Problem 1. Let \(\{f_n\} \) be a sequence of \(C^\infty \) functions on a compact interval \(I \) such that for each \(k \geq 0 \) there exists \(M_k \) such that
\[
|f^{(k)}_n(x)| \leq M_k \quad \text{for all } n \text{ and } x \in I.
\]
Prove that there exists a subsequence converging uniformly, together with the derivatives of all orders, to a \(C^\infty \) function.

Hint: A function \(f \) is \(C^\infty \) means that \(f \in C^k \) for all \(k \). You may consider using a diagonalization argument.

Problem 2. Compute the surface integral
\[
I = \iint_{\Sigma} \frac{x dydz + y dzdx + z dxdy}{(x^2 + y^2 + z^2)^{3/2}}
\]
for each of the following cases:

1. \(\Sigma = \{ (x, y, z) : x^2 + y^2 + z^2 = t^2 \} \);
2. \(\Sigma = \partial V \) where \(V \) is a bounded smooth closed region that does not include the origin;
3. \(\Sigma = \partial V \) where \(V \) is a bounded smooth closed region that contains the origin.

Problem 3. Assume \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuous function. Given that for all \(x, y \in \mathbb{R}^n \) we have
\[
f\left(\frac{x + y}{2}\right) \leq \frac{1}{2}f(x) + \frac{1}{2}f(y),
\]
show that actually for any \(\lambda \in [0, 1] \), and any \(x, y \in \mathbb{R}^n \) we have
\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).
\]

You don’t need to use any convexity properties, but if you do: you must prove all of them. You can not assume that \(f \) is differentiable.

Hint: The result is obviously true for \(\lambda = 1/2 \). You may try proving it for \(\lambda = 1/4 \) and \(3/4 \), and from there to try to find a pattern.

Problem 4.

(a) Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be a continuous map. Assume that \(U \subset \mathbb{R}^n \) is connected. Show that \(f(U) \subset \mathbb{R}^m \) is connected.

(b) Show that there is no \(f : \mathbb{R}^2 \to \mathbb{R} \) such that

- \(f \) is continuous
- \(f \) is injective
- for any open set \(U \subset \mathbb{R}^2 \) we have \(f(U) \) is open
Problem 5. Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices. Prove that there are neighborhoods U and V of the identity matrix I_n such that for every $A \in U$ there is a unique $X \in V$ such that $X^4 = A$, where here X^4 is a matrix power.

Hint: Implicit or inverse function theorem.

Problem 6. Let $F = (F_1, \ldots, F_n) : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable mapping satisfying $F(0) = 0$. Suppose that

$$
\sum_{i,j=1}^{n} \left| \frac{\partial F_i}{\partial x_j}(0) \right|^2 = c < 1.
$$

Prove that there is a ball B in \mathbb{R}^n centered at 0 such that

$$
f(B) \subset B.
$$

Hint: Note that here F may NOT be C^1, and hence no implicit/inverse function theorem. Try using differentiability.