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Abstract. This report analyzes a partitioned time stepping algorithm, meaning a non-iterative, domain decomposition

method, which allows different time steps in the fluid region and the porous region for the fully evolutionary Stokes-Darcy

problem. The method presented requires only one, uncoupled Stokes and Darcy sub-physics and sub-domain solve per time

step. Under a time step restriction of the form 4t ≤ C(physical parameters) we prove stability and convergence of the method.

Numerical tests are given confirming the convergence theory and demonstrating the computational efficiency of the partitioned

method. They also show that in (the expected case) of greater fluid velocities in the free-flow region than in the porous media

region, allowing smaller timesteps in the subregion with the faster velocities increases both accuracy and efficiency.
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1. Introduction. The transport of substances between surface water and groundwater is an important
problem of great current interest. The essential features of estimating penetration of a plume of pollution
from surface water to ground water and remediation thereafter are that (i) the coupled problems in the
fluid and porous media sub-regions are both inherently time dependent, (ii) the flows in the two regions
act with different characteristic speeds, and (iii) the physical processes are sufficiently different that codes
optimized for each individual sub-process ultimately will need to be used to solve the coupled problem.
Thus, there are many open questions (beyond the results we present herein) connected to limiting cases of
the various physical parameters. With these issues in mind, we analyze herein an asynchronous, uncoupled,
partitioned method for the fully evolutionary Stokes-Darcy problem. The method allows different time steps
in the two subregions (such methods are often called ”asynchronous coupling” in geophysics) and requires
only one, uncoupled Stokes solve and one Darcy solve per time step (with no iteration or construction
of a fully coupled problem). The partitioning is based on simply lagging the interfacial coupling terms
following a method analyzed by Mu and Zhu [17], see also [1] for its use in other applications. Connecting
the different time steps at the interface adapts of Connors and Howell [7] for atmosphere-ocean coupling.
The essential difficulty of both lagging terms and interpolation between meshes and time steps is doing so
without creation of non-physical system energy. Partitioned methods have obvious and large advantages in
efficiency over monolithic (fully coupled) discretizations followed by domain decomposition iteration at each
timestep. However, partitioned methods for the Stokes-Darcy problem are in their infancy. We believe that
partitioned methods will continue to evolve and improve.

The algorithms we present are an extension of the partitioned method in Mu and Zhu [17]. We shall
thus follow the notations in [17] in specifying the problem (next). The mathematical model consists of the
evolutionary Stokes equations in the fluid region coupled with the evolutionary Darcy equations in the porous
medium, [9, 13, 15, 18, 19]. The key part is the interface coupling conditions of conservation of mass across
the interface, balance of forces and the (tangential) Beavers-Joseph-Saffman conditions [2]. Consider thus
a Stokes flow in Ωf coupled with a porous media flow in Ωp, where Ωf ,Ωp ⊂ Rd(d = 2 or 3) are bounded
domains, Ωf ∩ Ωp = Ø, and Ωf ∩ Ωp = Γ. Denote by Ω = Ωf ∪ Ωp, nf and np the unit outward normal
vectors on ∂Ωf and ∂Ωp, respectively, and τi, i = 1, · · · , d − 1, the unit tangential vectors on the interface
Γ. Note that np = −nf on Γ, see Figure 1.1 below. Let T ≥ 0 be a finite time, the fluid flow is governed by
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Fig. 1.1. The global domain Ω consisting of the fluid region Ωf and the porous media region Ωp separated by the interface Γ.

the Stokes equations for the fluid velocity and pressure in Ωf , u(x, t) and p(x, t) :

ut − ν∆u +∇p = f1 in Ωf × (0, T ], (1.1)

∇ · u = 0 in Ωf × (0, T ], (1.2)

u(x, 0) = u0 in Ωf , (1.3)

u = 0 on ∂Ωf \ Γ. (1.4)

Here f1(x, t) is the external force, and ν is the kinematic viscosity.
The porous media flow is governed by the following equations on Ωp for the piezometric head φ(x, t):

S0φt +∇ · q = f2 in Ωp × (0, T ], (1.5)

q = −K∇φ in Ωp × (0, T ], (1.5)

up =
q

n
in Ωp × (0, T ], (1.6)

φ(x, 0) = φ0 in Ωp, (1.7)

φ = 0 on ∂Ωp \ Γ. (1.8)

Here q is the specific discharge defined as the volume of the fluid flowing per unit time through a unit
cross-sectional area normal to the direction of the flow, ξ is the fluid velocity in Ωp, S0 is the specific mass
storativity coefficient, K represents the hydraulic conductivity tensor, n is the volumetric porosity, and f2

is the source term. Note that φ = z + Pp

ρg , the sum of elevation from a reference level plus pressure head,
where Pp is the pressure of the fluid in Ωp, ρ is the density of the fluid, g is the gravitational acceleration.
(The usage of g as gravitational vector or source term will be clear from the context in which it occurs).

The presentation of the coupled problem with separate discretizations and differing time steps involves
substantial notation. We therefore make some simplifying assumptions to reduce the notational complexity.
In particular, we assume z = 0 and that K = diag(K, · · · ,K) with K ∈ L∞(Ωp),K > 0, which implies that
the porous media is homogeneous. By using Darcy’s law, (1.5) can be rewritten in the parabolic form

S0φt −∇ · (K∇φ) = f2 in Ωp × (0, T ], (1.10)

φ(x, 0) = φ0 in Ωp. (1.11)

For the Stokes-Darcy model, the interface conditions of conservation of mass (1.9), balance of forces
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(1.10) and the Beavers-Joseph-Saffman condition are imposed herein:

u · nf + up · np = 0 on Γ× (0, T ], (1.9)

p− νnf
∂u

∂nf
= ρgφ on Γ× (0, T ], (1.10)

−ντi
∂u

∂nf
=

α√
τi ·Kτi

u · τi, i = 1, · · · , d− 1 on Γ× (0, T ]. (1.11)

In (1.11) α is a positive parameter depending on the properties of the porous medium and must be experi-
mentally determined. The condition (1.9) can be rewritten as

u · nf =
K
n

∂φ

∂np
on Γ× (0, T ]. (1.12)

In the last ten years there has been an explosion of work on numerical analysis of coupling surface
water to ground water. For a comprehensive overview of other work on this important problem, see [10]
and the 125 references therein. Much of the work has studied the equilibrium problem, e.g., [9, 10, 15].
Discacciati [8] presents results for a monolithic method for the evolutionary problem which is uncoupled at
each timestep by domain decomposition iteration. Various quasi-static models (not considered herein) have
also been proposed with time dependence in one region and in the other at equilibrium. To our knowledge,
justification of the quasi-static assumption based on the rates of return to equilibrium in either sub problem
in the context of the fully evolutionary setting is still open. Among the many fewer papers (so far) on
the numerical analysis of the fully evolutionary Stokes-Darcy problem (considered herein), beyond [8], Mu
and Zhu [17] study a partitioned method which we build upon herein. Cao, Gunzburger, Hu, Hua, Wang
and Zhao [4, 3] study a fully, monolithically coupled implicit method for the much harder and physically
more accurate case of Beavers-Joseph coupling conditions (without Saffman’s simplification) as well as an
interesting approach to partitioning in [5].

1.1. Variational formulation of the continuous problem. Denote W = Hf×Hp and Q = L2(Ωf ),
where

Hf = {v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf \ Γ},Hp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp \ Γ}.
The space L2(D), where D = Ωf or Ωp, is equipped with the usual L2−scalar product (·, ·) and L2−norm
|| · ||L2(D). The spaces Hf and Hp are equipped with the following norms:

||u||Hf
= ||∇u||L2(Ωf ) =

√
(∇u,∇u)Ωf

∀ u ∈ Hf , (1.13)

||φ||Hp
= ||∇φ||L2(Ωp) =

√
(∇φ,∇φ)Ωp

∀ φ ∈ Hp. (1.14)

We equip the space W with the following norms: ∀ u = (u, φ) ∈ W ,

||u||0 =
√

n(u, u)Ωf
+ ρgS0(φ, φ)Ωp

, (1.15)

||u||W =
√

nν(∇u,∇u)Ωf
+ ρg(K∇φ,∇φ)Ωp

, (1.16)

where (·, ·)D refers to the scalar product (·, ·) in the corresponding domain D for D = Ωf or Ωp. For
simplicity, we assume that n, ρ, g, S0 and ν are constants.

We also recall Poincaré and trace inequalities which are useful in the analysis. There exist constants P1

and C0 which only depend on Ωf such that

||v||L2(Ωf ) ≤ P1||v||Hf
, ||v||L2(Γ) ≤ C0||v||1/2

L2(Ωf )||v||
1/2
Hf

, ∀ v ∈ Hf . (1.17)

There exist constants P2 and C̃0 that only depend on Ωp such that

||ψ||L2(Ωp) ≤ P2||ψ||Hp
, ||ψ||L2(Γ) ≤ C̃0||ψ||1/2

L2(Ωp)||ψ||
1/2
Hp

, ∀ ψ ∈ Hp. (1.18)
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The weak formulation of the time-dependent Stokes-Darcy model reads as follows: find u = (u, φ) ∈ W

and p ∈ Q, such that , ∀ t ∈ (0, T ],

(ut,v) + a(u,v) + b(v, p) = (f ,v) in Ω,

b(u, q) = 0 in Ω, (1.19)

u(0) = u0 in Ω,

where

(ut,v) = n(ut, v) + ρgS0(φt, ψ),

a(u,v) = af (u, v) + ap(φ, ψ) + aΓ(u,v),

af (u, v) = nν(∇u,∇v)Ωf
+

d−1∑

i=1

∫

Γ

nα√
τi ·Kτi

(u · τi)(v · τi),

ap(φ, ψ) = ρg(K∇φ,∇ψ)Ωp
,

aΓ(u,v) = nρg

∫

Γ

(φv · nf − ψu · nf ),

b(v, p) = −n(p,∇ · v)Ωf
,

(f ,v) = n(f1, v)Ωf
+ ρg(f2, ψ)Ωp

.

Lemma 1.1. Assume that

f1 ∈ L2(0, T ;L2(Ωf )2), f2 ∈ L2(0, T ;L2(Ωp)),K ∈ L∞(Ωp)2×2, (1.20)

and K is uniformly bounded and positive definite in Ωp: there exist kmin, kmax > 0 such that

kmin|x|2 ≤ Kx · x ≤ kmax|x|2 a.e. x ∈ Ωp. (1.21)

In addition, let u0 ∈ L2(Ωf )2, φ0 ∈ L2(Ωp), then any solution (u, p, φ) ∈ (L2(0, T ;Hf )∩H1(0, T ;L2(Ωf )2))×
L2(0, T ;Q) × L2(0, T ;Hp) of (1.1)-(1.11) is also a solution to (1.19). Conversely any solution to (1.19)
satisfies (1.1)-(1.11).

Proof. The well-posedness of the Stokes-Darcy model(1.19) can be found in [8, 9, 15] for the stationary
case and is assumed to hold similarly for the non-stationary case.

From the assumption (1.21), we have

1√
kmax

||K1/2∇ψ||L2(Ωp) ≤ ||ψ||Hp ≤
1√

kmin

||K1/2∇ψ||L2(Ωp). (1.22)

Furthermore, aΓ(·, ·) satisfy the following properties:

aΓ(u,v) = −aΓ(v,u), aΓ(u,u) = 0, ∀ u,v ∈ W. (1.23)

The first partitioned method of Mu and Zhu [17] uncouples the Stokes-Darcy problem by the implicit
method in time and the explicit method for the coupling terms. Herein we extend the partitioned method
to allow for different size time steps for the decoupled subproblems, say 4t on Ωf and 4s on Ωp, with
any integer ratio r = 4s/4t between them. The reason for using different time step size is that physical
processes happen at different rates, e.g., [11] whose analysis is consistent with the intuition that fluid flow is
faster than that in the porous medium. The methods extend immediately to the case where the regions of
small and large time steps are reversed. The natural CFL condition demands v4t

h ≤ 1 where v denotes the
velocity in the sub-domain. Since different domain have different flow velocities, practical computing often
will require different time steps and even possibly adapting 4t separately in each sub-region.

Remark. Coupled fluid flow with flow in porous media occurs in such a wide range of applications
that many parameters regimes are important. While the focus of this paper is asynchronous time stepping
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(treating the differing flow rates in free flow and in filtration flow), we also try to estimate the dependencies
of the worst case constants upon kmin (which is often small) and S0 (also often small). The constants in
the analysis also depend upon the final time T , indicated as C(T ). We have not attempted to optimize any
estimate with respect to any of these important parameters. We anticipate that different methods will be
the preferable for different parameter values.

The rest of the paper is organized as follows. Both coupled and decoupled algorithms are presented in
Section 2. The stability of the decoupled algorithm is given in Section 3. In Section 4, we analyze its error.
Numerical tests are reported in Section 5, followed by conclusions in Section 6.

2. Numerical algorithms. We consider a triangulation Th of the domain Ωf ∪ Ωp, depending on a
positive parameter h > 0, made up of triangles if d = 2, or tetrahedra if d = 3. Let Wh = Hfh ×Hph ⊂ W

and Qh ⊂ Q denote the finite element subspaces. The finite element spaces Hfh and Qh approximating
velocity and pressure in the fluid flow region are assumed to satisfy the well-known discrete inf-sup condition:
there exists a positive constant β, independent of h, such that ∀ qh ∈ Qh,∃ vh ∈ Hfh, vh 6= 0,

b(vh, qh) ≥ β||vh||Hf
||qh||L2(Q). (2.1)

Moreover, we need the inverse inequalities in both Hfh and Hph: there exist constants C1 and C̃1 which
depend on the domain Ωf and Ωp, respectively, such that

||vh||Hf
≤ C1h

−1||vh||L2(Ωf ) ∀ vh ∈ Hfh, (2.2)

||ψh||Hp
≤ C̃1h

−1||ψh||L2(Ωp), ∀ ψh ∈ Hph. (2.3)

The following estimates on the coupling term are useful in our analysis.
Lemma 2.1. ∀ u,v ∈ W, there exists C2 ≥ 0, such that ∀ε ≥ 0,

|aΓ(u,v)| ≤ ε||u||2W +
nρgC2

4εkmin
||v||2W . (2.4)

Further, we have ∀ u,v ∈ W, there exists C3 ≥ 0 such that .

|aΓ(u,v)| ≤ ε

2
(||u||2W + ||v||2W ) +

nρgC3

4ε
√

νS0kmin

(||u||20 + ||v||20). (2.5)

In addition, if the finite element spaces satisfy the inverse inequality, then ∀ uh,vh ∈ Wh, there exists
C4 ≥ 0 such that .

|aΓ(uh,vh)| ≤ ε||uh||2W +
nρgC4

4εh
||vh||20. (2.6)

Proof. By using trace and Poincaré inequalities (1.17)-(1.18), we have

|aΓ(u,v)| = nρg|
∫

Γ

(φv · nf − ψu · nf )|
≤ nρg||φ||L2(Γ)||v · nf ||L2(Γ) + nρg||ψ||L2(Γ)||u · nf ||L2(Γ)

≤ nρgC0C̃0(||φ||1/2
L2(Ωp)||φ||

1/2
Hp
||v||1/2

L2(Ωf )||v||
1/2
Hf

+ ||ψ||1/2
L2(Ωp)||ψ||

1/2
Hp
||u||1/2

L2(Ωf )||u||
1/2
Hf

)

≤ nρgC0C̃0P
1/2
1 P

1/2
2 (||φ||Hp

||v||Hf
+ ||ψ||Hp

||u||Hf
)

≤ nρgC0C̃0P
1/2
1 P

1/2
2√

kmin

(||K1/2∇φ||L2(Ωp)||v||Hf
+ ||K1/2∇ψ||L2(Ωp)||u||Hf

)

≤ ερg||K1/2∇φ||2L2(Ωp) +
n2ρgC2

0 C̃2
0P1P2

4εkmin
||v||2Hf

+ εnν||u||2Hf
+

nρ2g2C2
0 C̃2

0P1P2

4εkminν
||K1/2∇ψ||2L2(Ωp)

≤ ε||u||2W +
nρgC2

0 C̃2
0P1P2

4εkminν
||v||2W

≤ ε||u||2W +
nρgC2

4εkminν
||v||2W , (2.7)
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where C2 = C2
0 C̃2

0P1P2. If we don’t use Poincaré inequality in (2.7), then

|aΓ(u,v)| = nρg|
∫

Γ

(φv · nf − ψu · nf )|
≤ nρg||φ||L2(Γ)||v · nf ||L2(Γ) + nρg||ψ||L2(Γ)||u · nf ||L2(Γ)

≤ nρgC0C̃0(||φ||1/2
L2(Ωp)||φ||

1/2
Hp
||v||1/2

L2(Ωf )||v||
1/2
Hf

+ ||ψ||1/2
L2(Ωp)||ψ||

1/2
Hp
||u||1/2

L2(Ωf )||u||
1/2
Hf

)

≤ ε
√

nνρg(||K1/2∇φ||L2(Ωp)||v||Hf
+ ||K1/2∇ψ||L2(Ωp)||u||Hf

)

+
(nρg)3/2C2

0 C̃2
0

4ε
√

kmin

(||φ||L2(Ωp)||v||L2(Ωf ) + ||ψ||L2(Ωp)||u||L2(Ωf ))

≤ ε

2
(||u||2W + ||v||2W ) +

nρgC2
0 C̃2

0

4ε
√

νS0kmin

(||u||20 + ||v||20)

≤ ε

2
(||u||2W + ||v||2W ) +

nρgC3

4ε
√

νS0kmin

(||u||20 + ||v||20), (2.8)

where C3 = C2
0 C̃2

0 . If the finite element spaces satisfy the inverse inequality (2.2)-(2.3), then

|aΓ(uh,vh)| = nρg|
∫

Γ

(φhvh · nf − ψhuh · nf )|
≤ nρg||φh||L2(Γ)||vh · nf ||L2(Γ) + nρg||ψh||L2(Γ)||uh · nf ||L2(Γ)

≤ nρgC0C̃0(||φh||1/2
L2(Ωp)||φh||1/2

Hp
||vh||1/2

L2(Ωf )||vh||1/2
Hf

+ ||ψh||1/2
L2(Ωp)||ψh||1/2

Hp
||uh||1/2

L2(Ωf )||uh||1/2
Hf

)

≤ nρgC0C̃0P
1/2
2 C

1/2
1 h−1/2

√
kmin

||K1/2∇φh||L2(Ωp)||vh||L2(Ωf ) + nρgC0C̃0P
1/2
1 C̃

1/2
1 h−1/2||ψh||L2(Ωp)||uh||Hf

≤ ε||uh||2W +
nρgC2

0 C̃2
0P2C1h

−1

4εkmin
(n||vh||2L2(Ωf )) +

nρgC2
0 C̃2

0P1C̃1h
−1

4ενS0
(ρgS0||ψh||2L2(Ωp))

≤ ε||uh||2W +
nρgC2

0 C̃2
0

4εh
max{P2C1

kmin
,
P1C̃1

νS0
}||vh||20

≤ ε||uh||2W +
nρgC4

4εh
||vh||20, (2.9)

where C4 = C2
0 C̃2

0 max{P2C1
kmin

, P1C̃1
νS0

}.
We also introduce a subspace Vh of Wh defined by

Vh = {vh ∈ Wh : b(vh, qh) = 0 ∀ qh ∈ Qh},

Following [17], we define a projection operator Ph : (w(t), p(t)) ∈ (W, Q) 7→ (Phw(t), Php(t)) ∈ (Wh, Qh),
∀ t ∈ [0, T ] by

a(Phw(t),vh) + b(vh, Php(t)) = a(w(t),vh) + b(vh, p(t)) ∀ vh ∈ Wh, (2.10)

b(Phw(t), qh) = 0 ∀ qh ∈ Qh. (2.11)

Apparently, Ph is linear operator. Furthermore, under a certain smoothness assumption on (w(t), p(t)), the
following approximation properties hold:

||Phw(t)−w(t)||0 ≤ Ch2,

||Phw(t)−w(t)||W ≤ Ch,

||Php(t)− p(t)||0 ≤ Ch.

From now on, we always assume that (u(t), φ(t)) ∈ (H2(Ωf )d,H2(Ωp)), (ut(t), φt(t)) ∈ (H1(Ωf )d,H1(Ωp))
and (utt(t), φtt(t)) ∈ (L2(Ωf )d, L2(Ωp)) for the solutions of (1.19).

6



2.1. The monolithically coupled, implicit method. In this section, we provide a monolithically
coupled scheme which is used for comparison. Choose a uniform distribution of discrete time level,

Q = {0 = t0, t1, t2, · · · , tN = T},

where tm = m4t,m = 0, 1, 2, · · · , N for 4t = T
N . Here (uh,m, ph,m, φh,m) denotes the discrete approxima-

tion to (u(tm), p(tm), φ(tm)).

Algorithm 2.1(Coupled scheme) Find uh,m+1 = (uh,m+1, φh,m+1) ∈ Wh and ph,m+1 ∈ Qh with m =
0, · · · , N − 1, such that

(
uh,m+1 − uh,m

4t
,v) + a(uh,m+1,v) + b(v, ph,m+1) = fm+1(v) ∀ v ∈ Wh, (2.12)

b(uh,m+1, qh) = 0 ∀ qh ∈ Qh (2.13)

uh,0 = u0. (2.14)

2.2. A Decoupled Scheme with Different Time Steps. To streamline our notation further, we
shall suppress the subscript ”h” and replace um

h , φm
h , pm

h by um, φm, pm, respectively. First, we choose
discrete time levels

P = {0 = t0, t1, t2, · · · , tN = T},

where tm = m4t, m = 0, 1, 2, · · · , N for 4t = T
N . Denote by

S = {tm0 , tm1 , · · · , tmM } ⊂ P,

a subset satisfying tmk = kr4t such that r ∈ N is fixed and Mr = N . The time step size on Ωp is given a sep-
arate notations hereafter, 4s = r4t. For tm, tmk ∈ [0, T ], (um, pm, φmk) will denote the discrete approxima-
tion to (u(tm), p(tm), φ(tmk)). The approximations (um+1, pm+1) ∈ (Hfh, Qh), for m = m0,m0+1, · · · , N−1
and φmk+1 ∈ Hph for k = 0, 1, · · · ,M − 1 are calculated using Algorithm 2.2. In practice only the data at
time t0 would need to be provided. One important feature of Algorithm 2.2 is that (um+1, pm+1) can be
calculated for m = mk,mk + 1, · · · ,mk+1 − 1 in parallel with φmk+1 .

Algorithm 2.2(Decoupled scheme)
• Find (um+1, pm+1) ∈ (Hfh, Qh), with m = mk,mk +1, · · · ,mk+1−1, such that ∀(v, q) ∈ (Hfh, Qh):

n(
um+1 − um

4t
, v) + af (um+1, v) + b(v, pm+1) = n(fm+1

1 , v)− nρg

∫

Γ

φmkv · nf , (2.15)

b(um+1, q) = 0, (2.16)

u0 = u0, (2.17)

with the small time step size 4t.
• Set Smk = 1

r

∑mk+1−1
i=mk

ui,

• find φmk+1 ∈ Hph, such that ψ ∈ Hph:

ρgS0(
φmk+1 − φmk

4s
, ψ) + ap(φmk+1 , ψ) = ρg(fmk+1

2 , ψ) + nρg

∫

Γ

ψSmk · nf , (2.18)

φm0 = φ0, (2.19)

with the large time step size 4s = r4t.
• Set k = k + 1 and repeat until k = M − 1.
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3. Stability of the method. In this section, under a time step restriction of the form

4nρgC34t√
νS0kmin

< 1, (3.1)

where C3 is a constant defined in (2.8), we prove the stability (possibly including terms like C(T ) ≈ exp(aT ))
over bounded time intervals [0, T ] of the partitioned method Algorithm 2.2. It is also possible to prove sta-
bility under the alternate condition 4t

h ≤ C(physicalparameters), where C has a different dependency than
in (3.1). We test sharpness of the restriction (3.1) in the numerical experiments section which indicates that
(3.1) is not sharp with respect to its dependency on kmin.

Theorem 3.1. (Stability) Choose the initial data φm0 = φ0, um0 = u0, and φmk+1+J+1 = φmk+1 ,
gmk+1+J+1 = gmk+1 , (−1 ≤ J ≤ r− 2, 0 ≤ k ≤ l). Assume that 4t satisfies (3.1), then for −1 ≤ l ≤ M − 1,
we have

n||uml+1+J+1||2L2(Ωf ) +
nν4t

2

ml+1+J∑

i=0

||ui+1||2Hf
+ ρgS0||φml+1+J+1||2L2(Ωp) +

ρg4t

4r

ml+1+J∑

i=0

||K1/2∇φi+1||2L2(Ωp)

≤ C(T ){4nP 2
14t

5ν

ml+1+J∑

i=0

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24t

kmin

ml+1+J∑

i=0

||f i+1
2 ||2L2(Ωp)

+
4t

2
(nν||u0||2Hf

+ ρg||K1/2∇φ0||2L2(Ωp)) + n||u0||2L2(Ωf ) + ρgS0||φ0||2L2(Ωp)}, (3.2)

where C(T ) ≈ exp(aT ), a constant depends on the finial time T .
Proof. Taking v = 24tum+1 in (2.15), using the divergence-free property, sum over m = mk,mk +

1, · · · ,mk+1 − 1,

n{||umk+1 ||2L2(Ωf ) +
mk+1−1∑

i=mk

||ui+1 − ui||2L2(Ωf ) − ||umk ||2L2(Ωf )}+ 24t

mk+1−1∑

i=mk

af (ui+1, ui+1)

= 2n4t

mk+1−1∑

i=mk

(f i+1
1 , ui+1)− 2nρg4t

∫

Γ

φmk(
mk+1−1∑

i=mk

ui+1) · nf . (3.3)

Taking ψ = 24sφmk+1 = 2r4tφmk+1 = 24t
∑mk+1−1

i=mk
φmk+1 in (2.18),

ρgS0{||φmk+1 ||2L2(Ωp) + ||φmk+1 − φmk ||2L2(Ωp) − ||φmk+1 ||2L2(Ωp)}+ 24t

mk+1−1∑

i=mk

ap(φmk+1 , φmk+1)

= 2ρg4t

mk+1−1∑

i=mk

(fmk+1
2 , φmk+1) + 2nρg4t

∫

Γ

φmk+1(
mk+1−1∑

i=mk

ui) · nf . (3.4)

Combining (3.3) and (3.4), we obtain

n{||umk+1 ||2L2(Ωf ) +
mk+1−1∑

i=mk

||ui+1 − ui||2L2(Ωf ) − ||umk ||2L2(Ωf )}+ 24t

mk+1−1∑

i=mk

af (ui+1, ui+1)

+ ρgS0{||φmk+1 ||2L2(Ωp) + ||φmk+1 − φmk ||2L2(Ωp) − ||φmk ||2L2(Ωp)}+ 24t

mk+1−1∑

i=mk

ap(φmk+1 , φmk+1)

= 2n4t

mk+1−1∑

i=mk

(f i+1
1 , ui+1) + 2ρg4t

mk+1−1∑

i=mk

(fmk+1
2 , φmk+1) (3.5)

− 24taΓ(φmk ,

mk+1−1∑

i=mk

ui;φmk+1 ,

mk+1−1∑

i=mk

ui+1),
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here and the following, we define aΓ(φ, u;ψ, v) = nρg
∫
Γ
(φv · nf − ψu · nf )dΓ. The first two terms of RHS

(right hand side) in (3.5) are bounded by Young and Hölder inequalities,

2n4t

mk+1−1∑

i=mk

(f i+1
1 , ui+1) + 2ρg4t

mk+1−1∑

i=mk

(fmk+1
2 , φmk+1)

≤ 2nP14t

mk+1−1∑

i=mk

||f i+1
1 ||L2(Ωf )||ui+1||Hf

+
2ρgP24t√

kmin

mk+1−1∑

i=mk

||fmk+1
2 ||L2(Ωp)||K1/2∇φmk+1 ||L2(Ωp)

≤ 2nP 2
14t

ν

mk+1−1∑

i=mk

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24s

kmin
||fmk+1

2 ||2L2(Ωp)

+
nν4t

2

mk+1−1∑

i=mk

||ui+1||2Hf
+

ρg4t

2

mk+1−1∑

i=mk

||K1/2∇φmk+1 ||2L2(Ωp). (3.6)

The remains of RHS in (3.5) have the following bound by (2.5)

−24taΓ(φmk ,

mk+1−1∑

i=mk

ui;φmk+1 ,

mk+1−1∑

i=mk

ui+1)

≤ 4t

4
(nν||

mk+1−1∑

i=mk

ui+1||2Hf
+ ρg||K1/2∇φmk+1 ||2L2(Ωp) + nν||

mk+1−1∑

i=mk

ui||2Hf
+ ρg||K1/2∇φmk ||2L2(Ωp))

+
2nρgC34t√

νS0kmin

(n||
mk+1−1∑

i=mk

ui+1||2L2(Ωf ) + ρgS0||φmk+1 ||2L2(Ωp) + n||
mk+1−1∑

i=mk

ui||2L2(Ωf ) + ρgS0||φmk ||2L2(Ωp))

≤ 4t

2
(
mk+1−1∑

i=mk

nν||ui+1||2Hf
+ nν||umk ||2Hf

+ ρg||K1/2∇φmk+1 ||2L2(Ωp) + ρg||K1/2∇φmk ||2L2(Ωp))

+
4nρgC34t√

νS0kmin

(
mk+1∑

i=mk

n||ui||2L2(Ωf ) + ρgS0||φmk+1 ||2L2(Ωp) + ρgS0||φmk ||2L2(Ωp)). (3.7)

Combining the above inequalities, using Holder’s and Young’s inequality, we obtain

n{||umk+1 ||2L2(Ωf ) +
mk+1−1∑

i=mk

||ui+1 − ui||2L2(Ωf ) − ||umk ||2L2(Ωf )}+ nν4t

mk+1−1∑

i=mk

||ui+1||2Hf

− nν4t

2
||umk ||2Hf

+ ρgS0{||φmk+1 ||2L2(Ωp) + ||φmk+1 − φmk ||2L2(Ωp) − ||φmk ||2L2(Ωp)}

+ ρg4t

mk+1−1∑

i=mk

||K1/2∇φmk+1 ||L2(Ωp) −
ρg4t

2
||K1/2∇φmk ||2L2(Ωp)

≤ 2nP 2
14t

ν

mk+1−1∑

i=mk

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24s

kmin
||fmk+1

2 ||2L2(Ωp)

+
4nρgC34t√

νS0kmin

(
mk+1∑

i=mk

n||ui||2L2(Ωf ) + ρgS0||φmk+1 ||2L2(Ωp) + ρgS0||φmk ||2L2(Ωp)). (3.8)
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Sum over k = 0, 1, · · · , l, with 0 ≤ l ≤ M − 1 we have

n||uml+1 ||2L2(Ωf ) +
nν4t

2

l∑

k=0

mk+1−1∑

i=mk

||ui+1||2Hf
+ ρgS0||φml+1 ||2L2(Ωf ) +

ρg4t

2

l∑

k=0

mk+1−1∑

i=mk

||K1/2∇φmk+1 ||2L2(Ωp)

≤ 4nρgC34t√
νS0kmin

l∑

k=0

(
mk+1∑

i=mk

n||ui||2L2(Ωf ) + ρgS0||φmk+1 ||2L2(Ωp)) (3.9)

+
2nP 2

14t

ν

l∑

k=0

mk+1−1∑

i=mk

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24s

kmin

l∑

k=0

||fmk+1
2 ||2L2(Ωp)

+
4t

2
(nν||u0||2Hf

+ ρg||K1/2∇φ0||2L2(Ωp)) + n||u0||2L2(Ωf ) + ρgS0||φ0||2L2(Ωp).

Taking v = 24tum+1 in (2.15), using the divergence-free property again, sum over m = ml+1,ml+1 +
1, · · · ,ml+1 + J, (0 ≤ J ≤ r − 2)

n||uml+1+J+1||2L2(Ωf ) + n

ml+1+J∑

i=ml+1

||ui+1 − ui||2L2(Ωf ) − n||uml+1 ||2L2(Ωf ) + 24t

ml+1+J∑

i=ml+1

af (ui+1, ui+1)

= 2n4t

ml+1+J∑

i=ml+1

(f i+1
1 , ui+1)− 2nρg4t

∫

Γ

φml+1(
ml+1+J∑

i=ml+1

ui+1) · nf

≤ 4nP 2
14t

5ν

ml+1+J∑

i=ml+1

||f i+1
1 ||2L2(Ωf ) +

5nν4t

4

ml+1+J∑

i=ml+1

||ui+1||2Hf
(3.10)

+
4t

4
(
ml+1+J∑

i=ml+1

nν||ui+1||2Hf
+ ρg||K1/2∇φml+1 ||2L2(Ωp))

+
2nρg4t√
νS0kmin

(
ml+1+J∑

i=ml+1

n||ui+1||2L2(Ωf ) + ρgS0||φml+1 ||2L2(Ωp)).

Rearrange the inequality, yield

n||uml+1+J+1||2L2(Ωf ) + n

ml+1+J∑

i=ml+1

||ui+1 − ui||2L2(Ωf ) − n||uml+1 ||2L2(Ωf ) +
nν4t

2

ml+1+J∑

i=ml+1

||ui+1||2Hf

≤ 2nρg4t√
νS0kmin

ml+1+J∑

i=ml+1

(n||ui+1||2L2(Ωf ) + ρgS0||φml+1 ||2L2(Ωp)) (3.11)

+
4nP 2

14t

5ν

ml+1+J∑

i=ml+1

||f i+1
1 ||2L2(Ωf ) +

ρg4t

4
||K1/2∇φml+1 ||2L2(Ωp).

Considering the special case, when l = −1, then φml+1 = φ0, uml+1 = u0, the above equation can be written
as follows:

n||uJ+1||2L2(Ωf ) + n
J∑

i=0

||ui+1 − ui||2L2(Ωf ) +
nν4t

2

J∑

i=0

||ui+1||2Hf

≤ 2nρg4t√
νS0kmin

J∑

i=0

(n||ui+1||2L2(Ωf ) + ρgS0||φ0||2L2(Ωp)) +
4nP 2

14t

5ν

J∑

i=0

||f i+1
1 ||2L2(Ωf )

+
ρg4t

4
||K1/2∇φ0||2L2(Ωp) + n||u0||2L2(Ωf ). (3.12)
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Add both sides by ρg4t
4 ||K1/2∇φ0||2L2(Ωp) +ρgS0||φ0||2L2(Ωp), and set φJ+1 = φ0, fJ+1

2 = f0
2 , (0 ≤ J ≤ r−2)

since ρg4t
4r

∑J
i=0 ||K1/2∇φi+1||2L2(Ωp) ≤ ρg4t

4 ||K1/2∇φ0||2L2(Ωp), then,

n||uJ+1||2L2(Ωf ) + n
J∑

i=0

||ui+1 − ui||2L2(Ωf ) +
nν4t

2

J∑

i=0

||ui+1||2Hf

+ ρgS0||φJ+1||2L2(Ωp) +
ρg4t

4r

J∑

i=0

||K1/2∇φi+1||2L2(Ωp)

≤ 2nρg4t√
νS0kmin

J∑

i=0

(n||ui+1||2L2(Ωf ) + ρgS0||φi+1||2L2(Ωp))

+
4nP 2

14t

5ν

J∑

i=0

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24t

kmin

J∑

i=0

||f i+1
2 ||2L2(Ωp)

+
4t

2
(nν||u0||2Hf

+ ρg||K1/2∇φ0||2L2(Ωp)) + n||u0||2L2(Ωf ) + ρgS0||φ0||2L2(Ωp). (3.13)

Combine (3.9) and (3.11), and set φmk+1+J+1 = φmk+1 , f
mk+1+J+1
2 = f

mk+1
2 , (−1 ≤ J ≤ r − 2, ∀ l ≥ −1),

we arrive at

n||uml+1+J+1||2L2(Ωf ) +
nν4t

2

ml+1+J∑

i=0

||ui+1||2Hf
+ ρgS0||φml+1+J+1||2L2(Ωp) +

ρg4t

4r

ml+1+J∑

i=0

||K1/2∇φi+1||2L2(Ωp)

≤ 4nρgC34t√
νS0kmin

ml+1+J∑

i=0

(n||ui+1||2L2(Ωf ) + ρgS0||φi+1||2L2(Ωp))

+
4nP 2

14t

5ν

ml+1+J∑

i=0

||f i+1
1 ||2L2(Ωf ) +

2ρgP 2
24t

kmin

ml+1+J∑

i=0

||f i+1
2 ||2L2(Ωp)

+
4t

2
(nν||u0||2Hf

+ ρg||K1/2∇φ0||2L2(Ωp)) + n||u0||2L2(Ωf ) + ρgS0||φ0||2L2(Ωp). (3.14)

Finally, choosing 4t, such that 4nρgC34t√
νS0kmin

< 1, which is required to apply the discrete Gronwall inequality to
(3.14), (which contributes a C(T) term).

4. Convergence Analysis. In this section, we analyze the error in Algorithm 3.2. We will use the
following notations. Define um

c = u(tm), φm
c = φ(tm), pm

c = p(tm). Following (2.10)-(2.11), we define
um = Phu(tm), φm = Phφ(tm), pm = Php(tm), then we set em

c = um
c − um, εm

c = φm
c −φm, ηm

c = pm
c − pm,

and em = um − um, εm = φm − φm, ηm = pm − pm. Obviously, we observe that u(tm) − um = em
c + em

and φ(tm) − φm = εm
c + εm, from approximation properties, we have ||em

c ||L2(Ωf ) + ||εm
c ||L2(Ωp) ≤ Ch2,

||em
c ||Hf

+ ||εm
c ||Hp

≤ Ch. Moreover, we suppose that e0 = 0, ε0 = 0.
Then, by (1.19) and (2.10)-(2.11), for (v, q) ∈ (Wh, Qh), we have

n(
um+1 − um

4t
, v) + af (um+1, v) + b(v, pm+1) = −n(wm+1

f,t , v) + n(fm+1
1 , v)− nρg

∫

Γ

φm+1v · nf (4.1)

b(um+1, q) = 0. (4.2)

ρgS0(
φm+1 − φm

4t
, ψ) + ap(φm+1, ψ) = −ρgS0(wm+1

p,t , ψ) + ρg(fm+1
2 , ψ) + nρg

∫

Γ

ψum+1 · nf , (4.3)

where

wm+1
f,t =

um+1 − um

4t
− ut(tm+1)

= [
um+1 − um

4t
− u(tm+1)− u(tm)

4t
] + [

u(tm+1)− u(tm)
4t

− ut(tm+1)]

= wm+1
f,t,1 + wm+1

f,t,2 ,
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and

wm+1
p,t =

φm+1 − φm

4t
− φt(tm+1)

= [
φm+1 − φm

4t
− φ(tm+1)− φ(tm)

4t
] + [

φ(tm+1)− φ(tm)
4t

− φt(tm+1)]

= wm+1
p,t,1 + wm+1

p,t,2 .

It is easy to verify that the following properties of wm+1
f,t,1 , wm+1

f,t,2 , wm+1
p,s,1 and wm+1

p,s,2 hold: from the definition

wm+1
f,t,1 = (Ph − I)

u(tm+1)− u(tm)
4t

=
1
4t

∫ tm+1

tm

(Ph − I)ut(t)dt,

then we have

||wm+1
f,t,1 ||2L2(Ωf ) =

1
4t2

∫

Ω

(
∫ tm+1

tm

(Ph − I)ut(t)dt)2dx

≤ 1
4t2

∫

Ω

∫ tm+1

tm

((Ph − I)ut(t))2dt

∫ tm+1

tm

12dtdx

≤ 1
4t

∫ tm+1

tm

||(Ph − I)ut(t)||2L2(Ωf )dt. (4.4)

Similarly,

4twm+1
f,t,2 = u(tm+1)− u(tm)−4tut(tm+1) = −

∫ tm+1

tm

(t− tm)utt(t)dt,

which means

||wm+1
f,t,2 ||2L2(Ωf ) =

1
4t2

∫

Ω

(
∫ tm+1

tm

(t− tm)utt(t)dt)2dx

≤ 1
4t2

∫

Ω

∫ tm+1

tm

(utt(t))2dt

∫ tm+1

tm

(t− tm)2dtdx ≤ 4t

∫ tm+1

tm

||utt||2L2(Ωf )dt. (4.5)

The same as wm+1
p,t,1 , wm+1

p,t,2 , while consider the large time step size 4s, then,

||wmk+1
p,s,1 ||2L2(Ωp) ≤

1
4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2L2(Ωp)ds, (4.6)

and

||wmk+1
p,s,2 ||2L2(Ωp) ≤ 4s

∫ tmk+1

tmk

||φss||2L2(Ωp)ds. (4.7)

By the equivalence between ||u||Hf
and ||∇u||L2(Ωf ), ||φ||Hp

and ||∇φ||L2(Ωp),

||um+1 − um||2Hf
= ||Ph(u(tm+1)− u(tm))||2Hf

≤ C||u(tm+1)− u(tm)||2Hf

≤ C

∫

Ωf

(∇(u(tm+1)− u(tm)))2dx ≤ C

∫

Ωf

(
∫ tm+1

tm

∇utdt)2dx

≤ C

∫

Ωf

∫ tm+1

tm

|∇ut|2dt

∫ tm+1

tm

1dtdx ≤ C4t

∫ tm+1

tm

||ut||2Hf
dt. (4.8)
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Do the same as (4.8), we have

||φm+1 − φm||2Hp
≤ C4t

∫ tm+1

tm

||φt||2Hp
dt, (4.9)

||umk+1 − umk
||2Hf

≤ C4s

∫ tmk+1

tmk

||us||2Hf
ds, (4.10)

||φmk+1 − φmk
||2Hp

≤ C4s

∫ tmk+1

tmk

||φs||2Hp
ds. (4.11)

Considering small time step size 4t and subtracting (4.1) from (2.15) gives

n(
em+1 − em

4t
, v) + af (em+1, v) + b(v, ηm+1)

= −n(wm+1
f,t , v)− nρg

∫

Γ

(φm+1 − φm)v · nf − nρg

∫

Γ

(φm − φmk)v · nf , (4.12)

b(em+1, q) = 0.

Considering larger time step size 4s = r4t and subtracting (4.3) from (2.18), we obtain

ρgS0(
εmk+1 − εmk

4s
, ψ) + ap(εmk+1 , ψ)

= −ρgS0(wmk+1
p,s , ψ) + nρg

∫

Γ

ψ(umk+1 − umk
) · nf + nρg

∫

Γ

ψ(umk
− Smk) · nf . (4.13)

For the error estimate we impose a timestep restriction of the form 4t ≤ Ch that is different than (3.1).
Since convergence implies stability, Theorem 4.1 also gives a stability condition with different dependencies
on the physical parameters than (3.1).

Theorem 4.1. Suppose the true solution is smooth, the initial approximations are sufficiently accurate
and that the time step and mesh width 4t, h satisfy

4rnρgC44th−1 ≤ 1, (4.14)

then the following estimate for the error at the larger time steps (the synchronization points) holds:

n||eml+1 ||2L2(Ωf ) + nν4t
l∑

k=0

mk+1−1∑

i=mk

||ei+1||2Hf
+ ρgS0||εml+1 ||2L2(Ωp) + ρg4s

l∑

k=0

||K1/2∇εmk+1 ||2L2(Ωp)

≤ C5(4t2 + h4). (4.15)

Proof. Taking v = 24tem+1 in (4.12), using the divergence-free property, sum over m = mk,mk +
1, · · · ,mk+1 − 1, yield

n||emk+1 ||2L2(Ωf ) + n

mk+1−1∑

i=mk

||ei+1 − ei||2L2(Ωf ) − n||emk ||2L2(Ωf ) + 24t

mk+1−1∑

i=mk

af (ei+1, ei+1)

= −2n4t

mk+1−1∑

i=mk

(wi+1
f,t , ei+1)− 2nρg4t

∫

Γ

mk+1−1∑

i=mk

(φi+1 − φi)ei+1 · nf (4.16)

− 2nρg4t

∫

Γ

mk+1−1∑

i=mk

(φi − φmk)ei+1 · nf .
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Taking ψ = 2r4tεmk+1 = 24t
∑mk+1−1

i=mk
εmk+1 in (4.13),

ρgS0||εmk+1 ||2L2(Ωp) + ρgS0||εmk+1 − εmk ||2L2(Ωp) − ρgS0||εmk ||2L2(Ωp) + 24sap(εmk+1 , εmk+1)

= −2ρgS04s(wmk+1
p,s , εmk+1) + 2nρg4t

∫

Γ

mk+1−1∑

i=mk

εmk+1(umk+1 − umk
) · nf (4.17)

+ 2nρg4t

∫

Γ

mk+1−1∑

i=mk

εmk+1(umk
− ui) · nf .

Combining the above equalities (4.16) and (4.17), we obtain

n{||emk+1 ||2L2(Ωf ) +
mk+1−1∑

i=mk

||ei+1 − ei||2L2(Ωf ) − ||emk ||2L2(Ωf )}+ 24t

mk+1−1∑

i=mk

af (ei+1, ei+1)

+ ρgS0{||εmk+1 ||2L2(Ωp) + ||εmk+1 − εmk ||2L2(Ωp) − ||εmk ||2L2(Ωp)}+ 24sap(εmk+1 , εmk+1)

= −2n4t

mk+1−1∑

i=mk

(wi+1
f,t , ei+1)− 2ρgS04s(wmk+1

p,s , εmk+1)

− 24t

mk+1−1∑

i=mk

aΓ(φi+1 − φi, umk+1 − umk
; εmk+1 , ei+1)

− 24t

mk+1−1∑

i=mk

aΓ(φi − φmk , umk
− ui; εmk+1 , ei+1). (4.18)

The first term of the RHS in (4.18) is bounded by Young, Poincaré and Hölder inequalities:

− 2n4t

mk+1−1∑

i=mk

(wi+1
f,t , ei+1)− 2ρgS04s(wmk+1

p,s , εmk+1)

≤ nν4t

4

mk+1−1∑

i=mk

||ei+1||2Hf
+

ρg4s

4
||K1/2∇εmk+1 ||2L2(Ωp)

+4t

mk+1−1∑

i=mk

4nP 2
1

ν
||wi+1

f,t ||2L2(Ωf ) +
4ρgP 2

2 S2
04s

kmin
||wmk+1

p,s ||2L2(Ωp). (4.19)

The second term of the RHS in (4.18) is bounded using (2.4) by:

− 24t

mk+1−1∑

i=mk

aΓ(φi+1 − φi, umk+1 − umk
; εmk+1 , ei+1)

≤ nν4t

4

mk+1−1∑

i=mk

||ei+1||2Hf
+

ρg4s

4
||K1/2∇εmk+1 ||2L2(Ωp)

+
4nρ2g2kmaxC24t

kmin

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
+

4n2νρgC24s

kmin
||(umk+1 − umk

)||2Hf
. (4.20)
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The third term of RHS in (4.18) is bounded by (2.5)-(2.6)

− 24t

mk+1−1∑

i=mk

aΓ(φi − φmk , umk
− ui; εmk+1 , ei+1)

= −24t

mk+1−1∑

i=mk

{aΓ(φi − φmk
, umk

− ui; εmk+1 , ei+1) + aΓ(εmk , ei; εmk+1 , ei+1)}

= 24t

mk+1−1∑

i=mk

{aΓ(εmk+1 − εmk , ei+1 − ei; εmk+1 , ei+1)− aΓ(φi − φmk
, umk

− ui; εmk+1 , ei+1)}

≤ nν4t

2

mk+1−1∑

i=mk

||ei+1||2Hf
+

ρg4s

2
||K1/2∇εmk+1 ||2L2(Ω)

+
4rnρgC44t

h
(
mk+1−1∑

i=mk

n||ei+1 − ei||2L2(Ωf ) + ρgS0||εmk+1 − εmk ||2L2(Ωp))

+
4nρgC24t

kmin

mk+1−1∑

i=mk

(nν||umk
− ui||2Hf

+ ρg||K1/2∇(φi − φmk
)||2L2(Ωp)). (4.21)

Note that 4rnρgC44t
h ≤ 1. Combine the above inequalities and sum over k = 0, 1, · · · , l. We arrive at

n||eml+1 ||2L2(Ωf ) + nν4t
l∑

k=0

mk+1−1∑

i=mk

||ei+1||2Hf
+ ρgS0||εml+1 ||2L2(Ωp) + ρg4s

l∑

k=0

||K1/2∇εmk+1 ||2L2(Ωp)

≤ 4t

l∑

k=0

mk+1−1∑

i=mk

4nP 2
1

ν
||wi+1

f,t ||2L2(Ωf ) +
4ρgP 2

2 S2
04s

kmin

l∑

k=0

||wmk+1
p,s ||2L2(Ωp)

+
4νn2ρgC24s

kmin

l∑

k=0

||umk+1 − umk
||2Hf

+
4nρ2g2kmaxC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi+1 − φi||2Hp

+
4νn2ρgC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||umk
− ui||2Hf

+
4nρ2g2kmaxC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi − φmk
||2Hp

. (4.22)

By using (4.4)-(4.11) and the approximate properties of Ph, the first term of RHS in (4.22) is bounded by

4t
l∑

k=0

mk+1−1∑

i=mk

4nP 2
1

ν
||wi+1

f,t ||2L2(Ωf ) +
4ρgP 2

2 S2
04s

kmin

l∑

k=0

||wmk+1
p,s ||2L2(Ωp)

≤ 4nP 2
14t

ν

l∑

k=0

mk+1−1∑

i=mk

(
1
4t

∫ ti+1

ti

||(Ph − I)ut(t)||2L2(Ωf )dt +4t

∫ ti+1

ti

||utt||2L2(Ωf )dt)

+
4ρgP 2

2 S2
04s

kmin

l∑

k=0

(
1
4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||2L2(Ωp)ds +4s

∫ tmk+1

tmk

||φss||2L2(Ωp)ds)

≤ 4nP 2
1

ν
(
∫ T

0

||(Ph − I)ut(t)||2L2(Ωf )dt +4t2
∫ T

0

||utt||2L2(Ωf )dt)

+
4ρgP 2

2 S2
0

kmin
(
∫ T

0

||(Ph − I)φs(s)||2L2(Ωp)ds +4s2

∫ T

0

||φss||2L2(Ωp)ds)

≤ C5(4t2 + h4). (4.23)

Here and afterwards, C5 denotes a constant depending on ν, n, ρ, g, S0, kmin, kmax, r, T, P1 and C2. The
15



second term of RHS in (4.22) is bounded by

4νn2ρgC24s

kmin

l∑

k=0

||umk+1 − umk
||2Hf

≤ 4νn2ρgC24s2

kmin

∫ T

0

||us(s)||2Hf
ds ≤ C54t2. (4.24)

The third term of RHS in (4.22) is bounded by

4nρ2g2kmaxC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
≤ 4nρ2g2kmaxC24t2

kmin

∫ T

0

||φt(t)||2Hp
dt ≤ C54t2. (4.25)

The remaining terms in (4.22) are bounded by

4νn2ρgC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||umk
− ui||2Hf

+
4nρ2g2kmaxC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi − φmk
||2Hp

≤ 4νn2ρgrC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||ui+1 − ui||2Hf
+

4nρ2g2kmaxrC24t

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi − φi+1||2Hp

≤ 4νn2ρgrC24t2

kmin

∫ T

0

||ut(t)||2Hf
dt +

4nρ2g2kmaxrC24t2

kmin

∫ T

0

||φt(t)||2Hp
dt

≤ C54t2. (4.26)

Combine the above bounds and add the initial data. This yields the final result,

n||eml+1 ||2L2(Ωf ) + nν4t
l∑

k=0

mk+1−1∑

i=mk

||ei+1||2Hf
+ ρgS0||εml+1 ||2L2(Ωp) + ρg4s

l∑

k=0

||K1/2∇εmk+1 ||2L2(Ωp)

≤ C5(4t2 + h4). (4.27)

For the error in time derivatives, we have the following error estimate. Here we use the following
notations:

dte
m+1 , em+1 − em

4t
, λ(u, v) ,

d−1∑

i=1

∫

Γ

nα√
τi ·Kτi

(u · τi)(v · τi).

Theorem 4.2. Under the assumptions of the Theorem 4.1, the following error estimate holds:

n4t

l∑

k=0

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + nν||eml+1 ||2Hf

+ λ(eml+1 , eml+1) + ρgS04t

l∑

k=0

||dtε
mk+1 ||2L2(Ωp)

+ρg

mk+1−1∑

i=mk

||K1/2∇εml+1 ||2L2(Ωp) ≤ C5(4t + h4 +4t−1h4). (4.28)

Proof. Taking v = 24tdte
m+1 = 2(em+1 − em) in (4.12), using the divergence-free property, sum over

m = mk,mk + 1, · · · ,mk+1 − 1, we get

2n4t

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + af (emk+1 , emk+1)− af (emk , emk) +4t2

mk+1−1∑

i=mk

af (dte
i+1, dte

i+1)

= −2n4t

mk+1−1∑

i=mk

(wi+1
f,t , dte

i+1)− 2nρg4t

∫

Γ

mk+1−1∑

i=mk

(φi+1 − φi)dte
i+1 · nf

− 2nρg4t

∫

Γ

mk+1−1∑

i=mk

(φi − φmk)dte
i+1 · nf . (4.29)
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Taking ψ = 2r4tdtε
mk+1 = 2r(εmk+1 − εmk) = 2

∑mk+1−1
i=mk

(εmk+1 − εmk) in (4.13) yield

2ρgS04t||dtε
mk+1 ||2L2(Ωp) +

mk+1−1∑

i=mk

{
ap(εmk+1 , εmk+1)− ap(εmk , εmk) +4t2ap(dtε

mk+1 , dtε
mk+1)

}

= −2ρgS04s(wmk+1
p,s , dtε

mk+1) + 2nρg4t

∫

Γ

mk+1−1∑

i=mk

dtε
mk+1(umk+1 − umk

) · nf

+2nρg4t

∫

Γ

mk+1−1∑

i=mk

dtε
mk+1(umk

− ui) · nf . (4.30)

Combining the above two equalities (4.29) and (4.30), we have

2n4t

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + af (emk+1 , emk+1)− af (emk , emk) +4t2

mk+1−1∑

i=mk

af (dte
i+1, dte

i+1)

+ 2ρgS04t||dtε
mk+1 ||2L2(Ωp) +

mk+1−1∑

i=mk

{
ap(εmk+1 , εmk+1)− ap(εmk , εmk) +4t2ap(dtε

mk+1 , dtε
mk+1)

}

= −2n4t

mk+1−1∑

i=mk

(wi+1
f,t , dte

i+1)− 2ρgS04s(wmk+1
p,s , dtε

mk+1)

− 24t

mk+1−1∑

i=mk

aΓ(φi+1 − φi, umk+1 − umk
; dtε

mk+1 , dte
i+1)

− 24t

mk+1−1∑

i=mk

aΓ(φi − φmk , umk
− ui; dtε

mk+1 , dte
i+1). (4.31)

The first term of RHS in (4.31) is bounded by Young and Hölder inequalities

− 2n4t

mk+1−1∑

i=mk

(wi+1
f,t , dte

i+1)− 2ρgS04s(wmk+1
p,s , dtε

mk+1)

≤ n4t

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + n4t

mk+1−1∑

i=mk

||wi+1
f,t ||2L2(Ωf )

+ ρgS04t||dtε
mk+1 ||2L2(Ωp) + rρgS04s||wmk+1

p,s ||2L2(Ωp). (4.32)

The second term of the RHS in (4.31) is bounded by (2.4)

−24t

mk+1−1∑

i=mk

aΓ(φi+1 − φi, umk+1 − umk
; dtε

mk+1 , dte
i+1)

≤ 4t2

3

mk+1−1∑

i=mk

(nν||dte
i+1||2Hf

+ ρg||K1/2∇dtε
mk+1 ||2L2(Ωp))

+
3nρ2g2kmaxC2

kmin

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
+

3rn2νρgC2

kmin
||umk+1 − umk

||2Hf
. (4.33)
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The third term of the RHS in (4.31) is bounded by

− 24t

mk+1−1∑

i=mk

aΓ(φi − φmk , umk
− ui; dtε

mk+1 , dte
i+1)

= −24t

mk+1−1∑

i=mk

{aΓ(φi − φmk
, umk

− ui; dtε
mk+1 , dte

i+1) + aΓ(εmk , ei; dtε
mk+1 , dte

i+1)}

≤ 24t2

3

mk+1−1∑

i=mk

(nν||dte
i+1||2Hf

+ ρg||K1/2∇dtε
mk+1 ||2L2(Ωp))

+
3nρgC2

kmin

mk+1−1∑

i=mk

(nν||ei||2Hf
+ ρg||K1/2∇εmk ||2L2(Ωp))

+
3n2νρgC2

kmin

mk+1−1∑

i=mk

||umk
− ui||2Hf

+
3nρ2g2kmaxC2

kmin
||φi − φmk

||2Hp

≤ 24t2

3

mk+1−1∑

i=mk

(nν||dte
i+1||2Hf

+ ρg||K1/2∇dtε
mk+1 ||2L2(Ωp))

+
3nρgC2

kmin

mk+1−1∑

i=mk

(nν||ei||2Hf
+ ρg||K1/2∇εmk ||2L2(Ωp))

+
3rn2νρgC2

kmin

mk+1−1∑

i=mk

||ui+1 − ui||2Hf
+

3rnρ2g2kmaxC2

kmin

mk+1−1∑

i=mk

||φi − φi+1||2Hp
. (4.34)

Then, by using (4.31)-(4.34), we have

n4t

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + nν{||emk+1 ||2Hf

− ||emk ||2Hf
}

+λ(emk+1 , emk+1)− λ(emk , emk) +4t2
mk+1−1∑

i=mk

λ(dte
i+1, dte

i+1)

+ρgS04t||dtε
mk+1 ||2L2(Ωp) + ρg

mk+1−1∑

i=mk

{
||K1/2∇εmk+1 ||2L2(Ωp) − ||K1/2∇εmk ||2L2(Ωp)

}

≤ n4t

mk+1−1∑

i=mk

||wi+1
f,t ||2L2(Ωf ) + rρgS04s||wmk+1

p,s ||2L2(Ωp)

+
3nρ2g2kmaxC2

kmin

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
+

3rn2νρgC2

kmin
||umk+1 − umk

||2Hf

+
3rn2νρgC2

kmin

mk+1−1∑

i=mk

||ui+1 − ui||2Hf
+

3rnρ2g2kmaxC2

kmin

mk+1−1∑

i=mk

||φi − φi+1||2Hp

+
3nρgC2

kmin

mk+1−1∑

i=mk

(nν||ei||2Hf
+ ρg||K1/2∇εmk ||2L2(Ωp)). (4.35)
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Sum over k = 0, 1, · · · , l, since λ(u, u) ≥ 0, we arrive at

n4t
l∑

k=0

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + nν||eml+1 ||2Hf

+ λ(eml+1 , eml+1) +4t2
l∑

k=0

mk+1−1∑

i=mk

λ(dte
i+1, dte

i+1)

+ρgS04t
l∑

k=0

||dtε
mk+1 ||2L2(Ωp) + ρg

mk+1−1∑

i=mk

||K1/2∇εml+1 ||2L2(Ωp)

≤ n4t

l∑

k=0

mk+1−1∑

i=mk

||wi+1
f,t ||2L2(Ωf ) + rρgS04s

l∑

k=0

||wmk+1
p,s ||2L2(Ωp)

+
3nρ2g2kmaxC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
+

3rn2νρgC2

kmin

l∑

k=0

||umk+1 − umk
||2Hf

+
3rn2νρgC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||ui+1 − ui||2Hf
+

3rnρ2g2kmaxC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi − φi+1||2Hp

+
3nρgC2

kmin

l∑

k=0

mk+1−1∑

i=mk

(nν||ei||2Hf
+ ρg||K1/2∇εmk ||2L2(Ωp)). (4.36)

From (4.4)-(4.11), we have

n4t
l∑

k=0

mk+1−1∑

i=mk

||wi+1
f,t ||2L2(Ωf ) + rρgS04s

l∑

k=0

||wmk+1
p,s ||2L2(Ωp) ≤ C5(4t2 + h4), (4.37)

3nρ2g2kmaxC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi+1 − φi||2Hp
≤ 3nρ2g2kmaxC24t

kmin

∫ T

0

||φt(t)||2Hp
dt ≤ C54t, (4.38)

3rn2νρgC2

kmin

l∑

k=0

||umk+1 − umk
||2Hf

≤ 3rn2νρgC24s

kmin

∫ T

0

||us(s)||2Hf
ds ≤ C54t, (4.39)

3rn2νρgC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||ui+1 − ui||2Hf
+

3rnρ2g2kmaxC2

kmin

l∑

k=0

mk+1−1∑

i=mk

||φi − φi+1||2Hp
≤ C54t. (4.40)

From Theorem 4.1, we have,

3nρgC2

kmin
{

l∑

k=0

mk+1−1∑

i=mk

nν||ei||2Hf
+ rρg

l∑

k=0

||K1/2∇εmk ||2L2(Ωp)} ≤ C5(4t +4t−1h4). (4.41)

Combining (4.36)-(4.41) yields

n4t
l∑

k=0

mk+1−1∑

i=mk

||dte
i+1||2L2(Ωf ) + nν||eml+1 ||2Hf

+ λ(eml+1 , eml+1) + ρgS04t
l∑

k=0

||dtε
mk+1 ||2L2(Ωp)

+ρg

mk+1−1∑

i=mk

||K1/2∇εml+1 ||2L2(Ωp) ≤ C5(4t + h4 +4t−1h4). (4.42)

At the smaller time steps used for the faster problem we have the following error estimate. Recall that

λ(u, v) ,
d−1∑

i=1

∫

Γ

nα√
τi ·Kτi

(u · τi)(v · τi).
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Theorem 4.3. Under the assumptions of Theorem 4.1, then the following error estimate holds: for
J = 1, 2, · · · , r − 1, and k = 0, 1, · · · , l,

n||emk+J+1||2L2(Ωf ) + nν4t

mk+J∑

i=mk

||ei+1||2Hf
≤ C5(4t2 + h4).

Proof. Taking v = 24tem+1 in (4.12), using the divergence-free property, sum over m = mk,mk +
1, · · · ,mk + J, yield

n{||emk+J+1||2L2(Ωf ) +
mk+J∑

i=mk

||ei+1 − ei||2L2(Ωf ) − ||emk ||2L2(Ωf )}+ 24t

mk+J∑

i=mk

af (ei+1, ei+1)

= −2n4t

mk+J∑

i=mk

(wi+1
f,t , ei+1)− 2nρg4t

∫

Γ

mk+J∑

i=mk

(φi+1 − φi)ei+1 · nf

− 2nρg4t

∫

Γ

mk+1−1∑

i=mk

(φi − φmk)ei+1 · nf

≤ nν4t

3

mk+J∑

i=mk

||ei+1||2Hf
+

3nP 2
14t

ν

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf ) +

nν4t

3

mk+J∑

i=mk

||ei+1||2Hf

+
3nρ2g2C24t

ν

mk+J∑

i=mk

||φi+1 − φi||2Hp
+

nν4t

3

mk+J∑

i=mk

||ei+1||2Hf
+

3nρ2g2C24t

ν

mk+J∑

i=mk

||φi − φmk ||2Hp

≤ nν4t

mk+J∑

i=mk

||ei+1||2Hf
+

3nP 2
14t

ν

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf )

+
3nρ2g2C24t

ν

mk+J∑

i=mk

(||φi+1 − φi||2Hp
+ ||φi − φmk

||2Hp
+ ||φmk

− φmk ||2Hp
). (4.43)

From (4.4), (4.5), (4.9), (4.11), and Theorem 4.1, we have

3nP 2
14t

ν

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf ) ≤ C5(4t2 + h4),

3nρ2g2C24t

ν

mk+J∑

i=mk

||φi+1 − φi||2Hp
≤ C54t2,

3nρ2g2C24t

ν

mk+J∑

i=mk

||φi − φmk
||2Hp

≤ 3rnρ2g2C24t

ν

mk+J∑

i=mk

||φi − φi+1||2Hp
≤ C54t2,

3nρ2g2C24t

ν

mk+J∑

i=mk

||φmk
− φmk ||2Hp

≤ 3nρ2g2C24s

ν
√

kmin

||K1/2∇εmk ||2L2(Ωp) ≤ C5(4t2 + h4).

Note that the last two inequalities above, we used the fact mk + J −mk ≤ r for J = 1, 2, · · · , r − 1 and the
general triangle inequality. Combine the above bounds, the final result follows by Theorem 4.1,

n||emk+J+1||2L2(Ωf ) +
mk+J∑

i=mk

nν||ei+1 − ei||2L2(Ωf ) + nν4t

mk+J∑

i=mk

||ei+1||2Hf

≤ C5(4t2 + h4) + n||emk ||2L2(Ωf ) ≤ C5(4t2 + h4).
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For the error in time derivatives on smaller time steps, we have the following error estimate.

Theorem 4.4. Based on the smoothness assumption on the true solution, J = 1, 2, · · · , r − 1, and k

can be 0, 1, · · · , l, the following estimate holds:

n4t

mk+J∑

i=mk

||dte
i+1||2L2(Ωf ) + nν||emk+J+1||2Hf

+ λ(emk+J+1, emk+J+1) ≤ C5(4t + h4 +4t−1h4). (4.44)

Proof. Taking 24tdte
m+1 = 2(em+1 − em) in (4.12), using the divergence-free property, sum over

m = mk,mk + 1, · · · ,mk + J, we obtain

2n4t

mk+J∑

i=mk

||dte
i+1||2L2(Ωf ) + af (emk+J+1, emk+J+1)− af (emk , emk) +4t2

mk+J∑

i=mk

af (dte
i+1, dte

i+1)

= −2n4t

mk+J∑

i=mk

(wi+1
f,t , dte

i+1)− 2nρg4t

∫

Γ

mk+J∑

i=mk

(φi+1 − φi)dte
i+1 · nf

− 2nρg4t

∫

Γ

mk+J∑

i=mk

(φi − φmk)dte
i+1 · nf

≤ n4t

mk+J∑

i=mk

||dte
i+1||2L2(Ωf ) + n4t

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf ) +

4t2

2

mk+J∑

i=mk

nν||dte
i+1||2Hf

+
2nρ2g2C2

ν

mk+J∑

i=mk

||φi+1 − φi||2Hp
+
4t2

2

mk+J∑

i=mk

nν||dte
i+1||2Hf

+
2nρ2g2C2

ν

mk+J∑

i=mk

||φi − φmk ||2Hp

≤ n4t

mk+J∑

i=mk

||dte
i+1||2L2(Ωf ) +4t2

mk+J∑

i=mk

nν||dte
i+1||2Hf

+ n4t

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf )

+
2nρ2g2C2

ν

mk+J∑

i=mk

(||φi+1 − φi||2Hp
+ ||φi − φmk

||2Hp
+ ||φmk

− φmk ||2Hp
). (4.45)

Just as the proof of the Theorem 4.3, using (4.4), (4.5), (4.9), (4.11) and Theorem 4.1, as well as the general
triangle inequality and the fact mk + J −mk ≤ r for J = 1, 2, · · · , r − 1, we obtain

n4t

mk+J∑

i=mk

||wi+1
f,t ||2L2(Ωf ) ≤ C5(4t2 + h4),

2nρ2g2C2

ν

mk+J∑

i=mk

||φi+1 − φi||2Hp
≤ C54t,

2nρ2g2C2

ν

mk+J∑

i=mk

||φi − φmk
||2Hp

≤ 2rnρ2g2C2

ν

mk+J∑

i=mk

||φi − φi+1||2Hp
≤ C54t,

2nρ2g2C2

ν

mk+J∑

i=mk

||φmk
− φmk ||2Hp

≤ 2rnρ2g2C2

ν
√

kmin

||K1/2∇εmk ||2L2(Ωp) ≤ C5(4t +4t−1h4).

Combining the above bounds and using Theorem 4.2 yields

n4t

mk+J∑

i=mk

||dte
i+1||2L2(Ωf ) + nν||emk+J+1||2Hf

+ λ(emk+J+1, emk+J+1)

≤ C5(4t + h4 +4t−1h4) + nν||emk ||2Hf
+ λ(emk , emk)

≤ C5(4t + h4 +4t−1h4).
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Corollary 4.5. Under the assumptions of the Theorem 4.1, then for k = 0, 1, · · · ,M − 1, and m =
1, 2, · · · , N , the following estimates hold:

||um
h − u(tm)||L2(Ωf ) ≤ C5(4t + h2), (4.46)

||φmk+1
h − φ(tmk+1)||L2(Ωp) ≤ C5(4t + h2), (4.47)

||um
h − u(tm)||Hf

≤ C5(4t1/2 + h +4t−1/2h2), (4.48)

||φmk+1
h − φ(tmk+1)||Hp ≤ C5(4t1/2 + h +4t−1/2h2). (4.49)

Proof. By using the triangle inequality, combine the approximation properties and Theorem 4.1-4.4, the
claim of this theorem follows.

Remark: In this paper, different conditions are needed for stability and error estimation, for stability,
we need 4t satisfies that 4nρgC34t√

νS0kmin
< 1 with C3 is a constant. For the error estimation, we assume that 4t

satisfies that 4rnρgC44t
h ≤ 1 with C4 is a constant. Which condition is better is still an open question, it

depends on the problem and many other factors.

5. Numerical tests. This section gives two numerical tests. The first one is adapted from [17]. It
has O(1) material parameters and confirms both the predicted convergence rates and the efficiency of using
different time steps. The second one is a test of stability for kmin very small. It reveals that the methods
are stable for beyond the range of 4t given by (3.1) in our (worse case) analysis.

5.1. Test 1. Assume Ωf = [0, 1] × [1, 2] and Ωp = [0, 1] × [0, 1] with interface Γ = (0, 1) × {1}. The
exact solution is given by

(u1, u2) = ([x2(y − 1)2 + y]cos(ωt), [−2
3
x(y − 1)3]cos(ωt) + [2− πsin(πx)]cos(t)),

p = [2− πsin(πx)]sin(0.5πy)cos(t),

φ = [2− πsin(πx)][1− y − cos(πy)]cos(t).

Here ω = 5, and the initial conditions, boundary conditions, and the forcing terms follows the solution.
The finite element spaces are constructed by using the well-known MINI elements (P1b − P1) for the

Stokes problem and the linear Lagrangian elements (P1) for the Darcy flow. The code was implemented
using the software package FreeFEM++[12]. For the monolithically coupled scheme, the GMRES routine
is used to solve the (non-symmetric) coupled system. For the uncoupled scheme, a multi-frontal Gauss LU
factorization implemented to solve the SPD sub-systems.

We define some notations first, for coupled scheme, we denote

eh,m
u = uh,m − u(tm), eh,m

p = ph,m − p(tm), eh,m
φ = φh,m − φ(tm).

For the decoupled scheme, we denote

em
h,u = um

h − u(tm), em
h,p = pm

h − p(tm), em
h,φ = φm

h − φ(tm).

First, we compare the errors, convergence rates and CPU times for both the coupled scheme and the
decoupled scheme. In Table 5.1-5.2, we consider both schemes at time tm = 1.0, with varying mesh h but
fixed time step 4t and 4s = ω4t. The two schemes achieve similar precision, although the monolithically
coupled scheme is slightly more accurate than the decoupled scheme. However, the coupled scheme required
much more CPU time than the decoupled scheme. The relative advantage of the decoupled scheme increased
as the mesh was decreased. In Table 5.3-5.4, at the same time tm = 1.0, with varying time step 4t and
4s = ω4t but fixed mesh h = 1

8 are tested for both schemes. The two schemes almost get the same accuracy,
but the coupled scheme needs much more CPU time than the decoupled scheme. In all, the decoupled scheme
is comparable with the coupled scheme, and cheaper and more efficient.
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Next, we will focus on the decoupled scheme, and examine the orders of convergence with respect to
the spacing h or the time step 4t. Following [17], we introduce a more accurate approach to examine the
orders of convergence with respect to the time step 4t or the mesh size h due to the approximation errors
O(4tγ) + O(hµ). For example, assuming

v4t
h (x, tm) ≈ v(x, tm) + C1(x, tm)4tγ + C2(x, tm)hµ.

Thus,

ρv,h,i =
||v4t

h (x, tm)− v4t
h
2

(x, tm)||i
||v4t

h
2

(x, tm)− v4t
h
4

(x, tm)||i
≈ 4µ − 2µ

2µ − 1
.

ρv,4t,i =
||v4t

h (x, tm)− v
4t
2

h (x, tm)||i
||v

4t
2

h (x, tm)− v
4t
4

h (x, tm)||i
≈ 4γ − 2γ

2γ − 1
.

Here, v can be u, p, φ and i can be 0, 1. While ρv,h,i, ρv,4t,i approach 4.0 or 2.0, the convergence order
will be 2.0 or 1.0, respectively.

In Table 5.5, we study the convergence order with a fixed time step 4t = 0.01 and 4s = ω4t and
varying spacing h = 1/2, 1/4, 1/8, 1/16, 1/32. Observe that, ρu,h,0, ρφ,h,0 is a little larger than 4.0, and
ρu,h,1, ρp,h,0, ρφ,h,1 approach 2.0, which suggest that the error estimates O(h2) for the L2-norm of u and
φ, O(h) for the H1-norm of u and φ and the L2-norm of p is optimal in space for the decoupled scheme.
However, in Table 5.5, we study the convergence order with a fixed spacing h = 1/8 and varying time step
4t = 0.02, 0.01, 0.005, 0.0025, 0.00125 and 4s = ω4t. The numerical experiments strongly suggest that
the orders of convergence in time for all should be O(4t), which implies that the error estimates for the
L2-norm of u and φ is optimal, however, the error estimates for the H1-norm of u and φ might not be optimal
for the decoupled scheme, and may be further improved from O(4t1/2) to O(4t) by a finer analysis- an
open problem for further work.

Table 5.1

The convergence performance and CPU time of coupled scheme at time tm = 1.0, with varying mesh h but fixed time step

4t = 0.01.

h ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

1
2 0.260588 1.50020 0.84932 0.154474 1.37573 4.428
1
4 0.073905 1.03481 0.82981 0.058474 0.86908 8.741
1
8 0.017644 0.40179 0.20873 0.010962 0.38724 32.081
1
16 0.004265 0.19129 0.07193 0.002688 0.19679 149.358
1
32 0.001120 0.09931 0.03493 0.000756 0.10059 698.809

Table 5.2

The convergence performance and CPU time of decoupled scheme at time tm = 1.0, with varying mesh h but fixed small

time step 4t = 0.01 and fixed large time step 4s = ω4t.

h ||em
h,u||0 ||em

h,u||1 ||em
h,p||0 ||em

h,φ||0 ||em
h,φ||0 CPU

1
2 0.260588 1.50020 0.85337 0.154915 1.37554 0.856
1
4 0.070324 0.80750 0.47382 0.047873 0.79309 3.020
1
8 0.017953 0.41543 0.224210 0.013647 0.40958 10.038
1
16 0.004287 0.18950 0.07584 0.003879 0.19556 38.423
1
32 0.001185 0.09608 0.03781 0.002168 0.10105 143.963
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Table 5.3

The convergence performance and CPU time of coupled scheme at time tm = 1.0, with varying time step 4t but fixed

mesh h = 1
8
.

4t ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

0.02 0.017658 0.401804 0.209185 0.010998 0.387225 19.656
0.01 0.017644 0.401971 0.208733 0.010962 0.387235 31.839
0.005 0.017638 0.401786 0.208770 0.010944 0.387240 55.723
0.0025 0.017639 0.401786 0.208897 0.010935 0.387242 103.725
0.00125 0.017639 0.401786 0.208942 0.010930 0.387242 215.046

Table 5.4

The convergence performance and CPU of decoupled scheme at time tm = 1.0, with varying small time step 4t and large

time step 4s = ω4t and but fixed mesh h = 1
8

.

4t ||em
h,u||0 ||em

h,u)||1 ||em
h,p||0 ||em

h,φ||0 ||em
h,φ||0 CPU

0.02 0.017849 0.415564 0.226369 0.014735 0.409701 5.429
0.01 0.017953 0.415431 0.224210 0.013647 0.409579 10.639
0.005 0.018010 0.415403 0.223604 0.013128 0.409577 21.435
0.0025 0.018038 0.415398 0.223444 0.012877 0.409592 41.262
0.00125 0.018050 0.415397 0.223404 0.012753 0.409603 76.190

Table 5.5

Convergence orders of O(hµ) of Uncouple scheme at time tm = 1.0, with varying mesh h but fixed small time step

4t = 0.01 and fixed large time step 4s = ω4t.

h ||um
h − um

h
2
||0 ρu,h,0 ||um

h − um
h
2
||1 ρu,h,1 ||pm

h − pm
h
2
||0 ρp,h,0

1
2 0.210264 3.74520 1.60993 1.94293 0.71638 1.48895
1
4 0.056142 3.83200 0.82861 1.93881 0.48113 2.15270
1
8 0.014651 4.23579 0.42738 2.14606 0.22350 2.89976
1
16 0.003458 0.19915 0.07708

h ||φm
h − φm

h
2
||0 ρφ,h,0 ||φm

h − φm
h
2
||0 ρφ,h,1

1
2 0.134538 3.38510 1.30491 1.67120
1
4 0.039744 3.56065 0.78083 1.87755
1
8 0.011162 4.81406 0.41587 2.05836
1
16 0.002319 0.20204

Table 5.6

Convergence orders of O(4tγ) of Uncouple at time tm = 1.0, with varying small time step 4t and large time step

4s = ω4t and but fixed mesh h = 1
8

.

4t ||um
4t − um

4t
2
||0 ρu,4t,0 ||um

4t − um
4t
2
||1 ρu,4t,1 ||pm

4t − pm
4t
2
||0 ρp,4t,0

0.02 6.49961e-4 2.03698 6.52832e-3 2.05855 1.68035e-2 1.91948
0.01 3.19081e-4 2.15518 3.17132e-3 2.18070 8.75420e-3 1.99190
0.005 1.48053e-4 2.17448 1.45427e-3 2.21398 4.39490e-3 2.01493
0.0025 6.80866e-5 6.656858e-4 2.18117e-3

4s ||φm
4s − φm

4s
2
||0 ρφ,4s,0 ||φm

4s − φm
4s
2
||0 ρφ,4s,1

0.1 1.51669e-3 1.96730 7.98752e-3 1.96671
0.05 7.70949e-4 1.98387 4.06136e-3 1.98326
0.025 3.88608e-4 1.99199 2.04781e-4 1.99160
0.0125 1.95085e-4 1.02822e-4
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5.2. Test 2. Stability for kmin = 1, 1.0e− 4 and 1.0e− 8. We do another experiment with kmin very
small to test the stability restriction (3.1). In this test, we set f1 = f2 = 0, and for simplicity, we choose
u0 = φ0 = 1 and u|∂Ωf\Γ = 0, φ|∂Ωp\Γ = 0, the small time step 4t = 0.1 and the large time step 4s = 0.5,
the Figure 5.1 displays the quantity of energy nν||uh||2L2(Ωf ) + ρgS0||φh||2L2(Ωp) on large time step size, and
Figure 5.2 displays the counterpart on the small time step size. The partitioned method is clearly stable for
kmin much smaller (with respect to 4t) than predicted by our stability analysis.

Remark: Note that, in Figure 5.2, there is a energy jump at the first large time point t = 0.5, that is
because we only calculate φh on the large time point, which means before t = 0.5, we set φh = φ0 = 1.
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Fig. 5.1. Energy vs.Time with the large time step 4s = 0.5.
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Fig. 5.2. Energy vs.Time with the small time step 4t = 0.1.
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6. Conclusions. A decoupled method with different time steps in each sub-domain for the mixed
Stokes-Darcy problem is proposed and analyzed in this paper. Under a time step restriction of the form
4t ≤ C(physicalparameters) we prove stability over bounded time intervals of the method. An analysis
of the asymptotic stability over infinite time intervals and the possibly uniformity of the error in time is
an important open problem. An error estimation is presented and numerical experiments are conducted to
demonstrate the computational effectiveness or the decoupling approach.

In our analysis, we have made several choices to offset the notational complexity of asynchronous time
stepping methods. In particular we have studied a formulation of the porous media problem as one second
order problem for the Darcy pressure instead of as a mixed system for the pressure and Darcy velocity.
Extension to a mixed discretization in the porous media region is also an important open problem. The
boundary condition on ∂Ωf/p\Γ were also chosen for simplicity and can be modified. At this early stage of
development, it does seem like uncoupled, partitioned methods are very promising for solving coupled surface
water-ground water flow problems. They are very efficient, can be accurate and do not require reference to
any monolithically coupled system of even iteration between sub-problems.

Open problems abound in partitioned methods for the Stokes-Darcy problems. Important one include
expanding the partitioned methods available and analyzing and testing their stability, efficiency and accuracy
for large T , small kmin, small S0, small n, generic large domains, different spacial discretization and large
but thin porous media regimes.
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