is the external force, and v is the kinematic viscosity.
The porous media flow is governed by the following equations on €2, for the piezometric head ¢(z,t):

SO¢t+V'q:f2 in Qp X (07T]7 (15)
¢g=-KV¢ inQ, x (0,7, (1.5)

uy = % in Q, x (0,7, (1.6)

¢(z,0) =¢o 1in Qp, (1.7)
$=0 ondQ,\I. (1.8)

Here ¢ is the specific discharge defined as the volume of the fluid flowing per unit time through a unit
cross-sectional area normal to the direction of the flow, £ is the fluid velocity in €, Sy is the specific mass
storativity coefficient, K represents the hydraulic conductivity tensor, n is the volumetric porosity, and fs
is the source term. Note that ¢ = z + %, the sum of elevation from a reference level plus pressure head,
where P, is the pressure of the fluid in 2, p is the density of the fluid, g is the gravitational acceleration.
(The usage of g as gravitational vector or source term will be clear from the context in which it occurs).

The presentation of the coupled problem with separate discretizations and differing time steps involves
substantial notation. We therefore make some simplifying assumptions to reduce the notational complexity.
In particular, we assume z = 0 and that K = diag(K, - -- , K) with K € L>(Q,), K > 0, which implies that
the porous media is homogeneous. By using Darcy’s law, (1.5) can be rewritten in the parabolic form

Sopr — V- (KV¢) = fo in Q, x (0,77, (1.10)
&(x,0) = g9 in Q. (1.11)

For the Stokes-Darcy model, the interface conditions of conservation of mass (1.9), balance of forces
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(1.10) and the Beavers-Joseph-Saffman condition are imposed herein:

u-ny+u,-n,=0 onI x(0,T7, (1.9)
3}
p— unf—u =pgp onT x (0,7, (1.10)
8nf
o 2 Y i1, d—1 onT x (0,T]. (1.11)

811}0 7 - K7

In (1.11) « is a positive parameter depending on the properties of the porous medium and must be experi-
mentally determined. The condition (1.9) can be rewritten as

Koo

u-np = on T x (0,T]. (1.12)

n on,

In the last ten years there has been an explosion of work on numerical analysis of coupling surface
water to ground water. For a comprehensive overview of other work on this important problem, see [10]
and the 125 references therein. Much of the work has studied the equilibrium problem, e.g., [9, 10, 15].
Discacciati [8] presents results for a monolithic method for the evolutionary problem which is uncoupled at
each timestep by domain decomposition iteration. Various quasi-static models (not considered herein) have
also been proposed with time dependence in one region and in the other at equilibrium. To our knowledge,
justification of the quasi-static assumption based on the rates of return to equilibrium in either sub problem
in the context of the fully evolutionary setting is still open. Among the many fewer papers (so far) on
the numerical analysis of the fully evolutionary Stokes-Darcy problem (considered herein), beyond [8], Mu
and Zhu [17] study a partitioned method which we build upon herein. Cao, Gunzburger, Hu, Hua, Wang
and Zhao [4, 3] study a fully, monolithically coupled implicit method for the much harder and physically
more accurate case of Beavers-Joseph coupling conditions (without Saffman’s simplification) as well as an
interesting approach to partitioning in [5].

1.1. Variational formulation of the continuous problem. Denote W = Hy x H, and Q = L?(§2y),
where

Hy={ve (H Q) :v=00n00;\T}, H, ={¢ € H'(Q,): ¢ =0 0n 0Q, \T}.

The space L?(D), where D = Qy or ), is equipped with the usual L?—scalar product (-,-) and L?—norm
|- [|z2(D). The spaces Hy and H, are equipped with the following norms:

||U||Hf = HVUHL2(Qf) = (V’LL, VU)Qf Yue Hf, (113)

olla, = IVellL2@,) =/ (V6,Ve)a, Ve H), (1.14)

We equip the space W with the following norms: V u = (u,¢) € W,

[lullo = /n(u, ua, + pgSo(9, 9o, (1.15)

[lullw = \/ﬂV(VU,VU)Qf +pg(KVo,Vo)a,, (1.16)

where (-,-)p refers to the scalar product (-,-) in the corresponding domain D for D = Qy or ,. For
simplicity, we assume that n, p, g, Sg and v are constants.

We also recall Poincaré and trace inequalities which are useful in the analysis. There exist constants P;
and Cy which only depend on €2; such that

1/2 1/2
oll2ay) < Pallelli . Ilollzy < Collol[F2, lolli2, ¥ v € Hy. (117)
There exist constants P, and C’o that only depend on §2, such that
10l 2205,) < Palltlla,, 19122y < Collll arg s [01137, ¥ o € H. (1.18)
(©2p) P

3



The weak formulation of the time-dependent Stokes-Darcy model reads as follows: find u = (u,¢) € W
and p € @, such that , V ¢t € (0,71,

(ut,v) + a(u,v) + b(v,p) = (f,v) in Q,
b(u,q) =0 in Q, (1.19)
u(0) =uy in Q,

where

(utav) = n(ut7v) + PQSO(@JP)’
a(u,v) = af(u,v) + ap(¢,¥) +ar(u, v),
d—1
af(u,v) = nv(Vu, Vo)g, + ;/r \/%(u 1) (v ),
ap(9, 1) = pg(KV, Vip)a,
) nﬂg/r(éi’v'nf—%ﬁwnf),

V7p) —n(p,V'U)Qf,
f?") = n(fl, U)Q‘f + pg(f27’(/))ﬂp

o

=N
£
<

LEMMA 1.1. Assume that
f1 € L*(0,T; L*(Q4)?), f2 € L*(0,T; L*(Q,)), K € L™(Q,)**?, (1.20)
and K is uniformly bounded and positive definite in §,: there exist kmin, kmaz > 0 such that
Emin|z|?> < Kz -2 < kpae|2|? ae. 2 € Q. (1.21)

In addition, let ug € L*(Q25)?, ¢po € L*(82p), then any solution (u,p, ) € (L*(0,T; H)NH (0, T; L?(25)?)) x
L2(0,T;Q) x L*(0,T; H,) of (1.1)-(1.11) is also a solution to (1.19). Conversely any solution to (1.19)
satisfies (1.1)-(1.11).

Proof. The well-posedness of the Stokes-Darcy model(1.19) can be found in [8, 9, 15] for the stationary
case and is assumed to hold similarly for the non-stationary case. O

From the assumption (1.21), we have

m||K1/2vaL2(Q ) < ||¢||H m||K1/2vaL2(Qp) (122)
Furthermore, ar(-, ) satisfy the following properties:
ar(u,v) = —ap(v,u), ar(u,u) =0, Yuvell (1.23)

The first partitioned method of Mu and Zhu [17] uncouples the Stokes-Darcy problem by the implicit
method in time and the explicit method for the coupling terms. Herein we extend the partitioned method
to allow for different size time steps for the decoupled subproblems, say At on Qf and As on §2,, with
any integer ratio r = As/At between them. The reason for using different time step size is that physical
processes happen at different rates, e.g., [11] whose analysis is consistent with the intuition that fluid flow is
faster than that in the porous medium. The methods extend immediately to the case where the regions of
small and large time steps are reversed. The natural CFL condition demands "At < 1 where v denotes the
velocity in the sub-domain. Since different domain have different flow Velocmes, practical computing often
will require different time steps and even possibly adapting At separately in each sub-region.

Remark. Coupled fluid flow with flow in porous media occurs in such a wide range of applications
that many parameters regimes are important. While the focus of this paper is asynchronous time stepping
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(treating the differing flow rates in free flow and in filtration flow), we also try to estimate the dependencies
of the worst case constants upon ki, (which is often small) and Sy (also often small). The constants in
the analysis also depend upon the final time T', indicated as C'(T"). We have not attempted to optimize any
estimate with respect to any of these important parameters. We anticipate that different methods will be
the preferable for different parameter values.

The rest of the paper is organized as follows. Both coupled and decoupled algorithms are presented in
Section 2. The stability of the decoupled algorithm is given in Section 3. In Section 4, we analyze its error.
Numerical tests are reported in Section 5, followed by conclusions in Section 6.

2. Numerical algorithms. We consider a triangulation 7, of the domain Q; U €, depending on a
positive parameter A > 0, made up of triangles if d = 2, or tetrahedra if d = 3. Let W), = Hyp, x Hypp, CW
and @ C @ denote the finite element subspaces. The finite element spaces Hy, and @ approximating
velocity and pressure in the fluid flow region are assumed to satisfy the well-known discrete inf-sup condition:
there exists a positive constant 3, independent of h, such that V g, € Qn,3 v, € Hyp,vp # 0,

b(vn, qn) > Bllvnlla,llanllL2 (@) (2.1)

Moreover, we need the inverse inequalities in both Hy, and Hpy: there exist constants C; and C’l which
depend on the domain Qf and €2, respectively, such that

[onller, < Crh™Mloallrza,) ¥ vn € Hpn, (2.2)
nllm, < Crh™HYnllL2(e,), ¥ ¥n € Hph.

The following estimates on the coupling term are useful in our analysis.
LEMMA 2.1. YV u,v € W, there exists Cy > 0, such that Ve > 0,

npgCs

Jar (1, )| < el ulfy + 7552 1v| . (24)
Further, we have ¥V u,v € W, there exists Cs > 0 such that .
€ npgCs
Jar (u, v)| < S ([[ullfy + [IvIv) + m(”ﬂ”% +1IvII3)- (2.5)

In addition, if the finite element spaces satisfy the inverse inequality, then ¥ up, vy, € Wy, there exists
Cy > 0 such that .

npgCy
4eh

lar (up, vi)| < el funff + [Ivallg. (2.6)

Proof. By using trace and Poincaré inequalities (1.17)-(1.18), we have

lar(u, v)| :npg|/r<¢w~nf ~u-ny)|

< npg||@ll 2y ||v - npl[ L2y + npgll|| L2y w0yl
1/2 1/2), 111/2 1/2

~ 1/2 1/2 1/2 1/2
< npgCoCo(llll e, 10N 10l t0 10l + 119l g, 11 2 ull g, el )
= 1/2 p1/2
< npgCoCo P > Py > (|16l m, vl 1, + 181, llul|r,)
< nngoC’oPll/QP;/2

< N~ (IK2V 6|20, [0l , + (K20 |2, full )

n2pgC2C2 P, P, np2g*C2C2P, P,
< epgl[K'2Vel|32q,) + —45(;%3” ol[%r, + env||ul|F, + WIIKWWJIIQMQP)
npgC3C3P\Py | s
< 2 4 P00 172
< ellullfy + - N4l
npgCs
SEHUH%V""WHVH%/IH (2.7)



where Cy = Cgégplpg. If we don’t use Poincaré inequality in (2.7), then

far(u.9)| = npg] | (60 1y = vu-ny)
< npgl|dl|2@yllv - nyllr2 @y + npgllllLe |l - nyllLzr)
< npgCoCo(ll@llata, ) 1110l ot 10117 + 11l e, 101152 el 55, el 3
< ey/mpg(|[K'2V || 2o, o], + 1KYV 120, llull,)

(npg)**C3CE
—46\/% (||¢||L2(Qp)||v|\L2(Qf) =+ ||7/1||L2(Qp)|\u||L2(Qf))
€ 2 2 nng%C% 2 2
< —
< SNy + V) + 2P + V1)
€ 2 2 npgCs 2 2
<= — e )
< SNy + V1) + 722l + 1vI) (23)

where Cy = C2C2. If the finite element spaces satisfy the inverse inequality (2.2)-(2.3), then

lar (s, va)| = npg] / (6nvn - 1y — Ynun - 1))
T

< npg||pnllLzl|vn - npllLzry + npgl[¥nl 2@y llun - 0|l 2 )
~ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
< npgCoCo(llonl 1510, l1enll - ol [ 2q, 1ol 32 + 1nl 15, 10nl 32 lunl g, lunl )

- npgCoCoPy/*C1/*n=1/2
o Vv knnn
npgC2C3P,C A"
45knﬂn

npgC2C2 P201 Plcl

P00 {22, D v
npgCly

AT

1KYV ]| 120, |[vnl 22 (00, + 1pgCoCo Py > CLh=Y2 by | 120 lun |1,

npgC2C3 P Cih~1
4€V5b

<ellupl)?y +

(nllonlF2(0,)) + (pgSoll¥nl72(a,))

< ellunlfy +

< el|lunllf +

where Cy = C3C3 max{fz—a, il—sil} 0

We also introduce a subspace V5, of W, defined by
Vi ={vih € Wy :b(vh,qn) =0 ¥ g € Qn},

Following [17], we define a projection operator Py, : (w(t),p(t)) € (W,Q) — (P,w(t), Pup(t)) € (Wh,Qn),
Vte[0,T] by

a(Ppw(t), vi) +b(vh, Pap(t) = a(w(t),va) + b(va,p(t)) ¥V vy € Wh, (2.10)
b(Pyw(t),qn) =0 VY qn € Qn. (2.11)

Apparently, P}, is linear operator. Furthermore, under a certain smoothness assumption on (w(t), p(t)), the
following approximation properties hold:

[Paw(t) — w(t)l[o < CR?,
1Paw (t) = w(t)[[w < Ch,
[1Prp(t) = p()llo < Ch.

From now on, we always assume that (u(t), ¢(t)) € (H?(Qs)%, H?(2p)), (ue(t), d:(t)) € (H ()%, H(Q,))
and (ug(t), pu(t)) € (L2(2)%, L23(€,)) for the solutions of (1.19).
6



2.1. The monolithically coupled, implicit method. In this section, we provide a monolithically
coupled scheme which is used for comparison. Choose a uniform distribution of discrete time level,

Q:{O:toatlatQa'“ 7tN:T}7

where t"™ = mAt,m =0,1,2,--- ,N for A\t = % Here (uh™, ph™ ¢"™) denotes the discrete approxima-
tion to (w(t™),p(t™), p(t™)).

Algorithm 2.1(Coupled scheme) Find u?™m*+1 = (yhm+1 ghmtl)y ¢ W, and ph™*! € Q) with m =
0,---,N —1, such that

uh,erl _ uh,m
(T’V) + a(u™™ ) 4 b(v, phm T = £ (v) Vv e W, (2.12)
b(u" ", ) =0 ¥ an € Qn (2.13)
u™? = . (2.14)

2.2. A Decoupled Scheme with Different Time Steps. To streamline our notation further, we
shall suppress the subscript "h” and replace u}', ¢;', p;* by u™, ¢™, p™, respectively. First, we choose
discrete time levels

P={0=t" ¢ . N =T},
where t" = mAt, m=0,1,2,--- , N for At = % Denote by
§= {tm07tm17"' 7th} C P7

a subset satisfying t™* = kr/AAt such that r € N is fixed and Mr = N. The time step size on 2, is given a sep-
arate notations hereafter, As = rAt. For t™,t™ € [0,T], (u™,p™, ") will denote the discrete approxima-
tion to (w(t™),p(t™), ¢(t™*)). The approximations (u™ !, p™*t1) € (Hp, Qp), for m = mg,mo+1,--+ ,N—1
and ¢+ € Hyy, for k =0,1,--- ,M — 1 are calculated using Algorithm 2.2. In practice only the data at
time t° would need to be provided. One important feature of Algorithm 2.2 is that (u™*!,p™*1) can be
calculated for m = my, mp +1,--+ ,mpy1 — 1 in parallel with ¢+,

Algorithm 2.2(Decoupled scheme)
e Find (u™!,p™*) € (Hyp, Qn), with m = my, mg+1,- -+ ,mgi1 — 1, such that V(v, q) € (Hn, Qn):

m+1 __ ,m
n(u — u ’U)+af(um+1’v)+b(v,pm+1) :n(firn-&-l’v) —prg/(bmkv'nf, (2'15)
r
b(u™*, q) =0, (2.16)
u’ = uo, (2.17)

with the small time step size /At.

my _ 1 N~Mk+1—1 g
e Set S —r Zi:mk u,

o find ¢™*+! € Hpp, such that ¢ € Hyp:

'0950(%» V) + ap(¢™ 1, 0) = pg(fa ™) + npg /F YS™ -y, (2.18)

" = ¢o, (2.19)

with the large time step size As = rAt.
e Set k =k + 1 and repeat until k = M — 1.



3. Stability of the method. In this section, under a time step restriction of the form

AnpgCs A\t <1

vV VSQ kmin ’
where Cj is a constant defined in (2.8), we prove the stability (possibly including terms like C(T) = exp(aT))
over bounded time intervals [0, T] of the partitioned method Algorithm 2.2. Tt is also possible to prove sta-
bility under the alternate condition % < C(physicalparameters), where C has a different dependency than
n (3.1). We test sharpness of the restriction (3.1) in the numerical experiments section which indicates that
(3.1) is not sharp with respect to its dependency on k.

(3.1)

THEOREM 3.1. (Stability) Choose the initial data ¢™ = ¢¥, u™ = u0, and ¢+ 1 = gme+s
gme Il = gmenr (1 < J <pr—2,0<k<I). Assume that At satisfies (3.1), then for —1 <1< M —1,
we have

myy1+J pgAt miy1+J

Z %, + ,0950||¢ml+1+J+1||2L2(Qp) T Z ||K1/2V¢i+1|\%2(gp)
i=0 i=0

ampP2ne ™SS 2pgP2 At T

< C(T){E)i’l/ > WA T2, + k:72 > 15 1720,

i=0 o i=0

nv/A\t

nHuml“HHHi?(Qf) 5

At
+ = ([, + gl K2V 22 (a,)) +nllu’l[72(a,) + pgS0ll6°] 72, ), (3:2)

where C(T') = exp(aT), a constant depends on the finial time T.
Proof. Taking v = 2Atu™*! in (2.15), using the divergence-free property, sum over m = mg, my +
17'” yMEg41 — 1;

me41—1 mpr1—1
Al By + 30 et ey — 0™ ey} +200 Y ag(ui*h uit)
i=my i=my
mgy1—1 mp41—1
=2mAt Y (f1i+1,ui+1)72npgﬁt/r¢m’“( > wt)onyg. (3.3)
1=my 1=m

Taking 1 = 2As¢™e+1 = 2pAtgme+1 = 2AE ST gmiia iy (2.18),

i=my
me41—1
pgSo{ll6™ 721,y + 1™ = 6™ |[F20,) — 1167 T2,y } + 208 Y ap(¢™ ", g™ )
i=mk
mpy1—1 mp41—1
=2pgAt Y (f3" @) + 2npgAt/F ¢ Y ') -my (3.4)
i=my 1=my
Combining (3.3) and (3.4), we obtain
mp+1—1 mp+1—1
n{|[u™ |72,y + Z [t — (|22, = [0 (|72, } + 2008 Z ap(u ™t uth)
i=my i=my
mk+1—1
+ pgSodll¢™ 720,y + 16754 = 6™ |22,y = 107120, } + 208 D ap(@™r+, ™)
i=my
me41—1 ' mpgr1—1
Sonnt Y () 2pgar YD (6 (35)
i:mk i:mk
mpgy1—1 mr41—1
- 2AtaF(¢mkv Z ul; ¢mk+lv Z uhLl)a
i:mk i:mk



here and the following, we define ar(¢,u;v¥,v) = npg [((¢pv - ny —u - ny)dl. The first two terms of RHS
(right hand side) in (3.5) are bounded by Young and Holder inequalities,

mg+1—1 mp+1—1
2n/\t Z (fir w4 2pgt Z (fy *Th, @mesn)
mk_Hfl mk+171
<2nP At Z A 2 a2, + === Z 13" 20 K2V 0™ | 12(q,)
i=my V kmvn i=my,
omP2AL ETT 20gP3Ns | .m
< Tl Z ||ff+1|\%2(9f) + k72||f2 k+1||L2(QP)
P min
mp 1 m -1
Nt o p pgAt m
FEES I, + S K96 g (3.6
i=my, i=my

The remains of RHS in (3.5) have the following bound by (2.5)

mp+1—1 _ mi+1—1 .
—2Atap (¢™*, Z uls g Z u1+1)
i:mk i:mk
At mp4+1—1 mp+1—1 _
< vl D0 w4 pgl KAV Lo,y vl D ullff, + pgl KAV [ q,))
i=my =My
: —1 mk+1—1
2mpgCs it 4112 2 (12 2
————(n|| w2, + pgSolle™ T2 (q,) + nl| u'l|z2(0,) + P9SOl1"* [[12(0,))
VUSokmin i:zm:k L2(Qy) L2(Qp) gn:k L2(Qy) L2(Qp)

A me4+1—1
5 ( > g, + vl | + pgl KAV o ) + pgl KV [72q, )
i=my
dnpgCs A\t

VSOkmin

<
ME+1

(D nllu'l[F2q,) + pgSolle™ {72, + pgSolld™[[72(q,))- (3.7)

i=mk

Combining the above inequalities, using Holder’s and Young’s inequality, we obtain

me41—1 Mme41—1
™ 2oy + S I = wilZagay) — ([0 e,y + vt S [,
i:mk i:mk
(™ |37, + pgSo{lle™ [[72q,) + 0™+ — ™ |[72q,) — [19™* (720, }
il pgNt
+pgit Y (KA |, = S KAV [ g,
i:mk
omP2AL "N ; 2p9P2 N5 | m
§+ Z |\f1+1||%2(9f)+k72||f2 1220,
i:mk min
AnpgCsAt "X i m m
———( Z nf|u |\%2(Qf)+/’950|\¢ k“|\%2(gp)+ﬂgso||¢ ’“||%2(Q,,))- (3.8)

Vv VSO kmin

i:mk



Sum over £k =0,1,---,1, with 0 <[ < M — 1 we have

TLVAt Mkt1—1 ) pgAt mp1—1
A gy + S ST R, + pgsullem ey + 2SS BT
k=0 i=my P —
< AnpgCs it iy
8 i|)2 st 112
i +pgSolle™ 3.9
\/mkzo zka [4'][22(0,) + PgS0ll0™ ||22(q,)) (3.9)
me41—1

2nP At . 2ng As m
ZPEAL SIS e, 200PEDs §j||f2 e,
min

k=0 i=my
At
+ T(HVHUOH%Q + PQ|\K1/2V¢OH%2(QP)) + nHUOH%%Qf) + PQSOH¢OH2L2(QF)

Taking v = 2Atu™*! in (2.15), using the divergence-free property again, sum over m = myi1,miy1 +
1, ymyp +J,(0< T <r—-2)

myy1+J myy1+J
J . ) ) )
nlfum T R g ) ' > (- u'lTagq,) — U™ [f2q,) + 20t > ap(u Ut
i=my4q i=myy1
miy1+J _ miy1+J
= 2n/\t Z (fitt uith 72npgAt/¢ml+1( Z u'tt) ng
1=Mj41 r T=m41
+J miy1+J
anP2At " E - SnvAt :
S5, Z A 220, + 1 Z ™%, (3.10)
i:mLJrl i:mlJrl
At myp1+J
F SO T, + gl KAV R )
1=mi41
2npg At it
4112
+ m(_ Z nllu" 720, + P950||¢ml+1\|%2(9p))~
1=Mi41
Rearrange the inequality, yield
miy1+J AL myy1+J
J+1))2 i+1 112 i
Alla™ gy £n Y I = il — e R, + T Y
1=M]41 1=Mi41
mig1+d
2npg At e i+1]|2
\/m Z n||uz+ ||L2(Q‘f) + pgSUH(berl ||%2(QP)) (311)
=My
J
anpiAt MO pgAt
+ 57; Z WA e,y + = ||K1/2v¢ml+1||L2(Q )
T=miy1
Considering the special case, when [ = —1, then ¢™+1 = ¢0, u™+1 = 4%, the above equation can be written
as follows:
J vt <
J+112 i i i
nlfu’* 17200, + nz lut*t — Ul||%2(sz_f) TS Z ||Uz+1|\%{f
i=0 =0
J
2npg At 4nP At
: WZ (n[lu"* Y72,y + 95l16°|72(0,)) ZHfH_lHL%Qf)
mzn
pgAt

K2V ¢ 122 (a,) + nllel1Z2(a,)- (3.12)

10



Add both sides by 2454 K /2V 0|2, L +980l18°][72(q, ), and set 7T = g0, fIH = [ (0 < T <r-2)

since 222571 K2V 63, ) < pg“HKl/?woanm ) then,
J
J+1(12 i+1 2 nvAt i+1((2
nlu ||L2(Qf)+nZHu —U|\L2(Qf)+TZHU %,
i=0 i=0

PIAL ¢ i
+pgSol|6” 720, + o Z K2V 6220
i=0

2npg/\t J

_WZ Hui+1||%2(ﬂf)+pgSO||¢i+l||%2(Qp))

AnP2At 2pgP2AL N
+ Z R e > 220,
m i=0

in
1=0

At
+ 7(”V||U0||§Jf + P9||K1/2V¢0||%2(szp)) + "||UO||%2(Qf) + P950||¢0||%2(Qp)~ (3.13)

Combine (3.9) and (3.11), and set ¢™#+1H/+1 = gmut1, f;n’““Jr‘Hl = (1< J<r—2,VI>-1),
we arrive at

vt mip1+J . pg/it mip1+J ‘
n[u™ Y e g+ 5 Z ™Y1, + pgSoll™ 1+ [Taq,) + o Z ||K1/2v¢)l+l”%2(9p)
i=0 i=0
mi41+J
dnpgCs A\t s i i
= m Z; (rf|u +1||i2(9f) + pgSol|¢ +1||%2(Qp))
anpP2At ™8 . 2pg P2t ot ;
+571V Z; ||f1+1||%2(9f)+ﬁ Z% ||f2+1\|%2(9p)

At
+ 7(”””“0“%@ + P9||K1/2V¢0||%2(QP)> + ”||UO||2L2(Qf) + P950||¢0||%2(QP)- (3.14)

Finally, choosing At, such that f/% < 1, which is required to apply the discrete Gronwall inequality to

(3.14), (which contributes a C(T) term). O

4. Convergence Analysis. In this section, we analyze the error in Algorithm 3.2. We will use the
following notations. Define u* = u(t™), ¢7 = ¢(t™), pI* = p(t™). Following (2.10)-(2.11), we define
Um = Ppu(t™), ¢m = Pro(t™), pm = Ppp(t™), then we set €' = ug® — um, €' = &' — ¢m, 10" = PI* — P,
and e = u,, — um, €™ = ¢ — ¢, N = py — p™. Obviously, we observe that u(t™) — u™ = e + ™
and @(t™) — ¢™ = €™ + €™, from approximation properties we have |[e"]| 2(q;) + [[€)']|22(q,) < Ch?,
e | m; + et ||m, < C’h Moreover, we suppose that e = 0,€® = 0.

Then, by (1.19) and (2.10)-(2.11), for (v,q) € (W, Qr), we have

Uu — U
(%,v)+af(um+1,v)+b(v,pm+1) —n(wiv) + (e )—npg/¢m+1v'nf (4.1)
r

Dt 11,4) = 0. (42)
d)m - ¢m m m
PQSO(HTM/)) + ap(Fms1,¥) = —pgSo(wi'i ) + pg(f3" ) + npg/FlbumH ‘ny,  (4.3)
where
m Um — Um m
Fil= HT—Ut(t )
_ Um+1 — Um _ u(tm+1) - u(tm) u(tm+1) - u(tm) _ m—+1
= At At I+ At (")
= Wi+,

11



and

w7n+1 ¢m+1 - d)m o ¢t(tm+1)

p,t At
m — bm tm+1 _ tm tm+1 — H(t™
_ [Qb +1 ¢ . ¢( ) ¢( )] + [d)( ) ¢( ) ¢t(tm+1)}
At At At
= wptt +wrty
It is easy to verify that the following properties of w 7 ;r 11, w?j 21, wzljll and w?j% hold: from the definition
e tm+1
m1 w(t™) —u(t™) 1
w =P, -I)——————— = — (Py, — Dug(t)dt,
fit At At Jym
then we have
) 1 tm,+1
m 2
lofi i l3eay) = 25 / ([ = Duanas
gmtl g+l
(Pn — 2dt 1%dtd
gm+l

_At[m 1%~ D)0, .

Similarly,

t7n+1

Atwfy = u(t™ ) —u(t™) — Atu (") = — / (£ — " Yuge (t)dt,

which means

tm+1

1
[ el ——— / ( / (= ™ Yuge (1)t 2
razllze) = 7z [ U] t

pmt1 gt
<
<z ).

+1

The same as wy’'7, wy!' 5, while consider the large time step size As, then,
it

tm+1

tm

| 1 t"E+1
lwps i 72e,) < E/t |(Pr = D)5 (5)[[72(a,) s,

my

and
+t"Mk+1

025 ey < 85 [ IulBaga, s

tmE

By the equivalence between ||ul|m, and ||Vul|p2(q,), |[¢]|m, and [[Vé|[12(q,),

ltms1 = umllEr, = 1P (ut™ ) —ut™))IE, < Cllu™ ) —ut™)|F,
t1n+1

<C (V( (™Y —w(t™)))2de < C (/ Vudt)?dx
Qf Jtm

gL 1

m+1
< c/ / |V | dt/ ldtdx < CAt/ [luel1 3, dt.
Qf t’VTL

12
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tm
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(4.6)



Do the same as (4.8), we have

lomer = ol <Ot [ it (4.9)
tT:mHl

[ umk||:;_1f < CAs /m ||us\|%{fds, (4.10)
tt'y:kﬂ

0ms = el < s [ Yol ds. (a.11)

Considering small time step size At and subtracting (4.1) from (2.15) gives

emtl —em m—+1 m+1
H(T7v)+af(e aU)‘*‘b(Uﬂ? )
= —n(wf; ! v) —npg / (bt — bm)v 1y — 1pg / (bm —6™)v-my,  (412)
b(e™ 1 q) = 0.

Considering larger time step size As = r/At and subtracting (4.3) from (2.18), we obtain

eME+1 — Mk

PQSO(T7 V) + ap(e™ 1))

For the error estimate we impose a timestep restriction of the form At < Ch that is different than (3.1).
Since convergence implies stability, Theorem 4.1 also gives a stability condition with different dependencies
on the physical parameters than (3.1).

THEOREM 4.1. Suppose the true solution is smooth, the initial approzimations are sufficiently accurate
and that the time step and mesh width At, h satisfy

4rnpgCyAth™ <1, (4.14)

then the following estimate for the error at the larger time steps (the synchronization points) holds:

Mmp4+1—1 l
nlle™ |72 q,) + vt Z e R, + pgSollem (22, + pgls Y [IKY2VeE™ 1 [F2q
k=0 i=my k=0
< Cs (A2 + 1. (4.15)

Proof. Taking v = 2Ate™*! in (4.12), using the divergence-free property, sum over m = my, my +

1, y Mk+1 — 1) yleld
me41—1 mp41—1
nlle™ 1 [faiq,) +n >ttt - 72, — nlle™ |[F2,) + 2408 D ap(eth et
i:mk i:mk
’I’I’Lk+171 Me+1— 1
=-2nAt Y (wih et — 2npgAt / Y ($ir1—¢)e™ ny (4.16)
i=my i=mp
MEe4+1— 1
— angAt/ Z — M)t ny.
1= my

13



Taking ¢ = 2r Ate™s+1 = 2A¢ ST e i (4.13),

=My

pgSolle™+ [72q,) + pSolle™ = €™ [[12q,) = pgSolle™[[72q,) + 2D sap (€M, €™ )

ME41— 1
= —2pgSoLs(w, s+, m’““)+2npg&t/ Z €M (U — Uy, ) - f (4.17)
= mg
Me4+1— 1 )
—|—2npgAt/ Z €M (U, — u') - My
1= mi

Combining the above equalities (4.16) and (4.17), we obtain

mp4+1—1 mp+1—1
n{lle™ o,y + Y NleT = llTa,) —lle™ IR e} +208 Y ag(ett )
1=my =My
+pgSo{lle™|[22 () + 1€ = €™ [[12q,) = €™ |22, } + 2Asap(e™ 1, ™ 41)
mpgy1—1
=—2nAt > (Wit e = 20980 As(wpkt, €M)
T=my
Mp41—1
- 2At Z aI‘(¢i+1 - ¢ia umk+1 - umk;emk+1aei+1)
i=my
Mp41—1
— 2\t Z ar (¢ — ™ Uy, — u'; €MEHL L), (4.18)
i=my

The first term of the RHS in (4.18) is bounded by Young, Poincaré and Holder inequalities:

mk+1—1
—2nA\t Z (w}tl, et — 2pgSoAs(wy'k+t, emrt)
i:mk
ArTETT A
< TVELUST e, + PR KT g
i=mk
Mp+1—1 2 q2
anP? 4pgPs S5 A\s
+ At Z w20, +ﬁ\|wm“ 172(0,)- (4.19)
i=mk

The second term of the RHS in (4.18) is bounded using (2.4) by:

’I’Tbk+1—1
=28t Y ar(big1 — iy Umyy, — Um, €™ e
i:mk
mk+171
nvAt - pgAs
<= D e, + S IRV g,
i:mk
—1
4np? g2k marCo At & 4n2vpgCys
+ — Do i = dillhy, + —————l(Wmy s — ) |[3, (4.20)
kmin P— kmzn

14



The third term of RHS in (4.18) is bounded by (2.5)-(2.6)

mk+171

— 20t Z ar(¢i — @™ Uy, — u's €™ e
i:mk
mk+171
= —2At Z {ar(di — Py, Uy, — wi; €™+, ) + ap (€™ e ™1 e}
i:mk

mk+171

=2/t Z {ap(em™+1 — ™k el el it o) (i — Py Uy, — gy €T T

i:mk

mk+171
nvAt 11012 gAs 9
< D el + [KY2Vems+[1sq)

i:mk

4Tﬂng4At i 7 m m
e Y allett = eiZaq,) + pgSoll€™EH — €™ [Faq, )

mk+171

i:mk
-1
AnpgCy At &
e > Wl —wllFr, + pgl[K2V (05 — dmy)l[72(0,))- (4.21)
min i:mk
Note that %@At < 1. Combine the above inequalities and sum over k =0, 1,--- ,I. We arrive at
Me4+1— 1 1
e B+t SY S0 R + pgSolle™ [y + patss S IKVETEm 2
k=0 i=my k=0
Me41— 1
4n P? 4pgP2S2N\s
cay S P e, 28 5500e ZH 20,
k=0 i=my man =0
1
4vn?pgCyAs np? g kmarCo Nt sy
LS iy + TR ST -
min mln

= k=0 i=my

I mg41—1 I mg41—1

41/n ng’ At dnp?g kmaxC’ At
= D e —wallfy, + =30 b — b, (4.22)

mzn k=0 i=my mzn k=0 i=my

By using (4.4)-(4.11) and the approximate properties of Py, the first term of RHS in (4.22) is bounded by

4nP1

mey1—1
i 4pgP2S2Ns
23 S B+ IS S e

k=0 i=my n k=0

Q)

mp4+1—1 pitl i+l

4nP At
mPPAt ST L [ I = DOl e+ [l @)

k=0 i=my

| ApgP3SE s e e
L G Z I DM ts + 25 [ gl 9
min mi tMk
anp? (T T
< 1P = DOl it + 28 / el )
4pgP3S2 [T T
+ L ([P, = D09 s+ A5° [ 1ol
< Cs5(At2 + hY). (4.23)

Here and afterwards, C5 denotes a constant depending on v,n,p, g, S0, kmin, kmaz, 7> 1T, P1 and C5. The
15



second term of RHS in (4.22) is bounded by

4vn?pgCy s : 4un2pgColhs® [T
, § myesr — umk”?ﬁlf < ) HUS(S)H%{de < G5 AL, (4.24)
kmzn k=0 kmzn 0

The third term of RHS in (4.22) is bounded by

mk+171

Z i1 — ¢ullFr, <

k=0 i=my

47’Lp292 kma:v CQ

knu'n

4np2g2 kmaz CQ At El:

kmin

At2 T
/ e (8)]17, dt < CsAL*. (4.25)
0

The remaining terms in (4.22) are bounded by

—1 l mk+1—1
4un?pgCh At L 4np? g2 kmaeCa ANt
kiz Z [, — willr, + . Z Z ¢s = Pl T,
men k=0 i=my, mn k=0 i=my,
—1 l mk+1—1
4un?pgrCo At L e 4np?¢2kmaerCo Nt
< PGt S TN g -l + R A ST
men k=0 i=my man k=0 i=my
4un?pgrCo At? T 4np? g2 kmaerCo A2 T
< PEEREE [ uao)y dt + [ tionto i, ae
min 0 ’ min 0
< Cs A2 (4.26)
Combine the above bounds and add the initial data. This yields the final result,
I mr41—1 ' 1
nllem™ 2+t ST e + pgSolle™H aa,, + pglss S IKY2TEm |12, o
k=0 i=my k=0
< Cs(At2 + 1. (4.27)
d
For the error in time derivatives, we have the following error estimate. Here we use the following
notations:
d m+1Aem+1_em A )Adz:l/ no ( )( )
e = u,v) = ——(u-7)(v- 7).
¢ At =1 F\/T¢'KTZ‘
THEOREM 4.2. Under the assumptions of the Theorem 4.1, the following error estimate holds:
I mp41—1 _ l
nAEY > ldie G,y + nvlle™ [T, + A €™ 4 pgSoAt Y [|die ™ |72, )
k=0 i=my k=0
mry1—1
+pg Y IIKVPVEM [T g ) < Cs(At+ Y + ALY, (4.28)
i=mk
Proof. Taking v = 2Atde™t! = 2(em™1 — e™) in (4.12), using the divergence-free property, sum over
m=mg,mp+1,-- M1 — 1, we get
me41—1 mpgr1—1
2n/A\t Z ||dt61+1||%2(9f) +ap(emrt M) — ap (™ €M) + At? Z ay(die™ det )
i:mk i:mk
mk+171 ) mk+171
= —2n/At Z (w}ﬁ/l, dte”l) — 2npgAt/ Z (Piv1 — ¢i)dtel+1 ‘ny
i:mk / r i:mk
mk+171
— 2npgAt/ Z (i — ¢™)dye - my. (4.29)
r i:mk
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Taking ¢ = 2r Atdye™s+1 = 2p(eMi+1 — ¢mi) = 237 T (emiy - emi) ip (4.13) yield

i:mk

mey1—1

ngSOAt|‘dt€7nk+1||%2(QP) + Z {ap(emk+176mk+1) _ ap(GTVLk’emk) + Atgap(dtemk+l7dt6mk+l)}

1=my

Mmp+1—1

= —2pgSoAs(w]F 1 di e ) + 2npg /At A€ (U, — U, ) - 1
P j 2% k41 k f

i=mp

mk+1—1
+2npgAt/ Z di€™ 1 (U, — u') -1y,
r i:mk

Combining the above two equalities (4.29) and (4.30), we have

mp4+1—1 mp+1—1

2n\t Z HdteHlHQLg(Qf) +ap(em™Hr M) — g p(e™ €M) + At? Z ay(die'™, de)

i=my =My

me41—1

(4.30)

+ 2pgSoAt||dt6m’°“||2Lz(Qp) + Z {ap (e, €ms 1) — ay(€™F, €™F) + AtPay(dpe™ 1 dpe™ )}

i=my
me41—1
= —2nAt E (w}ftl, dee'™) — 2pgSoAs (w1, dye™ )
i=my
mk+1—1
i+1
- 2At Z ar (¢Z+1 - ¢i7 umk+1 - umk 3 dtemk+1 ) dtel+ )
i:mk
mk+171
— 2\t Z ar(¢i — @™, U, — u'; dtem’““,dtez“).
i:mk

The first term of RHS in (4.31) is bounded by Young and Hélder inequalities

me41—1
—2n/A\t Z (w}ﬁl, dee' ™) — 2pgSo As(wik+t, dye™ )
i=mk
me41—1 me+1—1 ‘
<nit Y lde G, Fnot Y |l e,
i=my i=mp

+ pgSoSt||dre™ |22y 4+ TpgSoDs|[wpE [T g, -

The second term of the RHS in (4.31) is bounded by (2.4)

mk+1—1
—2At Z ar (¢Z+1 - ¢i7 umk+1 — Umy,s dtemk+1 ) dtez+1)
i:mk

A2 T

S5 Z (nv||dre’ |7, +Pg||K1/2th€m’““||%2(szp))

1=Mk
3np2gzkmaa:02 ! 2 37’7’L2l/ngQ
+ A Z l|@ir1 — ¢1||Hp + T
min P min

17
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The third term of the RHS in (4.31) is bounded by

mk+171
—2At Y ap(¢i — ™ U, — u'idye™ Y dye’ ™)
i:mk

mk+171

= 220t S {ar(6s — Gy g — i di™ 1, dye )+ ap( s dye™ dye )}

i:mk
aA2 I :
<—3 > (e[, + pgll K 2Vde™ 1 |72, )
i:mk
3npgC: Mkl
; _
+ > (wllellf, + pgl KY2Ve™ |[72,)
min i:mk
3n2vpgCy "N 2, 310G kimaaCo )
 BVPIC S gy, 4 S Gy
min l:’n’Lk min
N .
<= YD (wldie ™y, + pgl KAV g, )
i:mk
3npgCh M ,
+ T Z (m/HelH%f +ﬂg||K1/2V6mkH%2(Qp))
min Z=mk
mp+1—1 mp+1—1

3rnvpgCsy 3rnp?g%kmazCo
= > i —willy, + = Y s — dirall, -

kmin

1=mMy 1T=My

Then, by using (4.31)-(4.34), we have

mk+171
ndt > |ldee (G2, + medlle™ [, — e [, )
i:mk
mk+1—1
FA(eMHL M) — \(e™E ™) 4 At? Z Adge™ dpett)
i:mk

mk+1—1

+pgSoAtl|die™ 1|72 (q,) + Pg Z {HKU?VGMHIH?;%Q,,) - ||K1/2V€mk\|%2(9p)}

i=my
mp41—1
<nA = i+11)2 So A Mpt1]|2
< nAt Z ||wf’t|‘L2(Qf)+rpg 0 5||wp,s ||L2(Qp)
i=my
o2k, M 3rn2vpgC:
+w Z ||¢i+l_¢i||%p+%”umk+l_U’mkH%f
min i=mpg men
3rn2upgCy EE 31102 0% kmasCa "N
—i—% Z ||ui+1_ui||%{f+% Z ||¢i_¢”1||%lp
min i=my, min i=my
Mps1—1
3npgCh o in2 1/2x mp |2
e D (wllelllE, + pgl KAV (Lo q,))-
main -
i=my
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Sum over k =0,1,---,1, since A\(u,u) > 0, we arrive at

I mpr1—1 I mpr1—1
nAtZ Z |\dtel+1||2L2(Qf)+nu||e"”+1|\%1f —l—)\(eml“,eml“)—l—AtZZ Z Mdge™t diet™)
k=0 i=my k=0 i=my
l me1—1
+,0950At2 |ldie™ |72,y + P9 Z ||K1/2V€ml“||2L2(Qp)
k=0 =My
I mpy1—1 A l
<nAtY S > llwilliag,) +regSols Y llwps [,
k=0 i=my k=0
I mpy1—1 2 l
3102%kmazCo 3rn°vpgCy
+4]€ 4maa: Z Z ||¢i+1_¢i||%{p+ k. Z”umk+1 _umkH%If
min k=0 i=my min k=0
—1 l mk+171
3rn?vpgCsy L 3rn0?9% kmazCo
#8057 M — il + T O 52 S g
min k=0 i=my min k=0 i=my
3npgC: I mpy1—1
5 )
t S (wlle'ly, + pgl K2V |72, ). (4.36)
T p—=0 i=my
From (4.4)-(4.11), we have
I mrpi1—1 ‘ l
nAtZ Z ||w},+tl\|%2(9f) + 7”PQSOASX: |\w$§+l|\2L2(QP) < C5(AP +hY), (4.37)
k=0 i=my k=0

mey1—1

Z i1 — ¢ullFr, <

k=0 i=my

l
3’1’L,02g2 kmax C'2 Z

3np2¢%kmazCo Nt [T
- : / e ()] 17, dt < CsAt,  (4.38)
0

3rn?vpgCy l 3rnvpgCyls [T
Y g, — umi I, < —/0 (lus(s)|[3, ds < CsAt, - (4.39)
k=0

kmm kmin
I mpp1—1 I mrp1—1
3rn2vpgCo 5 3rnp? g kmax Ca 2
WZ Z i1 — uil |7, +TZ Z |ps — Givall, < CsAt. (4.40)
k=0 i=my k=0 i=my
From Theorem 4.1, we have,
1 mpgai1—1 l
3npgCs < 2 K/2vme||2 < O (A At 1pt 441
. O > nvllelli, +rpg Y [IKYV2Vem™ 2,0} < Cs(At + At 'AY). (4.41)
M k=0 i=my k=0
Combining (4.36)-(4.41) yields
I mpy1—1 l
WAt ST e e,y + o llem By, A A e + pgSorst S e ™ ag, )
k=0 i=my k=0
mk+1—1
+pg Y IIKVPVEM | [Taq ) < Cs(At+ b + At7'RY). (4.42)

i:mk

At the smaller time steps used for the faster problem we have the following error estimate. Recall that

d—1
A £ / () (v 7).
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THEOREM 4.3. Under the assumptions of Theorem 4.1, then the following error estimate holds: for
J=1,2,---,r—1,and k=0,1,---,1,

mr+J
n\|emk+J+l||2L2(Qf) + nvt Z ||ei+1||%(f < Cs(At2 + h).

=my

Proof. Taking v = 2Ate™*! in (4.12), using the divergence-free property, sum over m = myg, mg +
1,--- ,;mp + J, yield

mr+J mr+J
n{lle™ gy + D e = EllRa g,y — e T2} + 208 Y ap(eth et
myg+J mr+J
= —2nAt Z (w;t/l, Ly 2npgAt/ Z (Pit1 — Long
=my i=my
Me41— 1
—2npgAt/ Z ™ )eit
1= =My
ny At et i 3nP2At iy i ny At iy i
Do et M, + o i ey + —— D eI,
1=my =My T=Mmy
mg+J mg+J mg+J
3np g CgAt J m/At i 3np g C’gAt m
> b1 — ¢illFy, + Do Ml + > llbi— o™ 3,
i=mp i=my i=my
mr+J mp+J
; 3nP At i
<At Yy |l I, + > i e,
i=my i=my
mg+J
3np2g2Cy At i m
R — Z (141 = Gilly, +116i = SmellF, + 16m, — ™ |[,)- (4.43)
=My
From (4.4), (4.5), (4.9), (4.11), and Theorem 4.1, we have
3nPIAL
Z ||wf+t1HL2(Qf) < Cs(D82 + b,
1= mp
my+J
3np2g?Colit "ER
TN guar — il < CoO7,
i—mk
3np?g2Co At mt s 37“np G?Co At mett
ST LN s = dmallh, < LN Ygr gl < CAL,
i=my i=my

mr+J

3np?g?CyAt m 3np?g2CyA\s m
3np*g*Calit S bm — 6™ 13 SZQT?||K1/2V6 |72,y < Cs(A8 +RY).

zmk

Note that the last two inequalities above, we used the fact my +J —my <r for J =1,2,--- ,r — 1 and the
general triangle inequality. Combine the above bounds, the final result follows by Theorem 4.1,

my+J my+J
nlle™ 2+ S et — el 2aq,, vt S (e,
i:mk i:mk

S C5(At2 + h4) + n||emk”%2(gf) S Cs(AtQ + h4)
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For the error in time derivatives on smaller time steps, we have the following error estimate.

THEOREM 4.4. Based on the smoothness assumption on the true solution, J = 1,2,--- ,r — 1, and k
can be 0,1,--- .1, the following estimate holds:

nAt Y |ldee 132, + nvlle™ G, + AT eme T < O (At 4 bt 4 AETRY). (4.44)

i:mk

Proof. Taking 2Atdie™™ = 2(em*! — e™) in (4.12), using the divergence-free property, sum over
m=myg,mi+1,--- ,my + J, we obtain

my+J my+J
2n/\t Z ldee™ M| 220,y + ap(em T eI —ap (e em) + AL Z ay(dee™, dyettt)
i:mk i:mk
mg+J my+J
= —2n/\t Z (wf L dget™h) —angAt/ Z (i1 — ds)dse’™
i=my i=my
mr+J
— angAt/ Z — ¢™)de' Tt -y
1= mpg
my+J ‘ my+J AtQ my+J ‘
<t Y (ldie T [Fa g, + 0ot > Wi e, + 5= D wlldet I,
i=my 1=my i=my
m J my+J my+J
2np?g*Cy "X At? ; 2np*g*Cy 9202 -
+ > llbiv1 — oillF, + = > nvlldee I, + > b — 6™ |7,
i=mp i=my i=mp
mg+J ' mg+J 4 mr+J
<nE Y e gy + A D wllde ™, 4 noe Y e e,
’i=mk i=1’n1c i=mk
m J
2np>g?Ca "R -
L Z (gt = @ill7r, + 1106 = Sl + [|dmi — 0™ 117,)- (4.45)
=My
Just as the proof of the Theorem 4.3, using (4.4), (4.5), (4.9), (4.11) and Theorem 4.1, as well as the general
triangle inequality and the fact my + J — my < r for J =1,2,--- ,r — 1, we obtain
nt Y w7, < Cs(A8 +hY),
i=mk
mp?g2Cy "R
M 3 i — ill3, < CsAt,
1= mpg
+J mi+J
2np=g=Ca 926’2 e anp 2920y
Z ||¢1 ¢mk||H = Z ||¢2 ¢1+1||H < C’5At
1=my i=my

2np°g*Cy M (|2 2rnp®g*Cy 1/2 my |2 —174
T Z ||y — @ k||Hp§mHK Ve |[[2(q,) < Cs(At+ AtT R7).

Combining the above bounds and using Theorem 4.2 yields

i=my

mk+J
nAE Y (et s, + vl I+ AT emet I

< Cs(At+ B + At71AY) + ny|[e™* ||%If + A(e™F, e™F)
< Cs(At 4 b+ At~1hY).
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COROLLARY 4.5. Under the assumptions of the Theorem 4.1, then for k =0,1,--- M — 1, and m =
1,2,--- N, the following estimates hold:

lfup — u(t™)||r2(0,) < C5(AL + h?), (4.46)
165" = ¢(t™ )| L2(0,) < Cs(At+ h?), (4.47)
g — u(t™)| |z, < Cs(AY2 + b+ AL7Y202), (4.48)

H(bmlwrl _ (tkarl)HH,, < C5(At1/2+h+ﬂt_l/2h2). ( )

Proof. By using the triangle inequality, combine the approximation properties and Theorem 4.1-4.4, the
claim of this theorem follows. O

Remark: In this paper, different conditions are needed for stability and error estimation, for stability,
we need At satisfies that 4"## < 1 with Cj3 is a constant. For the error estimation, we assume that At
satisfies that 4T"”+C4At < 1 with Cy is a constant. Which condition is better is still an open question, it

depends on the problem and many other factors.

5. Numerical tests. This section gives two numerical tests. The first one is adapted from [17]. It
has O(1) material parameters and confirms both the predicted convergence rates and the efficiency of using
different time steps. The second one is a test of stability for k,,;, very small. It reveals that the methods
are stable for beyond the range of At given by (3.1) in our (worse case) analysis.

5.1. Test 1. Assume Qy = [0,1] x [1,2] and €, = [0, 1] x [0,1] with interface I' = (0,1) x {1}. The
exact solution is given by

(ul,u2) = ([#*(y — 1)* 4 y]cos(wt), [—gx(y — 1)*]cos(wt) + [2 — msin(mx)]cos(t)),
p = [2 — wsin(mx)]sin(0.5my)cos(t),
¢ = [2 — mwsin(mx)][1 — y — cos(wy)]cos(t).

Here w = 5, and the initial conditions, boundary conditions, and the forcing terms follows the solution.
The finite element spaces are constructed by using the well-known MINT elements (P1b — P1) for the
Stokes problem and the linear Lagrangian elements (P1) for the Darcy flow. The code was implemented
using the software package FreeFEM++[12]. For the monolithically coupled scheme, the GMRES routine
is used to solve the (non-symmetric) coupled system. For the uncoupled scheme, a multi-frontal Gauss LU
factorization implemented to solve the SPD sub-systems.
We define some notations first, for coupled scheme, we denote

enm = u (™), e = ph = p(t"), g™ = oM — (™).

For the decoupled scheme, we denote
et = up' — u(t™), ehp =Dh — p(t™), hp = On — o(t™).

First, we compare the errors, convergence rates and CPU times for both the coupled scheme and the
decoupled scheme. In Table 5.1-5.2, we consider both schemes at time ¢ = 1.0, with varying mesh h but
fixed time step At and As = w/At. The two schemes achieve similar precision, although the monolithically
coupled scheme is slightly more accurate than the decoupled scheme. However, the coupled scheme required
much more CPU time than the decoupled scheme. The relative advantage of the decoupled scheme increased
as the mesh was decreased. In Table 5.3-5.4, at the same time ™ = 1.0, with varying time step At and
As = w/At but fixed mesh h = é are tested for both schemes. The two schemes almost get the same accuracy,
but the coupled scheme needs much more CPU time than the decoupled scheme. In all, the decoupled scheme
is comparable with the coupled scheme, and cheaper and more efficient.
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Next, we will focus on the decoupled scheme, and examine the orders of convergence with respect to
the spacing h or the time step At. Following [17], we introduce a more accurate approach to examine the
orders of convergence with respect to the time step At or the mesh size h due to the approximation errors
O(AtY) 4+ O(h*). For example, assuming

o, 1) & v(a, 1) + Cy(x, )AL 4 Colz, t™)h-.

Thus,

[0 (&, ) — v ()|, 24— 1
4
At
R @) — 02 ()|l 47 =20
pU,At,i — At

o (2, tm) — v (el
Here, v can be u, p, ¢ and i can be 0, 1. While p, 45, pu At approach 4.0 or 2.0, the convergence order
will be 2.0 or 1.0, respectively.

In Table 5.5, we study the convergence order with a fixed time step At = 0.01 and As = w/At and
varying spacing h = 1/2,1/4,1/8,1/16,1/32. Observe that, py r0, Psno is a little larger than 4.0, and
Pu.hls Pp.h0s Po.ha approach 2.0, which suggest that the error estimates O(h?) for the L?-norm of u and
¢, O(h) for the H'-norm of v and ¢ and the L?-norm of p is optimal in space for the decoupled scheme.
However, in Table 5.5, we study the convergence order with a fixed spacing h = 1/8 and varying time step
At = 0.02, 0.01, 0.005, 0.0025, 0.00125 and As = wAt. The numerical experiments strongly suggest that
the orders of convergence in time for all should be O(At), which implies that the error estimates for the
L%-norm of u and ¢ is optimal, however, the error estimates for the H'-norm of u and ¢ might not be optimal
for the decoupled scheme, and may be further improved from O(At'/?) to O(At) by a finer analysis- an
open problem for further work.

TABLE 5.1
The convergence performance and CPU time of coupled scheme at time t" = 1.0, with varying mesh h but fized time step
At =0.01.

h et ™ [lo et ™ (|1 [lep™[lo llez ™ [lo llez™ [lo CPU

% 0.260588 1.50020 0.84932 0.154474 1.37573 4.428

% 0.073905 1.03481 0.82981 0.058474 0.86908 8.741

% 0.017644 0.40179 0.20873 0.010962 0.38724 32.081

Tle 0.004265 0.19129 0.07193 0.002688 0.19679 149.358

3—12 0.001120 0.09931 0.03493 0.000756 0.10059 698.809
TABLE 5.2

The convergence performance and CPU time of decoupled scheme at time t™ = 1.0, with varying mesh h but fixed small
time step At = 0.01 and fized large time step Ns = w/At.

h lleqallo lleqrully lleqpllo llersllo lleqgllo CPU
% 0.260588 1.50020 0.85337 0.154915 1.37554 0.856
% 0.070324 0.80750 0.47382 0.047873 0.79309 3.020
é 0.017953 0.41543 0.224210 0.013647 0.40958 10.038
Tlﬁ 0.004287 0.18950 0.07584 0.003879 0.19556 38.423
% 0.001185 0.09608 0.03781 0.002168 0.10105 143.963
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TABLE 5.3
The convergence performance and CPU time of coupled scheme at time t™ = 1.0, with varying time step At but fized

mesh h = %.

At et ™ [lo et ™[] llep™[lo lled™ [lo [leg™ llo CPU
0.02 0.017658 0.401804 0.209185 0.010998 0.387225 19.656
0.01 0.017644 0.401971 0.208733 0.010962 0.387235 31.839
0.005 0.017638 0.401786 0.208770 0.010944 0.387240 55.723

0.0025 0.017639 0.401786 0.208897 0.010935 0.387242 103.725
0.00125 0.017639 0.401786 0.208942 0.010930 0.387242 215.046
TABLE 5.4

The convergence performance and CPU of decoupled scheme at time t"™ = 1.0, with varying small time step At and large
time step As = wAt and but fized mesh h = £ .

At ezl ezl leisllo e ollo ez llo CPU
0.02 0.017849 0.415564 0.226369 0.014735 0.409701 5.429
0.01 0.017953 0.415431 0.224210 0.013647 0.409579 10.639
0.005 0.018010 0.415403 0.223604 0.013128 0.409577 21.435

0.0025 0.018038 0.415398 0.223444 0.012877 0.409592 41.262

0.00125 0.018050 0.415397 0.223404 0.012753 0.409603 76.190

TABLE 5.5
Convergence orders of O(h*) of Uncouple scheme at time t™ = 1.0, with varying mesh h but fized small time step

At = 0.01 and fixed large time step Ns = w/At.

o Wil puo g — gl P i —vfll pono

% 0.210264 3.74520 1.60993 1.94293 0.71638 1.48895

% 0.056142 3.83200 0.82861 1.93881 0.48113 2.15270

% 0.014651 4.23579 0.42738 2.14606 0.22350 2.89976

%6 0.003458 0.19915 0.07708

h 95" — ¢ llo P.h.0 195" — 9% llo Pé.h1

% 0.134538 3.38510 1.30491 1.67120

% 0.039744 3.56065 0.78083 1.87755

% 0.011162 4.81406 0.41587 2.05836

= 0.002319 0.20204

TABLE 5.6
Convergence orders of O(AtY) of Uncouple at time t™ = 1.0, with varying small time step At and large time step

As = wAt and but fized mesh h = % .

At TR —wZllo puseo Re— @l puar WA PRl ppaco
0.02 6.49961e-4 2.03698 6.52832e-3 2.05855 1.68035e-2 1.91948
0.01 3.19081e-4 2.15518 3.17132e-3 2.18070 8.75420e-3 1.99190
0.005 1.48053e-4 2.17448 1.45427e-3 2.21398 4.39490e-3 2.01493

0.0025 6.80866e-5 6.656858e-4 2.18117e-3
As 125 — 9%, llo Pé, 05,0 1785 — 9%, llo P, 05,1
0.1 1.51669e-3 1.96730 7.98752e-3 1.96671
0.05 7.70949e-4 1.98387 4.06136e-3 1.98326

0.025 3.88608e-4 1.99199 2.04781e-4 1.99160

0.0125 1.95085e-4 1.02822e-4
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5.2. Test 2. Stability for k,,;, = 1,1.0e —4 and 1.0e — 8. We do another experiment with k,,;, very
small to test the stability restriction (3.1). In this test, we set f1 = fo = 0, and for simplicity, we choose
u® = ¢% =1 and ulsg\r = 0, ¢lag,\r = 0, the small time step At = 0.1 and the large time step As = 0.5,
the Figure 5.1 displays the quantity of energy m/||uh\|2L2(Qf) + pgSo||¢h|\i2(Qp) on large time step size, and
Figure 5.2 displays the counterpart on the small time step size. The partitioned method is clearly stable for
kmin much smaller (with respect to At) than predicted by our stability analysis.

Remark: Note that, in Figure 5.2, there is a energy jump at the first large time point ¢ = 0.5, that is
because we only calculate ¢, on the large time point, which means before t = 0.5, we set ¢5, = ¢° = 1.

— kmin=1.0e—8
. A kmin:1.0e—4
: - kmin:1'0
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a2
=3
)
S
o 15
S
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& 1
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c
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Fic. 5.1. Energy vs. Time with the large time step As = 0.5.
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)5 D kmin=1.0e—4
' — kmin:]"O
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oo 2 E
E
=
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'?; 15 b
e
ol
EES 1 b
>
=
0.5
0

Fic. 5.2. Energy vs. Time with the small time step At = 0.1.
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6. Conclusions. A decoupled method with different time steps in each sub-domain for the mixed
Stokes-Darcy problem is proposed and analyzed in this paper. Under a time step restriction of the form
At < C(physicalparameters) we prove stability over bounded time intervals of the method. An analysis
of the asymptotic stability over infinite time intervals and the possibly uniformity of the error in time is
an important open problem. An error estimation is presented and numerical experiments are conducted to
demonstrate the computational effectiveness or the decoupling approach.

In our analysis, we have made several choices to offset the notational complexity of asynchronous time
stepping methods. In particular we have studied a formulation of the porous media problem as one second
order problem for the Darcy pressure instead of as a mixed system for the pressure and Darcy velocity.
Extension to a mixed discretization in the porous media region is also an important open problem. The
boundary condition on 9/, \I" were also chosen for simplicity and can be modified. At this early stage of
development, it does seem like uncoupled, partitioned methods are very promising for solving coupled surface
water-ground water flow problems. They are very efficient, can be accurate and do not require reference to
any monolithically coupled system of even iteration between sub-problems.

Open problems abound in partitioned methods for the Stokes-Darcy problems. Important one include
expanding the partitioned methods available and analyzing and testing their stability, efficiency and accuracy
for large T', small k,,;,,, small Sy, small n, generic large domains, different spacial discretization and large
but thin porous media regimes.
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