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Abstract

We construct new traveling wave solutions of moving kink type for a modified,
driven, dynamic Frenkel-Kontorova model, representing dislocation motion under
stress. Formal solutions known so far are inadmissible for velocities below a thresh-
old value. The new solutions fill the gap left by this loss of admissibility. Analytical
and numerical evidence is presented for their existence; however, dynamic simula-
tions suggest that they are probably unstable.

1 Introduction

The first study of dislocation motion through a discrete model was performed by Atkinson
and Cabrera [1], followed by Celli and Flytzanis [4] and Ishioka [8]. Atkinson and Cabrera
[1] utilize a variant of the discrete sine-Gordon equation, which arises in the dynamic
version of the Frenkel-Kontorova model. They seek traveling wave solutions corresponding
to uniformly moving dislocations under applied stress, represented by a constant forcing
term. To the present day, analytical progress on the forced problem has been limited,
while some numerical conclusions have been drawn by Peyrard and Kruskal [11]. In [1], the
trigonometric potential of the Frenkel-Kontorova model, responsible for the nonlinearity
in the sine-Gordon equation, is replaced by a piecewise smooth potential with quadratic
wells. A similar choice is made in [4, 8]. The resulting equation for traveling waves
reduces to a linear one, provided the solution satisfies an admissibility condition. This
requires that to the right of a single transition point (the dislocation core), the solution
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take values entirely in one of two quadratic valleys of the potential, and in the other
valley to the left. Solutions of the reduced linear equation are found semi-analytically.
Traveling waves are found to exist only if the stress and speed satisfy an algebraic relation,
the kinetic relation of the dislocation. A remarkable prediction of this relation was that
dislocations exceed the speed of shear waves at sufficiently high stress. This was recently
confirmed experimentally [10]. Another feature is the presence of multiple singularities
and discontinuities in the graph of stress versus velocity, located at a sequence of special
resonance velocities that accumulate at zero; see Fig. 1. However, as emphasized by
Earmme and Weiner [5] (see also [9]), below a threshold velocity, solutions of the linear
problem violate the admissibility condition; this issue was not fully recognized in [1]. This
rules out solutions in the entire interval containing singularities as inadmissible, since all
resonance velocities are below the threshold velocity.

The problem of existence of traveling waves at velocities below the threshold value has
remained open to the best of our knowledge; this also applies to the results of [4]. This is
the main issue addressed in the present paper.

We present compelling analytical and numerical evidence that for velocities below the
threshold value, there is a new type of traveling wave solution u(ξ), ξ = x − V t, which
actually violates the usual admissibility conditions (but satisfies a suitable generaliza-
tion). The model employs a piecewise smooth two well potential Φ(u) with two quadratic
branches meeting at the spinodal value u = 0. The usual admissibility conditions require
that the solution vanish (go through the spinodal value) at precisely one point, say ξ = 0,
where it transitions between the two quadratic valleys of Φ, so that it must be strictly
monotone in the neighborhood of the transition point. Instead, the new solutions we find
are equal to zero on an entire finite interval, and lie in different potential valleys on either
side of this interval.

The motivation for considering such solutions comes from a more elaborate model [15]
where Φ(u) is piecewise quadratic but continuously differentiable. Its graph consists of
three parabolas, two convex ones separated by a concave one, defined on the spinodal range
of u values. Any kink solution u(ξ) that transitions between the two convex potential
valleys must therefore take values in the spinodal range for ξ in some interval, say [−z, z].
Here z > 0 is an unknown of the problem and is found to depend on the size of the spinodal
range. Now Φ′(u) is trilinear with two increasing branches and a decreasing one between
them. When the slope of the latter is treated as a parameter and approaches −∞, so
that the spinodal range tends to degenerate to the point u = 0, a surprising observation
is made in [15]: The interval −z ≤ ξ ≤ z where u(ξ) takes values in the spinodal range
does not shrink to a point, as one might expect. Rather, z approaches a positive value
in the limit. The limiting potential is the piecewise smooth biquadratic one considered in
[1, 4, 8] where admissible low-velocity kinks have not been found so far. It is thus natural
to directly try the new type of solutions mentioned in the previous paragraph, that vanish
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(equal the degenerate spinodal value) over an interval [−z, z], where z > 0, in the context
of the Atkinson-Cabrera problem.

While we do not rigorously prove their existence, we are able to construct the new so-
lutions semi-analytically; we present approximate analytical and also numerical evidence
of their existence. We find that they bifurcate from the classical Atkinson-Cabrera solu-
tions, at precisely the threshold velocity V0 below which the latter become inadmissible.
The new solutions exist essentially over the entire velocity range 0 < V < V0; thus they
seem to close the entire gap left by loss of admissibility of the Atkinson-Cabrera solutions.

The kinetic relation between the applied stress σ (constant forcing term) and velocity
V of moving kinks (dislocations) described by the new solutions is entirely different from
the (inadmissible) one obtained in [1] over the velocity range 0 < V < V0; see Fig. 5
where the two are compared. Unfortunately, its physical significance is in question, since
the new solutions appear to be unstable. This is suggested by numerical simulations of
the Frenkel-Kontorova chain dynamics, where kinks either stop or move with velocities
above V0. Recently a similar trend was observed in experiments that measured kinetic
relations for dislocations in actual two dimensional plasma crystals [10]. Our results are
consistent with the findings of [15], where slow kinks are apparently unstable when the
spinodal range is sufficiently narrow. In contrast, some slow kinks do become stable if
the spinodal range is sufficiently wide in [15], as is also observed in [5, 11].

The paper is organized as follows. In Section 2 we recall the dynamical driven Frenkel-
Kontorova model and the equation for traveling wave solutions that describes steady mo-
tion of a moving dislocation, or kink, under stress. We consider the case of a piecewise
quadratic potential and recall the main properties of the explicit Atkinson-Cabrera solu-
tion. The loss of admissibility of this solution in the low-velocity regime motivates us to
relax the strict monotonicity assumption made in [1]. We derive in Section 3 conditions
for a new type of kink solutions. These conditions include a linear integral equation of the
first kind, whose kernel is related to the formal Atkinson-Cabrera solution, regardless of
the admissibility of the latter. Solving the integral equation yields a shape function that
can be used to obtain the new kink solution. The support [−z, z] of the shape function,
which depends on the velocity of the moving kink, is the interval where the new kink solu-
tions take the spinodal value. In Section 4 we use linear and quadratic approximations of
the kernel in the integral equation to obtain approximations of the shape function under
the assumption that z is small. It turns out that the shape function is a distribution
that involves two delta functions concentrated at ±z. In contrast, the shape functions
obtained in [15] are bounded. Our results show that the new solutions bifurcate from the
Atkinson-Cabrera solutions at the velocity V0 at which the latter become inadmissible.
In Section 5 we describe the numerical procedure we use to obtain solutions in the case
when z is not necessarily small. We use this procedure to generate new solutions in the
low-velocity regime 0 < V < V0 and discuss their properties. We verify the numerical pro-
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cedure by comparing it with the analytical method described in the Appendix and with
the analytical results of Section 4. In Section 6 we investigate stability of the traveling
wave solutions using numerical simulations of the discrete chain dynamics. The results
suggest instability of the new solutions. Section 7 adds viscosity to the model. We find
that this addition does not seem to stabilize slow new type traveling waves in general. The
Appendix describes an analytical method for solving a version of the integral equation
that arises here and in [15], with truncated kernel retaining a finite number of exponential
terms, by converting it to a differential equation.

2 Atkinson-Cabrera traveling wave solutions

The dynamics of the driven Frenkel-Kontorova chain are described by the following equa-
tion, expressed in dimensionless quantities.

ün = un+1 − 2un + un−1 + µ(σ − Φ′(un)). (1)

Here un(t) is the displacement of the nth mass at time t, µ is a ratio of stiffness of
the nonlinear interaction with the substrate to nearest neighbor interactions and Φ is
the multiple well substrate potential. To model a steadily moving dislocation, we seek
solutions of (1) in the form of a traveling wave with (constant) velocity V > 0:

un = u(ξ), ξ = n− V t. (2)

Substituting this ansatz in (1), we obtain the advance-delay differential equation

V 2u′′ = u(ξ + 1)− 2u(ξ) + u(ξ − 1) + µ(σ − Φ′(u(ξ))). (3)

We are interested in solutions of (3) that are of kink type. These satisfy the following
conditions at infinity:

⟨u(ξ)⟩ → u± as ξ → ±∞, (4)

where u± are stable constant (uniform) equilibrium solutions of (3) located in two different
wells:

Φ′(u±) = σ, u− > u+, Φ′′(u±) > 0.

The angular brackets in (4) denote the average value of the displacement because we
expect this Hamiltonian discrete system to develop oscillations. The average is taken over
a sufficiently large interval.

Instead of the usual periodic potential, we choose a potential with only two wells;
this is appropriate for describing twinning dislocations. As first shown in [1], an explicit
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solution of (3), (4) can be obtained if one assumes that the substrate potential is piecewise
quadratic:

Φ(u) =

{
1
2
(u+ 1)2, u ≤ 0

1
2
(u− 1)2, u ≥ 0.

(5)

Note that the derivative of this potential is discontinuous at u = 0:

Φ′(u) = u− 2θ(u) + 1, (6)

where θ(u) is the unit step function: θ(u) = 1 for u > 0, θ(u) = 0 for u < 0. Observe also
that in this case one has u± = σ ± 1 in (4).

Suppose that the displacement switches from the second to the first well at ξ = 0, so
that

u(ξ) > 0 for ξ < 0, u(ξ) < 0 for ξ > 0 (7)

and
u(0) = 0. (8)

Then one may replace θ(u(ξ)) by θ(−ξ) in (6). Then (3) becomes a linear equation:

V 2u′′ = u(ξ + 1)− (2 + µ)u(ξ) + u(ξ − 1) + µ(σ − 1 + 2θ(−ξ)), (9)

which can be solved using Fourier transforms.
It should be emphasized that solutions of (9) satisfy the original nonlinear equation

(3) if and only if the admissibility condition (7) holds. Otherwise, if a solution of (9)
violates (7) it will be labeled as inadmissible.

The solution of (9) constructed by Atkinson and Cabrera [1] (see also [3, 9] for more
details) is as follows:

u = U(ξ) ≡


σ − 1− 2µ

∑
k∈M+(V )

eikξ

kLk(k, V )
, ξ > 0

σ + 1 + 2µ
∑

k∈M−(V )

eikξ

kLk(k, V )
, ξ < 0.

(10)

Here
M±(V ) = {k : L(k, V ) = 0, Imk ≷ 0} ∪N±(V ) (11)

are the sets of roots of the dispersion relation L(k, V ) = 0, where

L(k, V ) = µ+ 4 sin2 k

2
− V 2k2, (12)

with Lk ≡ ∂L/∂k, while

N±(V ) = {k : L(k, V ) = 0, Im(k) = 0, kLk(k, V ) ≷ 0} (13)
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denote the sets of real roots. The real roots correspond to lattice waves (phonons) emitted
by the moving dislocation. The construction of N±(V ) implies that corresponding modes
propagate ahead or behind the dislocation in accordance with the radiation condition
[1, 9]. This condition, also known as the causality principle [14], selects solutions such
that in a frame moving with the dislocation, lattice waves can only be emitted by the
moving front and must carry energy away from it (thus causing radiative damping). Thus
phonon modes whose group velocity Vg = V + Lk(k, V )/(2V k) is less than the velocity
V of the front must be placed behind it (the set N−(V ) contributes to ξ < 0), while the
modes with group velocity above V propagate ahead (N+(V )).

The nonlinearity of the problem is contained in conditions (7) and (8). Applying (8),
one obtains the kinetic relation between the applied stress and the dislocation velocity:

σ = Σ(V ) ≡ 2µ
∑

k∈N(V )

1

|kLk(k, V )|
, (14)

where the sum is over the set of all real roots, N(V ) = N+(V )∪N−(V ). Thus the applied
stress is determined entirely by the real roots. As shown in [9], one can derive (14) by
accounting for the energy fluxes carried by the phonon waves.

For a given V > 0 the solution is thus given by (10), (14), provided that the admissi-
bility inequalities (7) are satisfied.

Computing the real roots of (12) for each V > 0, we formally obtain the kinetic
relation (14), shown in Fig. 1a for the case of µ = 1. The relation consists of disjoint
segments separated by resonance velocities, i.e. values of V such that L(k, V ) = 0 and
Lk(k, V ) = 0 for some real k (see Fig. 1b). A typical solution above the first resonance
(V = 0.5) is shown in grey in Fig. 2a. One can see that a moving dislocation emits
phonon oscillations behind it, with wave number equal to the single positive real root
of (12). As velocity decreases below the first resonance (see the displacement profile at
V = 0.2 in Fig. 2b), more oscillation modes appear, and u(ξ) formally obtained from
(10), (14) features phonon emission on both sides. However, closer inspection reveals that
this solution of (9) is in fact inadmissible and should be removed because it violates the
assumption that u(ξ) < 0 for ξ > 0 (one of the admissibility conditions (7)). In fact,
numerical calculations of the solution U of (9) reveal that all segments of the kinetic
relation below the first resonance contain only inadmissible traveling waves that change
signs more than once, and thus need to be removed, while the remaining large-velocity
segment contains admissible solutions above a certain threshold velocity [9]. In the case
of µ = 1, solutions of (9) are admissible for V ≥ V0 ≈ 0.357. This implies non-existence
of traveling wave solutions under the assumptions (7), (8) when the velocity is below
the threshold value V0. While this nonexistence issue was recognized by various authors
[1, 5, 9, 3], it remains unclear whether there exist any moving kink type solutions below
the threshold velocity. This paper addresses this question.
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Figure 1: (a) Kinetic relation resulting from the formally obtained Atkinson-Cabrera
solution. Only the first twelve segments are shown. The grey curves correspond to
inadmissible traveling waves. (b) Solutions of L(k, V ) = 0 for positive real k. The dashed
lines indicate the first five resonance velocities at which Lk(k, V ) = 0. Here µ = 1.
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Figure 2: Displacement profiles formally computed from (10), (14) at (a) V = 0.5 and (b)
V = 0.2. Solution in (a) satisfies the constraints (7) but the one in (b) does not. Here
µ = 1.
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3 New traveling wave solutions

To obtain valid traveling wave solutions of (3) in the low-velocity regime, we now replace
the admissibility conditions (7), (8) by a more general assumption

u(ξ) > 0, ξ < −z
u(ξ) = 0, |ξ| ≤ z

u(ξ) < 0, ξ > z,

(15)

where z > 0 is to be determined. In other words, we assume that instead of switching
wells instanteneously at t = n/V (ξ = 0), the nth particle may stay at the spinodal value
u = 0 between the wells over the time period [(n− z)/V, (n+ z)/V ] (|ξ| ≤ z). For z = 0
we recover Atkinson-Cabrera solutions.

Adopting a method used in [7, 15], we observe that Φ′(u(ξ)) can now be written as

Φ′(u(ξ)) = u(ξ) + 1− 2

∫ z

−z

h(s)θ(s− ξ)ds, (16)

where we have introduced an unknown shape function h(s), which vanishes outside the
interval [−z, z] and is normalized so that∫ z

−z

h(s)ds = 1. (17)

Thus we obtain

V 2u′′ + (µ+ 2)u(ξ)− u(ξ + 1)− u(ξ − 1) = µ

[
σ − 1 + 2

∫ z

−z

h(s)θ(s− ξ)ds

]
. (18)

For consistency, we must require that in addition to (18) and (4), the solution satisfies
the generalized admissibility conditions (15).

Taking the Fourier transform of (18) and using the convolution theorem, one can show
(see [7, 16] for details) that

u′(ξ) = −
∫ z

−z

h(s)q(ξ − s)ds, (19)

where the kernel is the negative derivative of the solution (10) of (9) with z = 0:

q(ξ) = −dU
dξ

=


2µi

∑
k∈M+(V )

eikξ

Lk(k, V )
, ξ > 0

−2µi
∑

k∈M−(V )

eikξ

Lk(k, V )
, ξ < 0.

(20)
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At the same time, our assumption that u(ξ) ≡ 0 at |ξ| ≤ z implies that u′(ξ) ≡ 0 in the
interval (−z, z). Together with (19), this yields the integral equation∫ z

−z

h(s)q(ξ − s)ds = 0, |ξ| < z. (21)

Thus the shape function h(ξ) is an eigenfunction of the integral operator in the left hand
side of (21) (with kernel given by (20)) associated with the zero eigenvalue. As described
in more detail in Section 4, the integral operator has a zero eigenvalue provided that z
takes on special values. Note that (21) is a Fredholm integral equation of the first kind.
We remark that if instead of (6) one considers a trilinear (continuous) Φ′(u),

Φ′(u) =


u+ 1, u < −γ/2
(1− 2/γ)u, |u| ≤ γ/2

u− 1, u > γ/2,

the same procedure yields a Fredholm integral equation of the second kind, with the right
hand side of (21) replaced by γh(ξ), where γ is the width of the spinodal region connecting
the two wells [15] (see also related problems with different kernels in [7, 16]). In the limit
γ → 0 one recovers (21).

The problem thus reduces to solving the integral equation (21) for z and h(ξ). Once
h(ξ) and z are known, the convolution theorem yields the traveling wave solution:

u(ξ) = σ − Σ(V ) +

∫ z

−z

h(s)U(ξ − s)ds, (22)

where the applied stress

σ = Σ(V )− 1

2

∫ z

−z

h(s)(U(z − s) + U(−z − s))ds (23)

is found by applying u(z) = u(−z) = 0. If z = 0, the shape function reduces to the Dirac
delta function h(s) = δ(s), and (22), (23) reduce to (10), (14), respectively.

We will present numerical evidence that this procedure yields valid traveling waves
(solutions of (3)) for values of V where the Atkinson-Cabrera solution U of (9) is inad-
missible. This is due to the fact that for such values of V , u(ξ) given by (22) conforms to
the generalized admissibility conditions (15).

4 Kernel approximations for small z and bifurcation

Using an approximation of the integral operator in (21), we show that the new type of
traveling waves with z > 0 bifurcate from the Atkinson-Cabrera solutions precisely at
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the threshold velocity V0, below which the latter become inadmissible. The conditions
near bifurcation thus involve values of z near 0. This suggests that in order to study the
problem analytically, we may replace the kernel q in (21) on [−z, z] by its piecewise linear
approximation near zero, as in [7]. We note that q(ξ) is continuous, while q′(ξ) has a
jump discontinuity at ξ = 0, as can be shown from (9), since q(ξ) = −U ′(ξ). Let

q̂(ξ) =

{
q0 + q+ξ, ξ > 0

q0 + q−ξ, ξ < 0,
(24)

where
q0 = q(0), q± = q′(0±), q+ − q− = 2µ/V 2; (25)

the last relation is implied by (9). Here q̂ is a piecewise linear approximation of q near
zero. Consider the approximate version of (21) given by

∫ z

−z
h(s)q̂(ξ − s)ds = 0, |ξ| < z.

It turns out that the only L1 solution of this is the trivial one. To see this, note that∫ z

−z
h(s)q̂(ξ − s)ds can be differentiated twice with respect to ξ, with second derivative

equal to (q+ − q−)h(ξ) (|ξ| < z), which therefore has to vanish. In contrast with [15], we
are led to seek generalized solutions involving delta functions [13]. One way to approach
this is to study solutions of the corresponding equation of the second kind, which actually
arises in [15], ∫ z

−z

h(s)q̂(ξ − s)ds− γh(ξ) = 0, |ξ| < z, (26)

with γ a positive constant, and then take the limit as γ → 0+. Assuming h is smooth
enough, differentiate (26) twice to find that h must satisfy the ODE

γh′′(ξ)− (q+ − q−)h(ξ) = 0, |ξ| < z.

Inserting the general solution of this,

h(ξ) = c1e
ξ/a + c2e

−ξ/a, a =
√
γ/(q+ − q−), (27)

into (26) and evaluating the integral, we obtain an expression linear in ξ, which must van-
ish for |ξ| < z. This yields a homogeneous linear system for the constants c1 and c2, which
has nontrivial solutions, provided that the corresponding determinant vanishes. This can
be put into the form of a quadratic equation in the quantity e2z/a, whose coefficients
depend on z and γ. Solving this quadratic gives the following equations:

e2z
√

(q+−q−)/γ =
B±(z, γ)

A(z, γ)
, (28)

where

B±(z, γ) = −a
(
q−

2 + q+
2
)

±
√

(q− − q+)2 (q02 + a2(q− + q+)2) + 4q0q−(q− − q+)q+z + 4q−2q+2z2
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and
A(z, γ) = q0(q− − q+) + 2q−q+(z − a),

with a as in (27). Note that A, B± are continuous algebraic functions, which thus remain
bounded for finite values of their arguments. This provides a relation between z and γ.
Suppose that z tends to a positive value as γ → 0+. Then the left hand side of (28),
hence also the right hand side, grows unbounded. This necessitates that the denominator
A→ 0, or passing to the limit, A(z, 0) = 0, which reduces to

z =
q0(q+ − q−)

2q+q−
. (29)

From (20) and the last of (25) one shows that (q+−q−)/(2q+q−) < 0. Positive solutions z
of (29) exist provided −q0 = U ′(0) > 0. On the other hand, the admissibility conditions
(7) for U imply that U ′(0) ≤ 0. This provides strong analytical evidence that bifurcation
to the new type of traveling wave with z > 0 occurs precisely at the threshold velocity
V0, at which the Atkinson-Cabrera solution becomes inadmissible. In the next section we
show this numerically as well using the full kernel.

For small γ > 0 one can fully determine the constants c1, c2 and z in terms of γ by
enforcing the normalization condition (17). The result can be put into the form

h(ξ) =
q− cosh

(
ξ−z
a

)
− q+ cosh

(
ξ+z
a

)
a(q− − q+) sinh

(
2z
a

) .

It is straightforward to show that the limit as γ → 0+ is

h(ξ) =
q−

(q− − q+)
δ(ξ + z)− q+

(q− − q+)
δ(ξ − z), (30)

in the sense of distributions (with delta functions at ±z). One can show this directly by
substituting the ansatz h(ξ) = α+δ(ξ+z)+α−δ(ξ−z) (with α± unknown constants) into
the first-kind approximate equation

∫ z

−z
h(s)q̂(ξ − s)ds = 0, |ξ| < z. This determines α±

and yields (29) and (30).
One shows that even derivatives of q are continuous at 0. If we add a quadratic

term q2ξ
2 to the piecewise linear kernel approximation (24), the above procedure can be

repeated with similar results. The analogue of (30) now takes the form

h(ξ) = α+δ(ξ+z)+α−δ(ξ−z)+ζ, ζ =
2q2

q+ − q−
, α± =

q+ − q− − 4q2z

2(q+ − q−)
∓ q+ + q−
2(q+ − q− + 4q2z)

and z is a root of the quartic equation

(q+ − q−)q0 + (4q2q0 − 2q+q−)z −
32q22
3
z3 − 32q32

3(q+ − q−)
z4 = 0.
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Note that for q2 = 0 the last two equations reduces to (30) and (29). It turns out that
only the smallest positive root z of this quartic equation gives rise to traveling waves
satisfying the generalized admissibility conditions (15); this root is well approximated by
that of (29).

Another possibility is to consider a kernel in the form of a sum of exponentials, but
containing only a finite number N of terms from (20). In that case, (21) can be solved
analytically. The procedure is described in detail in the Appendix and is not confined
to the case of small z. Unfortunately, this approach involves matrix computations that
become progressively more difficult computationally as N is increased. Instead, in the
following section we solve (21) numerically, using the analytical method of the Appendix
to validate our numerical computations.

5 Numerical results

We now consider the general case where z is not necessarily small.
For given V > 0, the solution h(ξ) and z of (21) was found numerically as follows. Since

there are infinitely many roots of (12), it was necessary to approximate the kernel (20) by
retaining the first N roots of (12) nearest the origin. To get an accurate approximation of
the kernel q(ξ) near ξ = 0, it was necessary to include a large number of roots (N = 400
was typically used). The trapezoidal approximation of the integral equation for a finite z
(with 400 uniformly distributed mesh points) then yielded a homogeneous linear system
Q(z)h = 0. Here h is the vector of values of h(s) at the mesh points. Solving detQ(z) = 0
for z, we obtained the corresponding h normalized to satisfy (17) in the sense of the
trapezoidal approximation. In general, there were more than one root of detQ(z) = 0, but
at most one of these yielded admissible solutions that satisfied the generalized admissibility
conditions (15) within numerical error. Once the admissible z and h were found, the
trapezoidal approximation of the integrals in (22) and (23) was used to compute the
solution u(ξ) and the applied stress σ. Fig. 3 shows the solution u(ξ) obtained at V = 0.2
and µ = 1 (black curve) along with the inadmissible Atkinson-Cabrera solution U(ξ)
(z = 0, grey curve). In this case z = 0.21. One can see that the obtained solution satisfies
the constraints (15) within numerical error (which is of the order of 10−7 in this case).

Repeating this procedure for a range of velocities, we obtain the kinetic relation σ(V )
and the corresponding relation z(V ) between z and V shown in Fig. 4. Note that z(V )
decreases as V grows and becomes zero at V = V0 ≈ 0.357. This is the threshold velocity
such that q(0) = 0, which equals the bifurcation velocity as predicted in Sec. 4. At
V ≥ V0, the Atkinson-Cabrera solutions are admissible, and we have z = 0 and σ = Σ(V )
(thick segments in Fig. 4). Interestingly, for V below V0 we obtained admissible solutions
with z > 0 even in the immediate vicinity of the resonance velocities. At these velocities,
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Figure 3: (a) Traveling wave solution u(ξ) at V = 0.2, µ = 1 with z = 0.21 (black curve),
shown together with inadmissible z = 0 solution U (grey curve). (b) Zoom-in of the
z = 0.21 solution inside the rectangle in (a).
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Figure 4: (a) Kinetics relation σ(V ) and (b) the corresponding z(V ) at µ = 1. The thicker
segments above the threshold velocity V0 ≈ 0.357 indicate the parts of the curves that
correspond to Atkinson-Cabrera solutions (z = 0).
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Figure 5: Comparison of the kinetic relation σ(V ) (black curve) generated by the new
solutions to the relation Σ(V ) (grey lines) obtained from Atkinson-Cabrera solutions. The
two curves coincide above the threshold velocity V0 ≈ 0.357. The grey curve corresponds
to inadmissible Atkinson-Cabrera solutions below V0. Here µ = 1.

the Atkinson-Cabrera kinetic relation Σ(V ) is inadmissible and has singularities, while
the kinetic relation σ(V ) based on the present admissible solutions has cusps; see Fig. 5.

The computed shape function h(s) corresponding to velocity V = 0.353 (z = 0.0026)
is shown in Fig. 6a. Note that it approximates the delta-function behavior at s = ±z
that was predicted in Sec. 4. As V decreases, the shape functions develop oscillations due
to the increasingly oscillatory behavior of q(ξ) at smaller V ; see, for example, Fig. 6b for
h(s) at V = 0.2, which corresponds to the solution shown in Fig. 3.

To see the effect of the number of roots included in the truncated kernel, we re-
peated the simulation with N = 40 roots. The resulting kinetic relations are compared
in Fig. 7a,b. One can see that the two relations are very close everywhere except at
quite small velocities V < 0.05, where inclusion of only 40 roots does not approximate
the Atkinson-Cabrera solution well enough. In contrast, there is a noticeable difference
between the corresponding z(V ) curves (see Fig. 7c). The lower values of z when fewer
roots are included are due to the slow convergence of the kernel q(ξ) in (20) near ξ = 0. In
particular, one obtains a lower threshold value V0, where z becomes zero, as the number
of roots in the truncated kernel is decreased.

Nevertheless, we can use computations with a small number of roots to verify our
numerical procedure by comparing shape functions computed numerically with the ones
obtained using the semi-analytical method described in the Appendix. The results for
N = 8 and N = 44 roots are shown in Fig. 8, where the numerical results (thin curves)
are compared to the regular part h0(x) of the semi-analytical shape function h(x) =
α+δ(x + z) + α−δ(x − z) + h0(x), shown by the thick curve, at V = 0.245. One can see

14



-0.002 -0.001 0.001 0.002

-4000

4000

-0.2 -0.1 0.1 0.2

-5

5

h

s

h

s

(a) (b)

Figure 6: Shape functions h(s) in the interval [−z, z] at (a) V = 0.353, z = 0.0026 and
(b) V = 0.2, z = 0.21. Here µ = 1.

that the shape functions obtained using the two methods agree very well (the difference
is below 0.0004% in (a) and 0.007% in (b)). Observe, however, that including more roots
resulted in a more oscillatory function and, as remarked above, higher value of z.

Finally, we consider the bifurcation diagram for z(V ) near the threshold velocity V0.
To obtain accurate results near this threshold, one needs to include an even larger number
of roots in the truncated kernel that approximates (20). Instead, we compute q(ξ) using
numerical evaluation of the integral representation of the kernel without truncating roots,
and compare the resulting zN(V ) obtained using the trapezoidal rule (solid curve) to the
curve zL(V ) obtained from (25) using the linear approximation of the kernel (dashed line)
in Fig. 9. As one can see, the two curves become closer as we approach the threshold
velocity from below.

6 Stability of traveling wave solutions

To investigate the stability of the new type of traveling waves, we conducted a series of
numerical simulations, since in general it is quite difficult to check stability of traveling
waves analytically [2]. For a given applied stress σ, we used the Verlet algorithm (a
symplectic scheme) to solve the system (1) of ordinary differential equation for a truncated
lattice with N masses, ranging from N = 600 to 2000, depending on the time of the
simulation. A longer chain was used if the simulation ran for a long time, in order to
avoid reflection of elastic waves from the domain boundaries. The boundary conditions
were u0 = σ+1 and uN = σ− 1. Two types of initial conditions were used. The first one
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Figure 7: (a) Comparison of the numerical results at µ = 1 obtained using the truncated
kernel with N = 400 (solid curves) and N = 40 roots (dashed curves): (a) kinetic relations
σ(V ); (b) the difference between the two relations; (c) the corresponding z(V ) curves.
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(dashed line) near the bifurcation point V0 ≈ 0.357. Here µ = 1.
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was Riemann-type piecewise constant initial displacement and zero initial velocity:

(un(0), u̇n(0)) =


(σ + 1, 0) 0 ≤ n < n0

(0, 0), n = n0,

(σ − 1, 0), n0 < n ≤ N

(31)

where n0 = N/2 for even N . Numerical simulations with these initial data sought to
identify stable states at a given loading that have a relatively wide basin of attraction. To
capture other possibly stable states that coexist with solutions found using (31) but have
a more narrow basin of attraction, and to identify solutions that are likely to be unstable,
we used a second type of initial conditions, that were built from the obtained traveling
wave profiles un(t) = u(n− V t):

(un(0), u̇n(0)) =


(σ + 1, 0) 0 ≤ n < p

(u(n− n0),−V u′(n− n0)) p ≤ n ≤ N − p.

(σ − 1, 0) N − p < n ≤ N

(32)

The truncated traveling wave solutions were surrounded by intervals of constant dis-
placement of appropriately chosen size p < n0 in order to ensure compatibility with the
boundary conditions and avoid wave reflection from the boundaries. In both types of sim-
ulations, after a sufficiently long time, the solution approached an attractor corresponding
to either a stationary dislocation (zero velocity) or a steadily moving front.

The results are shown in Fig. 10. One can see that when the applied stress is below a
certain threshold σD (here σD = 0.128), the long-time solution features a stationary front.
For example, in the simulations with piecewise-constant initial conditions (31) the front
propagates for some time (which increases as we approach the σD from below) and then
becomes stationary. This is ullustrated in Fig. 11, which shows the position ν(t) of the
front (defined as the value of n such that un(t) > 0 and un+1(t) < 0) at σ = 0.125 and
σ = 0.1275. In general, stable stationary solutions exist when σ is inside the trapping
region |σ| ≤ σP, where σP =

√
µ/(4 + µ) (≈ 0.447 for µ = 1) is the Peierls stress [17].

The fact that σD < σP has been observed in earlier works, e.g. [5, 3]. The trapping region
is marked by a thick segment along V = 0 in Fig. 10.

When stress is above the threshold value (σ ≥ σD), the solution approaches a steady
dislocation motion after some time. For example, at σ = 0.14, the long-time solution
features the dislocation moving steadily with velocity V = 0.54; see Fig. 12. Comparison
of the numerical solution zoomed in around the front (circles) and the corresponding
traveling wave solution (solid curve) in Fig. 12b shows excellent agreement, indicating
stability of the traveling wave. In general, our simulations indicate that at stresses above
σD all traveling waves are stable. Note that the threshold value σD (the dynamic Peirels
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Figure 10: (a) Results of the numerical simulations at µ = 1 with initial data (31) (black
circles) and (32) (grey circles), shown together with the kinetic curve. (b) Zoom-in inside
the rectangle in part (a). Thick black segment along V = 0 axis indicates the trapping
region. Thinner portion of the kinetic curve corresponds to the solutions with z > 0.

50 100 150

2

4

6

8

10

12

50 100 150

10

20

30

n

t

n

t

(a) (b)

Figure 11: Position ν(t) of the dislocation at (a) σ = 0.125 and (b) σ = 0.1275 in the
numerical simulations. Here µ = 1.
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Figure 12: (a) Displacement profiles (solid lines) at t = 0 and t = 400 for the numerical
simulation at µ = 1 and σ = 0.14. (b) The numerical solution (circles) at t = 600 zoomed
in around the dislocation front and compared to the traveling wave solution (solid curve)
with the same velocity, V = 0.54.

stress) corresponds to a local minimum of the kinetic curve, as hypothesized in [1], and
is below the Peierls stress σP, implying that stable stationary states and stable steady
motion coexist at stresses between the two values. Similar stability results were reported
in [3] for simulations that include a viscosity term. A proof of stability of traveling waves
with sufficiently high velocities, which for technical reasons does not extend to the whole
σ ≥ σD region, can be found in [2].

Note that inside the stability interval σ ≥ σD suggested by the numerical simulations,
all traveling waves have z = 0. Under initial data (32) based on the new-type traveling
wave solutions with z > 0, numerical simulations always converged to attractors with
stationary fronts. Our results thus suggest that such solutions are likely to be unstable.
We remark, however, that some low-velocity solutions apparently become stable when a
sufficiently wide spinodal region is included [11, 15].

7 Effect of viscosity

We now consider the effect of adding viscosity to the model on kink solutions and their
stability. The rescaled governing equations become

ün + αu̇n = un+1 − 2un + un−1 + µ(σ − Φ′(un)), (33)

where α > 0 is the dimensionless viscosity coefficient. Traveling wave solutions are given
by (10), (14) for z = 0 and by (22), (23) for z > 0, with (12) replaced by

L(k, V ) = µ+ 4 sin2 k

2
− V 2k2 − ikαV. (34)
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Figure 13: (a) Kinetic relation σ(V ) at µ = 1 and different values of the viscosity coef-
ficient α. (b) Zoom-in on the curves with α = 0 and α = 0.01. Thicker portions of the
kinetic curves correspond to solutions with z = 0.

In this case there are no real roots; at small α the roots shift away from the real axis into
upper and lower halves of the complex plane according to the radiation condition [9].

The effect of viscosity on the kinetic relation is shown in Fig. 13. As expected, viscosity
smoothens the cusps at the resonance velocities. The amplitude of oscillations that are
very pronounced in the kinetic curves at small α decreases as α increases; the velocity V0
at which z = 0 solutions become admissible decreases as well. See also the corresponding
z(V ) graph in Fig. 14a. At sufficiently large α we have V0 = 0, so that all z = 0 solutions
become admissible.

The value of V0 also becomes smaller as we decrease µ, as shown in Fig. 14b. Another
effect of the parameter µ is the different values of the resonance velocities.

The stability picture is not significantly affected by α and µ. See, for example, Fig. 15,
where µ = 0.5 and α = 0.1. As before, only sufficiently fast z = 0 solutions, above the
last local minimum of the kinetic curve, appear to be stable.
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A Appendix: Exact solution of the integral equation

with truncated exponential kernel

Suppose that in (11) we truncate the roots so that we keep an equal number of complex
roots in M+(V ) and M−(V ). Due to the presence of real roots, M+(V ) and M−(V ) will
contain a different number of roots of L(κ, V ) = 0. Suppose that after truncation we keep
a total number N of roots κn, M of which are in M+(V ) and N −M are in M−(V ), i.e.,

κn ∈

{
M+(V ) for n = 1, . . . ,M,

M−(V ) for n =M + 1, . . . , N
(A.1)

Let
kn = iκn, An = 2µi/Lκ(κn, V ) (A.2)

and define, in view of (20),

q(ξ) =


q+(ξ) =

M∑
n=1

Ane
knξ, ξ > 0,

q−(ξ) =
N∑

n=M+1

(−An)e
knξ, ξ < 0.

(A.3)

Because q(ξ) is not smooth at 0, we observe that∫ z

−z

q(ξ − s)h(s)ds =

∫ ξ

−z

q+(ξ − s)h(s)ds+

∫ z

ξ

q−(ξ − s)h(s)ds,

and each of the last two integrals has a C∞ kernel and can be differentiated. The same is
true for the integrals

In(ξ) =

∫ ξ

−z

Ane
kn(ξ−s)h(s)ds, n = 1, . . . ,M,

In(ξ) =

∫ z

ξ

(−An)e
kn(ξ−s)h(s)ds, n =M + 1, . . . , N.

(A.4)

In view of them and (A.2), (A.3), the integral equation
∫ z

−z
q(ξ−s)h(s)ds = f(ξ) becomes

N∑
n=1

In(ξ) = f(ξ), |ξ| < z, (A.5)

where f is either identically zero or a given function or γh for the problem considered in
[15] and here in Section 4. Differentiate (A.4) with respect to ξ using the Leibnitz Rule
to find

I ′n(ξ) = Anh(ξ) + knIn(ξ). (A.6)
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Then differentiate the integral equation (A.5) and use (A.6) to eliminate I ′n. Repeat
N − 1 times so that together with (A.5) we have N equations where we have used (A.6)
to eliminate I ′n after each differentiation [12]. Letting

f (m)(ξ) = dmf(ξ)/dξm

for m = 0, 1, . . . , the resulting system of N equations for In is

N∑
n=1

km−1
n In(ξ) = f (m−1)(ξ)−

m−1∑
p=1

[
h(p−1)(ξ)

N∑
n=1

km−1−p
n An

]
, m = 1, . . . , N. (A.7)

For m = 1 the right sum above is understood to vanish. The right-hand side is a linear
combination of derivatives of h and f . The coefficient matrix of In in the left-hand side
is the N ×N Vandermonde matrix evaluated at the roots:

[Vmn] = [km−1
n ] =


1 1 · · · 1
k1 k2 · · · kN
k21 k22 · · · k2N
...

...
. . .

...
kN−1
1 kN−1

2 · · · kN−1
N

 . (A.8)

Whenever all roots are distinct this matrix is invertible. Solving (A.7) for In yields
expressions of the form

In = Ln[h]− L̃n[f ], n = 1, . . . , N, (A.9)

where Ln and L̃n (n = 1, . . . , N) are linear differential operators of order N−2 and N−1,
respectively, with constant coefficients depending on km and Am. Differentiate the last of
(A.7) (m = N) once more and use (A.6) to eliminate I ′n to find

N∑
n=1

kNn In(ξ) = f (N)(ξ)−
N∑
p=1

[
h(p−1)(ξ)

N∑
n=1

kN−p
n An

]
. (A.10)

Substitute (A.9) into (A.10), collect terms with h and its derivatives on the left, f and
its derivatives on the right to arrive at an equation of the form

L[h] = G[f ], (A.11)

where L is a linear differential operator of order at most N−1 and G is a linear differential
operator of order N , both with constant coefficients depending on km and Am (shown
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explicitly in (A.23) and (A.24) below). Thus any solution h of (A.5) satisfies the ODE
(A.11) of order N − 1. Next note from (A.4) that

In(−z) =0, n = 1, . . . ,M,

In(z) =0, n =M + 1, . . . , N.
(A.12)

Together with (A.9) this yields N boundary conditions for h:

Ln[h](−z) =L̃n[f ](−z), n = 1, . . . ,M,

Ln[h](z) =L̃n[f ](z), n =M + 1, . . . , N.
(A.13)

These are of order N−2 for h (shown explicitly in (A.25) below). Hence any solution h of
(A.5) necessarily satisfies ODE (A.11) with boundary conditions (A.13). Conversely, let
h satisfy (A.11), (A.13). Define In by (A.9). Then they satisfy (A.7), (A.10) and (A.12).
Differentiate (A.7) and subtract from it (A.7) with m replaced by m+1 (subtract (A.10)
if m = N) to find after some calculation

N∑
n=1

km−1
n [I ′n(ξ)− knIn(ξ)− Anh(ξ)] = 0, m = 1, . . . , N.

This is a homogeneous linear system for the terms in brackets, whose coefficient matrix
is the invertible Vandermonde matrix. Hence the term in brackets above must vanish for
each m, therefore (A.6) holds. The unique solution of the IVP (A.6), (A.12) for In(ξ)
with h given is (A.4). But since In satisfies (A.9), setting m = 1 in the latter yields (A.5).
We have shown that h ∈ CN−1(−z, z) is a solution of (A.5) if and only if it satisfies the
2-point BVP (A.11), (A.13).

Observe that the ODE is of order at most N − 1 for h, but there are N boundary
conditions. Consider the eigenvalue problem of replacing f(ξ) with γh(ξ) in (A.5), (A.11),
(A.13). Recalling that G is an N th order operator, we obtain an N th order ODE for h,
L[h]−γG[h] = 0 with N boundary conditions of order N−1 and the difficulty is removed.
Note that in this ODE γ multiplies the highest (N th) derivative of h, so the limit as γ → 0
is to be taken with care. The N constants of the general solution of L[h]−γG[h] = 0 now
satisfy N homogeneous linear equations (from (A.13)) which only have the trivial solution
unless the determinant of the coefficient matrix vanishes, which is an algebraic equation of
the form ψ(γ, z) = 0 (the constants are then nonunique unless the normalization condition
(17) is enforced.)

Presumably ψ(γ, z) = 0 can be solved for γ in terms of z. We showed in Section 4 for
a piecewise linear kernel, that as γ → 0 and z approaches a positive value z0, such that
ψ(0, z0) = 0, h, which is a combination of real exponentials, tends to two delta functions
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at ±z. Assuming that this also occurs here, suppose that the solution to the homogeneous
integral equation

N∑
n=1

In(ξ) = 0, |ξ| < z (A.14)

is of the form
h(s) = α+δ(s+ z) + α−δ(s− z) + h0(s), |ξ| < z, (A.15)

where δ is a delta function and h0 is suffieciently smooth. For the piecewise quadratic
kernel considered in Section 4 , h0 is a constant. Here α± are unknown constants while
the normalization condition (17) becomes∫ z

−z

h0(s)ds = 1− α+ − α−. (A.16)

In view of (A.15) h0 in place of h in (A.5) solves the integral equation

N∑
n=1

In(ξ) = −α+

M∑
n=1

Ane
kn(ξ+z) − α−

N∑
n=M+1

(−An)e
kn(ξ−z), |ξ| < z. (A.17)

Suppose Sj, j = 0, . . . , N , is the jth elementary symmetric function of k = (k1, . . . , kn) ∈

IRN (S0 = 1, S1 =
N∑

n=1

kn, ... , SN =
∏N

n=1 kn). Namely, Sj are the fundamental scalar

invariants of the diagonal N × N matrix diag(k) with diagonal entries ki. Then its
characteristic polynomial is

P (x) = det (xI− diag(k)) =
N∏

n=1

(x− kn) =
N∑

n=0

(−1)N−nSN−nx
n, x ∈ IR, (A.18)

where I is the N ×N identity matrix. Let K = N − 1 and

k/i = (k1, . . . , ki−1, ki+1, . . . , kn) ∈ IRK

(obtained by removing ki from k). The characteristic polynomial of the K × K matrix
diag(k/i) is

Pi(x) =
P (x)

(x− ki)
= det

(
xI− diag(k/i)

)
=

K∑
n=0

(−1)K−nS(K−n,i)x
n, x ∈ IR.

Here S(j,i) is the jth elementary symmetric function of k/i with S(0,i) = 1 and I is the
K×K identity matrix. Then the inverse of the Vandermonde matrix (4) has components
[6]

Wij =
(−1)N−jS(N−j,i)

Pi(ki)
. (A.19)
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In particular, letting the ith Lagrange polynomial be li(x) = Pi(x)/Pi(ki), Wij equals the
coefficient of xj−1 in li(x):

li(x) =
N∑
j=1

Wijx
j−1 =

Pi(x)

Pi(ki)
. (A.20)

It can be shown that
N∑
i=1

kNi S(N−m,i)

Pi(ki)
= SN+1−m, m = 1, . . . , N.

From this and (A.19) it follows that the solution Jn of
N∑

n=1

km−1
n Jn = dm satisfies

N∑
n=1

kNn Jn =
N∑

m=1

(−1)N−mSN+1−mdm. (A.21)

Next we write the differential operators in (A.11), (A.13) more explicitly. Letting dm
equal the right-hand side of (A.7), and letting

v0 = 0, vq =
N∑

n=1

kq−1
n An, q = 1, . . . N, (A.22)

substitute into (A.21) with m = p+ 1 and subtract the result from (A.10) to find

N∑
p=0

(−1)N−pSN−p

[
f (p)(ξ)−

p−1∑
n=0

vp−nh
(n)(ξ)

]
= 0, (A.23)

or
N∑
p=0

(−1)N−pSN−p

p−1∑
n=0

vp−nh
(n)(ξ) =

N∑
p=0

(−1)N−pSN−pf
(p)(ξ). (A.24)

The above is the explicit form of the differential equation (A.11). Observe that it is of
order N − 1 in h but order N in f .

Next we express the boundary conditions explicitly. Recall that the solution Ji of∑N
n=1 k

i−1
j Jj = di is Ji =

∑N
j=1Wijdj with Wij as in (17). The boundary conditions

(A.12) become, with K = N − 1,

K∑
p=0

(−1)K−pS(K−p,i)

[
p−1∑
n=0

vp−nh
(n)(−z)− f (p)(−z)

]
= 0, i = 1, . . . ,M,

K∑
p=0

(−1)K−pS(K−p,i)

[
p−1∑
n=0

vp−nh
(n)(z)− f (p)(z)

]
= 0, i =M + 1, . . . , N.

(A.25)

27



We now consider the symmetries of the root sets M±(V ), N±(V ) in (11) and (13).
Let M±

c (V ) = M±(V ) − N±(V ). Then (recall kn = iκn) κ ∈ M+
c (V ) if and only if

−κ ∈ M−
c (V ). Also κ ∈ M±

c (V ) if and only if −κ ∈ M±
c (V ), respectively. In addition

κ ∈ N±(V ) if and only if −κ ∈ N±(V ), respectively. Suppose we keep these symmetries in
the truncated set of roots. Hence for some integers R±, C we will have: M = 2R++2C+1
is the number of roots inM+(V ), N−M = 2R−+2C+1 is the number of roots inM−(V ).
Here R± is the number of real positive roots in N±(V ), respectively; C is the number
of complex roots in the first quadrant and there is one purely imaginary root in each of
M±(V ); see [9] for details. Recall that q±(ξ) and their even derivatives are equal at ξ = 0.
This implies that all odd coefficients vm in (A.22) vanish:

v2q+1 =
N∑

n=1

k2qn An = 0, q = 0, 1, . . . (A.26)

In particular,
∑N

n=1An = 0 and the coefficient of the highest order derivative h(N−1) in
(A.23),(A.24) and h(N−2) in (A.25) vanishes. Hence ODE (A.24) is of order N − 2 in h
and BC (A.25) of order N − 3 (but still of order N and N − 1, respectively, in f). This
is important. The general solution of the ODE will have N − 2 undetermined constants,
which together with α± in (A.15) and z comprise N + 1 constants. These are to satisfy
the N + 1 conditions (A.25), (A.16).

We turn to the problem for the regular part h0 of h; see (A.15) through (A.17). Letting
Dnf = f (n), the right hand side of (A.11) or (A.24) above is G[f ] = P (D)[f ] where P
is the polynomial in (A.18).Observe that for f equal to the right-hand side of (A.17),
G[f ] ≡ 0 since P (kn) = 0. Hence (A.24) becomes homogeneous :

N∑
p=0

(−1)N−pSN−p

p−2∑
n=0

vp−nh
(n)
0 (ξ) = 0, −z < ξ < z. (A.27)

The boundary conditions do not; however in the ith equation of (A.25) the term involving
f is Pi(D)[f ] (see (A); here D is the derivative operator). Note that Pi(kj) = 0 if i ̸= j,
hence we obtain (with K = N − 1):

K∑
p=0

(−1)K−pS(K−p,i)

p−2∑
n=0

vp−nh
(n)
0 (−z) = −α+AiPi(ki), i = 1, . . . ,M,

K∑
p=0

(−1)K−pS(K−p,i)

p−2∑
n=0

vp−nh
(n)
0 (z) = −α−(−Ai)Pi(ki), i =M + 1, . . . , N.

(A.28)

In (A.27), (A.28) the summation over n has upper limit p − 2 in view of (A.26). It is
understood that the sum is zero for p < 2.
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The N conditions (A.28) comprise a homogeneous system for the N − 2 coefficients of
the general solution h0 of (A.27) together with α

±. For nontrivial solutions a determinant
involving z has to vanish; this determines z. The resulting loss of uniqueness in the
solution of the system is hopefully removed by the additional equation (A.16).
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