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Abstract. We consider the family of approximate deconvolution models (ADM) for the sim-
ulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows. We
prove existence and uniqueness of solutions, we prove that the solutions to the ADM-MHD equa-
tions converge to the solution of the MHD equations in a weak sense as the averaging radii converge
to zero, and we derive a bound on the modeling error. We prove that the energy and helicity of
the models are conserved, and the models preserve the Alfvén waves. We provide the results of the
computational tests, that verify the accuracy and physical fidelity of the models.
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1. Introduction.
Magnetically conducting fluids arise in important applications including climate

change forecasting, plasma confinement, controlled thermonuclear fusion, liquid-metal
cooling of nuclear reactors, electromagnetic casting of metals, MHD sea water propul-
sion. In many of these, turbulent MHD (magnetohydrodynamics [2]) flows are typical.
The difficulties of accurately modeling and simulating turbulent flows are magnified
many times over in the MHD case. They are evinced by the more complex dynam-
ics of the flow due to the coupling of Navier-Stokes and Maxwell equations via the
Lorentz force and Ohm’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, in-
duced by the interaction of electric currents and magnetic fields in the fluid. The
Lorentz forces can be used to control the flow and to attain specific engineering
design goals such as flow stabilization, suppression or delay of flow separation, re-
duction of near-wall turbulence and skin friction, drag reduction and thrust gener-
ation. There is a large body of literature dedicated to both experimental and the-
oretical investigations on the influence of electromagnetic force on flows (see e.g.,
[16, 24, 25, 14, 15, 36, 10, 37, 17, 33, 4, 11]). The MHD effects arising from the
macroscopic interaction of liquid metals with applied currents and magnetic fields
are exploited in metallurgical processes to control the flow of metallic melts: the
electromagnetic stirring of molten metals [26], electromagnetic turbulence control in
induction furnaces [38], electromagnetic damping of buoyancy-driven flow during so-
lidification [28], and the electromagnetic shaping of ingots in continuous casting [30].

Direct numerical simulation of a 3d turbulent flow is often not computationally
economical or even feasible. On the other hand, the largest structures in the flow
(containing most of the flow’s energy) are responsible for much of the mixing and most
of the flow’s momentum transport. This led to various numerical regularizations; one
of these is Large Eddy Simulation (LES) [29], [18], [5]. It is based on the idea that
the flow can be represented by a collection of scales with different sizes, and instead
of trying to approximate all of them down to the smallest one, one defines a filter
width δ > 0 and computes only the scales of size bigger than δ (large scales), while
the effect of the small scales on the large scales is modeled. This reduces the number
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of degrees of freedom in a simulation and represents accurately the large structures
in the flow.

In [20] we considered the problem of modeling the motion of large structures in
a viscous, incompressible, electrically conducting, turbulent fluid. We introduced a
simple closed LES model, and performed full numerical analysis. This model can be
also addressed as zeroth order Approximate Deconvolution Model - referring to the
family of models in [1]. In this report we consider the family of the Approximate
Deconvolution Models for MagnetoHydroDynamics (ADM for MHD); we perform the
numerical analysis of the models and also verify their physical fidelity.

The mathematical description of the problem proceeds as follows. Assuming the
fluid to be viscous and incompressible, the governing equations are the Navier- Stokes
and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g.
[32]). Let Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity,
pressure, and the magnetic field of the flow, driven by the velocity body force f and
magnetic field force curl g. Then u, p,B satisfy the MHD equations:

ut +∇ · (uu)− 1

Re
∆u+

S

2
∇(B2)− S∇ · (BB) +∇p = f,

Bt +
1

Rem
curl(curlB) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x+ Lei) = Φ(t, x), i = 1, 2, 3,

∫
Ω

Φ(t, x)dx = 0, (1.3)

for Φ = u, u0, p, B,B0, f, g.
Here Re, Rem, and S are nondimensional constants that characterize the flow:

the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively. For derivation of (1.1), physical interpretation and mathematical analysis,
see [6, 21, 31, 13] and the references therein.

The necessity of choosing different filtering widths has been justified computation-
ally for coupled Navier-Stokes problems in [27]. If aδ1 , aδ2 denote two local, spacing
averaging operators that commute with the differentiation, then averaging (1.1) gives

the following non-closed equations for uδ1 , B
δ2
, pδ1 in (0, T )× Ω:

uδ1
t +∇ · (uuδ1)− 1

Re
∆uδ1 − S∇ · (BB

δ1
) +∇

(S
2
B2

δ1
+ pδ1

)
= f

δ1
,

B
δ2
t +

1

Rem
curl(curlB

δ2
) +∇ · (Bu

δ2
)−∇ · (uBδ2

) = curl gδ2 ,

∇ · uδ1 = 0, ∇ ·Bδ2
= 0.

(1.4)

The usual closure problem which we study here arises because uuδ1 ̸= uδ1 uδ1 , BB
δ1 ̸=

B
δ1
B

δ1
, uB

δ2 ̸= uδ1 B
δ2
. To isolate the turbulence closure problem from the difficult

problem of wall laws for near wall turbulence, we study (1.1) hence (1.4) subject to
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(1.3). The closure problem is to replace the tensors uuδ1 , BB
δ1
, uB

δ2
with tensors

T (uδ1 , uδ1), T (B
δ2
, B

δ2
), T (uδ1 , B

δ2
), respectively, depending only on uδ1 , B

δ2
and

not u,B. There are many closure models proposed in large eddy simulation reflect-
ing the centrality of closure in turbulence simulation. Calling w, q,W the resulting

approximations to uδ1 , pδ1 , B
δ2
, we are led to considering the following model

wt +∇ · T (w,w)− 1

Re
∆w − ST (W,W ) +∇q = f

δ1

Wt +
1

Rem
curl(curlW ) +∇ · T (w,W )−∇ · T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

With any reasonable averaging operator, the true averages uδ1 , B
δ2
, pδ1 are smoother

than u,B, p. We consider the family of closure models, pioneered by Stolz and Adams
[1]. These Approximate Deconvolution Models (ADM) use the deconvolution opera-
tors G1

N and G2
N , that will be defined in Section 2. The ADM for the MHD reads

wt +∇ · (G1
Nw)(G1

Nw)
δ1 − 1

Re
∆w − S∇ · (G2

NW ) (G2
NW )

δ1
+∇q = f

δ1
, (1.5a)

Wt +
1

Rem
curl(curlW ) +∇ · ((G2

NW )(G1
Nw)

δ2
)−∇ · ((G1

Nw)(G2
NW )

δ2
) (1.5b)

= curl gδ2 ,

∇ · w = 0, ∇ ·W = 0, (1.5c)

subject to w(0, x) = uδ1
0 (x),W (0, x) = B

δ2
0 (x) and periodic boundary conditions (with

zero means).
We shall show that the ADM MHD model (1.5) has the mathematical properties

expected of a model derived from the MHD equations by an averaging operation and
which are important for practical computations. Note that N = 0 in (1.5) leads to
the model discussed in [20, 19].

The model considered can be developed for quite general averaging operators, see
e.g. [1]. The choice of averaging operator in (1.5) is a differential filter, defined as fol-
lows. Let the δ > 0 denote the averaging radius, related to the finest computationally
feasible mesh. (In this report we use different lengthscales for the Navier-Stokes and

Maxwell equations). Given ϕ ∈ L2
0(Ω), ϕ

δ ∈ H2(Ω) ∩ L2
0(Ω) is the unique solution of

Aδϕ
δ
:= −δ2∆ϕ

δ
+ ϕ

δ
= ϕ in Ω, (1.6)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation, and with this averaging operator,
the model (1.5) has consistency O(δ2N+2), i.e.,

uuδ1 = G1
Nuδ1 G1

Nuδ1
δ1

+O(δ1
2N+2),

BB
δ1

= G2
NB

δ2
G2

NB
δ2

δ1

+O(δ2
2N+2),

uB
δ2

= G1
Nuδ1 G2

NB
δ2

δ2

+O(δ1
2N+2 + δ2

2N+2),
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for smooth u,B. We prove that the model (1.5) has a unique, strong solution w,W
that converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 2 we address the global existence and uniqueness of the solution for
the closed MHD model. Section 3 treats the questions of limit consistency of the
model and verifiability. The conservation of the kinetic energy and helicity for the
approximate deconvolution model is presented in Section 4. Section 5 shows that the
model preserves the Alfén waves, with the velocity tending to the velocity of Alfvén
waves in the MHD, as the radii δ1, δ2 tend to zero. The computational results in
Section 6 confirm the accuracy and the physical fidelity of the models.

2. Existence and uniqueness for the ADM MHD equations. Introduce
the family of the approximate deconvolution operators G1

N , G2
N , that are used in the

ADM models (1.5).
Definition 2.1 (Approximate Deconvolution Operator). For a fixed finite N ,

define the N th approximate deconvolution operators G1
N and G2

N by

Gi
Nϕ =

N∑
n=0

(I −A−1
δi

)nϕ, for i = 1, 2.

Note that since the differential filter Aδi is self adjoint, Gi
N is also. Gi

N was shown
to be an O(δ2N+2

i ) approximate inverse to the filter operator A−1
δi

(see [8]). Finally,

it is easy to show that since Aδi commutes with differentiation, so does Gi
N .

Lemma 2.2. The operator Gi
N is compact, positive, and is an asymptotic inverse

to the filter A−1
δi

, i.e., for very smooth ϕ and as δi → 0 satisfies

ϕ = G1
Nϕ

δ1
+ (−1)N+1δ2N+2

1 ∆N+1A
−(N+1)
δ1

ϕ,

ϕ = G2
Nϕ

δ2
+ (−1)N+1δ2N+2

2 ∆N+1A
−(N+1)
δ2

ϕ.
(2.1)

The proof of Lemma 2.2 can be found in [8].
Lemma 2.3. ∥ · ∥Gi

N
defined by ∥v∥Gi

N
= (v,Gi

Nv) is a norm on Ω, equivalent to

the L2(Ω) norm, and (·, ·)Gi
N

defined by (v, w)Gi
N
= (v,Gi

Nw) is an inner product on
Ω.

For the proof see [5].
We shall use the standard notations for function spaces in the space periodic

case (see [35]). Let Hm
p (Ω) denote the space of functions (and their vector valued

counterparts also) that are locally in Hm(R3), are periodic of period L and have zero
mean, i.e. satisfy (1.3). We recall the solenoidal spaces

H = {ϕ ∈ H0
2 (Ω),∇ · ϕ = 0 in D(Ω)′}2,

V = {ϕ ∈ H1
2 (Ω),∇ · ϕ = 0 in D(Ω)′}2.

We define the operator A ∈ L (V, V ′) by setting

⟨A (w1,W1), (w2,W2)⟩ =
∫
Ω

(
1

Re
∇w1 · ∇w2 +

1

Rem
curlW1curlW2

)
dx, (2.2)

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the
domain D(A ) = {(w,W ) ∈ V ; (∆w,∆W ) ∈ H} and we denote again by A its
restriction to H.
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We define also a continuous tri-linear form B0 on V ×V ×V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =

∫
Ω

(
∇ · (G1

Nw2)(G1
Nw1)

δ1
w3 (2.3)

−S∇·(G2
NW2)(G2

NW1)
δ1
w3+∇·(G2

NW2)(G1
Nw1)

δ2
W3−∇·(G1

Nw2)(G2
NW1)

δ2
W3dx

and a continuous bilinear operator B(·) : V → V with

⟨B(w1,W1), (w2,W2)⟩ = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .
The following properties of the trilinear form B0 hold (see [23, 31, 12, 9])

B0((w1,W1), (w2,W2), (Aδ1G
1
Nw2, SAδ2G

2
NW2)) = 0,

B0((w1,W1), (w2,W2), (Aδ1G
1
Nw3, SAδ2G

2
NW3))

= −B0((w1,W1), (w3,W3), (Aδ1G
1
Nw2, SAδ2G

2
NW2)),

(2.4)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2,W2), (w3,W3))| (2.5)

≤ C∥(G1
Nw1, G

2
NW1)∥m1∥(G1

Nw2, G
2
NW2)∥m2+1∥(w3

δ1 ,W3
δ2
)∥m3

for all (w1,W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3,W3) ∈ Hm3(Ω) and

m1 +m2 +m3 ≥ d

2
, if mi ̸=

d

2
for all i = 1, . . . , d,

m1 +m2 +m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V,H,A ,B(·) we can rewrite (1.5) as

d

dt
(w,W ) + A (w,W )(t) + B((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (uδ1
0 , B

δ2
0 ),

(2.6)

where (f , curl g) = P (f, curl g), and P : L2(Ω) → H is the Hodge projection.

Theorem 2.4. For any (u0
δ1 , B0

δ2
) ∈ V and (f

δ1
, curl gδ2) ∈ L2(0, T ;H) there

exists a unique strong solution to (1.5) (w,W ) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω))
and wt,Wt ∈ L2((0, T )× Ω). Moreover, the following energy equality holds:

E (t) +

∫ t

0

ε(τ)dτ = E (0) +

∫ t

0

P(τ)dτ, t ∈ [0, T ], (2.7)

where

E (t)=
δ1

2

2
∥∇w(t, ·)∥2G1

N
+

1

2
∥w(t, ·)∥2G1

N
+

δ2
2S

2
∥∇W (t, ·)∥2G2

N
+

S

2
∥W (t, ·)∥2G2

N
,

ε(t)=
δ1

2

Re
∥∆w(t, ·)∥2G1

N
+

1

Re
∥∇w(t, ·)∥2G1

N
+
δ2

2S

Rem
∥∆W (t, ·)∥2G2

N
+

S

Rem
∥∇W (t, ·)∥2G2

N
,

(2.8)

P(t)=(f(t), G1
Nw(t)) + S(curl g(t), G2

NW (t)).
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Proof. (Sketch) The proof follows from [20], using a semigroup approach and
the machinery of nonlinear differential equations of accretive type in Banach spaces.
The key to the model, as in MHD, is to make the nonlinear terms to vanish by an
appropriate choice of test function. We observe that by (2.4)

B0((w,W ), (w,W ), (Aδ1G
1
Nw, SAδ2G

2
NW )) = 0,

thus taking the inner product of (2.6) with (Aδ1G
1
Nw,SAδ2G

2
NW ) and integrating by

parts we get

1

2

d

dt

(
∥w∥2G1

N
+ δ21∥∇w∥2G1

N
+ S∥W∥2G2

N
+ δ22S∥∇W∥2G2

N

)
+

1

Re

(
∥∇w∥2G1

N
+ δ21∥∆w∥2G1

N

)
+

S

Rem

(
∥∇W∥2G2

N
+ δ22S∥∆W∥2G2

N

)
= (f,G1

Nw) + S(curl g,G2
NW ).

The pressure is recovered from the weak solution via the classical DeRham theo-
rem (see [22]).

Theorem 2.5. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ;
Hm−1(Ω)). Then there exists a unique solution w,W, q to the equation (1.5) such that

(w,W ) ∈ L∞(0, T ;Hm+1(Ω)) ∩ L2(0, T ;Hm+2(Ω)),

q ∈ L2(0, T ;Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 2.4. For any m ∈ N∗,
we assume that

(w,W ) ∈ L∞(0, T ;Hm(Ω)) ∩ L2(0, T ;Hm+1(Ω)) (2.9)

so it remains to prove

(Dmw,DmW ) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the mth derivative
of (1.5) and have

Dmwt−
1

Re
∆Dmw+Dm(G1

Nw·∇G1
Nw)

δ1−SDm(G2
NW ·∇G2

NW )
δ1
+∇Dmq=Dmf

δ1
,

DmWt +
1

Rem
∇×∇×DmW +Dm(G1

Nw · ∇G2
NW )

δ2 −Dm(G2
NW · ∇G1

Nw)
δ2

= ∇×Dmgδ2 ,

∇ ·Dmw = 0,∇ ·DmW = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,

with periodic boundary conditions and zero mean, and the initial conditions with zero
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divergence and mean. Taking Aδ1D
mw,Aδ2D

mW as test functions we obtain

1

2

d

dt

(
∥Dmw∥20 + δ1

2∥∇Dmw∥20 + S∥DmW∥20 + Sδ2
2∥∇DmW∥20

)
(2.10)

+
1

Re

(
∥∇Dmw∥20 + δ21∥∆Dmw∥20

)
+

1

Rem

(
∥∇DmW∥20 + δ22∥∆DmW∥20

)
=

∫
Ω

(DmfDmw +∇×DmgDmW ) dx− X ,

where

X=

∫
Ω

(
Dm(G1

Nw ·∇G1
Nw)−SDm(G2

NW ·∇G2
NW )

)
Dmw

+
(
Dm(G1

Nw ·∇G2
NW )−Dm(G2

NW ·∇G1
Nw)

)
DmWdx.

Now we apply (2.5) and use the induction assumption (2.9)

X=
∑

|α|≤m

(
m
α

) 3∑
i,j=1

∫
Ω

(
DαG1

NwiD
m−αDiG

1
Nwj−SDαG2

NWiD
m−αDiG

2
NWj

)
Dmwj

+
(
DαG1

NwiD
m−αDiG

2
NWj −DαG2

NWiD
m−αDiG

1
Nwj

)
DmWj dx

≤ C(m)
(
∥G1

Nw∥3/2m ∥G1
Nw∥1/2m+1 + ∥G2

NW∥3/2m ∥G2
NW∥1/2m+1

)
∥w∥m

+
(
∥G1

Nw∥m∥G2
NW∥1/2m ∥G2

NW∥1/2m+1 + ∥G2
NW∥m∥G1

Nw∥1/2m ∥G1
Nw∥1/2m+1

)
∥W∥m.

Integrating (2.10) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, Lem-
ma 2.2, 2.3 and the assumption (2.9) we obtain the desired result for w,W . We
conclude the proof mentioning that the regularity of the pressure term q is obtained
via classical methods, see e.g. [34, 3].

3. Accuracy of the model.
We address first the question of consistency, i.e., we show that the solution of the

closed model (1.5) converges to a solution of the MHD equations (1.1) when δ1, δ2
tend zero.
Let τu, τB , τBu denote

τu=G1
Nuδ1G1

Nuδ1−uu, τB=G2
NB

δ2
G2

NB
δ2−BB, τBu=G2

NB
δ2
G1

Nuδ1−Bu, (3.1)

where u,B is a solution of the MHD equations obtained as a limit of a subsequence
of the sequence wδ1 ,Wδ2 .

We prove inTheorem3.2 that the model’s consistency errors ∥uδ1−w∥L∞(0,T ;L2(Q)),

∥Bδ2 −W∥L∞(0,T ;L2(Q)) are bounded by ∥τu∥L2(QT ), ∥τB∥L2(QT ), ∥τBu∥L2(QT ).

3.1. Limit consistency of the model.
Theorem 3.1. There exist two sequences δn1 , δ

n
2 → 0 as n → 0 such that

(wδn1
,Wδn2

, qδn1 ) → (u,B, p) as δn1 , δ
n
2 → 0,

where (u,B, p) ∈ L∞(0, T ;H)∩L2(0, T ;V )×L
4
3 (0, T ;L2(Ω)) is a solution of the MHD

equations (1.1). The sequences {wδn1
}n∈N, {Wδn2

}n∈N converge strongly to u,B in

L
4
3 (0, T ;L2(Ω)) and weakly in L2(0, T ;H1(Ω)), respectively, while {qδn1 }n∈N converges

weakly to p in L
4
3 (0, T ;L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [20], and is an easy consequence
of Theorem 3.2 and Proposition 3.3.
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3.2. Verifiability of the model.
Theorem 3.2. Suppose that the true solution of (1.1) satisfies the regularity

condition (u,B) ∈ L4(0, T ;V ). Then the consistency errors e = uδ1−w, E = B
δ2−W

satisfy

∥e(t)∥20 + S∥E(t)∥20 +
∫ t

0

( 1

Re
∥∇e(s)∥20 +

S

Rem
∥curlE(s)∥20

)
ds

≤ CΦ(t)

∫ t

0

(
Re∥τu(s) + SτB(s)∥20 +Rem∥τBu(s)− τBu(s)∥20

)
ds,

(3.2)

where Φ(t) = exp
{
Re3

∫ t

0
∥∇u∥40ds,Rem

3
∫ t

0
∥∇u∥40ds+RemRe

2
∫ t

0
∥∇B∥40

}
.

Proof. The errors e = uδ1 − w,E = B
δ2 −W satisfy in variational sense

et+∇·(G1
Nuδ1G1

Nuδ1−G1
NwG1

Nw
δ1
)− 1

Re
∆e+S∇·(G2

NB
δ2
G2

NB
δ2−G2

NWG2
NW

δ1

)

+∇(pδ1 − q) = ∇ · (τ δ1u + Sτ δ1B ),

Et+
1

Rem

∇×∇×E+∇·G2
NB

δ2
G1

Nuδ1−G2
NWG1

Nw
δ2

−∇·G1
Nuδ1G2

NB
δ2−G1

NwG2
NW

δ2

= ∇ · (τ δ2Bu − τ δ2uB ),

and ∇ · e = ∇ · E = 0, e(0) = E(0) = 0. Taking the inner product with (Aδ1G
1
Ne,

SAδ2G
2
NE) we get as for (2.7) the following

1

2

d

dt

(
∥e∥2G1

N
+ S∥E∥2G2

N
+ δ21∥∇e∥2G1

N
+ δ22S∥curlE∥2G2

N

)
+

1

Re
∥∇e∥2G1

N
+

S

Rem
∥curl E∥2G2

N
+

δ21
Re

∥∆e∥2G1
N
+

δ22S

Rem
∥curl curlE∥2G2

N

+

∫
Ω

(
∇·(G1

Nuδ1G1
Nuδ1−G1

NwG1
Nw)G1

Ne+S∇·(G2
NB

δ2
G2

NB
δ2−G2

NWG2
NW )G1

Ne

+S∇·(G2
NB

δ2
G1

Nuδ1−G2
NWG1

Nw)G2
NE−S∇·(G1

Nuδ1G2
NB

δ2−G1
NwG2

NW )G2
NE
)
dx

= −
∫
Ω

(
(τu + SτB) · ∇G1

Ne+ S(τBu − τuB ) · ∇G2
NE
)
dx

≤ 1

2Re
∥∇e∥20 +

S

2Rem
∥curlE∥20 +

Re

2
∥τu + SτB∥20 +

Rem
2S

∥τBu − τuB∥20.

Using the identity G1
Nuδ1G1

Nuδ1 −G1
NwG1

Nw = G1
NeG1

Nuδ1 +G1
NwG1

Ne, Lemmas 2.2,
2.3, the divergence free condition and (2.5) we have

d

dt

(
∥e∥20 + S∥E∥20 + δ21∥∇e∥20 + Sδ22∥curlE∥20

)
+

1

Re
∥∇e∥20 +

S

Rem
∥curl E∥20 +

δ21
Re

∥∆e∥20 +
δ22S

Rem
∥curl curlE∥20

≤
∫
Ω

(
−G1

Ne · ∇G1
Nuδ1G1

Ne− S∇ · (G2
NEG2

NB
δ2
)G1

Ne− S∇ · (G2
NEG1

Nuδ1)G2
NE

+ SG1
Ne · ∇G2

NB
δ2
G2

NE
)
dx+Re∥τu + SτB∥20 +Rem∥τBu − τuB∥20

≤ C
(
∥∇e∥3/20 ∥e∥1/20 ∥∇uδ1∥0 + 2S∥E∥1/20 ∥∇E∥1/20 ∥∇B

δ2∥0∥∇e∥0

+ S∥E∥1/20 ∥∇E∥3/20 ∥∇uδ1∥0
)
+Re∥τu + SτB∥20 +Rem∥τBu − τuB∥20.
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Using ab ≤ εa4/3 + Cε−3b4 we obtain

d

dt

(
∥e∥20 + S∥E∥20 + δ21∥∇e∥20 + Sδ22∥curlE∥20

)
+

1

Re
∥∇e∥20 +

S

Rem
∥curl E∥20 +

δ21
Re

∥∆e∥20 +
δ22S

Rem
∥curl curlE∥20

≤ C
(
Re3∥e∥20∥∇uδ1∥40 +RemRe

2∥E∥20∥∇B
δ2∥40 +Rem

3∥E∥20∥∇uδ1∥40
)

+Re∥τu + SτB∥20 +Rem∥τBu − τuB∥20

and by the Gronwall inequality we deduce

∥e(t)∥20 + S∥E(t)∥20 +
∫ t

0

( 1

Re
∥∇e(s)∥20 +

S

Rem
∥curlE(s)∥20

)
ds

≤ CΨ(t)

∫ t

0

(
Re∥τu(s) + SτB(s)∥20 +Rem∥τBu(s)− τuB (s)∥20

)
ds,

where

Ψ(t) = exp

{
Re3

∫ t

0

∥∇uδ1∥40ds,Rem
3

∫ t

0

∥∇uδ1∥40ds+RemRe
2

∫ t

0

∥∇B
δ2∥40ds

}
.

Using the stability bounds ∥∇uδ1∥0 ≤ ∥∇u∥0, ∥∇B
δ2∥0 ≤ ∥∇B∥0 we conclude the

proof.

3.3. Consistency error estimate. The bounds on the errors (3.1) are given in
the following proposition.

Proposition 3.3. Let

(u,B) ∈ L4((0, T )× Ω) ∩ L4(0, T ;H2N+2(Ω)), N ≥ 0.

Then

∥τu∥L2(Q) ≤ Cδ2N+2
1 ,

∥τB∥L2(Q) ≤ Cδ2N+2
2 ,

∥τBu∥L2(Q) ≤ C(δ2N+2
1 + δ2N+2

2 ),

where C = C(∥(u,B)∥L4((0,T )×Ω), ∥(u,B)∥L4(0,T ;H2N+2(Ω))). The proof uses Lemma
2.2 and follows the outline of the proofs in Section 3.3 of [20].

4. Conservation laws. As our model is some sort of a regularizing numerical
scheme, we would like to make sure that the model inherits some of the original
properties of the 3D MHD equations.

It is well known that kinetic energy and helicity are critical in the organization
of the flow.

The energy E = 1
2

∫
Ω
(v(x) · v(x) + B(x) · B(x))dx, the cross helicity HC =

1
2

∫
Ω
(v(x) ·B(x))dx and the magnetic helicity HM = 1

2

∫
Ω
(A(x) ·B(x))dx (where A is

the vector potential, B = ∇×A) are the three invariants of the MHD equations (1.1)
in the absence of kinematic viscosity and magnetic diffusivity ( 1

Re = 1
Rem

= 0).
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Introduce the characteristic quantities of the model (1.5)

EADM =
1

2
[(Aδ1w,w)G1

N
+ (Aδ2W,W )G2

N
],

HC,ADM =
1

2
(Aδ1w,Aδ2W ), and

HM,ADM =
1

2
(Aδ2W,Aδ2

)G2
N
, where Aδ2

= A−1
δ2

A.

This section is devoted to proving that these quantities are conserved by (1.5)
with the periodic boundary conditions and 1

Re = 1
Rem

= 0. Also, note that

EADM → E, HC,ADM → HC , HM,ADM → HM , as δ1,2 → 0.

Theorem 4.1. The following conservation laws hold, ∀T > 0

EADM (T ) = EADM (0), (4.1)

HC,ADM (T ) = HC,ADM (0) + C(T ) max
i=1,2

δ2N+2
i , (4.2)

and

HM,ADM (T ) = HM,ADM (0). (4.3)

Remark 4.1. Note that the cross helicity HC,ADM of the model is not conserved
exactly, but it possesses two important properties:

HC,ADM → HC as δ1,2 → 0,

and

HC,ADM (T ) → HC,ADM (0) as N increases.

In the case of equal radii, δ1 = δ2, the following cross helicity is exactly conserved:

H×,ADM (w,W )(t) =
1

2

(
(w,W )N + δ2(∇w,∇W )N

)
.

Proof. The proof follows the outline of the corresponding proof in [20]. Consider
(1.5) with 1

Re = 1
Rem

= 0.

Start by proving (4.1). Multiply (1.5a) by Aδ1G
1
Nw, and multiply (1.5b) by

Aδ2G
2
NW . Integrating both equations over Ω gives

1

2

d

dt
(Aδ1w,w)G1

N
= ((∇×G2

NW )×G2
NW,w)G1

N
, (4.4)

1

2

d

dt
(Aδ2W,W )G2

N
− (G2

NW · ∇G1
Nw,W )G2

N
= 0. (4.5)

Adding (4.4)-(4.5) and using the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u) (4.6)

we obtain

1

2

d

dt

[
(Aδ1w,w)G1

N
+ (Aδ2W,W )G2

N

]
= (G2

NW · ∇G2
NW,G1

Nw)− (G1
Nw · ∇G2

NW,G2
NW ) + (G2

NW · ∇G1
Nw,G2

NW ) = 0,
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which yields (4.1).

To prove (4.2), multiply (1.5a)-(1.5b) by Aδ1G
2
NW and Aδ2G

1
Nw, respectively,

and integrate over Ω to get

(
∂Aδ1w

∂t
,W )G2

N
+ (G1

Nw · ∇G1
Nw,W )G2

N
= 0, (4.7)

(
∂Aδ2W

∂t
,w)G1

N
+ (G1

Nw · ∇G2
NW,w)G1

N
= 0. (4.8)

Adding (4.7) and (4.8), we obtain

(
∂Aδ1w

∂t
,G2

NW ) + (
∂Aδ2W

∂t
,G1

Nw) = 0. (4.9)

From Corollary 2.2 it follows that

G1
Nw = Aδ1w + (−1)Nδ2N+2

1 ∆N+1A−N
δ1

w, (4.10)

G2
NW = Aδ2W + (−1)Nδ2N+2

2 ∆N+1A−N
δ2

W.

Then (4.9) gives

d

dt
(Aδ1w,Aδ2W ) = (

∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) (4.11)

= (
∂Aδ1w

∂t
, (−1)N+1δ2N+2

2 ∆N+1A−N
δ2

W ) + (
∂Aδ2W

∂t
, (−1)N+1δ2N+2

1 ∆N+1A−N
δ1

w).

= (−1)N+1δ2N+2
2 (

∂Aδ1w

∂t
,∆N+1A−N

δ2
W ) + (−1)N+1δ2N+2

1 (
∂Aδ2W

∂t
,∆N+1A−N

δ1
w),

which proves (4.2).

Next, we prove (4.3). By multiplying (1.5b) by Aδ2G
2
NAδ2

, and integrating over
Ω we get

1

2

d

dt
(∇×Aδ2A

δ2
, G2

NAδ2
) (4.12)

+ (G1
Nw · ∇G2

NW,G2
NAδ2

)− (G2
NW · ∇G1

Nw,G2
NAδ2

) = 0.

Since the cross-product of two vectors is orthogonal to each of them

((∇×G2
NAδ2

)×G1
Nw,∇×G2

NAδ2
) = 0, (4.13)

it follows from (4.13) and (4.6) that

(G1
Nw · ∇G2

NAδ2
,∇×G2

NAδ2
) = ((∇×G2

NAδ2
) · ∇G2

NAδ2
, G1

Nw). (4.14)

Since G2
NW = ∇×G2

NAδ2
, we obtain from (4.12) and (4.14) that (4.3) holds.

5. Alfvén waves. In this section we prove that our model possesses a very im-
portant property of the MHD: the ability of the magnetic field to transmit transverse
inertial waves - Alfvén waves. We follow the argument typically used to prove the
existence of Alfvén waves in MHD, see, e.g., [7].
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Using the density ρ and permeability µ, we write the equations of the model (1.5)
in the form

wt+∇·((G1
Nw)(G1

Nw)
δ1
)+∇pδ1 =

1

ρµ
(∇×G2

NW )×G2
NW

δ1− ν∇×(∇×w), (5.1a)

∂W

∂t
= ∇× ((G1

Nw)× (G2
NW ))

δ2 − η∇× (∇×W ), (5.1b)

∇ · w = 0, ∇ ·W = 0, (5.1c)

where ν = 1
Re , η = 1

Rem
.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field
w. We denote the perturbations in current density and magnetic field by jmodel and
Wp, with

∇×Wp = µjmodel. (5.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (5.3)

Since G1
Nw · ∇G1

Nw is quadratic in the small quantity w, it can be neglected in
the Navier-Stokes equation (5.1a), and therefore

∂w

∂t
+∇pδ1 =

1

ρµ
(∇×G2

NWp)×G2
NW0

δ1 − ν∇× (∇× w). (5.4)

The leading order terms in the induction equation (5.1b) are

∂Wp

∂t
= ∇× (G1

Nw ×G2
NW0)

δ2 − η∇× (∇×Wp). (5.5)

Following the argument of [20] and using the approximating result of Corollary
2.2, we obtain that in the case of a perfect fluid (ν = η = 0) and in the case ν = 0,
η ≫ 1 a transverse wave is recovered. The group velocity of the wave is equal to

ṽa = va +O(δ2N+2
1 + δ2N+2

2 ),

where va is the Alfvén velocity W0/
√
ρµ.

We conclude that our model (1.5) preserves the Alfvén waves and the group
velocity of the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.

6. Computational results. In this section we present computational results
for the ADM models of zeroth, first and second order. The convergence rates are
presented and the fidelity of the models is verified by comparing the quantities, which
are conserved in the ideal inviscid case. The computations are made for the two-
dimensional problem, where the energy and enstrophy of the models are compared to
those of the averaged MHD.

Consider the MHD flow in Ω = (0.5, 1.5)× (0.5, 1.5). The Reynolds number and
magnetic Reynolds number are Re = 105, Rem = 105, the final time is T = 1/4, and
the averaging radii are δ1 = δ2 = h.

Take

f =

(
1
2π sin(2πx)e−4π2t/Re − xe2t

1
2π sin(2πy)e−4π2t/Re − ye2t

)
,

∇×g=

(
et(x−(cosπx sinπy+πx sinπx sinπy+πy cosπx cosπy)e−2π2t/Re)

et(−y−(sinπx cosπy+πx cosπx cosπy+πy sinπx sinπy)e−2π2t/Re)

)
.
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The solution to this problem is

u =

(
− cos(πx) sin(πy)e−2π2t/Re

sin(πx) cos(πy)e−2π2t/Re

)
,

p = −1

2
(cos(2πx) + cos(2πy))e−4π2t/Re,

B =

(
xe
−ye

)
.

Hence, although the theoretical results were obtained only for the periodic bound-
ary conditions, we apply the family of ADMs to the problem with Dirichlet boundary
conditions.

The results presented in the following tables are obtained by using the software
FreeFEM + +. The velocity and magnetic field are sought in the finite element
space of piecewise quadratic polynomials, and the pressure in the space of piecewise
linears. In order to draw conclusions about the convergence rate, we take the time
step k = h2. We compare the solutions (w,W ), obtained by the ADM models, to
the true solution (u,B) and the average of the true solution (ū, B̄). The second order
accuracy in approximating the true solution (u,B) is expected for ADM models of
any order, whereas the accuracy in approximating the averaged solution (ū, B̄) should
increase as the order of the model increases.

The solution, computed by the zeroth order ADM, approximates both the true
solution (u,B) and the average of the true solution (ū = (−δ21∆+I)−1u, B̄ = (−δ22∆+
I)−1B with the second order accuracy. The accuracy in approximating the averaged
solution increases as the order of the model is increased.

Hence, the computational results verify the claimed accuracy of the model.

Table 6.1
Approximating the true solution, Re = 105, Rem = 105, Zeroth Order ADM

h ∥w − u∥L2(0,T ;L2(Ω)) rate ∥W −B∥L2(0,T ;L2(Ω)) rate
1/4 0.0862904 0.0253257
1/8 0.0515562 0.7431 0.0268628 -0.085
1/16 0.0204763 1.3322 0.0132399 1.0207
1/32 0.00611337 1.7439 0.00412013 1.6841
1/64 0.00163356 1.9039 0.001116 1.8844

Table 6.2
Approximating the true solution, Re = 105, Rem = 105, First Order ADM

h ∥w − u∥L2(0,T ;L2(Ω)) rate ∥W −B∥L2(0,T ;L2(Ω)) rate
1/4 0.086748 0.0219869
1/8 0.0504853 0.781 0.0146218 0.5885
1/16 0.0196045 1.3647 0.00401043 1.8663
1/32 0.00589278 1.7342 0.00078723 2.3489
1/64 0.00159084 1.8892 0.000170555 2.2065

Since the flow is not ideal (nonzero power input, nonzero viscosity/magnetic diffu-
sivity, non-periodic boundary conditions), the energy and enstrophy are not conserved.
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Table 6.3
Approximating the true solution, Re = 105, Rem = 105, Second Order ADM

h ∥w − u∥L2(0,T ;L2(Ω)) rate ∥W −B∥L2(0,T ;L2(Ω)) rate
1/4 0.0854318 0.0229699
1/8 0.0500093 0.7726 0.0170217 0.4324
1/16 0.0194169 1.3649 0.00472331 1.8495
1/32 0.00587995 1.7234 0.000856363 2.4635
1/64 0.00159835 1.8792 0.000167472 2.3543

Table 6.4
Approximating the average solution, Re = 105, Rem = 105, Zeroth Order ADM

h ∥w − ū∥L2(0,T ;L2(Ω)) rate ∥W − B̄∥L2(0,T ;L2(Ω)) rate
1/4 0.0247837 0.0253257
1/8 0.0245241 0.0152 0.0268628 -0.085
1/16 0.0131042 0.9042 0.0132399 1.0207
1/32 0.00434599 1.5923 0.00412013 1.6841
1/64 0.00120907 1.8458 0.001116 1.8844

Table 6.5
Approximating the average solution, Re = 105, Rem = 105, First Order ADM

h ∥w − ū∥L2(0,T ;L2(Ω)) rate ∥W − B̄∥L2(0,T ;L2(Ω)) rate
1/4 0.0228254 0.0219869
1/8 0.015202 0.5864 0.0146218 0.5885
1/16 0.0043297 1.8119 0.00401043 1.8663
1/32 0.000867986 2.3185 0.00078723 2.3489
1/64 0.000192121 2.1757 0.000170555 2.2065

Table 6.6
Approximating the average solution, Re = 105, Rem = 105, Second Order ADM

h ∥w − ū∥L2(0,T ;L2(Ω)) rate ∥W − B̄∥L2(0,T ;L2(Ω)) rate
1/4 0.0236209 0.0229699
1/8 0.0172027 0.4574 0.0170217 0.4324
1/16 0.00506669 1.7635 0.00472331 1.8495
1/32 0.000956194 2.4057 0.000856363 2.4635
1/64 0.000194768 2.2955 0.000167472 2.3543

But we expect the energy and enstrophy of the models to approximate the energy and
enstrophy of the averaged MHD.

The enstrophy of the first and second order models approximates the enstrophy
of the averaged MHD better than the zeroth order model’s enstrophy, see Figure 6.1.

Figure 6.2 shows that the graph of the models energy is hardly distinguishable
from that of the averaged MHD.

Zooming in at the final time t = 0.25 we verify that the ADM energy approximates
the averaged MHD energy better as the model’s order increases, see Figure 6.3.

14



0 0.05 0.1 0.15 0.2 0.25
4.76

4.78

4.8

4.82

4.84

4.86

4.88

4.9

 

 
averaged MHD
ADM−0
ADM−1
ADM−2

Fig. 6.1. ADM Enstrophy vs. averaged MHD
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Fig. 6.2. ADM Energy vs. averaged MHD

7. Conclusions. A Large Eddy Simulation approach to the MagnetoHydroDy-
namic Turbulence was considered. The Approximate Deconvolution Models were
introduced for the incompressible MHD equations, and this family of models was an-
alyzed. We proved the existence and uniqueness of solutions, and their convergence
in the weak sense to a solution of the MHD equations, as the filtering widths are
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Fig. 6.3. ADM Energy vs. averaged MHD: zoom in

decreased to zero. We proved the accuracy of the model both theoretically (by es-
tablishing an á priori bound on the model’s consistency error) and numerically (the
results of the computational tests are listed in the previous section).

Also, all models in the family of the ADMs are proven to possess the physical
properties of the MHD - the energy and helicity of the models are conserved, and
the models are also proven to preserve the Alfvén waves, a unique feature of the
MHD equations. The physical fidelity of the models was also verified computationally.
The test results prove that both the solution and the energy of the averaged MHD
equations are approximated better, as one increases the models’ order N (from zeroth
ADM to the first ADM, and from the first to the second ADM). This gives a freedom
of choosing the model’s order N, based on the desired accuracy of approximation
and the available computational power. Finally, the tests demonstrate that in the
situations when the direct numerical simulation is no longer available (flows with
high Reynolds and magnetic Reynolds numbers), the solution can still be obtained by
the ADM approach.
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