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Abstract

This study considers Pao’s transfer theory of turbulence for the family of Approximate Decon-
volution Models (ADMs). By taking a different representation of the persistent input of energy
into the large scales of the turbulent flow, the Pao theory simplifies somewhat. Analysis of the
resulting model is given and it is verified that (after the simplification as was known before it)
it is consistent with the important statistics of homogeneous isotropic turbulence. The ADMs
have an enhanced energy dissipation and a modification to the kinetic energy which affect the
truncation of scales by reducing the models micro-scale from the Kolmogorov micro-scale. The
energy dissipation can be even more enhanced by the time relaxation and the effects of this term
are presented as well.
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1 Introduction

Turbulent flows consist of complex, interacting three dimensional eddies of various sizes. In 1941
Kolmogorov gave a remarkable, universal description of the eddies in turbulent flow by combining
a judicious mix of physical insight, conjecture, mathematical and dimensional analysis. In his
description, the largest eddies are deterministic in nature. Those below a critical size are dominated
by viscous forces, and die very quickly due to these forces. This critical length, the Kolmogorov
micro-scale, is η = O(Re−3/4) in 3d, so the persistent eddies in a 3d flow requires taking ∆x = ∆y =
∆z = O(Re−3/4) giving O(Re+9/4) mesh points in space per time step. Therefore, direct numerical
simulation of turbulent flows (down to the Kolmogorov micro-scale) is often not computationally
economical or even feasible. On the other hand, the largest structures in the flow (containing most
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of the flow’s energy) are responsible for much of the mixing and most of the flow’s momentum
transport. Thus, various turbulence models are used for simulations seeking to predict a flow’s large
structures.

One of the mysteries of turbulence is how energy is transferred between scales and how nonlinearity
achieves a balance between the input of energy at large scales and its dissipation on exceedingly
small scales. In the study of energy transfer among scales, the energy at time t and in scales
are parameterized by wave-number k is denoted E(k, t). Energy transfer theories explore this
through simplified partial differential equations for E(k, t). Shell models explore the energy transfer
among scales by further discretizing the variable k through simplified systems of ordinary differential
equations for the energy in a wave-number shell, typically denoted En(t) or un(t). Transfer theories
and shell models have a common aim of understanding a critical feature of turbulent flow and
have attracted the attention of many researchers on turbulence so there are a large number of
different such models of increasing complexity. Perhaps surprisingly, of these only the simplest
Energy Transfer Model of Pao [Pao65] gives unequivocally correct (to the extent that the phenomena
is understood) predictions of the time averaged statistics and energy spectrum of homogeneous
isotropic turbulence. Understanding the mystery of energy transfer through nonlinearity becomes
of critical importance in predictions of turbulent flows because one fundamental role of turbulence
models is to add O(1) terms which exactly emulate the effects of this not well understood process
on scales much larger than the process itself occurs. For example, in 1960 J. Smagorinsky wrote:

”In setting up a finite difference grid or a finite wave number space, a turbulent
threshold is in effect defined and the question is: How do the equations know how to
communicate with the molecular dissipation range? One of course finds empirically that,
without any provision for dissipation, the cascade of energy to the higher wave numbers
ultimately increases the energy of the smallest wave resolvable by the grid. This energy
has no place further to go, and ultimately the calculation departs from nature sufficiently
to give intolerable truncation error.” ——— J. Smagorinsky, 1960

One promising approach to the simulation of turbulent flows is called Large Eddy Simulation or LES.
Approximate deconvolution models in LES have great promise because they are systematic, have
high accuracy and a firm theoretical foundation in some critical respects. The goal of this report is
to apply the Pao energy transfer theory to these approximate deconvolution models (ADMs) to gain
further insight into their predictions of important turbulent statistics. We derive the energy transfer
model associated with ADMs. Interestingly, through a change of variable, the wave-number closure
that arises in ADMs becomes exactly the same as the one occurring for the NSE. Thus the Pao
closure can be used exactly for the ADM without modification or extra tuning parameters. We thus
study the predictions of the Pao transfer theory for ADMs and compare them both theoretically
and computationally to those of the NSE. Interestingly, the computational study herein involves
wave-number discretization of E(k, t) on wave-number shells (following an equi-partition of energy)
and thus results in an apparently new Pao shell model for turbulence.

1.1 The LES Models Considered

In LES the evolution of local, spatial averages over length scales l ≥ δ are sought where δ is
user selected. The selection of this averaging radius δ is determined typically by computational
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resources (δ must be related to the finest computationally feasible mesh), turnaround time needed
for the calculation, and estimates of the scales of the persistent eddies needed to be resolved for an
accurate simulation. On the face of it, LES seems feasible since the large eddies are believed to be
deterministic. The small eddies (accepting Kolmogorov’s description) have a universal structure so,
in principle, their mean effects on the large eddies should be model-able. The crudest estimate of
cost is

∆x = ∆y = ∆z = O(δ), (1.1)

with thus O(δ−3) storage required in space per time step. On the other hand, it is entirely possible
that the computational mesh must be smaller than O(δ) to predict the O(δ) structures correctly. It
is also entirely possible that, since LES models are themselves inexact and uncertain, solutions to
an LES model contain persistent energetic structures smaller than O(δ). Thus, a good LES model
will (1) truncate scales so that microscale = O(δ), consistent with (1.1), (2) predict the correct
time averaged statistics over scales l ≥ δ (so that computational resolution is free to capture non-
universal, non-isotropic, non-fully developed features) and (3) be a high accuracy approximation to
the NSE over the large scales and capture transitional and other non-fully developed flow behavior.

To introduce the LES models we consider herein, consider first the Navier-Stokes equations in a
periodic box Ω = (0, L)3 in R3:

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 , (1.2)

subject to periodic (with zero mean) conditions, for j = 1, 2, 3,

u(x + Lej , t) = u(x, t) and
∫

Ω
φdx = 0 for φ = u, u0, f, p. (1.3)

In deriving equations for velocity averages (denoted u), many averaging operators are used; herein
we choose a differential filter, [Ger86]. Given φ(x), φ(x) is the unique L−periodic solution of

Aφ := −δ24φ + φ = φ , in Ω.

Averaging the NSE (meaning: applying A−1 to (1.2)) and noting that u · ∇u = ∇ · (uu) gives the
exact space filtered NSE for u

ut +∇ · (uu)− ν4u +∇p = f , and ∇ · u = 0.

This is not closed since uu 6= u u. Approximate de-convolution models are among the most
accurate of turbulence models, [AS01], [AS02], [SA99], [DE06], [LL06b] (see [Sag01], [John04],
[BIL06] for other models). The van Cittert de-convolution operator (constructed in section 2 and
denoted DN ) was studied by van Cittert in 1931 and its use in LES pioneered by Stolz and Adams
[AS01], [SA99]. It is an approximate or asymptotic filter inverse satisfying φ = DN (φ) + O(δ2N+2)
for smooth φ. Since DNu approximates u to accuracy O(δ2N+2) in the smooth flow regions it is
justified to consider the closure approximation:

uu ' DNuDNu + O(δ2N+2). (1.4)

The resulting models, whose solutions approximate the true flow averages, w ≈ u, q ≈ p, were
introduced by Adams and Stolz [AS01], [AS02], [SA99], and are given by

wt +∇ · (DNw DNw)− ν4w +∇q + χ (w −DNw) = f , (1.5)
∇ · w = 0, N = 0, 1, 2, · · ·.
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The time relaxation term χ (w−DNw) is included in numerical simulations of (1.5) to damp strongly
the temporal growth of the fluctuating component of w(x, t) driven by noise, numerical errors,
inexact boundary conditions and so on. It can be used as a numerical regularization in any model
and is studied in [AS02, LN07a, P06], as well.

In [LN07b] a descriptive turbulence phenomenology was used to study how well (1.5) predicts
universal features of turbulence. Herein we apply a quantitative phenomenology based upon Pao’s
energy transfer theory to the ADM (1.5). In doing so, we also develop a new shell theory of
turbulence based on the Pao transfer theory which predicts turbulent statistics correctly.

1.2 Summary of results

Beginning with the Pao transfer theory closure, we derive a Pao ADM energy transfer model in
Section 3. This energy transfer model gives naturally an approximation for the energy in DNw, which
is an approximation to the (energy in the) unfiltered velocity u. We prove in Proposition 4.1 that the
Pao-ADM transfer model has a unique solution which has exponential decay for large wave-numbers.
For the Pao-ADM, we show in Section 4.1 that the energy dissipation rate (denoted εADM and εNSE

respectively) of the underlying flow is correctly estimated as required for statistical equilibrium:
εADM = O(εNSE). The ADM microscale, where the dissipation range begins, is estimated in Section
4.1 to be

ηADM = ηNSE
.= Re−3/4L, when δ ≤ O(ηNSE) and χ = 0,

ηADM
.= Re−3/10δ3/5L, when δ>>O(ηNSE) and χ = 0,

ηADM
.= δ, with χ = O(δ−2/3).

We also show that E(k, t) converges as t →∞ to a time averaged spectrum (in Corollary 4.2) which
exhibits an inertial range behavior and a dissipation range behavior (see equation (4.2)):

E(k) =
1
2
U2k−

5
3 eβ(1+ 2

5
δ2) exp(−β(1 + 0.4δ2k2)k

4
3 ), (1.6)

where β :=
3
2

να

ε
1/3
0

, and ε0 = 2−3/2α−1U3. (1.7)

This gives (Section 4.1) that up to the wave number associated with the micro-scale k = 1/ηADM

we have
E(k) .= αε2/3k−5/3, over 1 < k < 1/ηADM .

This is very accurate for smaller wave numbers (in the resolved frequencies 0 < k < 1/δ); for larger
wave numbers, 1/δ < k < 1/ηADM , exponential decay is not dominant but begins to bend the
spectrum down, as expected.

The influence of time relaxation, the term is analyzed in Section 4.2. It is shown that a careful
choice of the relaxation parameter can accelerate the dissipation range to begin at the transition
point between resolved and unresolved scales: ηmodel = δ.

In Section 5 we give numerical results from an upwind type discretization of the ∂/∂k(·) term and the
Matlab routine RK4/5 for the time variable. Discretization of the ∂/∂k(·) term thus results in a Pao-
ADM shell model. Consistent with work on shell models we pick break points in wave number space

4



by equi-distribution of model kinetic energy and give an estimate of the computational complexity
of solving the resulting shell model using RK4/5. The resulting experiments in Section 5 fully
corroborate the predictions in Section 4.

2 Reduction of the ADM (1.5) to simpler form

For each N = 0, 1, ... the van Cittert de-convolution algorithm it computes an approximate filter
inverse uN = DNu :=

∑N
n=0(I − A−1)nu . DNu is typically computed, [BB98], by N steps of the

fixed point iteration: unew = uold+ {u−A−1uold}.

Algorithm 2.1 (van Cittert approximate de-convolution algorithm) Set u0 = u,

For n = 1, 2, · · ·, N − 1, perform: un+1 = un + {u−A−1un}.
Then DNu := uN .

The zeroth order approximate deconvolution model (1.5), [LL03], and [MK06], arises when N = 0
and χ = 0:

wt +∇ · (w w)− ν4w +∇q = f, and ∇ · w = 0. (2.1)

Applying A = −δ24+ I to (2.1) reduces it to an equivalent form with the same nonlinearity as the
NSE (which is ∇ · (w w)) with an extra hyperviscosity term (νδ242w) and an extra kinetic energy
term (−δ24wt):

(
w − δ24w

)
t
+∇ · (w w)− ν4 (

w − δ24w
)

+∇q̃ = f, and ∇ · w = 0.

Consider now the full ADM: ∇ · w = 0 and

wt +∇ · (DNw DNw)− ν4w +∇q + χ (w −DNw) = f .

Define a new filtering operator H := DNA−1 denoted by a tilde:

φ̃ = Hφ := DNφ.

Let v := DNw. Since w ' u, so v = DN (w) ' u. Applying DN reduces the full ADM to the zeroth
order model for the new velocity v with a different filter and time relaxation: ∇ · v = 0 and

vt +∇ · (ṽ v)− ν4v +∇q + χ (v −Hv) = Hf .

Adapting the simplification of the zeroth order model’s nonlinear term for the full ADM, apply H−1

to this equation, giving ∇ · v = 0, and

H−1vt +∇ · (v v)− ν4H−1v +∇q + χ (H−1v − v) = f . (2.2)

This derived equation is related to the original ADM by an invertible change of variables. It has
the same nonlinearity as the NSE and thus the Pao energy transfer theory can be applied directly
to its nonlinear term without any alteration or adaptation.
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3 Pao’s Transfer Theory applied to the ADM

Consider the transformed form of the full ADM (2.2) in a three dimensional 2π periodic box. Under
periodicity, the fluid velocity and its associated kinetic energy can be expanded in Fourier series (in
the sums k 6= (0, 0, 0)1)

v(x, t) =
∑

k

v̂(k, t)eik·x, and E(t) =
∑

k

1
2
|v̂(k, t)|2.

Transfer theory is based on a partition of the kinetic energy into wave number shells given by Fourier
series follows. Define |k|2 = k2

1 + k2
2 + k2

3 and

E(k, t) :=
∑

k=|k|

1
2
|v̂(k, t)|2, so that E(t) =

∑

1≤k

E(k, t).

In this definition of E(k, t), the index k in the sum takes non integer values (e.g., k =(1, 1, 1),
k =

√
3). This will be no difficulty since transfer theories are further approximations in which k will

(in the end) be a continuous variable. Further, E(k, t) represents the energy in v := DNw. Since
w ' u, so v = DN (w) ' u. Thus, E(k, t) is an approximation to the energy in u and not in u.

Exact but non closed equations for E(k, t) are derived in the usual way by taking the inner product
of the equations (2.2) with one Fourier mode and then summing over |k| =k, see Davidson [D04],
Frisch [F95], or Pope [P00] for details. Suppressing the dependence on N , let2 h(k) := Ĥ−1(k). This
gives (using the Kronecker delta)

h(k)
∂

∂t
E(k, t) +

∑

|j|=k

∑

k1

∑

k2

{
v̂(k1, t) · v̂(k2, t)⊗ k2 · v̂(j, t)δk1+k2,j

}
+

+2νk2h(k)E(k, t) + χ (h(k)− 1)E(k, t) =
∑

|j|=k

f̂(j, t) · v̂(j, t).

Define T (k, t) and the energy transfer function S(k, t):

T (k, t) : =
∑

|j|=k

∑

k1

∑

k2

{
v̂(k1, t) · v̂(k2, t)⊗ k2 · v̂(j, t)δk1+k2,j

}

S(k, t) : =
∑

1≤k′≤k

T (k′, t).

The case of fully developed, homogeneous, isotropic turbulence corresponds to (i) smooth, persistent
body forces, (ii) time averaged behavior of E(k, t), and (iii) high Reynolds number with a richness
of persistent scales of motion. Exploiting (iii), k is treated as a continuous variable; following (ii),
we study time averages of E(k, t) given by

E(k) := lim
T→∞

1
T

∫ T

0
E(k, t)dt . (3.1)

1Further, since ∇ · u = 0 and u is real, k·û(k,t) =0 and û(k,t) =û(−k,t) .
2For example, when N = 0, h(k) = ̂(D0A−1)(k) = ̂(

I (−δ24+ I)−1)(k) =
(
δ2 k2 + 1

)−1
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and, motivated by (i), energy is input into the k = 1 modes: E(1, t) = 1
2U2, for all t > 0, where U is fixed.

To extend k to a continuous variable, sums are replaced by integrals in the usual way. Thus the
energy transfer function S(k, t) and the energy E(k, t) satisfy, for fixed U > 0,

S(k, t) = −
∫ k

0
T (k′, t)dk′ or S(k, t) =

∫ ∞

k
T (k′, t)dk′ (3.2)

T (k, t) =
∂

∂k
S(k, t), and E(1, t) =

1
2
U2, for all t > 0. (3.3)

Remark 3.1 Because of the change of variables in Section 2, the terms E(k, t), T (k, t) and S(k, t)
are defined exactly as for the Navier-Stokes equations. This means the correct extension of Pao’s
transport theory to the ADM (after the change of variables) is exactly the same closure in wave-
number space as Pao used for the NSE.

With these approximations we have the following (non-closed) energy equation:

h(k)
∂

∂t
E(k, t) +

∂

∂k
S(k, t) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E(k, t) = 0,

subject to E(1, t) = 1/2U2 , for t > 0, and E(k, 0) = E0(k) where E0(k) ≡ 0 for large k. A transfer
theory is simply a closure which relates S(k, t) back to E(k, t) either through an algebraic relation
(simplest) or an extra set of integro-differential equations, [D04]. The goal of transfer theory is to
develop a closed system of differential equations for E(k, t) which is of much reduced complexity
than the NSE in wave number space and predicts statistics of fully developed turbulence correctly.
Energy transfer theories arose from the early work of Obukhov, Heisenberg, Onsager and others,
see, e.g., [P71], [D04], [SC08]. The simplest and (so far) most successful is Pao [Pao65], which
generalizes Onsager’s spectral jump condition, [O45], in a simple and effective manner, postulating
the algebraic relation S(k, t) = σE(k, t), σ(ε, k) = proportionality constant.Equating units gives
σ = α−1ε

1/3
0 k5/3 and the unique closure

S(k, t) = α−1ε
1/3
0 k5/3E(k, t), where ε0 = 2−3/2α−1U3. (3.4)

Here α is the Kolmogorov constant (with value between 1.4 and 1.6) and ε0 is the Pao model’s
energy dissipation rate. In justification, Y.-H. Pao writes (page 1067 in [Pao65]):

”We visualize the transfer of turbulent energy as a cascading process in which the
spectral elements are continuously transferred to even larger wave numbers.... Let the rate
at which an energy spectral element is transferred across k be σ ... then the energy flux
across k is S(k) = E(k)σ(k). We assert that the spectral element σ(k) is dependent on
ε ... and on the wave number k .... Dimensional reasoning gives σ(k) = α−1ε1/3k5/3.”

We study the long time averaged behavior of solutions to the following hyperbolic, initial boundary
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value problem with time relaxation damping:

h(k)
∂

∂t
E(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3E(k, t)) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E(k, t) = 0,

for 1 < k < ∞, t > 0, (3.5)

E(1, t) =
1
2
U2, for t > 0, and ε0 = 2−3/2α−1U3,

E(k, 0) = E0(k) for 1 < k < ∞ where E0(k) ≡ 0 for large k.

The characteristics of (3.5) are non-intersecting and positive sloped curves given by

h(k)dt− 5
3
α−1ε

1/3
0 k5/3dk = 0.

The problem (3.5) reduces to a linear ordinary differential equation along each characteristic. From
this existence and uniqueness follows immediately from standard theory of hyperbolic equations,
[Whi74].

Proposition 3.2 Let E0(k) ≡ 0 for large k. A unique solution exists to problem (3.5). For each
fixed t > 0 the solution E(k, t) has compact support in k.

The energy input defines a clear representative large scale velocity U . The natural large length scale
is L = 2π. Thus, the natural Reynolds number associated with the Pao energy transfer model is

Re =
|nonlinearity|
|viscous term| =

U 1
2πU

ν
(
1 +

(
δ
2π

)2
)

1
(2π)2

U

.= 2π
U

ν
since δ is small.

The long time averaged energy distribution is defined to be

E(k) = lim
T→∞

1
T

∫ T

0
E(k, t)dt.

This limit exists (Corollary 4.2 below). Its value is determined by the properties of the equilibrium
problem associated with (3.5), given by E∞(1) = 1

2U2 and

∂

∂k
(α−1ε

1/3
0 k5/3E∞(k)) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E∞(k) = 0. (3.6)

The equilibrium Pao-ADM is easily seen to have a unique solution. It has exponential decay for
large k and, (when N = 0, χ = 0) is given by

E∞(k) =
1
2
U2k−

5
3 eβ(1+0.4δ2) exp(−β(1 + 0.4δ2k2)k

4
3 ), where β :=

3
2

να

ε
1/3
0

.

4 Analysis of Pao’s Transfer Theory for ADMs

The goal of energy transfer theory is to develop a single and consistent phenomenology that explains
the K41 theory as well as giving insight into the transition between k−5/3 in the inertial range and
exponential decay in the dissipation range, including:
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- statistical equilibrium: energy input at large scales balanced by energy dissipation at small scales.

- k−5/3 energy spectrum through the inertial range transitioning to exponential decay in the dissi-
pation range.

- an estimate of the microscale between inertial and dissipation ranges.

First we analyze the predictions of these features for the ADM transfer model without time relaxation
(i.e. χ = 0 case) and, following this, the effect of time relaxation.

Proposition 4.1 Let χ ≥ 0 and let E(k, t), E∞(k) denote respectively the solutions to (3.5) and
(3.6). Then E(k, t) → E∞(k) exponentially fast in L2(1,∞) as t →∞, (even in the case ν = χ = 0).

Proof. We give the proof in the notationally simplest N = 0 case. The proof for N > 0 is the same
only notationally more complex. Let e(x, t) = E(k, t)−E∞(k). Since E(k, t) has compact support,
e(k, t) decreases exponentially in k (and thus all integrals below are convergent). Subtraction gives
the following equation for e(k, t) : e(1, t) = 0, for t > 0, and e(k, 0) given and

(1 + δ2k2)
∂

∂t
e(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3e(k, t)) +

(
2ν(1 + δ2k2)k2 + χδ2k2

)
e(k, t) = 0.

Multiply by e(k, t) and integrate. This yields

d

dt

∫ ∞

1

1
2
(1 + δ2k2)e(k, t)2dk+

+
∫ ∞

1

[
5
6
α−1ε

1/3
0 k5/3 + 2ν(1 + δ2k2)k2 + χδ2k2

]
e(k, t)2dk = 0.

The term in brackets is bounded below by 5/6α−1ε
1/3
0 , a positive constant, even if ν = χ = 0. Thus,

we have exponential convergence to steady state.

Thus, E(k, t) approaches the unique solution of the equilibrium problem as t →∞, E∞(k) = E(k)
given by

E(k) =
1
2
U2k−

5
3 eβ(1+0.4δ2) exp(−β(1 + 0.4δ2k2)k

4
3 ), where β :=

3
2

να

ε
1/3
0

. (4.1)

The fact that exponential convergence to a k−5/3 energy spectrum occurs even for the ν = χ =
0 ADM energy transfer model is perhaps relevant to the Onsager conjecture that ”... in three
dimensions a mechanism for complete dissipation of all kinetic energy, even without the aid of
viscosity, is available,”( L. Onsager, 1949). From the last proposition and following arguments in
[JLM07], it follows that time averages on E(k, t) exist and correspond to the equilibrium solution.

Corollary 4.2 Let E(k, t), E∞(k) denote respectively the solutions to (3.5) and (3.6). The follow-
ing limit exists and equals:

E(k) := lim
T→∞

1
T

∫ T

0
E(k, t)dt = E∞(k).
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Thus, we may check predictions of the Pao transfer theory through (4.1). The formula for the
equilibrium solution reveals that there are two wave number regimes: resolved scales and unresolved
scales.

Inertial Range: If β(1 + 0.4δ2k2)k
4
3 << 1, then E(k) .= 1

2U2k−
5
3 . Over the subrange of resolved

scales (1 ≤ k ≤ 1/δ) where (1 + 0.4δ2k2) ' 1, E(k) replicates the NSE’s Pao spectrum

E(k) .=
1
2
U2k−

5
3 eβ exp(−βk

4
3 ) for k < 1/δ. (4.2)

Dissipation Range:If β(1 + 0.4δ2k2)k
4
3 ≥ 1, the solution exhibits accelerated energy decay

E(k) .=
1
2
U2k−

5
3 eC(δ)β exp(−βδ2k

10
3 ). (4.3)

4.1 Consistency with the K41 Theory

We now turn to consistency of the predictions with Kolmogorov’s theory of homogeneous, isotropic
turbulence checking predictions of statistical equilibrium, the inertial energy range spectrum, ex-
ponential decay in the dissipation range and the predicted micro-scale. With ε0 = 2−3/2α−1U3,
consider the Pao ADM’s energy spectrum given by (4.1).

Statistical equilibrium. Statistical equilibrium in the K41 theory means that the energy input
to the large scales (which is O(U3/L)) is balanced (after time averaging) by energy dissipation
primarily at the small scales. When χ = 0 the time averaged energy dissipation rate of (3.5) is given
by

εADM := lim
T→∞

1
T

∫ T

0

∫ ∞

1
2ν(1 + δ2k2)k2E(k, t)dkdt

We calculate directly that as δ → 0, εADM → ε0 which is exactly the time averaged energy dissipation
rate predicted for the NSE by the Pao model. Indeed,

εADM := lim
T→∞

1
T

∫ T

0

∫ ∞

1
2ν(1 + δ2k2)k2E(k, t)dkdt

=
∫ ∞

1
2ν(1 + δ2k2)k2E∞(k)dk

= νU2eβ(1+0.4δ2)

∫ ∞

1
(1 + δ2k2)k

1
3 exp(−β(1 + 0.4δ2k2)k

4
3 )dk

→ νU2eβ

∫ ∞

1
k

1
3 exp(−βk

4
3 )dk = ε0

Surprisingly, the relation εADM = Const.ε0 holds exactly, not just asymptotically. Indeed, integrat-
ing (3.5) and time averaging gives

lim
T→∞

1
T

∫ T

0

∫ ∞

1
(1 + δ2k2)Et(k, t)+

+(α−1ε
1/3
0 k5/3E(k, t))k + 2ν(1 + δ2k2)k2E(k, t)dkdt = 0.
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Using Fubini’s theorem, the first term vanishes and the time average of the third term is exactly
εADM . We then have from the second term, that E∞(k) → 0 as k →∞, the boundary condition at
k = 1 and the third term α−1ε

1/3
0

1
2U2 = εADM . The Pao model for the NSE predicts that ε0 = CU3

(since L = 2π). Thus, in the last equation U2 =
(
U3

)2/3 = Cε
2/3
0 and, as required for statistical

equilibrium, εADM = Cε0.

The inertial range energy spectrum. Since E(k, t) is bounded, and Re = 2πU/ν is large, there
is a range of k ( 1 < k < 1/ηADM , say) for which the term 2ν(1 + δ2k2)k2E(k, t) is negligible. On
this range, (3.5) simplifies to

(1 + δ2k2)Et(k, t) + (α−1ε
1/3
0 k5/3E(k, t))k

.= 0.

Integrating over 1 < k′ < k (< 1/ηADM ), time averaging and using Fubini’s theorem, the term
(1 + δ2k2)Et(k, t) drops out and we have

∫ k

1
(α−1ε

1/3
0 k′5/3E(k′))k′dk′ .= 0, or α−1ε

1/3
0 k5/3E(k) .= α−1ε

1/3
0

1
2
U2.

From the choice of ε0, 1
2U2 = αε

2/3
0 . Thus, rearranging

E(k) .= αε2/3k−5/3, over 1 < k < 1/ηADM .

The dissipation range. The K41 theory predicts exponential decay in E(k) for large k and gives an
estimate of the microscale at which this decay begins to be the dominant effect. Exponential decay
of E(k) follows immediately for k large enough that exponent β(1+ 2

5δ2k2)k
4
3 is O(1) or larger from

(4.1). The transition point / microscale is calculable since β := 3να/(2ε1/3), and ε = 2−3/2α−1U3.
Indeed, the exponent β(1 + 2

5δ2k2)k
4
3 is O(1) or larger when

νU−1(1 +
2
5
δ2k2)k4/3 = O(1).

This equation determines the Pao-ADM transition model’s microscale. There are two cases depend-
ing on which term, 1 or 2

5δ2k2, is dominant.

Case 1: If the averaging radius δ is O(ηNSE) or smaller, where ηNSE
.= Re−3/4L is the

Kolmogorov microscale of the NSE. This is the case of a fully resolved flow and is of less
interest than case 2. Case 1 corresponds to δ2k2 ¿ O(1), so that (1 + 2/5δ2k2) ' 1. The condition
νU−1(1 + 2

5δ2k2)k4/3 = O(1) becomes νU−1k4/3 = O(1). This implies (after rearrangement) k
.=

(U/ν)3/4 .= Re3/4/L , as L = 2π yielding the predicted models’s microscale of

ηADM = ηNSE
.= Re−3/4L, when δ ≤ O(ηNSE).

Case 2: If δ>>O(ηNSE). This is the typical case of under-resolved flow. Case 2 corresponds
to δ2k2 >> O(1), so that (1 + 2/5δ2k2) ' 2/5δ2k2. The condition νU−1(1 + 2

5δ2k2)k4/3 = O(1)

becomes νU−1δ2k10/3 = O(1). This implies (after rearrangement) k
.=

(
νU−1δ2

)−3/10 yielding the
models’s micro-scale of

ηADM
.= Re−3/10δ3/5L, when δ>>O(ηNSE)

which agrees with the result derived using direct application of turbulence phenomenology to the
ADM in [LN07b].
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4.2 Influence of time relaxation

Since time relaxation, the case χ > 0, dissipates energy in all cases, its main issue is the choice of
the (user supplied) parameter χ. We pick χ to enforce ηADM = δ. For deconvolution order N = 0
and χ > 0 the equilibrium energy distribution satisfies

∂

∂k
(α−1ε

1/3
0 k5/3E(k)) + 2νk2

(
1 +

χδ2

2ν
+ δ2k2

)
E(k) = 0 , E(1) =

1
2
U2 (4.4)

With β := 3να/(2ε1/3), and ε = 2−3/2α−1U3, we find

E(k) = αε2/3k−
5
3 eβ(1+ 2

5
+δ2 χδ2

2ν
) exp(−β(1 +

2
5
δ2k2 +

χδ2

2ν
)k

4
3 ).

Thus, increasing χ increases the multiplier in the exponent from (1 + 2
5δ2k2) to (1 + 2

5δ2k2 + χδ2

2ν ).
This increases energy decay in the dissipation range and the model microscale where exponential
decay begins to be significant.

Set the microscale ηADM = δ and solve for the induced χ value. Exponential decay becomes
significant where β(1 + 2

5δ2k2 + χδ2

2ν )k
4
3 = O(1). If ηADM = δ then δ2k2 = 1 and this reduces to

β(7/5 + χδ2/(2ν))δ−
4
3

.= 1. Solving for χ recovers the formula of [LN07a]:

χ =
(

4
3
ε1/3α−1

)
δ−2/3 −

(
7π

5
U

)
Re−1δ−2. (4.5)

Calculating the crossover point in the two terms on the RHS we find that χ > 0 provided δ
L >

Re−3/4 = ηNSE , which is exactly as desired: the extra dissipation induced by time relaxation under
the formula (4.5) decreases to zero as the LES approaches a DNS.

5 Numerical Tests of the Pao-ADM Shell Model

Shell models are low dimensional dynamical systems descriptions of the time evolution of the energy
in wave number shells in turbulent flows, e.g., [D10], [BJPV98]. When the wave number in (3.5)
is discretized a shell model results. The energy in the mth wave number shell is denoted herein by
Em(t) (and often elsewhere by um(t)). Given wave number levels km and associated energy shell
levels Em(t),m = 1, 2, ..., M,upwind difference the ∂/∂k term in (3.5). This gives the following
Pao-ADM shell model: E1(t) = 1

2U2 and for m = 2, · · ·,M,

(1 + δ2k2
m)

∂

∂t
Em(t) + α−1ε

1/3
0

(
k

5/3
m Em(t)− k

5/3
m−1Em−1(t)

km − km−1

)
+ (5.1)

+2ν(1 + δ2k2
m)k2

mEm(t) = 0.

5.1 Choice of shell levels by equi-distribution of energy

The energy spectrum of the transformed ADM solution v (which approximates u not u) is approx-
imately αε

2/3
0 k−5/3 over 1 ≤ k ≤ 1/ηADM . Thus the energy spectrum of untransformed ADM

12



solution w is approximately αε
2/3
0 k−5/3. We have selected energy levels by equi-distribution of the

untransformed energy distribution. The total kinetic energy (up to exponentially small terms) is

TotalEnergy :=
∫ 1/ηADM

1
E(k)dk

.=
∫ 1/ηADM

1
αε

2/3
0 k−5/3dk =

3
2
αε

2/3
0 (1− η

2/3
model).

The M shell levels km,m = 1, · · ·,M, are chosen to equi-distribute the TotalEnergy by

k1 = 1, (5.2)

k
−2/3
m+1 = k−2/3

m − 2 · TotalEnergy

3M
, for 1 ≤ km ≤ 1/ηADM ,

kM = 1/ηmodel.

5.2 Complexity of the RK4/5 Algorithm

The shell model (5.1) was solved using Matlab’s RK4/5 routine (whose complexity is estimated
next) until statistical equilibrium (in all cases by Tfinal = 30). With timestep 4t, the resulting
complexity is roughly

Complexity = M × (#FLOPs/eqn)× (Tfinal/4t)

RK4/5 requires about 20 floating point operations to evaluate the nonlinearity in (5.1) per stage
per equation. Computing the Em(tn+1) after 4 stages requires eight additional operations, yielding

Complexity
.= 88M

Tfinal

∆t
(5.3)

Since the shell model is a discretized hyperbolic equation, we halved the time step 4t until the
usual CFL condition (below) is satisfied

max
m=1,···,M

α−1ε
1/3
0 k

5/3
m

(1 + δ2k2
m)

∆t

km − km−1
< 1.

By the stopping process of halving 4t upon satisfaction of the CFL condition, we also enforced a
lower bound and thus the following two sided bounds

αε
−1/3
0

2
min

m=1,···,M
k−5/3

m (1 + δ2k2
m)(km − km−1) < ∆t, and (5.4)

∆t < αε
−1/3
0 min

m=1,···,M
k−5/3

m (1 + δ2k2
m)(km − km−1).

Lemma 5.1 With km and ∆t chosen as above, we have

k−5/3
m (km+1 − km) >

TotalEnergy

U2M
, for m = 1, 2, · · ·,M, (5.5)

∆t >

√
2

4
α4/3 TotalEnergy(1 + δ2)

U3M
. (5.6)
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Proof. The mean value theorem on [km, km+1] with g(k) = k−2/3 gives, for ξ ∈ (km, km+1),

(−2
3
ξ−5/3) · (km+1 − km) = −2

3
TotalEnergy

U2M
,

Since ξ 7→ ξ−5/3 is decreasing, this yields the claimed result:

km+1 − km =
TotalEnergy · ξ5/3

U2M
≥ TotalEnergy · k5/3

m

U2M
.

Consider now the lower bound upon 4t in (5.4). From the first bound in the lemma,

k−5/3
m (1 + δ2k2

m) (km+1 − km) >
TotalEnergy

(
1 + δ2k2

m

)

U2M
.

Thus, since 1 + δ2k2
m ≥ 1 + δ2 and k

−5/3
m (km+1 − km) > TotalEnergy/U2M , we have

∆t >
αε

−1/3
0 TotalEnergy(1 + δ2)

2U2M
.

Using ε0 = 2−3/2α−1U3, we conclude

∆t >

√
2

4
α4/3 TotalEnergy(1 + δ2)

U3M
.

Using this lower bound on ∆t in (5.3) and the other estimates for the various terms and simplifying
yields the following.

Proposition 5.2 (Complexity of Solving the Pao Shell Model) Under the time step condi-
tion (5.4) solving (5.1) with RK4/5 requires complexity (measured in floating point operations) of
the order

Complexity ≤ 352
√

2
3

α−2/3UM2Tfinal.

5.3 Results

The Pao-ADM shell model displayed the behavior of the time averaged solutions to (5.1) for the
number M of shell levels moderate. The computed energy distribution agreed with predictions
over the full range 1 ≤ k ≤ 1/ηmodel. Indeed, Figure 1 shows a clear k−5/3 energy spectrum
over 1 ≤ k ≤ 1/δ (and a bit beyond even). Over 1/δ << k ≤ 1/ηmodel there is a smooth and
gradual transition to exponential decay. We see no evidence of a secondary k−11/3 decay over
1/δ ≤ k ≤ 1/ηmodel in E(k). (Compare the dotted curve against the line segments depicting both
slopes.) Since the energy in w is related to that computed, E(k), by

Energy(w) ' E(k)/(1 + δ2k2)

a k−5/3 spectrum in E(k) is clear evidence of a secondary k−11/3 decay over 1/δ ≤ k ≤ 1/ηmodel in the
energy in w, as predicted in [LN07b]. Since the question can arise if the observed energy spectrum
was somehow built in by the selected equi-distribution principle, we also repeated this calculation
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but selecting kn instead by equi-distribution of E(k)/(1 + δ2k2). The spectrums computed for E(k)
(not plotted herein) with different shell levels did not change.

Figure 1 gives a logarithmic plot of the time average of En(t) in a model simulation with over
M = 200 wave numbers with δ = 0.7 chosen to have 100 shells in each range, 1 ≤ k ≤ 1/δ and
1/δ ≤ k ≤ 1/ηmodel.

Correct predictions depended upon having a large enough number of shell levels. A test with almost
identical initial conditions, δ = 0.6 and of only M = 30 shells fails to produce the dissipation range,
Figure 2.

6 Conclusions

The Pao energy transfer model is the simplest and the most successful transfer theory in that it
predicts the major statistics of isotropic turbulence successfully. The Pao energy transfer analysis
of ADMs recovers the correct k−5/3 energy spectrum and the increase of the ADM micro-scale.
Transfer theory also gives a formula for relaxation parameter selection induced by perfect resolution
agreeing with one derived through similarity. Thus, transfer theory indicates strongly that ADMs
capture essential, universal features of turbulence accurately and without special adjustments.

Energy transfer models other than the Pao model generally fail to predict turbulence statistics
correctly. On the other hand, the Pao model can be criticized for being too successful: as t increases
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Figure 2:
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E(k, t) converges smoothly and rapidly to the correct statistical energy distribution. For example,
the Pao theory predicts that the ADM energy spectrum E(k, t) approaches its time averaged value
exponentially fast. Thus the Pao model does not capture time dependent behavior, such as energy
bottlenecks and intermittence, of turbulence. One major open question in the Pao theory is thus
how to extend Pao based energy transfer models and derived shell models so as to capture effects
reminiscent of intermittence.
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