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Abstract

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second
order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine
grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences
on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux
between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an
appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the
fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some
superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain
decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis.
Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of
the method.

keywords. multiscale, mixed finite element, mortar finite element, multipoint flux approximation, cell-
centered finite difference, full tensor coefficient, multiblock, nonmatching grids, quadrilaterals, hexahedra.

1 Introduction

We consider a second order linear elliptic equation written in a mixed form. Introducing a flux variable, we
solve for a scalar function p and a vector function u that satisfy

u = −K∇p in Ω, (1.1)

∇ · u = f in Ω, (1.2)

p = g on ∂Ω, (1.3)

where Ω ⊂ R
d, d = 2, 3, is a polygonal domain with Lipschitz continuous boundary and K is a symmetric,

uniformly positive definite tensor with L∞(Ω) components, satisfying, for some 0 < k0 ≤ k1 <∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω ∀ξ ∈ R
d. (1.4)

We assume that f ∈ L2(Ω) and g ∈ H1/2(∂Ω). The choice of Dirichlet boundary condition is made for
simplicity. More general boundary conditions can also be treated. In porous media applications, the system
(1.1) – (1.3) models single phase Darcy flow, where p is the pressure, u is the velocity, and K represents the
rock permeability divided by fluid kinematic viscosity.
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To alleviate the computational burden due to the solution dependence on a large range of scales, a
multiscale mortar mixed finite element method for the the numerical approximation to (1.1)–(1.3) was
developed in [9], using mortar mixed finite elements [7] and non-overlapping domain decomposition [32]. In
this paper we develop a new multiscale mortar mixed method that uses the multipoint flux mixed finite
element (MFMFE) [53, 37] for subdomain discretization.

The MFMFE method was motivated by the multipoint flux approximation (MPFA) method [4, 5, 25, 26].
The latter method was originally developed as a non-variational finite volume method. It is locally mass
conservative, accurate for rough grids and coefficients, and reduces to a cell-centered system for the pressures.
In that sense it combines the advantages of MFE and several MFE-related methods.

MFE methods [19, 46] are commonly used for flow in porous media, as they provide accurate and locally
mass conservative velocities and handle well rough coefficients. However, the resulting algebraic system
is of saddle point type and involves both the pressure and the velocity. Various modifications have been
developed to alleviate this problem, including the hybrid MFE method [12, 19] that reduces to a symmetric
positive definite face-centered pressure system, as well as more efficient cell-centered formulations based
on numerical quadrature for the velocity mass matrix in the lowest order Raviart-Thomas [49, 45, 44]
(RT0) case [47, 51, 10, 8, 13]. In terms of efficiency, the cell-centered methods are comparable to the finite
volume methods [28]. All of the above mentioned cell-centered methods exhibit certain accuracy limitations,
either in terms of grids or coefficients (full tensor or discontinuous). Two other family of methods that are
closely related to the RT0 MFE method and perform well for rough grids and coefficients are the control
volume mixed finite element (CVMFE) method [21] and the mimetic finite difference (MFD) methods [36].
However, as in the case of MFE methods, both methods require solving algebraic saddle point problems in
their standard form.

The MPFA method handles accurately very general grids and discontinuous full tensor coefficients and
at the same time reduces to a positive definite cell-centered algebraic system for the pressure. The analysis
of the MPFA method has been done by formulating it as a MFE method with a special quadrature, see
[53, 39] for the symmetric version on O(h2)-perturbations of parallelograms, [40] for non-symmetric version
on general quadrilaterals, and [52] for non-symmetric version on general hexahedra. A non-symmetric MFD
method on polyhedral elements that reduces to a cell-centered pressure system using a MPFA-type velocity
elimination is developed and analyzed in [42].

Here we use for subdomain discretizations the MFMFE method developed in [53] for simplicial elements
and quadrilaterals and extended in [37] to hexahedra, see also closely related method on simplicial elements
[20]. Since the MPFA method uses sub-edge or sub-face fluxes to allow for local flux elimination, the
MFMFE method is based on the lowest order Brezzi–Douglas–Marini space, BDM1 [18], and its extension to
hexahedra, BDDF1 [17, 37], which have similar velocity degrees of freedom. The BDDF1 space was enhanced
in [37] with six additional curl basis functions. The resulting space has bilinear normal traces on the faces,
thus four degrees of freedom per face, which allows for a MPFA-type local velocity elimination. This is done
via a special quadrature rule for the velocity mass matrix that reduces it to a block-diagonal form, with
blocks corresponding to the mesh vertices. As a result, the velocity can be easily eliminated, leading to a
cell-centered system for the pressure.

The permeability K in (1.2) is usually highly heterogeneous and varies on a multiplicity of scales. Re-
solving the solution on the finest scale is often computationally infeasible, necessitating multiscale approx-
imations. In this paper we develop a new multiscale mortar MFMFE method. The approach is similar
to the one in [9] for the multiscale mortar mixed finite element method. The latter was developed as an
alternative to existing multiscale methods, such as the variational multiscale method [35, 6] and multiscale
finite elements [34, 22, 38, 2, 1]. In the multiscale mortar approach, the domain is decomposed into a series
of small subdomains (coarse grid) and the solution is resolved globally on the coarse grid and locally (on
each coarse element) on a fine grid. We allow for geometrically nonconforming domain decompositions and
non-matching grids across the interfaces. Continuity of flux is imposed weakly using a low degree-of-freedom
mortar space defined on a coarse scale mortar grid. Mortar methods were first introduced in [14] for Galerkin
finite elements. In this paper we consider the MFMFE method for subdomain discretizations. In this con-
text, special care needs to be taken in imposing weak flux continuity through the mortar space. In particular,
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the method requires that the jump of the RT0-projections of the BDM1 or BDDF1 fluxes be orthogonal to
the mortar space. This condition is needed to ensure stability and accuracy of the method.

We solve the algebraic system resulting from the multiscale mortar MFMFE method via a non-overlapping
domain decomposition algorithm [32, 7, 9]. By eliminating the subdomain unknowns, the global multiscale
problem is reduced to a coarse interface problem, which is solved using an iterative method. Employing
the approach from [30], we precompute a multiscale flux basis by solving in each subdomain Dirichlet fine
scale local problems for each mortar degree of freedom associated with that subdomain. The subdomain
problems are easy to solve due to their relatively small size. Furthermore, this is done in parallel without any
interprocessor communication. Computing the action of the interface operator on every interface iteration
is then reduced to a linear combination of the multiscale flux basis. The resulting method combines the
efficiency of the multiscale mortar methodology with the accuracy and flexibility of the MFMFE subdomain
discretizations.

We present a priori error analysis of the multiscale mortar MFMFE approximation. By using a higher
order mortar approximation, we are able to compensate for the coarseness of the grid scale and maintain good
(fine scale) overall accuracy. In particular, let m be the degree of the mortar approximation polynomial, let
h be the size of the fine scale subdomain grids, and let H be the size of coarse mortar grid on the interface.
We show that the the velocity and pressure errors are O(Hm+1/2 + h). On certain elements at certain
discrete points we also show O(Hm+1/2 + hH1/2) velocity superconvergence and O(Hm+3/2 + hH) pressure
superconvergence.

The paper is organized as follows. In Section 2 we present the variational formulation. The subdomain
MFMFE discretization is described in Section 3. In Section 4 we introduce the multiscale mortar MFMFE
method. Various approximation properties are presented in Section 5. The error analysis is developed in
Section 6. A non-overlapping domain decomposition algorithm for solving the multiscale algebraic system is
given in Section 7. The error in the mortar pressure is also analyzed in that section. The paper ends with a
series of numerical experiments in Section 8.

Throughout this paper, we use for simplicity X . (&) Y to denote that there exists a constant C,
independent of mesh sizes h and H , such that X ≤ (≥) CY . The notation X h Y means that both X . Y
and X & Y hold.

For a domain G ⊂ R
3, the L2(G) inner product and norm for scalar and vector valued functions are

denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of the Sobolev spaces W k,p(G), k ∈ R,
p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively. The norms and seminorms of the Hilbert spaces
Hk(G) are denoted by ‖ ·‖k,G and | · |k,G, respectively. We omit G in the subscript if G = Ω. For a section of
the domain, subdomain, or element boundary S ⊂ R

2 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product
(or duality pairing) and norm, respectively. For a tensor-valued function M , let ‖M‖α,∞ = maxi,j ‖Mij‖α

for any norm ‖ · ‖α. Furthermore, let

H(div;G) =
{
v ∈ (L2(G))d : ∇ · v ∈ L2(G)

}
, ‖v‖H(div;G) =

(
‖v‖2

G + ‖∇ · v‖2
G

)1/2
.

2 Multidomain variational formulation

A weak formulation of (1.1)–(1.3) can be written as: find u ∈ H(div; Ω) and p ∈ L2(Ω), such that

(K−1u,v) − (p,∇ · v) = −〈g,v · n〉∂Ω, ∀v ∈ H(div; Ω), (2.1)

(∇ · u, w) = (f, w), ∀w ∈ L2(Ω). (2.2)

It is well known [46, 19] that (2.1)-(2.2) has a unique solution. Let Ω be decomposed into non-overlapping
polygonal subdomains (blocks) Ωi, such that

Ω =
n⋃

i=1

Ωi and Ωi ∩ Ωj 6= ∅.
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Let Γi,j = ∂Ωi ∩ ∂Ωj denote the subdomain interfaces,

Γ =
⋃

1≤i<j≤n

Γi,j , and Γi = ∂Ωi ∩ Γ = ∂Ωi/ ∂Ω.

The interfaces are assumed to be flat. We allow for non-conforming decompositions, i.e., interfaces may be
subsets of subdomain faces. The multidomain formulation of (2.1)-(2.2) is based on the spaces

Vi = H(div; Ωi), V =
n⊕

i=1

Vi,

Wi = L2(Ωi), W =

n⊕

i=1

Wi = L2(Ω).

If the solution (u, p) of (2.1)-(2.2) belongs to H(div; Ω) ×H1(Ω), it is well-known [19] that it satisfies, for
1 ≤ i ≤ n,

(K−1u,v)Ωi
− (p,∇ · v)Ωi

= −〈p,v · ni〉Γi
− 〈g,v · ni〉∂Ωi/Γ, ∀v ∈ Vi, (2.3)

(∇ · u, w)Ωi
= (f, w)Ωi

, ∀w ∈ Wi, (2.4)

where ni is the outer unit normal vector to ∂Ωi.

3 A multipoint flux mixed finite element method on subdomains

In this section we discuss the multipoint flux mixed finite element method used for subdomain discretizations.
It is based on the lowest order BDM1 or BDDF1 elements with a quadrature rule, which allows for local
velocity elimination and reduction to a cell-centered scheme for the pressure.

3.1 Finite element mappings

Let Th,i be a conforming, shape-regular, quasi-uniform partition of Ωi, 1 ≤ i ≤ n [23]. The elements
considered are two and three dimensional simplexes, convex quadrilaterals in two dimensions, and convex
hexahedra in three dimensions. The hexahedra can have non-planar faces. For any element E ∈ Th,i, there

exists a bijection mapping FE : Ê → E, where Ê is a reference element. Denote the Jacobian matrix by
DFE and let JE = |det(DFE)|. Denote the inverse mapping by F−1

E , its Jacobian matrix by DF−1
E , and let

JF−1

E
= |det(DF−1

E )|. We have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

In the case of convex hexahedra, Ê is the unit cube with vertices r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 =
(1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T . Denote by
ri = (xi, yi, zi)

T , i = 1, . . . , 8, the eight corresponding vertices of element E as shown in Figure 1. We note
that the element can have non-planar faces. The outward unit normal vectors to the faces of E and Ê are
denoted by ni and n̂i, i = 1, . . . , 6, respectively. In this case FE is a trilinear mapping given by

FE(r̂) = r1(1 − x̂)(1 − ŷ)(1 − ẑ) + r2x̂(1 − ŷ)(1 − ẑ) + r3x̂ŷ(1 − ẑ) + r4(1 − x̂)ŷ(1 − ẑ)

+ r5(1 − x̂)(1 − ŷ)ẑ + r6x̂(1 − ŷ)ẑ + r7x̂ŷẑ + r8(1 − x̂)ŷẑ

= r1 + r21x̂+ r41ŷ + r51ẑ + (r34 − r21)x̂ŷ + (r65 − r21)x̂ẑ + (r85 − r41)ŷẑ

+ (r21 − r34 − r65 + r78)x̂ŷẑ,

(3.1)
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Figure 1: Trilinear hexahedral mapping.

where rij = ri−rj . It is easy to see that each component of DFE is a bilinear function of two space variables:

DFE(r̂) = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + (r21 − r34 − r65 + r78)ŷẑ,

r41 + (r34 − r21)x̂+ (r85 − r41)ẑ + (r21 − r34 − r65 + r78)x̂ẑ,

r51 + (r65 − r21)x̂+ (r85 − r41)ŷ + (r21 − r34 − r65 + r78)x̂ŷ].

(3.2)

In the case of tetrahedra, Ê is the reference tetrahedron with vertices r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T ,
r̂3 = (0, 1, 0)T , and r̂4 = (0, 0, 1)T . Let ri, i = 1, . . . , 4, be the corresponding vertices of E. The linear
mapping for tetrahedra has the form

FE(r̂) = r1(1 − x̂− ŷ − ẑ) + r2x̂+ r3ŷ + r4ẑ (3.3)

with respective Jacobian matrix and its determinant

DFE = [r21, r31, r41] and JE = 2|E|, (3.4)

where |E| is the area of element E.
The mappings in the cases of quadrilaterals and triangles are described similarly to the cases of hexahedra

and tetrahedra, respectively. Note that in the case of simplicial elements the mapping is affine and the
Jacobian matrix and its determinant are constants. This is not the case for quadrilaterals and hexahedra.

In all above elements JE(r̂) is uniformly positive, since E is convex. Using the above mapping definitions

and the classical formula ∇φ = (DFE)−1∇̂φ̂, for φ(r) = φ̂(r̂), it is easy to see that for any face or edge
ei ⊂ E,

ni =
DF−T

E n̂i

|DF−T
E n̂i|

. (3.5)

Also, the shape regularity and quasi-uniformity of the grids imply that for all elements E ∈ Th,

‖DFE‖0,∞,Ê . h, ‖JE‖0,∞,Ê h hd, ‖DF−1
E ‖0,∞,E . h−1, ‖JF−1

E
‖0,∞,Ê h h−d. (3.6)

3.2 Mixed finite element spaces

We introduce four finite element spaces with respect to the four types of elements considered in this paper.
Let V̂(Ê) and Ŵ (Ê) denote the finite element spaces on the reference element Ê.

For simplicial elements, we employ BDM1 [18] on triangles and BDDF1 [17] on tetrahedra:

V̂(Ê) = (P1(Ê))d, Ŵ (Ê) = P0(Ê), (3.7)

where Pk denotes the space of polynomials of degree ≤ k.
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On the unit square, we employ BDM1 [18]:

V̂(Ê) = (P1(Ê))2 + r curl(x̂2ŷ) + s curl(x̂ŷ2), Ŵ (Ê) = P0(Ê), (3.8)

where r and s are real constants.
On the unit cube, we employ the enhanced BDDF1 space [37]:

V̂(Ê) = BDDF1(Ê) + r2curl(0, 0, x̂2ẑ)T + r3curl(0, 0, x̂2ŷẑ)T + s2curl(x̂ŷ2, 0, 0)T

+ s3curl(x̂ŷ2ẑ, 0, 0)T + t2curl(0, ŷẑ2, 0)T + t3curl(0, x̂ŷẑ2, 0)T ,

Ŵ (Ê) = P0(Ê),

(3.9)

where the BDDF1 space on unit cube [17] is defined as

BDDF1(Ê) = (P1(Ê))3 + r0curl(0, 0, x̂ŷẑ)T + r1curl(0, 0, x̂ŷ2)T + s0curl(x̂ŷẑ, 0, 0)T

+ s1curl(ŷẑ2, 0, 0)T + t0curl(0, x̂ŷẑ, 0)T + t1curl(0, x̂2ẑ, 0)T ,

where ri, si, ti, i = 0, . . . 3, are real constants.
Note that in all four cases

∇̂ · V̂(Ê) = Ŵ (Ê). (3.10)

On any face (edge in 2D) ê ∈ Ê, for all v̂ ∈ V̂ (Ê), v̂ · n̂ê ∈ P1(ê) on the reference square or simplex, and
v̂ · n̂ê ∈ Q1(ê) on the reference cube, where Q1(ê) is the space of bilinear functions on ê.

The degrees of freedom for V̂(Ê) are chosen to be the values of v̂ · n̂ê at the vertices of ê, for each face
(edge) ê. This choice gives certain orthogonalities for the quadrature rule introduced in the next section and
leads to a cell-centered pressure scheme.

The spaces V(E) and W (E) on any physical element E ∈ Th are defined, respectively, via the Piola
transformation

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E

and standard scalar transformation
w ↔ ŵ : w = ŵ ◦ F−1

E .

Under these transformations, the divergence and the normal components of the velocity vectors on the faces
(edges) are preserved [19]:

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê. (3.11)

In addition, (3.5) implies that

v · ne =
1

|JEDF
−T
E n̂ê|

v̂ · n̂ê, (3.12)

and (3.11) implies that

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x). (3.13)

On quadrilaterals or hexahedra, ∇ · v 6= constant since JE is not constant.
The finite element spaces Vh,i and Wh,i on subdomain Ωi are given by

Vh,i =
{
v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê), ∀E ∈ Th,i

}
,

Wh,i =
{
w ∈W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈ Th,i

}
.

(3.14)
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The global mixed finite element spaces are defined as

Vh =

n⊕

i=1

Vh,i, Wh =

n⊕

i=1

Wh,i.

We recall the projection operator in the space Vh,i. The operator Π̂ : (H1(Ê))d → V̂(Ê) is defined locally
on each element by

〈(Π̂q̂− q̂) · n̂ê, q̂1〉ê = 0, ∀ê ⊂ ∂Ê, (3.15)

where q̂1 ∈ P1(ê) when Ê the unit square or simplicial element, and q̂1 ∈ Q1(ê) when Ê is the unit cube.
The global operator Π : V ∩ (H1(Ω))d → Vh on each element E is defined via the Piola transformation:

Πq ↔ Π̂q, Π̂q = Π̂q̂. (3.16)

Furthermore, (3.11), (3.15), and (3.16) imply that Πq ·n is continuous across element interfaces, which gives
Πq ∈ Vh,i, and that

(∇ · (Πq − q), w)Ωi
= 0, ∀w ∈Wh,i. (3.17)

In the analysis, we also need similar projection operators onto the lowest order Raviart-Thomas [45, 44].
The RT0 spaces are defined on the reference cube and the reference tetrahedron, respectively, as

V̂RT (Ê) =




r1 + s1x̂
r2 + s2ŷ
r3 + s3ẑ



 , ŴRT (Ê) = P0(Ê), (3.18)

and

V̂RT (Ê) =




r1 + sx̂
r2 + sŷ
r3 + sẑ



 , ŴRT (Ê) = P0(Ê), (3.19)

with similar definitions in two dimensions, where s, ri, si (i=1,2,3) are constants.

In all cases ∇̂·V̂RT = ŴRT (Ê) and v̂·n̂e ∈ P0(ê). The degrees of freedom of V̂RT (Ê) are chosen to be the

values of v̂·n̂ê at the midpoints of all faces (edges) of Ê. The projection operator Π̂RT : (H1(Ê))d → V̂RT (Ê)
satisfies

〈(Π̂RT q̂ − q̂) · n̂ê, q̂0〉ê = 0, ∀ê ⊂ ∂Ê, ∀q0 ∈ P0(Ê). (3.20)

The spaces VRT
h and WRT

h on Ω and the projection operator ΠRT : (H1(Ω))d → VRT
h are defined similarly

to the case of Vh and Wh. By definition, we have

VRT
h,i ⊂ Vh,i WRT

h,i = Wh,i. (3.21)

The projection operator ΠRT satisfies

(∇ · (ΠRT q − q), w) = 0, ∀w ∈ WRT
h,i , (3.22)

∇ · ΠRT v = ∇ · v, ∀v ∈ Vh,i, (3.23)

and for all element E ∈ Th,i,
‖ΠRTv‖E . ‖v‖E , ∀v ∈ Vh,i. (3.24)

Furthermore, due to (3.15) and (3.20),
ΠRT Πq = ΠRT q. (3.25)
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3.3 A quadrature rule

Recall the variational formulation (2.3)–(2.4). In its mixed finite element discretization, one needs to compute
the integral (K−1q,v)Ωi

for q,v ∈ Vh,i. The MFMFE method employs a quadrature rule for the velocity
mass matrix, in order to reduce the discrete problem on each subdomain to a cell-centered finite difference
system for the pressure. We follow the development in [53, 37]. The integration on each element E is
performed by mapping to the reference element Ê, where the quadrature rule is defined. Using the definition
(3.14) of the finite element spaces, for q,v ∈ Vh,i,

(K−1q,v)E =

(
1

JE
DFT

EK
−1(FE(x̂))DFE q̂, v̂

)

Ê

≡ (K−1q̂, v̂)Ê ,

where

K−1(x̂) =
1

JE
DFT

EK
−1(FE(x̂))DFE . (3.26)

Due to (3.6), we have
‖K−1‖0,∞,Ê h h2−d‖K−1‖0,∞,E. (3.27)

The quadrature rule on an element E is defined by the trapezoidal rule:

(K−1q,v)Q,E = (K−1q̂, v̂)Q̂,Ê ≡
|Ê|

nv

nv∑

i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i), (3.28)

where nv is the number of vertices of Ê. The global quadrature rule on Ωi is defined as

(K−1q,v)Q,Ωi
≡

∑

E∈Th,i

(K−1q,v)Q,E .

The corner vector q̂(r̂i) is uniquely determined by its normal components to the d faces that share the
vertex. Since we chose the velocity degrees freedom associated with each corner r̂i, the d degrees of freedom
associated with each corner r̂i uniquely determine the corner vector q̂(r̂i). More precisely,

q̂(r̂i) =

d∑

j=1

(q̂ · n̂ij)(r̂i)n̂ij ,

where n̂ij , j = 1, . . . , d, are the outward unit normal vectors to the d faces (or edges) sharing r̂i, and
(q̂ · n̂ij)(r̂i) are the velocity degrees of freedom associated with this corner. Denote the basis functions
associated with r̂i by v̂ij , j = 1, . . . , d:

(v̂ij · n̂ij)(r̂i) = 1, (v̂ij · n̂ik)(r̂i) = 0, k 6= j, and (v̂ij · n̂lk)(r̂l) = 0, l 6= i, k = 1, . . . , d.

The quadrature rule (3.28) couples only the d basis functions associated with a corner. For example, on the
unit cube,

(K−1v̂11, v̂11)Q̂,Ê =
K−1

11 (r̂1)

8
, (K−1v̂11, v̂12)Q̂,Ê =

K−1
21 (r̂1)

8
,

(K−1v̂11, v̂13)Q̂,Ê =
K−1

31 (r̂1)

8
, and (K−1v̂11, v̂ij)Q̂,Ê = 0 i 6= 1, j = 1, 2, 3.

(3.29)

Mapping back to the physical element E, we have

(K−1q,v)Q,E =
1

nv

nv∑

i=1

JE(r̂i)K
−1(ri)q(ri) · v(ri), (3.30)
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which is closely related to an inner products used in the mimetic finite difference methods [36].
It has been shown [53, 37] that the bilinear form (K−1q,v)Q,Ωi

is an inner product in Vh,i and

(K−1q,q)
1/2
Q,Ωi

is a norm equivalent to ‖ · ‖Ωi
:

(K−1q,q)Q,Ωi
h ‖q‖2

Ωi
∀q ∈ Vh,i. (3.31)

In the pressure superconvergence analysis, we need additional property of the bilinear form (K−1·, ·)Q,Ωi
on

the space

Vh,i := Vh,i

⋃
Wh,i,

where Wh,i is the space of piecewise constant vectors defined element by element.

Lemma 3.1. The bilinear form (K−1·, ·)Q,Ωi
is an inner product on Vh,i and the norm (K−1q,q)

1/2
Q,Ωi

on

Vh,i is equivalent to ‖ · ‖Ωi
:

(K−1q,q)
1/2
Q,Ωi

h ‖q‖Ωi
, ∀q ∈ Vh,i. (3.32)

Proof. On each element E, let q =
∑nv

i=1

∑d
j=1 qijvij + q0 where vij are the normalized basis functions of

Vh,i(E) and q0 is a constant vector. Using (3.30), (1.4), (3.6), we have

(K−1q,q)Q,E &
|E|

k1




nv∑

i=1

d∑

j=1

q2ij + |q0|
2



 .

This gives that (K−1·, ·)Q,E is an inner product. Using (3.27), the fact that ‖q‖2
E h h2−d‖q̂‖2

Ê
for all

q ∈ (L2(E))d (see Lemma 2.3 in [53]), and norm equivalence on the reference element Ê, we obtain for all
q ∈ Vh,

(K−1q,q)Q,E = (K−1q̂, q̂)Q̂,Ê h h2−d‖q̂‖2
Ê

h ‖q‖2
E .

The numerical quadrature error on each element is defined as

σE(q,v) ≡ (q,v)E − (q,v)Q,E , (3.33)

and the global numerical quadrature error is given by σ(q,v)|E ≡ σE(q,v).

3.4 Reduction to a cell centered finite difference system for the pressure

We next describe how the quadrature rule for the velocity mass matrix allows one to reduce the MFMFE
method on each subdomain to a centered finite difference system for the pressure. We limit the discussion
to hexahedral grids; the other element types are treated similarly. We refer to Figure 2 for the notation used
in this section. Any interior vertex r is shared by 8 elements E1, . . . , E8. We denote the faces that share the
vertex by e1, . . . , e12, and the velocity basis functions on these faces that are associated with the vertex by
v1, . . . ,v12, i.e., (vi · ni)(r) = 1, where ni is the unit normal on face ei. The corresponding values of the
normal components of uh, u1, . . . , u12 are depicted in the three images in directions x, y, and z, respectively.

Recall that the quadrature rule (K−1·, ·)Q localizes the basis functions interaction, see (3.29). Therefore,
taking v = v1 in (4.1), for example, will lead to coupling u1 only with u5, u8, u9, and u12. Similarly,
u2 will be coupled only with u6, u7, u9, and u12, etc. Therefore, the 12 equations obtained from taking
v = v1, . . . ,v12 form a linear system for u1, . . . , u12. The following result is a direct consequence of (3.31).

Proposition 3.1. The 12 × 12 local linear system described above is symmetric and positive definite.

The solution of the local 12×12 linear system allows for the velocities ui, i = 1, . . . , 12 to be expressed in
terms of the cell-centered pressures pi, i = 1, . . . , 8. Substituting these expressions into the mass conservation
equation (4.2) leads to a cell-centered stencil. The pressure in each element E is coupled with the pressures
in the elements that share a vertex with E, leading to a 27 point stencil. The reader is referred to [53, 37]
for further details on the resulting cell-centered finite difference system.
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Figure 2: Interactions of the velocity degrees of freedom in the MFMFE method

4 Multiscale mortar multipoint flux mixed finite element method

Define the global mesh partition on Ω as Th =
⊕n

i=1 Th,i and the finite element spaces on Ω as

Vh =
n⊕

i=1

Vh,i, VRT
h =

n⊕

i=1

VRT
h,i , Wh =

n⊕

i=1

Wh,i.

Let the mortar interface mesh TH,i,j be a quasi-uniform partition of Γi,j , with maximal element diameter
Hi,j . Let H = max1≤i,j≤n Hi,j . Denote by ΛH,i,j ⊂ L2(Γi,j) the mortar space on Γi,j , containing either
continuous or discontinuous piecewise polynomials of degree m on TH,i,j . Note that TH,i,j need not be
conforming if ΛH,i,j is a discontinuous space. Let

ΛH =
⊕

1≤i<j≤n

ΛH,i,j

be the mortar finite element space on Γ.
The multiscale mortar MFMFE method is defined as: seek uh ∈ Vh, ph ∈Wh, and λH ∈ ΛH such that,

for 1 ≤ i ≤ n,

(K−1uh,v)Q,Ωi
− (ph,∇ · v)Ωi

= − 〈λH ,Π
RTv · ni〉Γi

− 〈g,ΠRT v · ni〉∂Ωi/ Γ, ∀v ∈ Vh,i, (4.1)

(∇ · uh, w)Ωi
= (f, w)Ωi

, ∀w ∈ Wh,i, (4.2)
n∑

i=1

〈ΠRT uh · ni, µ〉Γi
= 0, ∀µ ∈ ΛH . (4.3)

Within each block Ωi, we have the MFMFE method based on the quadrature rule described in Section 3,
where (4.2) gives local conservation over each fine grid element. Equation (4.3) enforces a weak continuity
of flux across the interfaces with respect to the mortar space ΛH .

Similar methods on affine mixed finite elements have been introduced and analyzed. In [7], the mortar
mesh size H is comparable to h and the mortar degree of polynomial is one order higher than the degree of
approximation polynomials in Vh. In [9], the discretization of Γ is weakened by allowing larger elements of
size H but considering higher degree of mortar approximation. In the present work, we consider the MFMFE
method as a subdomain discretization on affine, quadrilateral, and hexahedral grids.

Remark 4.1. The appearance of ΠRT in (4.3) is not standard. It is necessary to have ΠRT in (4.1) for
accuracy. More precisely, the numerical quadrature error can be controlled only when one of the arguments
belongs to VRT

h , see Lemma 6.5. Having ΠRT in (4.3) maintains the symmetry of the method and also
guarantees existence and uniqueness of a solution of (4.1)-(4.3) as shown in Lemma 6.1.
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5 Approximation properties

5.1 Element geometry

For the convergence analysis we need some restrictions on the element geometry. This is due to the reduced
approximation property of the MFE spaces on general quadrilateral and hexahedra. Numerical examples
confirm that the restrictions are not just for theoretical purposes [53, 3, 37]. Following the terminology in
[53, 37], we introduce the following definitions.

Definition 5.1. The (possibly non-planar) faces of a hexahedral element E defined via a trilinear mapping
in three dimensions are called generalized quadrilaterals.

Definition 5.2. A generalized quadrilateral with vertices r1, · · · , r4 is called an h2-parallelogram if

|r34 − r21|Rd . h2, (5.1)

where | · |Rd is the Euclidean norm in R
d.

Definition 5.3. A hexahedral element is called a h2-parallelepiped if all of its faces are h2-parallelograms.

Definition 5.4. An h2-parallelepiped is called regular if

|(r21 − r34) − (r65 − r78)|Rd . h3.

5.2 MFE approximation properties

We state several approximation properties of the MFE projection operators. On simplicial, h2-parallelogram,
and h2-parallelepiped grids, the following bounds hold on any element E:

‖q− ΠRT q‖E + ‖q− Πq‖E . h‖q‖1,E, (5.2)

‖∇ · (q − ΠRT q)‖E + ‖∇ · (q − Πq)‖E . h‖∇ · q‖1,E . (5.3)

The above bounds can be found in [19, 46] for simplicial elements, [50, 11] for h2-parallelograms, and [37] for
h2-parallelepipeds. A higher order approximation property also holds for simplicial, h2-parallelogram, and
regular h2-parallelepiped grids:

‖q− Πq‖E . h2‖q‖2,E. (5.4)

On general quadrilaterals, bound (5.2) is also valid [11]. However, in this case for the divergence bound it
only holds for

‖∇ · (q − Πq)‖E . ‖∇ · q‖E .

The following lemma has been shown in [53, 37].

Lemma 5.1. For all elements E,

‖Πq‖j,E . ‖q‖j,E , ∀q ∈ Hj(E)d, (5.5)

holds for j = 1, 2 on simplicial elements, h2-parallelograms, and regular h2-parallelepipeds, as well as j = 1
on h2-parallelepipeds. Furthermore, on simplicial elements, h2-parallelograms, and h2-parallelepipeds,

‖ΠRT q‖1,E . ‖q‖1,E , ∀q ∈ H1(E)d. (5.6)

For the remainder of the paper, we assume that the quadrilateral elements are h2-parallelograms, and
the hexahedral elements are h2-parallelepipeds. We also need the regular h2-parallelepiped condition for the
pressure superconvergence bound in section 6.5.
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Let Q̂ be the L2(Ê)-orthogonal projection onto Ŵ (Ê), satisfying for any ϕ̂ ∈ L2(Ê),

(ϕ̂− Q̂ ϕ̂, ŵ)Ê = 0, ∀ ŵ ∈ Ŵ (Ê).

Let Qh : L2(Ω) →Wh be the projection operator satisfying for any ϕ ∈ L2(Ω),

Qhϕ = Q̂ϕ̂ ◦ F−1
E on all E.

It is easy to see that, due to (3.11),

(ϕ−Qhϕ,∇ · v) = 0, ∀v ∈ Vh. (5.7)

Using a scaling argument and the Bramble-Hilbert lemma, it can be shown that

‖ϕ−Qhϕ‖ . h|ϕ|1. (5.8)

We also need approximation properties for the finite element spaces on the interfaces. Let Ic
H be the

Scott-Zhang operator [48] onto the space Λc
H , the subset of continuous functions in ΛH . Similarly, let PH

denote L2(Γ) projection operator onto ΛH . For each subdomain Ωi, define a projection operator QRT
h,i :

L2(Γi) → VRT
h,i · ni|Γi

such that for any µ ∈ L2(Γi)

〈ϕ−QRT
h,i ϕ,v · ni〉Γi

= 0, ∀v ∈ V RT
h,i . (5.9)

Due to (3.20),
(ΠRT q) · ni = QRT

h,i (q · ni). (5.10)

The above defined interface operators have the following approximation properties [23]:

‖φ− Ic
Hφ‖t,Γi,j

. Hs−t‖φ‖s,Γi,j
, 0 ≤ s ≤ m+ 1, 0 ≤ t ≤ min(1, s), (5.11)

‖φ− PHφ‖−t,Γi,j
. Hs+t‖φ‖s,Γi,j

, 0 ≤ s ≤ m+ 1, 0 ≤ t ≤ 1, (5.12)

‖(q− ΠRT q) · ni‖−t,Γi,j
. hr+t‖q · ni‖r,Γi,j

, 0 ≤ r ≤ 1, 0 ≤ t ≤ 1, (5.13)

where ‖ · ‖−t is the norm of H−t, the dual of Ht.

5.3 The spaces of weakly continuous velocities

Define a weakly continuous BDM/BDDF velocity space as

Vh,0 =

{
v ∈ Vh :

n∑

i=1

〈ΠRT v|Ωi
· ni, µ〉Γi

= 0 ∀µ ∈ ΛH

}
. (5.14)

The multiscale mortar MFMFE method (4.1)-(4.3) is equivalent to the following problem: find uh ∈ Vh,0

and ph ∈ Wh such that

(K−1uh,v)Q −
n∑

i=1

(ph,∇ · v)Ωi
= −〈g,ΠRTv · ni〉∂Ωi/ Γ, ∀v ∈ Vh,0, (5.15)

n∑

i=1

(∇ · uh, w)Ωi
= (f, w), ∀w ∈ Wh. (5.16)

We will also make use of the RT weakly continuous space

VRT
h,0 =

{
v ∈ VRT

h :

n∑

i=1

〈v|Ωi
· ni, µ〉Γi

= 0 ∀µ ∈ ΛH

}
. (5.17)

The following lemma has been shown in [9].
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Lemma 5.2. Under assumption (5.24), there exists a projection operator ΠRT
0 :

(
H1/2+ǫ(Ω)

)d
∩V → VRT

h,0

such that

(∇ · (ΠRT
0 q − q), w)Ωi

= 0, w ∈Wh, 1 ≤ i ≤ n, (5.18)

‖ΠRT
0 q − ΠRT q‖ . ‖q‖r+1/2h

rH1/2, 0 < r ≤ 1, (5.19)

‖ΠRT
0 q − q‖ .

n∑

i=1

‖q‖1,Ωi
h+ ‖q‖r+1/2h

rH1/2, 0 < r ≤ 1. (5.20)

In the following we construct a projection operator Π0 into Vh,0 with similar properties.
By an abuse of notation, define

VRT
h,0 · n ={(φL, φR) ∈ L2(Γ) × L2(Γ) : ∃v ∈ VRT

h,0 such that

φL|Γi,j
= v|Ωi

· ni and φR|Γi,j
= v|Ωj

· nj ∀1 ≤ i < j ≤ n}.

Then, for any φ = (φL, φR) ∈ (L2(Γ))2, we write φ|Γi,j
= (φi, φj), 1 ≤ i < j ≤ n. Define a projection

operator QRT
h,0 : (L2(Γ))2 → VRT

h,0 · n such that, for any φ ∈ (L2(Γ))2,

n∑

i=1

〈φi − (QRT
h,0φ)i, ηi〉Γi

= 0, ∀ η ∈ VRT
h,0 · n. (5.21)

The proof of the following two lemmas can be found in [7, Section 3], with a straightforward modification
of the argument for the two scales h and H .

Lemma 5.3. Assume that for any µ ∈ ΛH ,

QRT
h,i µ = 0, 1 ≤ i ≤ n, implies that µ = 0. (5.22)

Then, for any φ ∈ (L2(Γ))2, there exists λH ∈ ΛH such that on Γi,j , 1 ≤ i ≤ j ≤ n,

QRT
h,i λH = QRT

h,i φi − (QRT
h,0φ)i, QRT

h,j λH = QRT
h,j φj − (QRT

h,0φ)j , and 〈λH , 1〉Γi,j
=

1

2
〈φi + φj , 1〉Γi,j

.

(5.23)

Lemma 5.4. Assume that for any µ ∈ ΛH ,

‖µ‖Γi,j
≤ C

(
‖QRT

h,i µ‖Γi,j
+ ‖QRT

h,j µ‖Γi,j

)
, 1 ≤ i < j ≤ n. (5.24)

Then, for any φ|Γi,j
= (φi,−φi),




∑

1≤i<j≤n

‖QRT
h,i φi − (QRT

h,0φ)i‖
2
−s,Γi,j




1/2

.
∑

1≤i<j≤n

‖φi‖r,Γi,j
hrHs, 0 ≤ r ≤ 1, 0 ≤ s ≤ 1. (5.25)

We are now ready to construct a projection operator Π0 onto Vh,0. Our approach is similar to the one
in [7]. For any q ∈ (H1/2+ǫ(Ω))d ∩ V, ǫ > 0, define

Π0q|Ωi
= Π(q + δqi),

where δqi solves

δqi = −∇πi in Ωi, (5.26)

∇ · δqi = 0 in Ωi, (5.27)

δqi · ni = −QRT
h,i q · ni + (QRT

h,0q · n)i on Γi, (5.28)

δqi · ni = 0 on ∂Ωi ∩ ∂Ω, (5.29)
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where q · n|Γi,j
= (q · ni,q · nj). The Neumann problem (5.26)-(5.29) is solvable, since (5.23) imply the

solvability condition
〈QRT

h,i q · ni − (QRT
h,0q · n)i, 1〉Γi

= 0.

By the construction of Π0 and using (3.25), for all µ ∈ ΛH ,

n∑

i=1

〈ΠRT (Π0q) · ni, µ〉Γi
=

n∑

i=1

〈ΠRT (q + δqi) · ni, µ〉Γi

=

n∑

i=1

〈QRT
h,i (q + δqi) · ni, µ〉Γi

=

n∑

i=1

〈(QRT
h,0q · n)i, µ〉Γi

= 0,

where we have used (5.10) and (5.28). Thus, Π0q ∈ Vh,0. Also,

(∇ · Π0q, w)Ωi
= (∇ · Πq, w)Ωi

+ (∇ · Πδqi, w)Ωi
= (∇ · q, w)Ωi

, ∀w ∈Wh,i.

It remains to estimate the approximability of Π0. Since Π0q − Πq = Πδqi, we only need to bound the
correction term Πδqi. By elliptic regularity [33, 41], for any 0 ≤ s ≤ 1/2,

‖δqi‖1/2−s,Ωi
.

∑

j

‖QRT
h,i q · ni − (QRT

h,0q · n)i‖−s,Γi,j
. (5.30)

Then we have

‖Πδqi‖Ωi
≤ ‖Πδqi − δqi‖Ωi

+ ‖δqi‖Ωi
. h1/2‖δqi‖1/2,Ωi

+ ‖δqi‖Ωi

.
∑

j

(h1/2‖QRT
h,i q · ni − (QRT

h,0q · n)i‖Γi,j
+ ‖QRT

h,i q · ni − (QRT
h,0q · n)i‖−1/2,Γi,j

), (5.31)

where we have used an estimate for any divergence-free vector ψ [43]

‖Πψ −ψ‖Ωi
. hr‖ψ‖r,Ωi

, 0 < r ≤ 1. (5.32)

Note that the above result was shown in [43] for the Raviart-Thomas spaces, but it can be easily extended
to the other mixed finite element spaces under consideration. Applying Lemma 5.4 and the trace theorem
(see Theorem 1.5.2.1 in [33]):

‖q‖r,Γi,j
. ‖q‖r+1/2,Ωi

, r > 0, (5.33)

(5.31) yields the following result.

Lemma 5.5. Under assumption (5.24), there exists a projection operator Π0 :
(
H1/2+ǫ(Ω)

)d
∩ V → Vh,0

such that

(∇ · (Π0q − q), w)Ωi
= 0, w ∈ Wh, 1 ≤ i ≤ n, (5.34)

‖Π0q − Πq‖ . ‖q‖r+1/2h
rH1/2, 0 < r ≤ 1, (5.35)

‖Π0q − q‖ .

n∑

i=1

‖q‖1,Ωi
h+ ‖q‖r+1/2h

rH1/2, 0 < r ≤ 1, (5.36)

Inequality (5.36) is a direct consequence of (5.35) and (5.2).
In the next Lemma we establish some continuity properties for Π0 and ΠRT

0 .

Lemma 5.6. Under assumption (5.24), on simplicial, quadrilaterals, and hexahedral elements,

‖Π0q‖ + ‖ΠRT
0 q‖ .

n∑

i=1

‖q‖1,Ωi
+ ‖q‖r+1/2, 0 < r ≤ 1, (5.37)
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∑

E∈Th

(‖Π0q‖1,E + ‖ΠRT
0 q‖1,E) .

n∑

i=1

‖q‖1,Ωi
+ hr−1H1/2‖q‖r+1/2, 0 < r ≤ 1, (5.38)

∀E ∈ Th, ‖∇ · Π0q‖E + ‖∇ · ΠRT
0 q‖E . ‖∇ · q‖E . (5.39)

Proof. We present the proof for Π0. The proof for ΠRT
0 is similar. Bound (5.37) for Π0 follows from the

triangle inequality ‖Π0q‖ ≤ ‖q − Π0q‖ + ‖q‖ and (5.36).
For (5.38), we use the triangle and inverse inequality:

∑

E∈Th

‖Π0q‖1,E .
∑

E∈Th

(‖Π0q − Πq‖1,E + ‖Πq‖1,E) .
∑

E∈Th

(
h−1‖Π0q − Πq‖E + ‖Πq‖1,E

)
.

Bound (5.38) follows by combining the above inequality with (5.35) and (5.5).
To show (5.39), we first note that if v ∈ Vh and (∇ · v, w) = 0 ∀w ∈ Wh, then ∇ · v = 0. This follows

from (3.11), and (3.10). Now the definition of Π0 implies that ∇ · Π0q = ∇ · Πq. Furthermore, using (3.13)
and (3.6),

‖∇ · Πq‖E . h
−d/2
E ‖∇̂ · Π̂q̂‖Ê ≤ h

−d/2
E ‖∇̂ · q̂‖Ê . ‖∇ · q‖E ,

where we have used that ∇̂ · Π̂q̂ is the L2(Ê)-projection of ∇̂ · q̂. This completes the proof of (5.39).

In the convergence analysis below we will need the trace inequality (see [31])

〈q,v · n〉∂Ωi
. ‖q‖1/2,∂Ωi

‖v‖H(div;Ωi), (5.40)

and the following lemma.

Lemma 5.7. For all v ∈ VRT
h,i ,

‖v · ni‖∂E h h−1/2‖v‖E . (5.41)

Proof. The result follows from the scaling estimate [53]: ‖v‖E h h(2−d)/2‖v̂‖Ê , the norm equivalence on the

reference element Ê : ‖v̂ · n̂i‖∂Ê h ‖v̂‖Ê, and (3.12).

6 Convergence analysis

6.1 Solvability

The next lemma shows the solvability of the multiscale mortar MFMFE method.

Lemma 6.1. Assume that (5.22) holds. Then, there exists a unique solution of (4.1)-(4.3).

Proof. It is sufficient to show the uniqueness since (4.1)-(4.3) is a finite-dimensional linear square system.
Let f = 0 and g = 0. Choosing v = uh, w = ph, and µ = λH , adding (4.1)-(4.3) together, and summing
over 1 ≤ i ≤ n implies that

n∑

i=1

(K−1uh,uh)Q,Ωi
= 0.

The norm equivalence (3.31) implies that uh = 0. Given ph ∈ Wh ⊂ L2(Ω), there exists q ∈ (H1(Ω))d such
that ∇ · q = ph. Such vector field can be easily constructed by solving

∆φ = p̃h in B, φ = 0 on ∂B, (6.1)

where B is an open ball containing Ω and p̃h is the extension of ph by zero on B, and taking q = ∇φ.
By elliptic regularity [41], φ ∈ H2(B) and therefore q ∈ (H1(Ω))d, satisfying ‖q‖1 . ‖p̃h‖. The above
construction is possible since no boundary conditions on ∂Ω are imposed on the velocity field. We note that
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a vector field q with the required properties can also be constructed for a Lipschitz domain Ω when flux
boundary conditions are imposed on (part of) ∂Ω [31, 29].

Take v = Π0q in (4.1) to get 0 =
∑n

i=1(ph,∇ ·Π0q) = (ph,∇ · q) = ‖ph‖2, implying ph = 0. Then, (4.1)
gives 0 = 〈λH ,Π

RT v · ni〉Γi
= 〈QRT

h,i λH ,Π
RTv · ni〉Γi

for all v ∈ Vh. Also, there exists v ∈ VRT
h such that

v · ni = QRT
h,i λH , implying QRT

h,i λH = 0 and, due to (5.22), λH = 0.

6.2 Optimal convergence estimate for the velocity

In this section we derive a priori error estimates for the velocity. Subtracting (5.15)-(5.16) from (2.3)-(2.4)
gives the error equations

(
K−1u,v

)
−

(
K−1uh,v

)
Q

=

n∑

i=1

(p− ph,∇ · v)Ωi
−

n∑

i=1

〈p,v · ni〉Γi

−
n∑

i=1

〈g, (v − ΠRT v) · ni〉∂Ωi/Γ, ∀v ∈ Vh,0, (6.2)

n∑

i=1

(∇ · (u− uh), w)Ωi
= 0, ∀w ∈ Wh, (6.3)

For the permeability tensor K, we will use the following notation. Let W k,∞
Th

consist of functions φ such

that φ|E ∈W k,∞(E) for all E ∈ Th and ‖φ‖k,∞,E is uniformly bounded. Let |||φ|||k,∞ = maxE∈Th
‖φ‖k,∞,E .

The following two lemmas give bounds on terms that appear in the velocity error analysis.

Lemma 6.2 ([53, 37]). On simplicial elements, h2-parallelograms, and h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

,
then for all v ∈ Vh,

|(K−1Πu,v − ΠRT v)Q| .

n∑

i=1

h|||K−1|||1,∞‖u‖1,Ωi
‖v‖Ωi

. (6.4)

Lemma 6.3 ([53, 37]). On simplicial elements, h2-parallelograms, and h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

,

then for all q ∈ Vh and for all v ∈ VRT
h ,

|σ(K−1q,v)| .
∑

E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖v‖0,E . (6.5)

We are now ready to establish the main a priori velocity bound.

Theorem 6.1. Let K−1 ∈ W 1,∞
Th

. For the velocity uh of the mortar MFMFE method (4.1)-(4.3) on simplicial

elements, h2-parallelograms, and h2-parallelepipeds, if (5.24) holds, then

n∑

i=1

‖∇ · (u − uh)‖Ωi
.

n∑

i=1

h‖∇ · u‖1,Ωi
, (6.6)

‖u− uh‖ .

n∑

i=1

(Hs−1/2‖p‖s+1/2,Ωi
+ h‖u‖1,Ωi

) + hrH1/2‖u‖r+1/2, (6.7)

where 1/2 ≤ s ≤ m+ 1, 0 < r ≤ 1.

Proof. First we note that

∇ · (Πu − uh) = 0 and ∇ · (Π0u− uh) = 0 in Ωi, i = 1, . . . , n, (6.8)

which follow from (6.3), (3.17), (5.34), (3.11), and (3.10). The divergence error bound (6.6) now follows from
(5.3).
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For all v ∈ Vh,0 such that ∇ · v = 0 in each subdomain, the error equation (6.2) gives

(
K−1u,v

)
−

(
K−1uh,v

)
Q

= −
n∑

i=1

〈p, (v − ΠRT v) · ni〉Γi

−
n∑

i=1

〈p− Ic
Hp,Π

RT v · ni〉Γi
−

n∑

i=1

〈g, (v − ΠRT v) · ni〉∂Ωi/Γ,

where we have used that
n∑

i=1

〈Ic
Hp,Π

RTv · ni〉Γi
= 0. (6.9)

Taking v − ΠRT v ∈ Vh as a test function in (2.3) gives

(K−1u,v − ΠRT v) = −
n∑

i=1

〈g, (v − ΠRT v) · ni〉∂Ωi/Γ −
n∑

i=1

〈p, (v − ΠRT v) · ni〉Γi
.

The above two equations imply

(
K−1uh,v

)
Q

=
(
K−1u,ΠRT v

)
+

n∑

i=1

〈p− Ic
Hp,Π

RT v · ni〉Γi
∀v ∈ Vh,0 s.t. ∇ · v = 0. (6.10)

By using (6.10), we rewrite
(
K−1(Π0u− uh),v

)
Q

as

(K−1(Π0u − uh),v)Q =
(
K−1Π0u,v

)
Q
−

(
K−1u,ΠRT v

)
−

n∑

i=1

〈p− Ic
Hp,Π

RT v · ni〉Γi

=
(
K−1(Π0u− Πu),v

)
Q

+
(
K−1Πu,v − ΠRT v

)
Q
− σ

(
K−1Πu,ΠRT v

)

+
(
K−1(Πu − u),ΠRT v

)
−

n∑

i=1

〈p− Ic
Hp,Π

RTv · ni〉Γi
.

(6.11)

The first and fourth terms on the right hand side of (6.11) can be estimated by using (5.35) and (5.2),
respectively: (

K−1(Π0u − Πu),v
)

Q
. hrH1/2‖u‖r+1/2‖v‖, 0 < r ≤ 1, (6.12)

(
K−1(Πu − u),ΠRT v

)
.

n∑

i=1

h‖u‖1,Ωi
‖v‖Ωi

, (6.13)

where we have also used (3.24). Using (6.5), (3.24), and (5.5), we bound the third term on the right in (6.11)
as

|σ(K−1Πu,ΠRT v)| .
∑

E∈Th

h‖Πu‖1,E‖Π
RTv‖E .

n∑

i=1

h‖u‖1,Ωi
‖v‖Ωi

. (6.14)

The last term on the right hand side of (6.11) can be estimated from (5.40), (5.11), (5.33), and (3.24) as

n∑

i=1

〈Ic
Hp− p,ΠRT v · ni〉Γi

≤
n∑

i=1

‖Ic
Hp− p‖1/2,∂Ωi

‖ΠRTv‖H(div;Ωi) .

n∑

i=1

‖p‖s+1/2,Ωi
Hs−1/2‖v‖Ωi

, (6.15)

for 1/2 ≤ s ≤ m+ 1, where we have also used that ∇ · ΠRT v = 0.
Now let v = Π0u − uh. A combination of (6.11)–(6.15), (3.31), Lemma 6.2, and (5.36) completes the

proof of (6.7).
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6.3 Superconvergence estimates for the velocity

In this section we establish velocity superconvergence on rectangular and cuboid grids in the case of diagonal
permeability tensor. We note that velocity superconvergence is observed numerically on h2-parallelograms
and h2-parallelepipeds. The proof is based on combining the super-closeness between ΠRT

0 and ΠRT (5.19),
superconvergence for ΠRT on a single domain, and superconvergence for the quadrature error σ(·, ·). The
last bound requires restricting the integrands to RT0, which necessitates modifying the argument from the
previous section. We make use of the following superconvergence results.

Lemma 6.4 ([27], Theorem 5.1). If u ∈ H2(Ωi), 1 ≤ i ≤ n, K−1 ∈W 1,∞
Th

(Ω), and v ∈ VRT
h , then

(K−1(ΠRT u− u),v) .

n∑

i=1

ht+1|||K−1|||1,∞(‖u‖t+1,Ωi
‖v‖Ωi

+ ‖u‖1,Ωi
‖∇ · v‖Ωi

), 0 ≤ t ≤ 1. (6.16)

Lemma 6.5 ([15], Lemma 4.3). If u ∈ H2(Ωi), 1 ≤ i ≤ n, K−1 ∈ W 2,∞
Th

(Ω), and v ∈ VRT
h , then

|σ(K−1ΠRT u,v)| .

n∑

i=1

ht+1|||K−1|||2,∞(‖u‖t+1,Ωi
‖v‖Ωi

+ ‖u‖1,Ωi
‖∇ · v‖Ωi

), 0 ≤ t ≤ 1/2. (6.17)

We note that both results above are established in two dimensions for h2-parallelograms and a full
tensor with Neumann boundary conditions. Here we use them for a diagonal tensor with Dirichlet boundary
conditions on rectangular and cuboid grids. The extensions to three dimensions are straightforward.

Next, we state a bound on a term that appears in the analysis. This is the term that limits the proof to
rectangular-type grids.

Lemma 6.6. Assume that K is a diagonal tensor and K−1 ∈ W 1,∞
Th

. Then for all q ∈ Vh and v ∈ VRT
h

on rectangular and cuboid grids,

|(K−1(q − ΠRT q),v)Q| .

n∑

i=1

h|||K−1|||1,∞‖q− ΠRT q‖Ωi
‖v‖Ωi

. (6.18)

Proof. Let K−1 denote the L2-projection of K−1 onto the space of piecewise constant tensors. On any
element E,

(K−1(q − ΠRT q),v)Q,E = ((K−1 −K−1)(q − ΠRTq),v)Q,E + (K−1(q − ΠRTq),v)Q,E . (6.19)

Using (3.31), the first term on the right-side of (6.19) can be bounded as

((K−1 −K−1)(q − ΠRT q),v)Q,E . h|K−1|1,∞,E‖q− ΠRT q‖E‖v‖E . (6.20)

Next, consider the second term on the right-hand side of (6.19). The proofs for 2D and 3D elements are very
similar. For simplicity, we give a proof for the 2D case. Let z ≡ q−ΠRTq. Let z = [z1, z2]

T and v = [v1, v2].
Since the grid is orthogonal, JE is constant and JEK−1 is a diagonal constant tensor, JEK−1 = diag(k1, k2).
Denote the vertices of E by r1, . . . , r4, where r1 is the lower left vertex and the other vertices are numbered
in a counter clockwise direction. By the definition of the quadrature rule (3.30),

(K−1(q − ΠRT q),v)Q,E = k1(z1, v1)Q,E + k2(z2, v2)Q,E

and

(z1, v1)Q,E =
1

4

4∑

i=1

z1(ri)v1(ri) =
1

4
v1(r2) (z1(r2) + z1(r3)) +

1

4
v1(r4) (z1(r4) + z1(r1)) ,
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where we used that v1(r2) = v1(r3) and v1(r4) = v1(r1) since v ∈ RT0(E). Since q ∈ BDM1(E), by the
definition of ΠRT we have z1(r2) + z1(r3) = 0 and z1(r4) + z1(r1) = 0. This gives (z1, v1)Q,E = 0, and
similarly we get (z2, v2)Q,E = 0. Therefore

(K−1(q − ΠRT q),v)Q,E = 0,

which, combined with (6.19) and (6.20), implies the assertion of the lemma.

The following is the main result of this section.

Theorem 6.2. Assume that the tensor K is diagonal and K−1 ∈ W 2,∞
Th

. Then, if (5.24) holds, the velocity
uh of the mortar MFMFE method (4.1)-(4.3) on rectangular and cuboid grids satisfies

‖ΠRT u− ΠRT uh‖ .

n∑

i=1

(Hs−1/2‖p‖s+1/2,Ωi
+ ht+1‖u‖t+1,Ωi

) + hrH1/2‖u‖r+1/2, (6.21)

where 1/2 ≤ s < m+ 1, 0 < r ≤ 1, and 0 ≤ t ≤ 1/2.

Proof. By the triangle inequality

‖ΠRTu − ΠRT uh‖ ≤ ‖ΠRTu − ΠRT
0 u‖ + ‖ΠRT

0 u − ΠRT uh‖. (6.22)

The first term on the right above is bounded in (5.19). For the second term on the right in (6.22), using the
norm equivalence (3.31), we have

‖ΠRT
0 u − ΠRT uh‖

2 .
(
K−1(ΠRT

0 u − ΠRTuh),ΠRT
0 u− ΠRT uh

)
Q

=
(
K−1(ΠRT

0 u− uh),ΠRT
0 u − ΠRT uh

)
Q

+
(
K−1(uh − ΠRT uh),ΠRT

0 u − ΠRTuh

)
Q
.

(6.23)

By (6.18), the second term on the right in (6.23) can be estimated as

(K−1(uh − ΠRT uh),ΠRT
0 u − ΠRT uh)Q .

n∑

i=1

h|||K−1|||1,∞‖uh − ΠRTuh‖Ωi
‖ΠRT

0 u − ΠRT uh‖Ωi
. (6.24)

Using triangle inequality and (3.25), we have

‖uh − ΠRTuh‖Ωi
≤ ‖u− uh‖Ωi

+ ‖u− ΠRTu‖Ωi
+ ‖ΠRT Π(u − uh)‖Ωi

. ‖u− uh‖Ωi
+ ‖u− ΠRTu‖Ωi

+ ‖Πu − uh‖Ωi
,

(6.25)

where we have used (3.24). Combining (6.24) and (6.25),

(K−1(uh − ΠRT uh),ΠRT
0 u − ΠRT uh)Q

.

n∑

i=1

h|||K−1|||1,∞(‖u− uh‖Ωi
+ ‖u− ΠRT u‖Ωi

+ ‖Πu− uh‖Ωi
)‖ΠRT

0 u − ΠRT uh‖Ωi
.

(6.26)

It remains to bound the first term on the right in (6.23). Using (6.10), similar to (6.11), we obtain

(K−1(ΠRT
0 u− uh),ΠRT

0 u − ΠRT uh)Q

=
(
K−1(ΠRT

0 u − ΠRT u),ΠRT
0 u− ΠRT uh

)
Q

+
(
K−1(ΠRT u− u),ΠRT

0 u− ΠRT uh

)

− σ(K−1ΠRT u,ΠRT
0 u − ΠRTuh) −

n∑

i=1

〈p− Ic
Hp, (Π

RT
0 u− ΠRT uh) · ni〉Γi

.

(6.27)
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The first term on the right above can be bounded as

(
K−1(ΠRT

0 u − ΠRT u),ΠRT
0 u− ΠRT uh

)
Q

. ‖ΠRT
0 u− ΠRT u‖‖ΠRT

0 u − ΠRT uh‖. (6.28)

The second term on the right in (6.27) can be bounded using (6.16): for 0 ≤ t ≤ 1,

(
K−1(ΠRT u− u),ΠRT

0 u − ΠRT uh

)
.

n∑

i=1

ht+1|||K−1|||1,∞‖u‖t+1,Ωi
‖ΠRT

0 u − ΠRT uh‖Ωi
, (6.29)

where we have used that ∇ · (ΠRT
0 u − ΠRT uh) = 0. The third term on the right in (6.27) can be bounded

using (6.17): for 0 ≤ t ≤ 1/2,

σ(K−1ΠRT u,ΠRT
0 u− ΠRT uh) .

n∑

i=1

ht+1|||K−1|||2,∞‖u‖t+1,Ωi
‖ΠRT

0 u − ΠRT uh‖Ωi
. (6.30)

Similar to (6.15), the last term on the right in (6.27) can be estimated as, for 0 < s ≤ m+ 1,

n∑

i=1

〈p− Ic
Hp, (Π

RT
0 u − ΠRT uh) · ni〉Γi

.

n∑

i=1

Hs−1/2‖p‖s+1/2,Ωi
‖ΠRT

0 u − ΠRT uh‖Ωi
. (6.31)

A combination of (6.22)–(6.31) with (5.19), (6.7), and (5.2) implies (6.21).

For a scalar function φ(x1, · · · , xd) in a rectangular or cuboid element E, let |||φ|||i,E denote an approx-
imation integral of |φ|2 using exact integration rule in xi and midpoint rule in the other directions. Then,
for q = (q1, · · · , qd)T , let

|||q|||2 =
∑

E∈Th

d∑

i=1

|||qi|||
2
i,E , (6.32)

and note that |||vh||| = ‖vh‖ if vh ∈ VRT
h on rectangular or cuboid grids. The reader is cautioned not to

confuse the above norm with the norm ||| · |||k,∞ used for the permeability tensor K.

Theorem 6.3. Assume that the tensor K is diagonal and K−1 ∈ W 2,∞
Th

. Then, if (5.24) holds, the velocity
uh of the mortar MFMFE method (4.1)-(4.3) on rectangular and cuboid grids satisfies

|||u − ΠRT uh||| .

n∑

i=1

(Hs−1/2‖p‖s+1/2,Ωi
+ ht+1‖u‖t+1,Ωi

) + hrH1/2‖u‖r+1/2), (6.33)

where 1/2 ≤ s < m+ 1, 0 < r ≤ 1, and 0 ≤ t ≤ 1/2.

Proof. It is well known [24] that the usual RT interpolant ΠRT exhibits superconvergence:

|||u − ΠRT u|||Ωi
. ht+1‖u‖t+1,Ωi

, 0 ≤ t ≤ 1. (6.34)

By the triangle inequality

|||u − ΠRT uh||| ≤ |||u − ΠRT u||| + |||ΠRT u− ΠRT uh||| = |||u − ΠRT u||| + ‖ΠRT u− ΠRT uh‖.

A combination of the above estimate, (6.34), and (6.21) completes the proof.
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6.4 Optimal convergence estimate for the pressure

In this section we prove an inf-sup condition and establish an optimal convergence for the pressure.

Lemma 6.7. Spaces VRT
h,0 ×Wh satisfy the inf-sup condition: for all w ∈Wh,

sup
06=v∈VRT

h,0

∑n
i=1(∇ · v, w)Ωi∑n
i=1 ‖v‖H(div;Ωi)

& ‖w‖. (6.35)

Proof. Let w ∈Wh. It is enough to show that there exists v ∈ VRT
h,0 such that

n∑

i=1

(∇ · v, w)Ωi
= ‖w‖2, and

n∑

i=1

‖v‖H(div;Ωi) . ‖w‖. (6.36)

As in the proof of Lemma 6.1, see (6.1), there exists q ∈ (H1(Ω))d such that

∇ · q = w and ‖q‖1 . ‖w‖. (6.37)

It is easy to see that v = ΠRT
0 q satisfies (6.36), using (6.37), (5.18), Lemma 5.6, (5.20) and (5.39).

Theorem 6.4. Let K−1 ∈ W 1,∞(Ωi), 1 ≤ i ≤ n. For the pressure ph of the mortar MFMFE method
(4.1)-(4.3) on simplicial elements, h2-parallelograms, and h2-parallelepipeds, if (5.24) holds, then

‖p− ph‖ .

n∑

i=1

(h‖p‖1,Ωi
+ h‖u‖1,Ωi

+Hs−1/2‖p‖s+1/2,Ωi
) + hrH1/2‖u‖r+1/2, (6.38)

where 1/2 ≤ s ≤ m+ 1 and 0 < r ≤ 1.

Proof. Using (6.35),

‖Qhp− ph‖ . sup
06=v∈VRT

h,0

∑n
i=1(∇ · v, Qhp− ph)Ωi∑n

i=1 ‖v‖H(div;Ωi)

= sup
06=v∈VRT

h,0

(
K−1u,v

)
−

(
K−1uh,v

)
Q

+
∑n

i=1〈p− Ic
Hp,v · ni〉Γi∑n

i=1 ‖v‖H(div;Ωi)

,

(6.39)

where we have used (6.2), the fact that VRT
h,0 ⊂ Vh,0, (5.7), and (6.9). We reformulate the first two terms

and the last term in the numerator as

(
K−1u,v

)
−

(
K−1uh,v

)
Q

=
(
K−1(u − Πu),v

)
−

(
K−1(uh − Πu),v

)
Q

+ σ(K−1Πu,v). (6.40)

By (5.40) and (5.11), the last term in the numerator of (6.39) can be estimated as

n∑

i=1

〈p− Ic
Hp,v · ni〉Γi

.

n∑

i=1

Hs−1/2‖p‖s+1/2,Ωi
‖v‖H(div;Ωi), 1/2 ≤ s ≤ m+ 1. (6.41)

A combination of (6.39), (6.40), (6.41), (6.5), (5.5), (5.2), (3.31), and (6.7) implies (6.38).

6.5 Superconvergence for the pressure

In this section we employ a duality argument to obtain a superconvergence for the pressure at the element
centers of mass. We begin with some auxiliary lemmas needed in the analysis.
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Lemma 6.8. For all q ∈ H1(Ω)d,

‖ΠRT Π0q− q‖ .

n∑

i=1

h‖q‖1,Ωi
+ hrH1/2‖q‖r+1/2, 0 < r ≤ 1. (6.42)

Proof. Using (5.2) and (5.36), we have

‖ΠRT Π0q − q‖ ≤ ‖ΠRT Π0q− Π0q‖ + ‖Π0q − q‖ .
∑

E∈Th

h‖Π0q‖1,E +

n∑

i=1

h‖q‖1,Ωi
+ hrH1/2‖q‖r+1/2

.

n∑

i=1

h‖q‖1,Ωi
+ hrH1/2‖q‖r+1/2, 0 < r ≤ 1,

(6.43)

where we have used (5.38) in the last inequality.

Lemma 6.9 ([53, 37]). Let K−1 ∈ W 2,∞
Th

. On simplicial elements, h2-parallelograms, and regular h2-

parallelepipeds, for all q ∈ Vh, v ∈ VRT
h ,

|σ(K−1q,v)| .
∑

E∈Th

h2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E. (6.44)

Remark 6.1. The above lemma also holds for v ∈ Vh on simplicial elements. However, in the analysis
below we will see that it is necessary to restrict v ∈ VRT

h .

Theorem 6.5. Assume that (5.24) holds, K ∈W 1,∞, K−1 ∈W 2,∞
Th

, and the H2 elliptic regularity condition

(6.47) holds. Then, the pressure ph of the mortar MFMFE method (4.1)-(4.3) on simplicial elements, h2-
parallelograms, and regular h2-parallelepipeds, satisfies

‖Qhp− ph‖ .

n∑

i=1

(Hs+1/2‖p‖s+1/2,Ωi
+ hH‖u‖1,Ωi

+ h3/2H1/2‖u‖2,Ωi
) + hrH3/2‖u‖r+1/2, (6.45)

where 0 < s ≤ m+ 1 and 0 < r ≤ 1.

Proof. Consider an auxiliary problem

−∇ · (K∇φ) = ph −Qhp, in Ω,

φ = 0, on ∂Ω.
(6.46)

We assume that the problem is H2-elliptic regular:

‖φ‖2 . ‖Qhp− ph‖. (6.47)

Sufficient conditions for (6.47) can be found in [33, 41]. For example, it holds if the components of K ∈
C0,1(Ω) and ∂Ω is smooth enough. By (5.7), (3.22), and (5.34),

n∑

i=1

(p−ph,∇·ΠRT Π0K∇φ)Ωi
=

n∑

i=1

(Qhp−ph,∇·ΠRT Π0K∇φ)Ωi
=

n∑

i=1

(Qhp−ph,∇·K∇φ)Ωi
= ‖Qhp−ph‖

2.

Taking v = ΠRT Π0K∇φ ∈ Vh,0 in (6.2),

‖Qhp− ph‖
2 = (K−1u,v) − (K−1uh,v)Q +

n∑

i=1

〈p,v · ni〉Γi
. (6.48)
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We rewrite (6.48) as

‖Qhp− ph‖
2 =

(
K−1(u − Πu),v

)
−

(
K−1(uh − Πu),v

)
Q

+ σ(K−1Πu,v) +
n∑

i=1

〈p− PHp,v · ni〉Γi
, (6.49)

where we have also used the weak continuity of v, see (5.14). Using (3.24) and (5.37), we bound the first
term on the right in (6.49) as

(K−1(u − Πu),ΠRT Π0K∇φ) . ‖K−1‖0,∞‖u− Πu‖‖K‖1,∞‖φ‖2. (6.50)

For the third term on the right in (6.49) , (6.44) implies that

σ(K−1Πu,vh) .
∑

E∈Th

h2‖K−1‖2,∞,E‖Πu‖2,E‖Π
RT Π0K∇φ‖1,E

.

n∑

i=1

h3/2H1/2|||K−1|||2,∞|||K|||1,∞‖u‖2,Ωi
‖φ‖2,

(6.51)

where we have used (5.5), (5.6), and (5.38). The fourth term on the right in (6.49) represents the mortar
interface error, which can be written as

n∑

i=1

〈p− PHp, ΠRT Π0K∇φ · ni〉Γi
=

n∑

i=1

〈p− PHp, (Π
RT Π0K∇φ− ΠRTK∇φ) · ni〉Γi

+

n∑

i=1

〈p− PHp, (Π
RTK∇φ−K∇φ) · ni〉Γi

+

n∑

i=1

〈p− PHp,K∇φ · ni〉Γi
.

(6.52)

Using (5.12), (5.41), (3.24), (5.35), and (5.33), we bound the first term on the right in (6.52) as

n∑

i=1

(〈p− PHp, (Π
RT Π0K∇φ− ΠRTK∇φ) · ni〉Γi

.

n∑

i=1

‖p− PHp‖Γi
‖(ΠRT Π0K∇φ− ΠRT ΠK∇φ) · ni‖Γi

.

n∑

i=1

Hs‖p‖s,Γi
h−1/2‖ΠRT Π0K∇φ− ΠRT ΠK∇φ‖Ωi

.

n∑

i=1

Hs‖p‖s,Γi
h−1/2‖Π0K∇φ− ΠK∇φ‖Ωi

.

n∑

i=1

Hs+1/2‖K‖1,∞‖p‖s+1/2,Ωi
‖φ‖2, 0 < s ≤ m+ 1.

(6.53)

Using (5.12), (5.13), and (5.33), we bound the second and third terms on the right in (6.52) as

n∑

i=1

(〈p−PHp, (Π
RTK∇φ−K∇φ) · ni〉Γi

+ 〈p− PHp,K∇φ · ni〉Γi
)

.

n∑

i=1

‖p− PHp‖Γi
‖(ΠRTK∇φ−K∇φ) · ni‖Γi

+

n∑

i=1

‖p− PHp‖−1/2,Γi
‖K∇φ · ni‖1/2,Γi

.

n∑

i=1

Hs+1/2‖p‖s+1/2,Ωi
‖K‖1,∞,Ωi

‖φ‖2, 0 < s ≤ m+ 1.

(6.54)

It remains to estimate the second term in (6.49), which can be manipulated as

(K−1(Πu − uh),ΠRT Π0K∇φ)Q = (K−1(Πu − uh),ΠRT (Π0 − Π)K∇φ)Q

+ (K−1(Πu − uh),ΠRTK∇φ)Q

(6.55)
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The first term on the right above can be bounded using (3.24) and (5.35):

(K−1(Πu − uh),ΠRT (Π0 − Π)K∇φ)Q . ‖Πu− uh‖h
1/2H1/2‖K‖1,∞‖φ‖2. (6.56)

For the second term on the right in (6.55) we write

(K−1(Πu − uh),ΠRTK∇φ)Q

= ((K−1 −K
−1

)(Πu − uh),ΠRTK∇φ)Q + (K
−1

(Πu − uh),ΠRT (K −K)∇φ)Q

+ (K
−1

(Πu − uh),ΠRTK(∇φ−∇φ1))Q + (K
−1

(Πu − uh),ΠRTK∇φ1)Q,

(6.57)

where K denotes the L2-projection of K onto the space of constant tensors and φ1 is a linear approximation
to φ such that [16]

‖φ− φ1‖E . h2‖φ‖2,E , ‖φ− φ1‖1,E . h‖φ‖2,E. (6.58)

Using (5.6), the first term on the right in (6.57) can be bounded as

((K−1 −K
−1

)(Πu − uh),ΠRTK∇φ)Q,E . h
‖K‖2

1,∞,E

k2
0

‖Πu − uh‖E‖φ‖2,E . (6.59)

For the second and third terms on the right in (6.57), we use the inequality, for any q ∈ H1(E)d,

‖ΠRT q‖E ≤ ‖ΠRT q− q‖E + ‖q‖E . (h‖q‖1,E + ‖q‖E),

combined with (5.6) to obtain

(K
−1

(Πu − uh),ΠRT (K −K)∇φ)Q,E . h
‖K‖1,∞,E

k0
‖Πu− uh‖E‖φ‖2,E, (6.60)

and

(K
−1

(Πu − uh),ΠRTK(∇φ−∇φ1))Q . h
‖K‖0,∞,E

k0
‖Πu− uh‖E‖φ‖2,E, (6.61)

where we have also used (6.58) in (6.61). Finally, for the last term in (6.57) we write as

(K
−1

(Πu − uh),ΠRTK∇φ1)Q = (K
−1

(Πu − uh),ΠRTK∇φ1 −K∇φ1)Q + (Πu − uh,∇φ1)Q. (6.62)

The first term on the right in (6.62) can be bounded as

(K
−1

(Πu − uh),ΠRTK∇φ1 −K∇φ1)Q .
∑

ETh

h

k0
‖Πu − uh‖E‖K∇φ1‖E

.
∑

ETh

h
k1

k0
‖Πu − uh‖E(‖∇φ−∇φ1‖E + ‖∇φ‖E) .

∑

ETh

h
k1

k0
‖Πu− uh‖E‖φ‖2,E,

(6.63)

where we have used (3.32), (5.2), and (6.58). By mapping to the reference element, the second term on the
right in (6.62) has been shown in [53, 37] that

(Πu − uh,∇φ1)Q = R+
∑

E∈Th

(ΠRT (Πu − uh),∇φ1)E , (6.64)

where
|R| .

∑

E∈Th

h‖Πu − uh‖E‖φ‖2,E . (6.65)
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For the second term on the right in (6.64), using that φ and u · n are well defined on the element faces, as
well as (3.23), (6.8), (6.9), and (5.40), we have

∑

E∈Th

(ΠRT (Πu − uh),∇φ1)E

=
∑

E∈Th

(ΠRT (Πu − uh),∇(φ1 − φ))E +

n∑

i=1

〈ΠRT (Πu − uh) · ni, φ− Ic
Hφ〉∂Ωi

.
∑

E∈Th

h‖Πu− uh‖E‖φ‖2,E +
n∑

i=1

‖ΠRT (Πu − uh)‖H(div,Ωi)‖φ− Ic
Hφ‖1/2,∂Ωi

.
∑

E∈Th

h‖Πu− uh‖E‖φ‖2,E +

n∑

i=1

‖Πu− uh‖Ωi
H‖φ‖2,Ωi

,

(6.66)

where we have also used the approximation bounds (6.58) and (5.11). The proof is completed by a combi-
nation of (6.49)–(6.55), (6.56)–(6.66), (6.47), (5.2), (5.4), and (6.7).

7 A domain decomposition formulation

7.1 Reduction to a mortar interface problem

Following [32, 7, 9], we reduce the global multiscale system (4.1)–(4.3) to a coarse scale interface problem for
the mortar pressure. The resulting interface problem is symmetric and positive definite and can be solved
using a preconditioned conjugate gradient (CG) method.

Define a bilinear form dH : L2(Γ) × L2(Γ) → R for λ, µ ∈ L2(Γ) by

dH(λ, µ) =

n∑

i=1

dH,i(λ, µ) = −
n∑

i=1

〈ΠRT u∗
h(λ) · ni, µ〉Γi

,

where (u∗
h(λ), p∗h(λ)) ∈ Vh ×Wh solve, for 1 ≤ i ≤ n,

(K−1u∗
h(λ),v)Q,Ωi

− (p∗h(λ),∇ · v)Ωi
= −〈λ,ΠRT v · ni〉Γi

, v ∈ Vh,i, (7.1)

(∇ · u∗
h(λ), w)Ωi

= 0, w ∈Wh,i. (7.2)

The above subdomain problems represent the elimination of the interior degrees of freedom in forming the
Schur complement for the mortar Lagrange multiplier.

Define a linear functional gH : L2(Γ) → R by

gH(µ) =

n∑

i=1

gH,i(µ) =

n∑

i=1

〈ΠRT ūh · ni, µ〉Γi
,

where (ūh, p̄h) ∈ Vh ×Wh solve, for 1 ≤ i ≤ n,

(K−1ūh(λ),v)Q,Ωi
− (p̄h(λ),∇ · v)Ωi

= −〈g,ΠRT v · ni〉∂Ωi/Γi
, v ∈ Vh,i, (7.3)

(∇ · ūh(λ), w)Ωi
= f, w ∈ Wh,i. (7.4)

It is easy to show that solving (4.1)-(4.3) is equivalent to solving the interface problem for λH ∈ ΛH ,

dH(λH , µ) = gH(µ), µ ∈ ΛH , (7.5)

and calculating
uh = u∗

h(λH) + ūh, ph = p∗h(λH) + p̄h. (7.6)
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7.2 Mortar pressure error estimate

Lemma 7.1. The interface bilinear form dH(·, ·) is symmetric and positive semi-definite on L2(Γ). If (5.22)
holds, then dH(·, ·) is positive definite on ΛH.

Proof. Let v = u∗
h(µ) in (7.1) for some µ ∈ L2(Γ) to obtain

dH,i(µ, λ) = −〈ΠRT u∗
h(µ) · ni, λ〉Γi

= (K−1u∗
h(λ),u∗

h(µ))Q,Ωi
,

which shows that dH(·, ·) is symmetric and

dH,i(µ, µ) =
(
K−1u∗

h(µ),u∗
h(µ)

)
Q,Ωi

≥ 0. (7.7)

For µ ∈ ΛH , if (5.22) holds, the argument from Lemma 6.1 shows that dH(µ, µ) = 0 implies µ = 0.

Let ‖ · ‖dH
be the seminorm induced by dH(·, ·) on L2(Γ):

‖µ‖dH
= dH(µ, µ)1/2, µ ∈ L2(Γ).

The proof of the next result is similar to the proof of Theorem 4.4 in [9].

Theorem 7.1. For the mortar pressure ΛH of the mortar MFMFE method (4.1)-(4.3) on simplicial grids,
h2-parallelograms, and h2-parallelepipeds, if (5.24) holds, then

‖p− λH‖dH
. ‖u− uh‖ +

n∑

i=1

h‖u‖1,Ωi
. (7.8)

Proof. Let, for µ ∈ L2(Γ),
uh(µ) = u∗

h(µ) + ūh, ph(µ) = p∗h(µ) + p̄h, (7.9)

and note that (uh(µ), ph(µ)) ∈ Vh ×Wh satisfies

(K−1uh(µ),v)Q,Ωi
− (ph(µ),∇ · v)Ωi

= − 〈µ,ΠRT v · n〉Γi
− 〈g,ΠRT v · n〉∂Ωi/ Γi

, v ∈ Vh,i, (7.10)

(∇ · uh(µ), w)Ωi
= (f, w)Ωi

, w ∈Wh,i. (7.11)

In particular uh(λH) = uh and ph(λH) = ph. From (7.7), the linearity of u∗
h(·) implies that

‖p− λH‖dH
. ‖u∗

h(p) − u∗
h(λH)‖ = ‖uh(p) − uh(λH)‖

= ‖uh(p) − uh‖ ≤ ‖uh(p) − u‖ + ‖u− uh‖,
(7.12)

where we have also used norm equivalence (3.31) and (7.9). The estimate (7.8) follows from first order
convergence of the MFMFE method on a single block [53, 37]:

‖uh(p) − u‖Ωi
. h‖u‖1,Ωi

.

7.3 Multiscale flux basis implementation

In the original implementation of the mortar mixed finite element method [7, 9], the action of the interface
operator (7.5) in each conjugate gradient iteration is computed by solving subdomain problems. Alterna-
tively, a multiscale flux basis with respect to the mortar variables can be computed before the start of the
interface iteration [30]. The computation of these basis functions requires solving a fixed number (equal
to the number of mortar degrees of freedom per subdomain) of Dirichlet subdomain problems. Then, an
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inexpensive linear combination of the multiscale flux basis functions replaces subdomain solves during the
interface iteration.

Following [30], let {φ
(k)
H,i}

NH,i

k=1 denote the basis function of mortar space ΛH,i, where NH,i is the number
of mortar degrees of freedom on subdomain Ωi. Then for λH,i ∈ ΛH,i, we have

λH,i =

NH,i∑

k=1

λ
(k)
H,iφ

(k)
H,i.

The computation of multiscale flux basis function ψ
(k)
H,i = DH,iφ

(k)
H,i with respect to the mortar basis functions

φ
(k)
H,i is as follows.

For k = 1, 2, . . . , NH,i,

1. Project φ
(k)
H,i on the subdomain boundary:

QRT
h,i φ

(k)
H,i = γ

(k)
i .

2. Solve the subdomain problem:

(K−1u∗
h(γ

(k)
i ),v)Q,Ωi

− (p∗h(γ
(k)
i ),∇ · v)Ωi

= −〈γ
(k)
i ,ΠRT v · ni〉Γi

, v ∈ Vh,i,

(∇ · u∗
h(γ

(k)
i ), w)Ωi

= 0, w ∈Wh,i.

3. Project the boundary flux onto the mortar space:

ψ
(k)
H,i = −(QRT

h,i )T ΠRT u∗
h(γ

(k)
i ) · ni.

Once the multiscale flux basis functions are constructed, the action of interface operator DH,i, defined
by

〈DH,iλH,i, µ〉Γi
= dH,i(λ, µ) = −〈ΠRTu∗

h(λ) · ni, µ〉Γi
, ∀µ ∈ ΛH,i, (7.13)

simply involves a linear combination of the multiscale basis functions:

DH,iλH,i = DH,i




NH,i∑

k=1

λ
(k)
H,iφ

(k)
H,i



 =

NH,i∑

k=1

λ
(k)
H,iDH,iφ

(k)
H,i =

NH,i∑

k=1

λ
(k)
H,iψ

(k)
H,i. (7.14)

For the computational efficiency of multiscale mortar flux basis approach, we refer to [30].

8 Numerical experiments

In this section, we confirm our theoretical results by presenting several numerical examples on rectangular,
h2-parallelogram, cuboid, and regular h2-parallelepiped grids. The first two examples are for two dimensional
problems. The computational domain of the first example is the unit square. In the second example, we use
a global smooth mapping to generate irregular domain from the unit square. The third example is on the
unit cube. The fourth example tests h2-parallelepiped grids on irregular domain obtained via a mapping of
a unit cube. We also apply the method to solve a problem with a highly heterogeneous permeability, and
compare the fine scale and multiscale solutions.

In the convergence tests, the domain is divided into four subdomains for the 2D examples and eight
subdomains for the 3D examples with interfaces along the x = 0.5 and y = 0.5 (and z = 0.5 for 3D examples)
lines (planes). For the boundary conditions, we choose Dirichlet on x = 0 and x = 1 and Neumann on the
rest of the boundary. We consider both matching and non-matching girds.

27



We employ the conjugate gradient method to solve the interface problem (7.5) arising from the domain
decomposition algorithm in Section 7. The stopping criteria for the conjugate gradient iteration is the relative
residual error to be smaller than 10−6. In each conjugate iteration, we perform a linear combination of the
multiscale flux basis functions to compute the action of the operator DH,i, as described in Section 7.3. In
the numerical examples, we report the numerical error between the computed solution and exact solution,
as well as the number of conjugate gradient iterations.

The rectangular and cuboid meshes on each level are generated by uniform refinements of each subdomain
grids and the mortar grid. For the coarsest matching grid, the mesh on each subdomain is 2 × 2 in 2D and
2× 2× 2 in 3D. For the coarsest nonmatching grid in 2D, we use 2× 2 or 3× 3 alternated in a checkerboard
fashion. We test both linear mortars (m = 1) and quadratic mortars (m = 2). The mortar spaces can be
continuous or discontinuous. The coarsest mortar grids on all interfaces have one element, so H = 1/2. For
the linear mortars, we refine by half both subdomain and mortar meshes, which gives H = 2h on each level.
For the quadratic mortars, we refine the subdomain meshes by four and mortar meshes by half, which gives
H = h1/2. The choice is motivated by balancing the fine scale and coarse scale error terms in the theoretical
convergence results, see also Table 1.

The h2-parallelogram and h2-parallelepiped meshes on each level are obtained by a global mapping of
the rectangular and cuboid meshes generated by the above procedure.

The convergence rates are reported for each level of grid refinement. Table 1 shows convergence rates
predicted by the theory for linear and quadratic mortars. Note that by appropriately choosing the coarse
scale size and polynomial degree, the method exhibits fine scale convergence. Higher order mortars allow for
coarser mortar grids.

The errors ‖p − ph‖ and ‖u − uh‖ are computed by the element-by-element trapezoidal rule. The
pressure error |||p− ph||| is in the discrete L2-norm computed by the midpoint quadrature rule: |||p− ph|||2 ≡∑

E∈Th
|E|(p − ph)2(me), where me is the center of mass of element E. Since |||p − Qhp||| . h2, we have

|||p − ph||| ≤ |||Qhp − ph||| + |||p − Qhp||| = ‖Qhp − ph‖ + O(h2). This gives the superconvergence result for
|||p− ph||| as well. The velocity error |||u − ΠRT uh||| is defined in (6.32).

Table 1: Theoretical convergence rates for linear and quadratic mortars

m H ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRT uh|||
1 2h h h h2 h1.5

2 h1/2 h h h1.5 h1.25

8.1 Example 1: rectangular mesh

In the first example, we take the domain to be the unit square and solve the problem on rectangular grids
with given analytic solution

p(x, y) = x3y4 + x2 + sin(xy) cos(y)

and a full permeability tensor

K =

(
(x+ 1)2 + y2 sin(xy)

sin(xy) (x+ 1)2

)
.

We present four cases with either linear or quadratic mortars on matching or nonmatching grids. Con-
vergence rates for various norms are given in Tables 2–5. The observed convergence rates are at least as
good as the theory predicts. In all four cases, we obtain first order convergence for both the pressure error
‖p− ph‖ and the velocity error ‖u − uh‖. The discrete pressure error |||p − ph||| is superconvergent of order
O(h2) for all four cases, even though Theorem 6.5 predicts only O(h1.5) for quadratic mortars. Theorem
6.3 predicts that the discrete velocity error |||u−ΠRT uh||| is superconvergent of order O(h1.25) for quadratic
mortars and O(h1.5) for linear mortars. We observe convergence of order O(h1.5) or higher in all four cases.
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In terms of the computational cost, quadratic mortars are more efficient than linear mortars. Continuous
linear mortars need 50 CG iterations with h = 1/256, see Table 2, while continuous quadratic mortars require
only 33 iterations on the same fine mesh level, as shown in Table 3. Similarly for the discontinuous case in
Tables 4 - 5, the CG iteration number with quadratic mortars is smaller than that with linear mortars. This
can be explained by the much coarser mortar grids used with quadratic mortars. The computed velocity
and pressure with discontinuous linear and quadratic mortars on the same nonmatching grids are given in
Figure 3. The numerical errors are given in Figure 4 accordingly. The errors are comparable, although a
somewhat smaller velocity error along the interfaces is observed for quadratic mortars.

Table 2: Example 1: continuous linear mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.53E-01 — 1.06E+00 — 5.39E-02 — 1.27E-01 — 8
8 1.21E-01 1.06 5.23E-01 1.02 1.38E-02 1.97 3.10E-02 2.03 11
16 5.96E-02 1.02 2.57E-01 1.03 3.46E-03 2.00 7.66E-03 2.02 14
32 2.97E-02 1.00 1.27E-01 1.02 8.66E-04 2.00 1.92E-03 2.00 18
64 1.48E-02 1.00 6.34E-02 1.00 2.16E-04 2.00 4.80E-04 2.00 26
128 7.42E-03 1.00 3.16E-02 1.00 5.41E-05 2.00 1.20E-04 2.00 36
256 3.71E-03 1.00 1.58E-02 1.00 1.36E-05 1.99 3.67E-05 1.71 50

Table 3: Example 1: continuous quadratic mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.53E-01 — 1.06E+00 — 5.39E-02 — 1.27E-01 — 8
16 5.96E-02 1.04 2.57E-01 1.02 3.46E-03 1.98 7.69E-03 2.02 15
64 1.48E-02 1.00 6.34E-02 1.01 2.16E-04 2.00 5.71E-04 1.88 22
256 3.71E-03 1.00 1.58E-02 1.00 1.36E-05 1.99 7.61E-05 1.45 33

Table 4: Example 1: discontinuous linear mortars on nonmatching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 1.97E-01 — 7.59E-01 — 3.59E-02 — 1.61E-01 — 8
8 9.59E-02 1.04 3.69E-01 1.04 9.18E-03 1.97 5.02E-02 1.68 13
16 4.76E-02 1.01 1.81E-01 1.03 2.31E-03 1.99 1.54E-02 1.70 19
32 2.37E-02 1.01 8.99E-02 1.01 5.79E-04 2.00 4.82E-03 1.68 28
64 1.19E-02 0.99 4.48E-02 1.00 1.45E-04 2.00 1.56E-03 1.63 41
128 5.93E-03 1.00 2.24E-02 1.00 3.63E-05 2.00 5.18E-04 1.60 58
256 2.97E-03 1.00 1.12E-02 1.00 9.10E-06 2.00 1.77E-04 1.55 85

8.2 Example 2: h
2-parallelogram mesh

In the second example, we take the domain to be a C∞ map of the unit square. The map is defined as

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ),

y = ŷ − 0.04 cos(3πx̂) cos(3πŷ).
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Figure 3: Multiscale mortar MFMFE solution on nonmatching rectangular grids in Example 1: discontinuous
linear (left) and discontinuous quadratic (right) mortars.
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Figure 4: Error in the multiscale mortar MFMFE solution on nonmatching rectangular grids in Example 1:
discontinuous linear (left) and discontinuous quadratic (right) mortars.
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Figure 5: Multiscale mortar MFMFE solution on nonmatching h2-parallelograms in Example 2: discontin-
uous linear (left) and discontinuous quadratic (right) mortars.
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Table 5: Example 1: discontinuous quadratic mortars on nonmatching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 1.97E-01 — 7.54E-01 — 3.64E-02 — 1.45E-01 — 11
16 4.76E-02 1.02 1.81E-01 1.03 2.32E-03 1.99 1.14E-02 1.83 18
64 1.19E-02 1.00 4.48E-02 1.01 1.45E-04 2.00 8.46E-04 1.88 33
256 2.97E-03 1.00 1.12E-02 1.00 9.12E-06 2.00 7.75E-05 1.72 58
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Figure 6: Error in the multiscale mortar MFMFE solution on nonmatching h2-parallelograms in Example
2: discontinuous linear (left) and discontinuous quadratic (right) mortars.

The quadrilateral grids on the different levels are defined by mapping the nonmatching rectangular grids
from Example 1. More precisely, each vertex is an image of a vertex of the rectangular grid. Due to the
smoothness of the global map, all elements are h2-parallelograms.

We choose the same analytic solution and permeability tensor as in Example 1. Convergence rates are
given in Tables 6-7. As the theory predicts, we observe first order convergence for both the pressure and
velocity. We also observe second order convergence for the discrete pressure error and higher than O(h1.5)
convergence for the discrete velocity error for both linear and quadratic mortars. Again, quadratic mortars
are more efficient than linear mortars. The computed solution and the corresponding error with discontinuous
linear and quadratic mortars on the same nonmatching quadrilateral grids are given in Figure 5 and Figure
6.

Table 6: Example 2: discontinuous linear mortars on nonmatching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 1.96E-01 — 8.56E-01 — 3.11E-02 — 3.53E-01 — 8
8 9.66E-02 1.02 4.19E-01 1.03 7.46E-03 2.06 1.17E-01 1.59 13
16 4.82E-02 1.00 2.08E-01 1.01 1.83E-03 2.03 3.49E-02 1.75 19
32 2.41E-02 1.00 1.03E-01 1.01 4.54E-04 2.01 9.55E-03 1.87 28
64 1.20E-02 1.01 5.13E-02 1.01 1.13E-04 2.01 2.60E-03 1.88 40
128 6.02E-03 1.00 2.56E-02 1.00 2.82E-05 2.00 7.36E-04 1.83 57
256 3.01E-03 1.00 1.28E-02 1.00 7.04E-06 2.00 2.20E-04 1.74 81
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Table 7: Example 2: discontinuous quadratic mortars on nonmatching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 1.96E-01 — 8.53E-01 — 3.16E-02 — 3.52E-01 — 11
16 4.82E-02 1.01 2.07E-01 1.02 1.84E-03 2.05 3.32E-02 1.70 17
64 1.20E-02 1.00 5.12E-02 1.01 1.13E-04 2.01 2.25E-03 1.94 32
256 3.01E-03 1.00 1.28E-02 1.00 7.05E-06 2.00 1.52E-04 1.94 58

8.3 Example 3: cuboid mesh

In the third example, we consider cuboid grids on the unit cube with given analytic solution

p(x, y, z) = x+ y + z − 1.5,

and a full tensor coefficient

K =




x2 + y2 + 1 0 0

0 z2 + 1 sin(xy)
0 sin(xy) x2y2 + 1



 .

Convergence rates are reported in Tables 8 and 9. Again, these results confirm the theoretical results. Note
that the discrete velocity error |||u− ΠRT uh||| has second order of convergence for both linear and quadratic
mortars on matching grids, even though the theory predicts O(h1.5) for linear mortars and O(h1.25) for
quadratic mortars. The computed solution and its error for the case of discontinuous quadratic mortars are
shown in Figure 7.
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Figure 7: Multiscale mortar MFMFE solution (left) and error (right) for Example 3: discontinuous quadratic
mortars on matching grids

8.4 Example 4: regular h
2-parallelepiped mesh

In this example, we take the domain to be a C∞ map of the unit cube. The map is defined as

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ) cos(3πẑ),

y = ŷ − 0.04 cos(3πx̂) cos(3πŷ) cos(3πẑ),

z = ẑ + 0.05 cos(3πx̂) cos(3πŷ) cos(3πẑ).
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Figure 8: Multiscale mortar MFMFE solution (left) and error (right) for Example 4: discontinuous quadratic
mortars on matching grids

Table 8: Example 3: discontinuous linear mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.17E-01 — 1.55E-01 — 9.87E-03 — 3.73E-03 — 14
8 1.08E-01 1.01 7.76E-02 1.00 2.47E-03 2.00 1.03E-03 1.86 20
16 5.41E-02 1.00 3.88E-02 1.00 6.17E-04 2.00 2.60E-04 1.99 28
32 2.71E-02 1.00 1.94E-02 1.00 1.54E-04 2.00 6.50E-05 2.00 39
64 1.35E-02 1.01 9.68E-03 1.00 3.85E-05 2.00 1.66E-05 1.97 56

Table 9: Example 3: discontinuous quadratic mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.17E-01 — 1.55E-01 — 9.87E-03 — 3.73E-03 — 14
16 5.41E-02 1.00 3.88E-02 1.00 6.17E-04 2.00 2.61E-04 1.92 27
64 1.35E-02 1.00 9.68E-03 1.00 3.85E-05 2.00 1.67E-05 1.98 53

Table 10: Example 4: discontinuous linear mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.18E-01 — 2.82E-01 — 1.39E-02 — 7.48E-02 — 14
8 1.10E-01 0.99 1.66E-01 0.76 5.07E-03 1.46 5.15E-02 0.54 20
16 5.49E-02 1.00 8.96E-02 0.89 1.86E-03 1.45 2.09E-02 1.30 28
32 2.75E-02 1.00 4.51E-02 0.99 5.24E-04 1.83 5.93E-03 1.82 40
64 1.37E-02 1.01 2.23E-02 1.02 1.35E-04 1.96 1.52E-03 1.96 57

The computational grids are defined by mapping the cuboid grids considered in Example 3. Each vertex
of a hexahedral element is obtained by mapping a vertex in the cuboid grid. The element trilinear map-
ping determines the shape of each hexahedron. The smoothness of the global mapping implies that each
hexahedron is a regular h2-parallelepiped.
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Table 11: Example 4: discontinuous quadratic mortars on matching grids

1/h ‖p− ph‖ ‖u− uh‖ |||p− ph||| |||u − ΠRTuh||| CGiter
4 2.18E-01 — 2.82E-01 — 1.39E-02 — 7.48E-02 — 14
16 5.49E-02 0.99 8.96E-02 0.83 1.86E-03 1.45 2.09E-02 0.92 27
64 1.37E-02 1.00 2.24E-02 1.00 1.35E-04 1.89 1.53E-03 1.89 54

We choose the same analytic solution and permeability tensor as in Example 3. Tables 10 and 11 show
the convergence rates for discontinuous linear and quadratic mortars on matching grids. Again, these results
confirm the theory and show higher than the theoretical order of convergence for the discrete pressure and
velocity errors. The computed solution and the corresponding error for the case of discontinuous quadratic
mortars are shown in Figure 8.

8.5 Example 5: heterogeneous permeability

We use a heterogeneous permeability from the Society of Petroleum Engineers (SPE) Comparative Solution
Project 1. The computation domain is Ω = (0, 120)2 with a fixed rectangular 120 × 120 grid. The left and
right boundary conditions are p = 0 and p = 1. No flow is specified on the top and bottom boundaries. The
permeability field is shown on Figure 9.
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Figure 9: Permeability (left), fine scale solution (middle), and multiscale solution with one single quadratic
mortar per interface (right).

A comparison between the fine scale solution and the multiscale solution with 6 × 6 subdomains and
a single quadratic mortar per interface is shown in Figure 9. We observe a very good match between the
two solutions. At the same time, the multiscale solution is significantly less expensive than the fine scale
solution. This can be observed in Table 12, were we compare the cost for computing a multiscale solution
with several different mortar grids with the cost for the fine scale solution. We present both the cost for the
original implementation and the cost for multiscale flux basis implementation. Recall that in the original
implementation, one set of subdomain problems needs to be solved at each CG iteration. In the multiscale flux
basis implementation, the dominant cost is computing the basis, which also involves subdomain solves. The
number of solves for each subdomain equals to the the number of mortar degrees of freedom. We can make
two conclusions. First, the fine scale solution (reported in the last line - piecewise constant mortars with
20 elements per interface) requires a significantly larger number of subdomain solves than the multiscale
solution. Second, for these test cases the multiscale flux basis implementation is computationally more

1http://www.spe.org/web/csp/

34



efficient than the original implementation. This is evident when comparing the numbers in the “CGiter”
column with the numbers in the “Mortar DOF” column.

Table 12: Example 5: 6 × 6 subdomains

Mortar type # of elements CGiter # of Mortar DOF
per interface per subdomain

Discontinuous linear 1 109 8
Continuous quadratic 1 129 12
Discontinuous quadratic 1 167 12
Continuous linear 2 105 12
Discontinuous linear 2 170 16
Piecewise constant 20 536 80
(fine scale solution)

References

[1] J. E. Aarnes, Y. Efendiev, and L. Jiang, Mixed multiscale finite element methods using limited
global information, Multiscale Model. Simul., 7 (2008), pp. 655–676.

[2] J. E. Aarnes, S. Krogstad, and K.-A. Lie, A hierarchical multiscale method for two-phase flow
based on mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul., 5 (2006), pp. 337–
363.

[3] I. Aavastsmark, G. T. Eigestad, R. A. Klausen, M. F. Wheeler, and I. Yotov, Convergence
of a symmetric mpfa method on quadrilateral grids, Comput. Geosci., 11 (2007), pp. 333–345.

[4] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Comput.
Geosci., 6 (2002), pp. 405–432.

[5] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on unstructured grids for
inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput., 19 (1998),
pp. 1700–1716 (electronic).

[6] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems,
SIAM. J. Numer. Anal., 42 (2004), pp. 576–598.

[7] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on
nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295–1315.

[8] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov, Enhanced cell-
centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comp., 19 (1998),
pp. 404–425.

[9] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite
element method, Multiscale Model. Simul., 6 (2007), pp. 319–346.

[10] T. Arbogast, M. F. Wheeler, and I. Yotov, Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34 (1997), pp. 828–852.

[11] D. N. Arnold, D. Boffi, and R. S. Falk, Quadrilateral H(div) finite elements, SIAM J. Numer.
Anal., 42 (2005), pp. 2429–2451.

35



[12] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation,
postprocessing and error estimates, RAIRO Modèl. Math. Anal. Numèr., 19 (1985), pp. 7–32.
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