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Abstract

A Weyl structure is a bundle over space-time, whose fiber at e
space-time point is a space of maximally isotropic complexanh-
gent planes. We develop the theory of Weyl connections for We
structures and show that the requirement that the connectia be
torsion-free fixes the Weyl connection uniquely. Further weshow
that to each such Weyl connection, there is naturally assoaied a
(2, 3, 5)-Pfaffian system, as first analyzed by Cartan. We deate
mine the associatedG,-conformal structure and calculate it ex-
plicitly in the cases of the Kapadia family of space-times ath of
the Schwarzschild solution.
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Introduction

A space-time is by definition a connected smooth orientedrf@anifold, equipped
with a Lorentzian metric. Naturally associated to the neatfithe space-time are
a number of Lie groups, for example the Lorentz group, th@&oe group, the
Weyl group and the conformal group: these give rise to ppacbundles over
the space-time, with connection, which encode certairufeatof the space-time:
for example the bundle of orthonormal frames carries the-Cavita connection,
whereas the Cartan normal conformal connection is carnyed principal bun-
dle with group the Weyl group; this latter connection reflettie conformally
invariant information of the space-time. These struct@&sly generalise, mu-
tatis mutandis, to other dimensions.

The purpose of this work is to present a new space-time aaigin, which ap-
pears to be special to four dimensions, and which is conflyrravariant, like
the Cartan connection, but one for which the natural grodpadirst exceptional
complex Lie groupG, of Wilhelm Killing [L3]. From a modern perspective,
Killing found the G, Lie algebra. LateElie Cartan and Fritz Engel gave realiza-
tions of the associated Lie group, as symmetries of the amtsrand as symme-
tries of a generic three-form in seven dimensions [1, 2] 4A8)riori there is no
sign of this group in standard general relativity. Appalerthe reason for this
is that the group does not appear in connection with Minkewpkce-time: in-
stead the "flat model” turns out to be a constant curvatureptahe wave, whose
conformal metric (a special case of a family of metrics cdesed by Devendra
Kapadia) may be given, for example, @&sdv — dz? — u?dy?, where(u,v, z,y)
range over the open subset®f with « positive [12].

Cartan discovered that@,-structure appeared automatically in connection with
the study of generic Pfaffian systems consisting of threefomas in five dimen-
sions [5,[6] 7]. Here we call this structure(? 3, 5)-system: the 2" refers to
the space of vector fields that annihilate the Pfaffian systeen"3” to the extra
direction generated by taking the Lie brackets of the veatds of the 2”. Then

the "5” indicates that the Lie brackets of the vector fields of tBetdken amongst
themselves generate the remaining two directions in thgetataspace.



Given a real analytic space-time, it may be complexified &ed it may be shown
that its conformal structure gives rise to an holomorphierkann sphere bundle
over the complexified space-time, which carries a naturafamally invariant
(2,3, 5)-structure, exactly of the type considered by Cartan, pledionly that
the space-time be not conformally flat. In the following weelep this structure.

First we give a slight refinement of a conformal four-mardfolvhich we call

a Weyl structure (which may be defined in any even dimensidhis assigns to
the conformal structure one of its two families of maximaltispic subspaces:
in the language of physics, the Weyl structure is chiral, amtp-violating. This
family provides the relevant sphere bundle; on it, we defmexension of the
Wey!l structure, which we call a Weyl connection. The Weylmection has a nat-
urally defined torsion and we show in the torsion-free case Weyl connection
is unique. When the Weyl torsion vanishes, the curvatureelt-eefined and is
shown to be equivalent to the self-dual part of the Wey! ciumeaof the conformal
manifold. Finally, we show that if this curvature is non-@ethe torsion-free Wey!l
connection naturally gives @, 3, 5)-structure, which is therefore canonically as-
sociated to the conformal space-time. In fact, even if thgl\fdgsion is non-zero,
generically, we still have €, 3, 5)-structure, but the study of the structure in that
case is far more complicated and has yet to be accomplisiotai.

Pawel Nurowksi, in completing a research program, beguh thg third author,
showed that naturally associated to Cartan’s Pfaffian systdien put in a certain
canonical form, there is canonically defined a conformalcttire on the under-
lying five-manifold of the system, whose Cartan conformaidreection has group
reducible toG, and which gives the structure found by Cartanl [16,17, 18- An
dreasCap and Katja Sagerschnig showed how to describe the coafstmcture
directly from the Pfaffian system, without first putting itencanonical form([3].

The main result of the present work is the determination oéxplicit formula
for the G,-conformal metric in fiye dimensions, for the case of torsiae Weyl
connections, using the work @ap and Sagerschnig. We also write out this
conformal structure in two special cases: first for the Kagdamily of plane
wave metrics, where in particular, we identify "flat” modgtsen for the standard
Schwarzschild metric [22]. For these metrics, we are ahppeitohe system explic-
itly into the Cartan canonical form and thereby compute th&fa@rmal structure,
using Nurowski’s formula. For each case the two calculaiohthe conformal
structure are carried out using different techniques aaddhbults precisely agree.
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The present work should be considered in the context of awisteory; indeed
one of the main achievements of twistor theory is the anslgti{complex ana-
lytic) space-times with vanishing self-dual Weyl curvauilue to Roger Penrose,
Ezra Newman and others [|15,/19] 23| 24]. This work aims tdfdlgap where the
self-dual Weyl curvature is non-vanishing. It would be ohsmlerable interest to
study manifolds, with non-zero self-dual Weyl curvaturat bero anti-self-dual
Weyl curvature: these have associatedconformal structures and, at the same
time, the dual twistor theory applies; the interaction egwthese theories should
be fruitful. Also even when the self-dual Weyl curvature areero, there is a
twistor theory defined for each hypersurface in the spane;tstudied particu-
larly by the third authorl[23, 24]. The interplay between thgtheory and the
hypersurface twistor theory has yet to be elucidated.

We have presented the work for the case of the complexifitatiaceal space-
times, which of course entails the physically undesirablguirement that the
space-time be real analytic. However the structure issgll-defined without
analyticity and without complexification: one still has a&epe bundle and the
Go-conformal structure associated with it, but the conforstalicture is inher-
ently complex, in that the sphere is still treated as if it jued one dimension (i.e.
all calculations are holomorphic on the sphere), so it ittle lhard to interpret the
Go-structure in this case. None of these difficulties occuhareal analytic case.
TheG,-conformal structure is also present for Riemannian foanifiolds, where
similar remarks apply. In the case of Kleinian (ultra-hygudic) four-manifolds,
however, the theory has a completely real version; in thee tae group is the real
non-compact form of the complex Lie gro@ and analyticity is unneeded.

From our formula for the&G,-conformal structure, it is possible to compute the
curvature directly. The results will be presented elseehdrhe G,-conformal
structure itself probes four derivatives of the space-tinatric (two symmetrized
derivatives of its Weyl curvature). So tfil-conformal connection involves seven
derivatives of the original space-time metric. We expeet the structure will
simplify, when we pass from the five-manifold to the ass@dateven-manifold
of Charles Fefferman and C. Robin Graham([9, 10]. In this exmve should
note that for the Kapadia family of metrics, tfig-conformal structure is always
conformal to vacuum, so the Fefferman-Graham extensiamuisite. At the time
of writing, we do not yet know if this is true for the Schwarkgd G,-conformal
structure.



In section one we recall the theory @, 3, 5)-structures, due to Cartan. In section
two, we define Weyl structures associated to a conformattstrel for a four-
dimensional vector space. In section three we define Weglespmes, which are
equipped with Weyl structures for each tangent space. Ihosefour we con-
struct the associated sphere bundle, which will carryGheonformal structure.
In section five we define Weyl connections, their torsion amda&ture. In section
six, we compute the Weyl connection locally, and show thattision-free Weyl
connection is unigue. In section seven, we show that evesioto-free Weyl con-
nection with non-vanishing Weyl curvature is naturallf2a3, 5)-system.

In section eight we recap the spinor approach to space-tt@nring the ap-
proach of Penrose [20, 21]. In section nine, we recall hovagsgrom a null tetrad
in space-time to the associated spin connection. In setdiowe describe the ab-
stract index approach of Penrose and in section eleven w #yg approach to
the decomposition of the curvature tensor of a spin conmiectn section twelve
we lift the spin connection to the spin bundle, constructhregappropriate invari-
ant forms, which are dual to the horizontal vector fields & donnection. In
section thirteen we apply the spinor formalism to the Wegdures and prove,
in particular that the Weyl curvature of the Weyl connectemincides with the
self-dual part of the Weyl curvature of the space-time confd structure. In sec-
tion fourteen we use the spinor techniques to write out ounmesult, Theorem
2, the formula for theG,-conformal structure of a torsion-free Weyl connection.
The proof of Theorem 2 occupies sections fifteen to twenty.

In section twenty-one, we introduce the Kapadia family cdcgtimes. In sec-
tion twenty-two, we put the Weyl connection for each Kapapace-time in the
Cartan canonical form. In section twenty-three, we writé the G,-conformal
structure for the Kapadia metrics, using the Nurowski fdarand show that these
agree with our general formula. We find that all of th&econformal structures
are conformal to vacuum. In section twenty-four, we spéab a sub-family of
the Kapadia family, where we are able to identify the elemefthe sub-family,
which give rise to conformally flatz;-conformal structures. In section twenty-
five, we recall the Schwarzschild solution and its spin catina. In section
twenty-six, we write out thés,-conformal structure for Schwarzschild, which is
surprisingly complicated, considering that it only depgnd a single free param-
eter, the mass. Finally, in section twenty-seven, we puSittevarzschild Weyl
connection in Cartan canonical form, compute @heconformal structure using
Nurowski’s formula and verify that it agrees with our gendéoamula.
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We end with some technical remarks: in calculating with thedwski formal-
ism, the calculations were carried out using the Maple cdmgusystem. In
computing the various spin connections and in deriving otmtila for theCap-
Sagerschnig conformal structures, all the (intricaterwations were done by
hand, effectively following their calculation line by linélthough we have only
presented the results in the complex analytic case, all tgica have obvious
analogues in the Lorentzian, Riemannian and Kleinian ras¢s. We have dis-
cussed the Penrose spinor structures in such a way thatttiralrgroup for these
structures is the product of two copies of the Lie gr@tip(2, C); it is common
to simplify by requiring that their structure group be reithle to the sub-group of
all pairs(A, B) in GL(2,C) x GL(2, C), such thatlet(A) = det(B). We did not
do this here.

We work in the holomorphic category; our manifolds are carmnalytic and
bundles over them are complex analyticMfis a complex manifold, and if if is

a non-negative integer, we denote®y M) its sheaf of holomorphig-forms and
by (M) the sheaf of all holomorphic forms di. The holomorphic tangent and
cotangent bundles d¥l are denoted™™ andT*M, respectively. We sometimes
do not distinguish clearly between elements of a bundle eafsfgerm) at a point
and sections of the bundle or sheaf, over an open set, I¢tiEncpntext decide the
appropriate interpretation.

If A is a (complex) vector space, or a vector bundle, we denot&*bys dual;

if k is a non-negative integer, we denote®y(A) andA*, the k-th exterior and
k-th symmetric products, of with itself, respectively. Also we denote I8} A),
the full exterior algebra of.. We denote byPA the projective space af, soPA

is the Grassmanian of all one-dimensional subspacés Bbr0 # a € A denote
by [a] € PA the one-dimensional subspace passing throygio if b € A, then

b € [a], if and only if a complex numberexists withb = sa. If B is a subspace of
A, we call the annihilator o, the subspace df*, consisting of all3 € A*, such
that3(b) = 0, for all b € B. Our usual interpretation of a connection for a vector-
bundle over a manifold is as a mdgrom sections of the bundle to a section of
the tensor product of the bundle with the bundle of one-foainthe manifold,;

it is understood thadl preserves duality of bundles; it is also understood that
acts as the exterior derivative on forms. Then the curvatfitee connection is
d?. Finally, when the context is appropriate, following Cartave often omit the
wedge in the exterior product of forms.



1 The five-variable theory ofElie Cartan

Let S be a complex manifold of five dimensions andTetlenote a two-complex
dimensional sub-bundle of the tangent bundleSof Dually, let 7’ denote the
three-dimensional subbundle of the co-tangent bundl§,ahat annihilates .
Then7 is said to be generic, or of type, 3,5), if, in the neighbourhood of any
point of the spaceS, there are holomorphic local sectionsandw of 7, such
that the five vector field$v, w, [v, w], [v, [v, w]], [w, [v, w]] } trivialize the tangent
bundle.

Following Gaspard Monge and David Hilbeffije Cartan analyzed such a system
[5,11,/14]. Written first, dually, using differential formthe bundleZ” of Cartan
may be taken to be the sub-bundle of the co-tangent bundlepd@aS, with five
complex co-ordinateg§r, y, p, q, z), spanned by the following one-forms:

dy—pdl‘, dp—qu7 dZ_F(x7y7p7Q7Z)dx

Here F'(x,y, p, q, z) is a given holomorphic function of its arguments. The point
here is that the vanishing of these forms (with +# 0) corresponds to solutions
of the differential system, whefalenotes differentiation with respect.to

yv=p p=gq 2Z=F(x,y,p04q2).

Equivalently the system describes a single under-deteagguation, studied, in
special cases, by Monge and Hilbert:

?=F(x,y,y,y" 2).
For this system, the bundig is then spanned by the vector fields:
v=20, w=0,+pd,+q0,+ FO,,.
The required commutators are as follows:
[v,w] =0, + F,0,,
[, [v,w]] = F 40,
(w, [v,w]] = =0y — (F, + F,F, — Fiy — pFyy — qFy, — FF,.)0,.

Here and in the following we use subscripts to denote palgalatives. So we
have, immediately, by inspection of these commutators:

Lemma 1. The Cartan systeni?”’ = {dy—pdx, dp—qdx, dz—F(x,y,p,q,z)dz}
is generic, of typ€2, 3, 5), if and only if F},, # 0.



Cartan studied the equivalence problem for his differémstyatem and showed
that in the generic case it was governed by a principal buwitle connection
with groupG, [5]. Pawel Nurowski showed that the Cartan principal burcdkeld

be interpreted as a reduction of the Cartan conformal cdimmmefor a conformal
structure naturally defined on the spatfL6,[17]. Andrea£ap and Katja Sager-
schnig showed a direct method of passing to the conformattsire associated to
any7 of type(2, 3, 5), without requiring that the differential forms generatihg
first be put in the form considered by Cartan [3]. They alsonsdtbthat, when
applied to the Cartar®, 3, 5)-system, their conformal structure agrees with that
of Nurowski. We may summarize with their theorem:

Theorem 1. (Elie Cartan, Pawel Nurowski, Andre&ap and Katja Sagerschnig)
To any (2, 3,5)-system?, on a five-dimensional complex manifafd there is
naturally associated a conformal structure. The Cartanfoomal connection of
this structure has holonomy a subgroup®y.

There is also a real version of this theorem, where all gtiastare real; this

requires only smoothness, not analyticity: the confornralcture has signature
(3,2) and the holonomy group of the Cartan conformal connectidhdr a sub-

group of the non-compact real form G%.



2 Weyl structures

Given a complex four-dimensional vector spadg, denote byPT its associ-
ated projective space and BT the Grassmanian of all two-dimensional sub-
spaces off. The Klein quadricKT, is the quadric ifP(2*(T)), consisting of all

w € Q*(T), such thatv A w = 0. The Klein correspondence maps eackh GT

to the unique poingw] of KT, such thav A A = 0, for anyv € z and any\ € [w].
The inverse correspondence takes €a¢he KT to the unique element € GT
consisting of alb € T, such that A A = 0, for any\ € [w].

A projective plane® in P(Q*(T)), equivalently, a three-dimensional subspace of
O2(T), is said to be regular, if and only if its intersection WKIT is a non-singular
conic. If 3 is regular, its polar plang,’, is the space of alt € Q%(T), such that
ocANT =0,foralloc € ¥. ThenY' is regular and has polat. A pair of regular
projective plane&*, such that each is the polar of the other is called a polar pair

Definition 1. A conformal structure fofl is a non-singular quadri¢G| in PT.

Definition 2. A two-dimensional subspace®is said to be isotropic with respect
to a conformal structuré| for T, if and only if the subspace is totally null, if and
only if the projective image of the subspace is a projectivedn the quadri¢G].

The isotropic planes ifi assemble into two families, called the isotropic families,
which each rule the quadric. Each family gives a projectivee in KT; in turn
each such curve iKT is the intersection witlKT of a (unique) regular projective
plane inP(Q?(T)). The two planes thus generated form a polar pair. Conversely
given a polar pair of projective planeslitiQ?(T)), each plane intersects the Klein
guadric in a projective curve, giving the pair of isotroparfilies for a unique
conformal structure foff. So we have the Lemma:

Lemma 2. There is a one-to-one correspondence between polar pajsoggc-
tive planes iM?(T) and conformal structures fcF.

The annihilator of a regular plane (Q?(T)) is a regular plane i®(Q?(T*)),
which givesT* the conformal structure inverse to thatlbf The annihilator of an
isotropic plane il is then an isotropic plane fii*. Henceforth, we pass freely
from T to T* and back, via annihilators.

Definition 3. A Weyl structure is a paifT, ) consisting off, a four-dimensional
complex vector space arij a regular three-dimensional subspaceB{T).

Thus a Weyl structure determines a conformal structur&'fand a distinguished
family of projective lines on the quadri¢/| defining the conformal structure.
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3 Conformal space-times; Weyl space-times

We work with complex manifolds, entirely in the holomorplkgtegory. For con-
venience, we restrict our attention to connected manifolds

Definition 4. A complex conformal space-time is a péM., [G]) consisting of a
complex four-manifol®1 and a holomorphic family(z] = {[G].; x € M}, where
|G]. is a conformal structure for the tangent spacéMicat = € M.

By the results of the last section, the following definitisreguivalent:

Definition 5. A complex conformal space-time is a trighel, >*) consisting of a
complex four-manifolé and a polar pair of sub-bundle§;* of 2, (M).

For a Weyl space-time, we simply single out one of the elemehthe polar pair:

Definition 6. A Weyl space-time is a pailV, >) consisting of a complex four-
manifold and an everywhere regular three dimensional sndky3, of Q,(M).

So a Weyl space-time givéd a holomorphic family of Weyl structures, one for
each tangent space bf. We denote byG|y, the conformal structure oM, nat-
urally derived from the Weyl manifoldV, 33). So every Weyl space-time is nat-
urally a complex conformal space-time.(NI, ) is a Weyl space-time, then so
is (M, X7), whereX~ is the polar o2*. Then we havéG]s+ = [G]x-.

Example 1. The Klein quadric

Let T be a three-dimensional complex projective space. Denof¥ ltlge space
of projective lines irl. SoM is a four-manifold, the Klein quadric @f. Then if

x is a projective line irfl, sox is a point ofM, there is a three-dimensional cone
at z, the space of all projective linesin 7 that pass through the line To each
such liney # x, there is naturally associated its point of incidence y with

x and the plane containingandy, + Uy. The mapy — (z Ny,z Uy) fibers
the null cone over the quadrj&], of all pairs(z, Z) consisting of points € 7

of x and planesZ in 7 such thatr C Z. As z varies, the ensemble of quadrics
{[G]. : * € T} represents a conformal structure ¥ At eachz € M, fixing z
and lettingZ vary gives one Weyl structur®,* , say; fixingZ and lettingz vary
gives the other Weyl structure, say .
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4  The null cone bundle of a Weyl space-time

The null cone bundle of a Weyl space-tirfié, X) is the fiber bundI& consisting

of all w € ¥ such thatv A w = 0. Projectively this gives a fiber bundle, denoted,
S, overM, with fibre atz € M, a Riemann sphere, denotgd In particular,S is

a five-dimensional complex manifold.

Denote byp the canonical projectiop : S — M. Denote byp* the induced
map from the tangent bundI€S, of S, to the tangent bundle &fl. Denote byV
the kernel op*, soV is a line sub-bundle drf'S, the vertical bundle. The elements
of V are tangent to the fibers pf Restricted to any fibeg, for z € M, V gives

a line bundle of Chern class two. On each fiber, the threebineal space of
global sections o¥ forms the Lie algebra d®(3, C), under commutation.

If X = (z,[w]) € S (so we have, in particulapy(X) = = € M, whereas
0 # w € X, wherew A w = 0), denote byW x, the space of all tangent vec-
torsY at X, such that ify = p*(Y) is the projected tangent vector at then
ty(A) =0, forany\ € [w]. ThenW = {Wx; X € S} is a three-dimensional
vector sub-bundle of'S; we call W the Weyl bundle ofS. Note thatV ¢ W.
Restricted to any fibef, for x € M, the bundléW splits (following the Birkhoff
theorem) as a sum of three line bundles with Chern clagsds1). In particu-
lar the space of splittings of the inclusion homomorphigm- W on anys, is
parametrized by the space of global sections of a bundle@¥itrn classefl, 1),
so is a four-dimensional vector space.

Dually, for X € S, denote byO x, the space of all one-forms at p(X), such
thata A A = 0, for any A € [w], pulled back to the poinX along the canonical
projection. Then as( varies,© = {Ox; X € S} gives a two-dimensional sub-
bundle of§2,(S). Then the bundle® andW are the annihilators of each other.
Next, letV’ denote the annihilator o¥ in ,(S). SoV’ is a four-dimensional
sub-bundle of2; (M). Also V' is the pull-back along the projectignof 2, (M).

V" may be called the bundle of tensorial one-form§oFinally © c V.

Example 2. The Klein quadric

For the Klein quadricM, of example one above, in the case of the Weyl structure
¥.*, the bundleS is the space of pairér, z) with = a projective line inT and

z € z; for the Weyl structure=—, the bundleS is the space of pairse, Z) with =

a projective line il andZ a projective plane iff, such thatr € 7.
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5 Weyl connections, their torsion and curvature

Let (M, X) be a Weyl space-time, with its projective null cone buriil¢he pro-
jectionp : S — M, the Weyl bundléV C TS, the vertical bundl& ¢ W and the
bundle of one-forms, the annihilator ofW, as described in the last section.

Definition 7. A Weyl connection is a two-dimensional subburidlef W, such
thatW = T + V. Dually a Weyl connection is a three-dimensional sub-bafidl
of 2, (S) such thatl” N V' = ©; we pass fronT to T” and back via annihilators.

On each fibef,, T is a sum of two line bundles, each of Chern class one. Given
a Weyl connectionT, for (M, X)), consider the bundl€,(S) modulo the ideal
generated byl’. On dimensional grounds, this is a line bundle, dendtedver

S. Note thatl. may be identified with the quotient of the kernel¥fin Q,(S)
modulo the ideal generated B Also L. has Chern clasaover eaclt,.

Definition 8. For a any local section of the bundte, put7(«) = da modT'.
ThenT gives a vector bundle homomorphism frénto L, called the Weyl torsion
of the Weyl connectioriM, >, T).

Definition 9. A Weyl connectioqM, X, T) is torsion-free if and only if” = 0, if
and only ifd« lies in the ideal generated B, for any local sectionv of ©.

Now suppose thatM, 2, T) is a torsion-free Weyl connection. Fara local sec-
tion of T, put W («) = da modT’. ThenW is a vector bundle homomorphism
from T’ to L. which vanishes o®, so 1/ may be considered to be a homomor-
phism of line bundle$V : T'/© — L. Further, the line bundleg andT’/© are
naturally dual, sd may be considered to be a global section of the line bundle
L ® V, aline bundle, which, over each fibgy, has Chern class four.

Definition 10. The global sectiom” of the line bundlé. ® V overS is called the
Weyl curvature of the torsion-free Weyl connectidfy 3, T).

Definition 11. A Weyl connectioniM, >, T) is said to be Weyl-flat, or a twistor
structure, if and only if its Weyl torsion and Weyl curvatbegh vanish identically,
if and only if T defines a differential ideal, if and onlyTfis Frobenius integrable.

Definition 12. If (M, X, T) is a twistor structure, its space of integral manifolds
is a three-dimensional space, called the twistor space@¥tkyl manifold.

Example 3. The Klein quadric

For the Klein quadricM, of examples one and two above, fixingnd varyinge
foliatesS gives(M, 1) a flat Weyl connection. Similarly, fixing and varying
x gives(M, X7) a flat Weyl connection. In each case the twistor spade is

12



6 Local computations

Let (M, 3, T) be a Weyl manifold with connection. A normalized frame ¥ors
alocal basi§o., 0} such thav? = 0, 0109 = 0 ando o = —202 = 7 # 0.
Such a normalized frame always exists. With respect to a alized frame, the
general element of ¥ can be written, uniquely = z,0, + x_o_ + 2xy0.
Then we haver? = 2(x,x_ — z2)7. In particularo lies in the null cone of: if
and only ifo? = 0, if and only if z, xz_ = 22, if and only if complex numbers
andq exist such that = p?o, + 2pqoo + ¢?c_. The ratiogp : ¢ then parametrize
the sphere bundI8. Next it is straightforward to show that a local basis of one-
forms, {{,m, m’,n} exists, called a null tetrad, such that the symmetric tensor
G = 2(In — mm/), represents the conformal structure of the Weyl manifoldi an
such thatr, = Im/,o_ = mn and20y = In + mm’; thent = —Imm’n. Note
that the polary’, of ¥ has as its local basidm, m'n,in — mm'}. At any point
(z,p,q) of S, put:

n=pl+qm, 0=pm +qn.
Then we have:

pioy + 2pqog + ¢o_ = p*lm/ + pg(In + mm') + ¢*mn

= (pl + gm)(pm’ + qn) = nf.
Thus the pair of one-form&, 8} span an isotropic space for amgndg, not both
zero. Also a local basis for the bundeat (z, p, q) € S is the pair of one-forms
{n, 0}. If now T is a Weyl connection, the third basis formTh apart from; and
6, can be written locally as = qdp — pdq — I'1l — T'ym — I'sm/ — I'yn, where
each of the function¥, I';, I'; andI’', is homogeneous of degree two in the pair
(p,q). Now if we work modulo the ideal generated By there are one-forms
andq, such that we have:

l=—q¢, m=pp, m' =qp, n=—pp.
Puto = ¢1». Then modulo the ideal &b, we have:
Im' = —¢*o, Im=m/n=0, In=mm =pgo, mn=—po.

In particular, modulo®, ¥’ is reduced to zero (i.eX’ lies in the ideal). Then
we compute the exterior derivatives of the members of thetetrhd and reduce
the results modulo the ideal 6f. This gives formulas, valid fod, B, C and D
certain (computable) homogeneous quadratic polynonmdtsd pair(p, ¢):

dl = Ao, dm = Bo, dm' = Co, dn= Do.
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Now we may compute the torsion @f; working modulo the ideal o®, we have
first:
dn = d(pl + gm) = (dp)l + (dg)m + pdl + gdm

= (pdq — qdp)¢ + (pA+ qB)o
= ¢y — ((pl's —T'1q)¢ — (T4 — qU'3))¢ + (PA + ¢B)o
= ¢y + (p(A—T4) +q(B+T3))o.

Since the first term lies in the ideal @f, we see that the first part of the torsion is
represented by the quantity = p(A — I'y) + ¢(B + I'3), which is homogeneous
of degree three ifp, ¢). Next we have, modulo the ideal 6F

df = d(pm' + gqn) = (dp)m’ + (dg)n + (pC + qD)o
= (qdp — pdq)y + (pC + qD)o
=yp 4+ ((pL'2 = T1q)p — (pT4 — qU'3)Y)Y + (pC + ¢D)o

=1+ ((p(C' +Ts) + (D —T1))o.

Since the first term lies in the ideal @f, the second and last part of the torsion is
represented by the quantity = p(C' + I's) + ¢(D — I'1), which is also homoge-
neous of degree three ip, ¢).

Now suppose the torsion is zere: = 7, = 0. Then we can write out the forms
I'1,I's, '3 andI’y as follows:

FlzD—l—pg, ng—C—l—qg, ng—B—l—ph, F4:A+Qh

Hereg andh are unknown homogenous functions of degree on@,n). Then
we have:

Iyl +Tom+Tsm’ +Tyn = DIl — Cm — Bm' + An + gn + hé.
So, in the zero torsion case, the bun@iéhas as basis the one-forms:

T' = {pl + qm,pm’ + qn, qdp — pdq — DI + Cm + Bm’ — An}.
Thus we have the analogue of the Levi-Civita Lemma for Weyhificdds:

Lemma 3. (Levi-Civita for Weyl) Given the Weyl manifol@L, X), there is a
unique torsion-free Weyl connectioM, >, T").

14



7 Torsion-free Weyl is naturally (2, 3, 5)

In the torsion-free case, to compute the Weyl curvaturengugine notation of
the last section, we need only compute the exterior devivaif the one-form
~ = qdp — pdq — DI + Cm + Bm' — An modulo the ideal generated . The
result necessarily has the form:

dy=Wao.

HerelV is a computable homogeneous quartic polynomial in the blasdp, q)
that represents the Weyl curvature.

Now we assume henceforth tHais notintegrable, so not a twistor space. Hence
W is not identically zero. We delete from the sp&éhe zeroes of#l. This
entails first deleting fronMl any point at which the Weyl curvature vanishes and
the whole fiber ofS at that point. Denote by the residual manifold, an open
subset ofMl, with complement ifMl an analytic set. Next at any pointe M,
sincelV is a not identically zero quartic, by the fundamental theocé algebra,
there are at least one and at most four values of thepatig wherell vanishes.
We delete these points, p, q) from S. Denote the residual space By This is

an open subset gf ! (M), with closureS, whose complement ifi is an analytic
set. Denote by and7”, the restrictions oflf andT’ to S. Then we have the
proposition:

Proposition 1. The torsion-free Weyl connectidim, S, 7) is a (2, 3, 5)-system
on the five manifold.

Note that, in general§ is not globally a fiber bundle ove¥1, since the number

of roots of I may vary from point to point. However in the generic case, nehe
there is at least one point whet& has four distinct roots, then, perhaps after
deleting a further algebraic set, we may assume lthiahas four distinct roots
everywhere. In that case, called algebraically general natural to replace each
sphereS,, for x € M, by its double cover, a torus, branched at the four roots.
The modulus of the torus is determined by the cross-ratibefaur points and is
expressible directly in terms of invariantsidf. Then we have a toroidal fibration
over M and the proposition implies that we havé¢2a3, 5)-structure away from
the branch points.
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For the proof of the proposition, we work locally and use tbé&ation of the last
section. Denote the dual basis of vector fieldsenby {L, M, M’, N}, dual to
the basis of one-form&l, m, m’, n}, with the dualitiesL.n = N.l = 1, M.m/ =
M'.m = —1 and all other dot products zero. Then the vector fields sparthi
are the vector fields:

{pL+qM — X0, pM' +qN —Yd}.

Here these vector fields act on functiong@indg that are homogeneous of degree
zero. Then, acting on such a functignthe vertical operatod is determined by
the relations:(0,,9,)f = (—¢,p)0f. Note thatd is dual to the homogeneous
one-formpdq — qdp: (pdq — qdp).0 = 1. Also 9 is of degree minus two. Then
the product o and any homogeneous function of degree twépiny) maps the
space of homogeneous functions of degree zero to itself. vEbtor fields of
T automatically annihilate the forms &; then the quantitiesX andY’, each
homogeneous of degree three in the variabbesg), must also annihilate the third
basis one-form of/’, the one-formy = ¢dp — pdq — DI + Bm + Cm' — An,
which (since(pdq — qdp).0 = 1) gives the relations:

X = (pL + qM).(Dl — Cm — Bm' + An) = pA + ¢B.
Y = (pM' +qN).(Dl — Cm — Bm' + An) = pC + ¢D,
So we may rewrite the vector fields as:
{P,Q}, P=pL+qM+ Bd,— Ad,, Q=pM +qN + Do, — C9,.

In this form they act naturally on any function pfand g, not necessarily just
functions homogeneous of degree zero. Note that the praduetor ) by any
homogeneous function of degree minus onépiry) maps the space of homoge-
neous functions of degree zero to itself. Then, since thd Wesion is zero, their
Lie bracket, acting on functions of degree zero, consideredulo combinations
of P and(), gives the relation:

[P,Q] = W0, mod P,Q.

Since, by hypothesis, the Weyl curvatuné is everywhere non-zero, we have
that the Lie bracket adds to tfi@” of P, () the vertical vector field to give the
”(2,3)”, of our putative2, 3, 5) system.

16



Now we have, acting on homogeneous functions of degree wtenp # 0:
[p*0,p~"' P] = [pdy,p~' P] = p~'[pdy, Pl = M, mod P,Q,0,

[p°0.p7'Q] = [P0y, p~'Q] = p~'[pd,, Q] = N, mod P,Q, 0.

So, wherp # 0 the span of the iterated commutators gives at least the djiha o
five vector fields:
{p~'P,p~'Q,p*0, M, N}.

This is equivalent to the span of the §etd, L + qp= M, M’ + qp~'N, M, N}
and therefore to the span of the s€t?0, L, M, M’, N}, which spans the entire
tangent space. Similarly when# 0, we have:

[—¢°0,q7'P] = [¢0,,q" ' P] = ¢ '[q0,, P) = L, mod P,Q,0,

[~¢°0,¢7'Q) = (40, ¢'Q] = ¢ '[40,, Q] = M', mod P,Q,0.

So, whery # 0 the span of the iterated commutators gives at least the djha o
five vector fields:
{¢7'P,q'Q,¢%0, L, M'}.

This is equivalent to the span of the §et0, M + pg 'L, N + pq~*M', L, M'}
and therefore to the span of the s€420, L, M, M’, N}, which spans the entire
tangent space. Since the variableandq are never both zero, we have proved
that the systerfi is a(2, 3, 5) system on the spac® as required, and we are done.

Note that we have only proved this result here for the tor$iea case; when

suitably stated the result also holds true in the case ofzepa-torsion, but this
will not be analyzed here.
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8 Spinor computations

We reprise the approach of Penrose to spinors for a complexnfi@anifold, M
[20,[21]:

Definition 13. A Penrose spin structure fdvl is a quartet of two-dimensional
bundles oveM, S*,S., with S* dual toS, andS~ dual toS_, together with a
one-forméd on M with values infSt ® S—, called the canonical one-form, subject
to the regularity condition that give an isomorphism frorfffiM to ST ® S~;
equivalentlyf is required to give an isomorphism frddn ® S_ to T*M.

Denote byL* andL., the line bundle?(S*) andQ?(S..), respectively. When
considering tensor products of the spin spaces, we ignereethtive ordering of
factors fromS* or S, vis a vis factors fron$~ or S_: more formally, we quotient
the tensor algebra at each point\f by the two-sided ideal generated by the re-
lationsat ® a™ —a~ ®@a™, foralla®™in ST, orinS, and alla” inS—, orinS_.
Similarly, we regard the line bundlés® andL.. as commuting with other spinors.

Taking appropriate tensor products, we have the deconpasit
(TM)? =LT @ L™+ (ST)?® (S7)?,
(T'M)? =L, @ L_ +$2 ®S2,
Q*(TM) =X+ 4+ %7,
ST=L"® () = =)ol
QM) =%, +3_,
Y=L, @S, ¥ =S2QL._,
Q(TM) =Lt oL @St®S™,
QM) =L, 9L_®S; ®S_,
Q(TM) = (L*)* @ (L7)?,
QM) =12 @ L2.

Traditionally, for a Penrose structure, one also requitasthere be given an iso-
morphism ofL* andIL~ and dually an isomorphism @f, andLL_. We will not
require this here.

The part|G] = L, ® L_ of (T*M)? givesM a canonical conformal structure,
whose inverse is the pait™ ® L.~ of the bundlgTM)?.
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To construct a null tetrad, we take a ba&is 3} of S, and a basig~,d} of S_.
Then the four co-vectoris= 0(a®v),m = (), m' = 8(a®d),n = (R0)
form a null tetrad andy = 2(in — mm’) represents the conformal structure. A
general co-vectdr' is represented bya ® 8+ 26 @ v+ ya® d + v ® 6. The
image of7? in L, ® L_ is then:

g HT,T) =2(uv —zy)(a A B) @ (yAD).

In particular for any andq not both zero, the vectogg+qgm = pa®y+qLR~y =
(pa+qf) @~ andpm’ 4+ gn = pa®d+qf ® = (pa+gf) ® J span an isotropic
plane. So the isotropic planes of one type are parametrigddebelements of
PS.. Similarly the co-vectorsl + tm’ = sa @ 7+ ta® 0 = a ® (sy + td) and
sm+tn=sfRy+t®J=LF® (sy+td) span an isotropic plane of the other
type. So we see that the isotropic planes of the other typpaaeametrized by the
elements of’S_. Focussing on the first kind of isotropic plane, we have:

(pl + gm)(pm/ + qn) = p*lm’ + pq(In + mm) + ¢*mn

= (pa+qB) @ (y A ).

So if we takeX* to be spanned by the fornis', in + mm/, mn, we see that
the null cone bundle of the associated Weyl structure caméetified with the
bundlePS, . Then the null cone bundle ¢M, >~) can be identified wittPS_.
Note that henceforth we usually identiy M with St @ S—, reserving the use of
6 to convert to forms.
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9 The local Levi-Civita connection

Given the null tetradl = a ®@ y,m = f®@v,m' = a®dn = [ ® I}, the
associated Levi-Civita connectiopf M is given by the formulas:

d@l=Ax1l+Bom+ B @m/,

dem=D®Il+E®@m+ B @n,
deom' =D' ®l—-E®@m'+ B®n,
don=D'@m+Dem —Axn.

Thend automatically preserves the metric= 2(In — mm') and these formulas
give the general such connection; the torsion-free canitiat fixes the connec-
tion one-formsA, B, B’, D andE, uniquely and gives the Levi-Civita conneciton
is:

dl = Al + Bm + B'm/,

dm = DI+ Em + B'n,
dm' = D'l — Em/ + Bn,
dn = D'm + Dm/ — An.

Put2P = A—- Fand2Q = A+ F,s0A =P+ Q andE = Q — P. Then the
connectiond lifts uniquely to the spin bundles, such tha® (o« A ) = 0 and
d® (v Ad) = 0 (so in particular, the connection on the line bundlesandL* is
flat). Explicitly we have the defining formulas:

da=Pa+B®pj,

d®f=D®a—P® g,
devy=Q®~v+ B ®4,
d®i=D'"®@7—-Q®a.
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10 Abstract indices

To organize spinor calculations, we use the abstract indexdlism of Pen-
rose. So here elements (or local sectionsdf S*, w of S—, x of S, andy of
S_ are represented by! (a primed spinor)w? (an un-primed spinor); 4 (a
primed co-spinor) ang, (an un-primed co-spinor). ldempotent symmetrization
is represented by parentheses around the indices beingedyired. |dempotent
skew symmetrization is represented by brackets aroundttieas being skew-
symmetrized. Vector indices for tensors idf are pairsa = AA’, b = BB,
etc. The ordering of primed indices relative to unprimedaded is immaterial.
The natural skew mappings on the spin spaces are weitien e45, €42 and
4B, each a skew tensor, taking values, .-, L. andL_, respectively, with
the relative normalization given by ey = eBeyp = 2; also we have
EABEAC = 5g, EABECD = 25%55}, EA/BIEA/C/ = 55: andEA/BIEC/D/ = 25{5,55:},
whered§, ands, are the Kronecker delta spinors. Indices are raised andéaive
with these skew spinors, according to the rules:

/ a2
A _ A, A

B’ B AB
Vgr = U €Epry, WA =W €A, T B, Y =€ YB.

The canonical one-form & = #44’. The conformal structure is then:
Alg] = 0 @ PP = M APy g =60" 26, = 0" @ 0% eapenn.

Any spinor may be decomposed into irreducible parts, eackhi¢h is totally
symmetric and totally trace-free. In particular, we havedecomposition:

apb _ _ABxA'B' | _A'B'\WAB
0°0° = "7 % + 57 XNA7,

1/ 1 1 Al 1
ZA B _ §€A39a9b — EB A ’ EAB — §€A’B’9a9b — ZBA.

ThenX4'#' is called self-dual and takes valuedlin, whereas4” is called anti-
self-dual and takes valuesliit. For a two-formw = w,,0%6°, wherew,, = —wp,,
we have its conformally invariant decomposition into sfal and anti-self-dual
parts:
W= w4 +w_,
wy =wap ST wap = Moy,

i !

AB A'B
w_ =wapX™”, wap=€" " Wap,

Wap = §€ABLUA/B/ + §€A’B’WAB-
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11 Spin connections

The spin connection corresponding to the local Levi-Cigdanection acts on the
tensor algebra generated by the spin sp&ceand their duals. The connection
respects duality; the torsion-free condition is the candit

do* = 0.

Further the curvature of the induced connections on thedinelesL* andL.
vanishes. The curvature two-formis, zr = Rp 4o andR 45 = Rpa are given by
the formulas, valid for any spinors fields, andw 4:

!
d2UA/ = RA/BIUB y dsz = RABUB.

The Riemann two-formR,, = — Ry, = 0°0?R.q4., Which is defined by the rela-
tion d>v, = —Ryv?, valid for any co-vector field,, is given by the formula:

Ru = Rapeap + Rapearp.
Here we may write:
Rap = 00'Reqnp, Rap =00"Regag,
Rean s = Biegqapy, Reian = Bleq(ap)-
Then we have:
Regay = Reaarpéap + Regapeap
The first Bianchi identity is:

0= d*0" = —R™6, = Ry,6"" + Rp64P.
Using the first Bianchi identity, the Riemann form decomposs
R — b 4 oglaghl _ Aeaeb’
5C%® =0, §,5°=0.

Hered, is the derivation of forms of degree minus one, such &yt = ;. Then
Cup = —Cho = 0°0%C..4q is called the Weyl form and’,, ¢ the Weyl tensor. The
form S, = 6°S,, represents (up to sign) the trace-free part of the Ricciledhe
Ricci form is:

1 3
= Z§,R® = -5 + ZAp°.
R 5 v R S+ 5
The Ricci scalar i$, R* = 6A.
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We write out the various curvature forms, using the follogviormulas, which
define the two-form&4' 5" andx45, the three-fornt, and the four-forni:

apnb _ ABVA'B’ A'B'\WAB A'B" _ B'A’ AB _ vBA
9o = ABYAB 4 ABGAB G AB g BA - GAB _ 5BA

)

QGZB/C/ _ EA/(B/ZC’)A eaZBC — _EA(BZC)A/7 Qazb = —51‘}2

Y

The Einstein three-form is:
G* = R&04P — RAOAE = 2595, — 3AY,.
The second Bianchi identity is:
dRy, =0, dRap =0, dRap=0.
The second Bianchi identity implies, in particular, the &&in conservation law:
0 = dG°.

Using the information of the first Bianchi identity, the degwosition of the cur-
vature spinors can be written out as follows:

! !
Rayp ==X Cupop — ASawp — S5y,

I/

Rap = —XPCupop — AXap — S4F Sy,

Here the coefficient§' s 5. pr, called the self-dual Weyl spinaf; 4 s p, the anti-
self-dual Weyl spinor and,, = Saza s/, the trace-free Ricci tensor, are totally
symmetric spinors. For the tens8y, this means that,;, is symmetric and trace-
free. Also we have for the Weyl form:

b AB_A'B’ A'B' _AB
C" = (C"e +C7 7™,
cD c'p’
Cap =—X""Capcp, Cap =-X""Capcp.
Finally we note the relations:
cD
€ " Regap = —Caporp + AEA’(C’ED’)BH

c'p’
€ 7 Reqap = —Capep + Aeacepys.

It is a basic property of the local Levi-Civita connectiohgtt the Weyl tensor
C .2 depends only on the conformal structure not on the partididsi-Civita

connection used to obtain it. It follows that the Weyl spsare conformally
invariant also.
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12 The lift to the co-spin bundle

We lift the connection to the co-spin bunde. This gives a system of horizontal
vector fields, denoted,. Dually, we have a tautological indexed section of
S, whose value atz, 74/), with x € M is 74.. The sectionr,, takes values
in the pull-back ofS, to itself. More formally, the pull-back bundle is the col-
lection of all triples(x, =, ) with (z,7) € S; and(x,n) € S, with fiber map:
(x,m,n) — (x, ). The tautological section is then all triples of the fofm~, ),
with (z,7) € S;. Then the connection gives a one-fodn,, with values in the
same bundle. A complete system of holomorphic one-formth®spin bundle is
thend“44” anddr 4., with the exterior derivatives:

do*Y =0, d(dry) = d*my = Rypn?.
Relative to the spin basis, 5 used above, we have:

Ta = paa + qBar,

dmar = (dp)ay +dqBa + pday + qdBa
= (dp+pP + ¢D) ax + (dg + pB — qP) Ba.

Here the variableg andq serve as fiber co-ordinates. Then we have:

7 dra = qdp — pdg — p*B + 2pgP + ¢*D.
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13 The spinor description of the Weyl connections

Now consider the one-fornts'4 7, andn4’ dr 4/; these span a three-dimensional
sub-bundle7” of the co-tangent bundle &F, ; but they are homogeneous, so in-
duce a three-dimensional sub-bundle of the sphere bufflle also calledZ”.
Recall the spinor bas€gva:, 34} and{~4,04}, used above. Note that we have:

Va4 = paaryab + qBayab* = pa @ v+ qB @~ = pl + qm,

ST a0 = paad a0 + qBA 040 =pa @5+ qB @5 = pm! + ¢n.

This shows that/’ gives a Weyl connection foPS,. We compute the Weyl
torsion of this connection, using the fact tiddt"’ = 74 ¢*, mod§“w ,, for some
one-formg*. Note that then we have:

l= auyab® = axm 48" = qya0” = g9,

m = Bayal® = Bamayal® = —pyad® = po,
m' = apdab® = apm 540 = qosd™ = @,
n = PBudal® = Bamadat® = —poag" = —py.

So we havep?y, = —¢ and 964 = 1, SO we may writep? = —iy? —
»6“. Then we haver,¢* = —2¢1p = —20. Now for the torsion, we compute
d(644 7,) mod 7. This gives, sincelf® = 0:

A(OM i) = —0V dmyy =~ (¥ dma) = 0, mod T

Thus the Weyl torsion vanishes. Since we have shown in sesixabove that the
torsion-free Weyl connection is unique, this shows thatgtesent construction
gives the torsion-free Weyl connection. Next we computeVifey| curvature of
the Weyl connection. Using the fact thét, = w4\, for some one-form\,
modulo7”, it follows that (dr*")dr 4 = 7474 A% = 0, moduloZ”’, so we have,
working moduloZ”:

!

/ / / / !/ ! /
d(?TA dmy) = (d7rA Ydmar + 14009 R g pm? = 14 7B 7 7P ¢ P Rogar

1 / / / / / / / /
= §¢A¢A7TA B0t € PRy = —on 7P 7 7 € “P Ry

! ! ! ! ! ! ! !
= —on¥ 7B ¢ 7P (=Carperpr + Neacrepnyp) = o 7B 7 7P Cupep.
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In the last section, we gave the expressed the one-foYair, asqdp — pdg —
p?’B + 2pgP + ¢*D in terms of the co-ordinategs andq. Comparing with the
co-ordinate expression for the one-fosmwe see that necessarily we have the
relation: v = 74'dr 4 modulo®. Therefore we see that for the Weyl curvature,
W = d~v mod7’, of the Weyl connection, we have the expression:

W = CA/B/C/D/WA,WB,WC/WD,.
As expectedV is homogeneous of degree four in the spingr. Also this in-
terprets the curvaturd’ of the Weyl connection as encoding the information of

the self-dual Weyl spinor of the conformal structure. Intjgatar we have the
lemmas:

Lemma 4. The torsion-free Weyl structure, on the primed projecti@ $undle
PS., associated to a given conformal structure is a twistor stuee if and only if
the self-dual part of the Weyl curvatu@, s ¢/ p- vanishes identically.

Lemma 5. The torsion-free Weyl structure, on the primed projectiy@ $undle
PS,, associated to a given conformal structure, which has ramshing self-
dual Weyl curvature(' 4 g pr, is naturally a(2, 3, 5)-system, on the complement
of the zero set of the homogeneous function on the projespivebundlePS .,

’ ’ ’ ’
W = CA/B/C/D/’]TA 7TB 7TC 7TD .
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14 TheGy-conformal structure

After Cartan, NurowskiCap and Sagerschnig, we know that given ang, 5)
structure on five manifold$, there is canonically associated a conformal struc-
ture onS, which has holonomy ifis,. It is possible to determine this conformal
structure for the case of the torsion-free Weyl structufesoaformal structures,
whose self-dual Weyl curvature is not identically zero. Xpress the result, we
use a local Levi-Civita connection, as described aboveodinice the differential
operator on the primed spin-bunde, D4 = 7*'9,, whered, are the horizontal
vector-fields of the connection (86(9,) = 0y and(dm4/)(9,) = 0). Then define:

Y = Cupepm® 787w g =10 Dy, Yup =19 DsDpi.

Note thatyy = W, whereW is the Weyl curvature of the Weyl connection and
we work only at points where # 0; it follows from the definition ofy) and
formulas for the curvature that, s is automatically symmetric. Alsg, ¢4, and

1 2p are homogeneous of degrees four, one and two, respeciivehe variable
74 . Recall that the pieces of the primed curvature are giveméydrmulas:

! !
IPra = Rupm”, Rap =-S"P Cupcop — ASyp — 548,

Define the one formg4 and the spinofr 4z = 754 by the formulas:

04 = 0" p, Tap (=167 78 Sy + 5athp — 4P ap).

= m
Note thatf”* and 7,5 are homogeneous of degrees one and minus two in the
variabler 4/, respectively. The main result of this work then is:

Theorem 2. The canonical conformal structui@ on the sphere bundle of the
torsion-free Weyl structure of a conformal structure inrfaimensions may be
given by the formula:

Q == @(471’”6&1‘14/ — ¢A¢9A)2 + «9“«9a + QGAQBTAB.
The proof of the theorem is by direct calculation, followi@gp and Sagerschnig,
and will be given in sections fifteen to twenty below. The tesan be stringently
tested, in examples, by calculating this conformal stmgtby first converting
into the canonical form of Cartan and then using Nurowskiisrfula. Here we
confine ourselves to two examples, one, the case of the Kafedily of plane
wave metrics, which contains the fl@t geometry as a special case, and the other
the famous Schwarzschild metric.
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15 Summary of key spin-bundle formulas

The spin-connectiod, of the space-time is torsion free and kills,, 45 and
eap. The spinor curvatur®,,c:p- obeys the relations, for any spinor fields
anduv4 on the space-time:

!

04, pJver = Raperpv”, [0ay Bblve = Rapcpv®,
Ravcrpr = —€apCapicrpr — €arpSaporp + €aplecraepnpr-
Raycp = —€arpCapep — €apSapep + eapNecaep)p.
Lifting to the spin bundle we get the following commutatofsierivatives:
04,07 =0, [0,,0%]=0,
(04, 0p] = _RabC’D’ﬂ'ClaDl = €ABA7T(A’8B’)"‘EABCA’B’C’D’WC/(?DI"‘EA’B’SABC’D’WC/&D,-
Here we act on functions on the spin bundle holomorphic irsfhigorm .. The
spinorsC 4 p.crpr and Cypcp are totally symmetric. For a real space-time, the
function A and the trace-free symmetric tens®, = Sapap = Sap)a'p)
are real and” 4z¢cp is the complex conjugate a@f 4 5. The vertical vector

field 94" annihilates functions and tensors pulled back to the spialletfrom the
space-time. Also we have the derivatives:

8a7rB/ = 0, aAlﬂ'B/ = 5?:
Next putD, = 74'9,, so D4 spans the (2, 3, 5)-structure. Also define the spinor
Yu = Caupepm? ¢ n? andthe scalap = Y47 = Cuperpm® 78 7 7P,

Whent # 0, putypy = ' Dap andap = ¢ 'DaDptp = hpa. We have:,
acting on (holomorphic) functions on the spin-bundle:

[Da, Dg] = €aptpad”, DeDC =00
The Lie bracket of vector fieldg = v%0, + v4.0* andW = w9, + w4 0% is:
[V, W] = (V(w*) =W (*"))0s + (V(wg) — W(vg) — vcwdﬂA/Rch/B/)aB/
In the particular case that = v474" andw® = wAn?’, soV = vADy + v 0¥
andW = wAD4 + w404, the commutator simplifies to:

[V, W] = (V(w?) = W) Da+ (V(wg) — W(ve) + vew vy ).
Putd = 7% dre. Then the covariant exterior derivativé, obeys, in particular
the relation:

df = d(w¥ dm x)

/ / ! ! / / !
= (d7TA )dﬂ'A/ — ZA B (AWA/TI'B/ —l— CA/B/C/D/TI'C 7TD ) — ZABSabﬂ'A 7TB .
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16 The Reeb vector field and the contact form

We work systematically through the paper@ép and Sagerschnig, either using
their notation, or simple variants of their notation [3]. West need the Reeb
vector field and the contact form. L&t = v%0, + v4.0* be a homogeneous
vector field on the spin bundle (with* homogeneous of degree zero and
homogeneous of degree one, wherg v, ) is equivalent tqu®, v + sma), for
any functions of degree zero).

e V belongs tal'! iff v®74 = 0 andvy = 0 iff vy = 0 andv® = vA74 for

some unique?, iff V =v4D,.

e U belongs toT~2 iff v®ry = 0 iff v* = vA74" for some unique” iff
V= UADA + UA/aA/.

e The map;_, may be construed as mapping the gaitz*’, v4/) to v, mod
7 Or just tov = vy, So hereg_, may be identified with contraction
with the one-form on the spin-bundig= 7" dr¢.

e The mapg_3 may be construed as mapping the pait, v4/) to v®m 4. In
particularg_s; annihilates all vertical vector fields, 94 and annihilates
T-! andT~2. Since the image of_; carries an index, we rewrit@_; as
q?;. So hereg?; may be identified with contraction with the one-form on
the spin-bundled? = 74,0,

We consider the image undét of the iterated brackeV/, [, X]|, whereV and
W belong toT~! and X belongs tdl'~2, but not toT~!, so we may write:
V =09, v'ma =0, v*=0v'7",
W =w0,, wma =0, w®=w"n",

X =29, + x40, 2wy =0, %= §A7rA,, =z #£0.

Note thatr = =, 7% has degree two. We need to calculate:
0° ([V, [W, X]]) = 6° ([v°Dy, [wDp, 20, + xc»0°]]).

We first consider the terms involving one or more derivativies® or z 4.:

0° ([V, W (22)0y + W (24)0% — X (w*)0y — wa" Roper prm® 0P')

= (VW (2°) — W (2%)0,0° — W (z4)0* v° — V(X (w°)))7er
= v'W(ze) — V(X (w)mer) = W (zer) + wV (xer)
=097 W (xer) + wCnV (zer) = vCW (2) + wCV (2).
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The terms not involving the derivatives of eitheror = 4, are then the contraction
re Z¢ + 2475, where firstlyZ¢ is given as :
Z¢ = 0°([v"Da, [0y, 7)) = 0 ([0*0a, (07 w") D)
= 0°(((07w") (8a0") = (1"0,(0" w"))) )
= (0% W) (0,07 Vg — 120, (0% WP )
= V(w®) =7V (w).
SecondlyZ¢ is given by the formula:
7§ = 0°(["0y, [w’0y, 4]
= 0% ([v"0a, —(Dqw®) Dy — W Rygarcm™ 87))
= 09 (—0%(8,04w°) + (Bgw®) (9pv°) + W’ Rypgurcrm™ (89 v°))0.
= 0 (0,04w)mer + (Ogw®) (Byv°)Ter + WP Rogar ™ (9F v°) e

’

= —w v Rygarcrm?

BC’B’C”A’

/
= 7P r¢ 7" €ppSpparcy

‘WP eppCrpac +w
= v (wpYp + TpwBSppapm /7TB/).
So, altogether, we have (singérp = 0):

0C ([V, [W, X]]) = v“W () + wV () + 27V (w®) + vCwpippPrP

= 2V (w) + v“wP (Dp(z) — £¢) + w v Dp(x)
= 2(V (w) + v w"T 45,
I,5° =6§(a™ ' Dpw — 27" ¢py) + 6G2 7 Dy

Putzy = 27 ' Dz andazap = 7' D4 Dp)z, SO now we have:
Tp° =084 (xp — 27 EpY) + 05,

FABB = 31’A — x_15A¢.
Now letdy (W) = p74'9,.
Then we have:

{ov (W), ¢} = 04 (["7" 8y, X))
—(xc 0 (™)) m

= phe = o[V, W, X]]).

So we have:
A= oy (W) =V (w?) + vPwT g2
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We extend to gr, by the formula, valid fol?V; = w749, andW, = wiln'9,:
A ((w1) awz' ) = gr_y([(Oy Wh), Wol =[(8y Wa), Wi]) = (8 Wh)ows —(9y Wa)cw )
= PV ((wr) awg') — 0T 4 5w? (ws) o + vT 15 w3 (1))
= Y(V((w1)awy') — T 45wy (ws) )
= (V((w1)awg) + 2713V (z) — v7Ep1) (wr) awg ).
Puttingy = (w;) sws'1h, we get:
y vy =y WV (yy ) + a7 3V (2) — vPERy)
=vP(y ' Dpy + 32 'Dpr — x7 ¢ — v D).
In particular we need that be covariantly constant, so we need:
0=a2""0y(z) = v(da™ Dyx — ' Datp — 27 E40).

Since we need this to be true for &ll so for allv*, we get that giverr, £4 is
determined by the formula:

¢4 = o (4a7 DA — T DY) = apH (ot — ).
Back substituting, we get:
Tup” =05(p —3up) + 05z, Tyup” =va—aa.

So now letX = z%9, + z4.0* be given, withz 74 = z, 2* = 7#4¢4 and

4 = (42 — 1), This is the so-called Reeb vector field. Let the associated
contact form bey = z~'7" drcr + yama0®. Note thatxy = 1, as required. We

fix v4, which has degree minus one, by the requirement that:

0=1xtp,dy

!

7)

= ixlp, (Wcldﬂ'cl Ha(l‘_zanH—aA/’}/A)—l-eaeb(&a’}/B)ﬂ'Bf—l—(2(1))_1¢9a¢9bRabch/7TC/7T
= 2 'Djx — xya + z ).
So we get:
Ya =2 (=27 'Daz + 27 "€4) = 27 (3z4 — Ya).
So the contact form dual to the Reeb vector field is:

v =2 (7% dre 4+ (34 — ha)Ta0%).
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17 The decomposition of the tangent bundle

Let Z = 2°0,+ 240" be avector field. We find; € T~' suchthat/ —[X, Z,] €
T~-2; equivalentlyd*(Z — [X, Z,]) = 0. We have:

Zy =y"00, y'ma =0, y*=yn"
0A(Z — (X, Z1]) = 2°7ar 4 02([y° Dy, 2°0, + 21 0")
= 2% + (P02 — 20y — £ 0 Yy
= 2T g 4 T4y = 21y + zy’t
Soy? = —x7 2% 4. Then we have:
Z —[X, 2] = 20, + 240" — [2°0, + £c:0°", yD,)
= (2" = 20uy" + Y 0o — 10 0% y*) 00 + (2 + Y Dazp — Ecy b )07
Now we have, by construction that exists, so that:
2% — 2°0,y° + y°0ua® — 1 0%yt = AN
Explicitly, we have:
LA x—IZAB’l,B/ _ chCyA + chch . xcrac/yA.

Then we get:
Z—[X, 72— kX = (22 — kM Da+ (—kzp + 2 +y* Dz — EcyCehp ) O
Choosek to eliminate the last term:
k=a Y epm? +y*Dax — EcyC) = a7l epm? + y (4 — 3x4).
Summarizing we have the decomposition:
Z =X, 21+ kX + Z,,
Zy = yADA7 Zy = UADA7
yh = - 2,
wA = 0, — X(yA) + yBDBgA . k,gA’

k=2 epm? +yA (s — 3x4).
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18 The mapV¥

We next calculate the map. Acting onT' = t%0, = t* D4, wheret® = t474,
U(T') is given by the formula:
2{W(T),q-5(X)}* = 64([X, [T, X]))
= 04([X,, [t*0,, 2°0y + zp07]))
= 04([2°0, + 20, (T(2°) — X (t°)0y + (T(zpr) + tp&FPp)P))
= 20T (V) ma — Xt 7)) + (20 (T(x) — X (%)) 74
—(T(xp) + trE p) (07 2 ma — (T(2") = X () (Bpa")
= 2°0,(t%z4)) + (20 (T — X (t) 7)) — 2a/(T(2%) — X (%))
+ATN (T (xa) + traFya)
= X(at") —2(T (") — X (") + ENT (@) + trE™)
= 2eX (t") + 41X (x) — 2T (") + EA(T(SE) + tFﬁF@D)
= 2{U(T)y, £ 0%} = 2200 (W(T) 74 )4
= 220(T)
So we get:
U(T)* = X (tY) + PP,

Pyt = (0307 X (2) ~ Di(€") +E(ap — o 0Ep).

For the metric we need the symmetric partrofz. We have:
2Pap) = —Daép) + 27 ' Dpyx — 27 W€ AER
= =D (4~ Dpyr—ap*Dpyp)+a~ (40~ Daz—2p > Diatp) Dpyr—~ hésE s
= 5¢"*(Daz)Dpytp — 4p" D(aDpyx + 21p > DaDpytp — 22~ (Dat)) Dyt
4z~ (Dax) Dpyz—y % (Diaz) Dpyp—ayp™ (4o~ Daz—y ™ Dath) (42~ Dpa—p~ D))
= 2p"*DuDpyp — 4 D(aDp)x
+121D_2(D(A:L’)D3)w — 32¢ 3 (DY) Dy — 1207~ (D px) Dpa.

So we get:

i

Pap) = w(w 'DaDpyp—42 ' D s Dpyx—3(¢p ' Dap—22" "D ax) (¢ ' Dpyp—22~ " Dpx))

2¢ (¢AB —4dxap — 3(a — 224) (VB — 22B)).
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19 The mapd

Next we calculate the map. LetV = v29, andW = w?0, in T~! be given, with

v = A4 andw® = wAr4". Then we have:

YV W) = ([0, w' D))

= ((V(w®) = W (")) Dp + vowip ")
= :E_lvcwc@b.

Also we have:
Z = [V.W] - ([V.W])X

= (V(w?) =W () Da+vcwhp 8% —rocw (z00Y +62D ) = Z4Dy,
Z4 =V (w?) = W?) + vewU?, U = —z et
Now we have, fofl" = t*0,, wheret® = tA74":

8VawT — 8W0VT - aZT‘

= Oy (W () +wPtT gt — 0w (V (1) + 0BT g ) — Z8 Dpt? — ZB1°T p A

= (VW = WV) () + V(wPtT 5 t) — W (0PtT 5. 4)

= [v°0y, wO.](t") — (V (wP) — W (v?))Dpt?
+(wPtP =Pt ) (Dp(T g™ ) T T p )+ pvcw P (Dt +t°T g o)
= vPwCr B 70,, 0] (t*)
+pw? (=t DPT g + tFT 5 AT + 27 WP Dpt? + 27 ePtoT y )
- UFwF(_ﬂ-B,ﬂ-C,SB/C/DAtD + ¢D/8D,tA - tCDBFBCA)
+vpw? (tT g ATEC + 27 WeP Dt + 27 BT y ).

So we get:
O(T) = ™ (=77 7 S p 1P +1pp 0Pt~ DPT p AT g AT PO ) 42 Dpt A 45T p A

= X(t" +Qgz't",

Qi = v 2" Yo b+ T g +a ™ (=P 79 S o g = DT ¢ g +T 0 5 TR).
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For the metric, we need the symmetric parthfz. We have:
v Quap) + 1T S = 27 WE T o(pay — DTopay + Topal %)

= (4xa — Ya)(—3zp) + ¥p)) — Da(—=32 " Dpyz + ¢~ Dpyyp)
+(—3zp + VYp)ecal 5 + zoepal “5)
= 3xap — Yap + (4ra — VYa)(=3xp) + ¥p)) — 3xa7B + VaVB
+(32° = YT (e — 2T
=3xap — Yap + (4r(a — V) (=3xp) + ¥p)) — 3x4TB + VaVB
+B2a — P)(2ep) — ¥p)) + 2a(3x8) — Vi)
=3wap — Yap — 6x4TB + T(AVB) + Vatp
=324 — Yap + (Y — 204) (V) + 3p)).
So we have:

Q(AB) = :L'w—l <_71-A’7TB’Sab + 3TaB — YaB + (’(/J(A — 21’(A)(¢B) + 31’3))) .
. L 1 .
For the metric we need the combinatidniz = 3(7P(AB) — 2Qapy). We find:

101px_1U(AB) — 47TAI7TB/Sab

= 7¢AB—28$AB—21(QﬁA—2$A)(IpB—21’3)—12$A3+4¢A3—4(¢(A—2$(A)(¢B)—|—3$B))
= 11¢AB — 4OIAB — 5(¢(A — 2(15 )(5¢B — 6£L’B )

So we get:

4 ! ! ].
Usp = — aj < 7TA7TBSab—|—

20 1¢AB —8xap — (V4 — 22(a)(5Yp) — 6IB)))

:I; ’ ! _
= m (47TA 7rB Sab + 11"7DAB - 25¢A¢B> +:L”(/} 1 (—41’AB + 8w(A$B) — 6$A$B)) .
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20 TheGy-conformal structure

The metric, regarded as a quadratic form on a tangent v&cter:°0, + 240,

IS:
2

9(27 Z) = —lzzlz (dfy) + g(LZ(V))27

Zy =7 1(Z) = Zo + %(7@ —23)(Z).
Now we have:
vz(7) = & N7 dre + (Bra — Ya)ma0) ("0, + 2507
=z 7% 200 + v 3z — Ya)Ta2”

1

=27 '7%z20 = 3ytaa + yMa.

Herey”® = —z~'2%m4/, as usual. Note thaf; = y*D 4. Also Z; = vAD 4, where
we have: .
v =t + 3((7\11 —20)(y)).

, .2
Collecting terms Iné(LZ(’}/))2, we get:
(tz(7))? = F*P2pzp + Foyaza + Fapy™y®,
B _ 2 o a_p
F =_—z ‘7

3 )
a -1_A" A 4 -1_A' A
F:4x7rx—§x7r¢,

2

Fap = 6x403 — 4240B) + §¢A¢B-

It remains to compute the terrp, ., (dv). First we have:
dy = d(z7 7% drer 4+ (322D gz — 27 W D 40 0 0%)

= 1% drc 02720, + O (372D gz — 271 D 40))
+9a9b((Qx)_lRabc/DrwclﬁD, — 703272 Dgx — 27T D gr))).
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Contracting this expression with 4, we get:

toa(dy) = tp,(dy)
= —WC,dWC/WA/(ZE_2aaI + 04 (32 2Dz — x4~ D 40))
+7rAl9b(x_1RabC/D/7rcl7rD/ + 70 (32 2 Dpx — x 1) D))
= —o 7% dne (Ax g — 1pa)
—i—@b(x_lRabchnrclelwA/ + 7 DA(3272Dgx — 2~ D))
= — 2 % dre(4x 4 — b a)
+0°(z7 (—eapthp — WB/SABC/D/TI'C,WD,) + 7 Da(3272Dgx — x4~ Dg)))
= —I_lﬂ'cldﬂ'(j/(4IA—@/)A)—:E_lea’l/JA,—:lf_leBSabﬂ'A,ﬂ'B/+9BDA(3$_2DB£E—:L'_1’(/J_1DB@/)).
Then we have:

toptpa (A7) = —eapr™ 'Y, g5z, (dy) = —z Pyav?.

Thus it remains to compute the tenm'yy,v4. Now we have:

yavt = yau + Z(T0 —20)(y))"

1
= yau® +yaX(y?) — =(TPap — 2Q45)y"y"
=ya(r 2% a0 — X(y*) + yPDpe* — k€Y + yaX (y?) — Uapy?y®
=27 yaz s a — vy (Dalp + Uap) + kEay™
— —ZL'_2Z§,7TB/ZAA/£L’A/ — yAyB(DAfg + Uap)
+(Eay™) (@ zam® +yP (5 — 3xp))
1

- %Z“Za — P (Dap + Uap) + (ay™) (@ 2am® + yP (¥p — 325))

= (22) 202" — 2 yaza it

+yyP(=Dalp — Uap + Ea(¥p — 328)).
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So we get:

e pyav? = Hy2"2" + Hyaza + y*y" Hag,

Hayp = %gabv
HY = ' (4 — ),
Hap =2 "W(—=Dwép) — £a(3xp) — ¥p)) — Uap)
= —27 D (4" Dpyr— D)) — (4w a — ) (3 —¥p)) 2 YU
=ap — 4xap + 5arp) — 20 athp — (4za — Pa)(Brp) — ¥p)) — 2 YUas
=Yap —4xap — 122475 + 120 azp) — 3Yatp — 2 WUap
= Yap —4Tap — 3(¢ A —2x4)(VYp) — 22p))

2 / !
- A BSb——¢AB+ wA¢B+4ZL’AB—81D(A$B + 6z47p

2 ! !
=T 7P S — —¢AB - —TPAiﬁB + dparp) — 6TATB.

Note that we have:
! 4: ! ! !
Fa_'_Ha:4x—17TA ZZJ'A— 3 -1 A¢A —1 A(4xA_wA):__x—17TA¢A’

2 vop, 1 1

2
Fap+Hap = 6SCASCB—4SC(A¢B)+—¢A¢B——7TA w8 Sab——IDAB——¢A¢B+4¢(ASCB)

) 2
2 Al B/
= —¢A¢B - —7T Sab — —¢AB
So now we may collect terms in the metric:

Q(Za Z) = FA/B/ZA'ZB' + K% aza + Habzazb + yAyBGAB-

'/ 2 / !
A'B" __ A'__B
Fr=gmm
I
K*=F'+ H* = —n"y,
Hay = 2x2gab7

2 ! ! 1 ]‘
Gap = Fap+ Hap = —EWA 7 Sap + 6¢A¢B - 1_0¢AB-
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Alternatively, after substituting foy4, we have:
12g(Z,7) = GAB 2 pzp + QGf,ZaZB/ + G2,
1 )

aB _ 2 _a_p B B
G :§7T ™, G :—gwAﬂA/W ,

1 ’ ’
Gy = %gab + %WA,WB/(—IQWC 7P Sapcrp + 5Yatp — 3ap).

Remarkably, all the dependence of the metric on the vectdrfiegoes only into
the conformal factor:?!

Writing the metric in terms of co-vectors, we have:
i ! ]_
g = FA'B d 4 ®d7TB/—§$_1KG(QA®CZ7TA/—|—CZ7TA/®¢9A)+Hab¢9a®9b+$_29A®9BGAB

2 A’ 2 1 A’ A w a
= @( dTl‘A/) — @ﬂ' dﬂ'A/'l?DAe +2—129 ea

2 4 1 1
—29A9B 2, _A'_B 5 - - )
+x S Sap + 6¢A¢B 10¢AB
Rescaling, we have:
120229 = 80(n dm a)? — 407 dr i 404 + 60100°0, + x 450607,

Xap = —487% 7P Suporp + 200athn — 120 4.
Alternatively, completing the square with thé'dr . terms, we get:

) 2
120429 = 5 (47rA da — 1 A9A> + 60000, + 745007,

Yap = =487 T Supcrp + 15¢atp — 12¢ap.
Rescaling again, we obtain the conformal structure in thefo
1 / 2
G=2%""g= @ <47TA dma — ¢A9A> + 690, + 202408 14,

1
TAB = m
This completes the proof of theorem two.

(=167 72" Saperpr + 59athp — dbap) = Tpa.
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21 The Kapadia family of plane wave space-times

The Kapadia family of space-times is a family of null plamerted waves, whose
metric in co-ordinatesu, v, z,y) € U C R* (with U open and connected, for
simplicity) is [12]:

g = 2h7%(u)(dudv — da® — f*(u)dy?®) = 2(In — mm),
l=h"%du, n=dv, m=h"'dr+ifdy), m=h""(de—ifdy),
dl=0, dn=0, dn=Cl, dm=Cl,

C = Am+ Bm = hdx +i(fh' — hf')dy,
dC = Slm + Tlm,

h . , h2f/
A= s =), B =t
R f// h4f//
_p2A A2 p2_ A ) _12p _ _
S=n*A'—A*-B h(h Qf), T = h*B —2AB TR

Here f(u) andh(u) are positive smooth real functions of the variablelefined
on the open sdtl. Also we use a prime to abbreviate the derivative with respec
to u. For the spin connection, we take a spin bagis, ¢4 }, with conjugate basis,
{OA/, LA/}, such thatl, = 0404/, mq = 0ata, My = ta0a ANAn, = tata,
204tp) = €ap @ANAge, = €apea . The associated Levi-Civita spin connection
is simply:

dOA = 0, dLA = UOA, dOA/ = 0, dLA/ = COA/.

The primed curvature spinoR 4 5/, given by the formula, valid for any spinor
field v dsz/ = RA/B/UB,, is as follows:

! / ! !
Rap = 040pdC = =3P Cupop — SpE?,

Capcp = —=Toaopocop, Sap = Slaly = Sos0poaop:.

In particular the Ricci scalar is zero; wheneyéris non-zero, the Weyl spinor
Capcrpr is non-zero and of typgt) (null). Hence-forth we assume thAt # 0.
Note that the Kapadia space-times are always locally cardbto vacuum, since
locally the equatiort’ = 0 can be solved with a positive solution fbygiven f.
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22 The (2, 3, 5)-structure for the Kapadia metrics

Introduce the fiber co-ordinate for the primed co-spin band] by the relation
0 = ma0Y' )\ + 14", Then the torsion-free Weyl connection is:

T = {avﬁa 7}7
OAT('AIQCL . LAWAIQCL 7TAld7TA/
= N4m = — _ B=Nm+n=— . y=dC = —— 2
“ 0B B " mgoB 7 (mpoB")?

Here we require that+ 0 and we have puk = st~'. Note that the the principal
spinor of the Weyl spinor correspondsie= oo, so the Weyl structure is defined
for all complex\. By straight-forward manipulations, we may put this stanet
in the standard Cartan form, with variablgs ¢, p, ¢, z}:

T' = {dt — pdu,dp — qdu,dz — Fdu}.
Here we have:
ht = —x —ayf,
h?p = A+ xh' +iy(fh' — hf'),
h*q = —2h'(\) + x(hh” — 2(h)?) + iy f(RR" — 2(K')?) — iyh(hf" — 2R’ ),

/

z=v+ ANz —ify) + I—f(x —ify)?,

F = ag¢® + fpt + vqt + 6% + epq + (p?,

B th B , hzf/ 4h/h”f B th//f
o = 7, /6 = —2hh’ + 2f + f// , Y= f// — h27
nfr () f o ) Afhn Af(n)?
(5 = — — = = .
4f + f// hh 4f2 € f// ’ C f//

So we have shown that the Cartan functiofu, ¢, p, ¢, z) for the Kapadia space-
times can be taken to be a homogeneous quadratic functite gatiable, p and
q, with coefficients functions of the variableonly, determined directly from the
metric functionsf(u) andh(u). Note that, in particular, the functiof is inde-
pendent of the variable. Also we haveF, = 2a # 0, so the Cartan formalism
applies.
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23 TheGs,-structure for the Kapadia metrics

Using Maple and the metric formula of Nurowski, the confolstauctureG for
the Weyl structure of the spin bundle for the Kapadia spaned takes the form:

G = Gy (dt — pdu)® + G33(dp — qdu)?
+2(dt—pdu) (G13(dp—qdu) +G14dq+G15du) +2Gosdu(dz— F du—Fy(dp—qdu)).
Here the not identically zero pentad coefficients are giseiobows:

16
1(6];6)]02 Gll — h2(f/)2(f//)2 4 10hh/ff/(f//)2 4 4h2ff/f//f/// o 20<h/)2f2(f//>2

_10hh/f2f//f/// _ 5h2f2<f///)2 _ 12h2f(f//)3 + 30hh//f2(f//)2 + 3]432}12]43//]0////7

(f”)s G o hf/f// _'_ 2h/ff// _ hff///
80h7f3 13 — 9
G 2A0f1 _120/°8 32004
14 (f”)4 ’ 25 (f//)?, ’ 33 (f//)4 ’
11\5
s Gis = A4S (1" + 211"~ )

_|_t(_4h/h//f2f// + 4hh///f2f// + 4hh//ff/f// o 4hh//f2f/// _ h2f/(f//)2)
+2pf(4hhlflfl/ _ 4(h/)2ffl/ + 6hh/lff/l _ 4hhlff/l/ _ hz(f”)2).
Maple gives the determinant of the metric in the co-ordisétet, p, ¢, z) as fol-
lows: —2203455 £1836( =18 " which is non-zero. The Einstein and Weyl ten-
sors of the metric7, as just written, each have only one independent component.
These components may be written quite compactly by intriogduftinctionst (u)
andw(u) > 0, related tof andh by the formulas:

" " " / m\ 3
efs(“)d“:f—, h? = (f—)w_ , s:f——i, ew2:<f ) , €==£1.
f f o fh?
Then we find, using a co-ordinate basis in the ofdet, p, ¢, =) that the indepen-
dent non-identically zero curvature compone#i;, of the Einstein tensor and
W Ti212 Of the Weyl tensor are as follows:

0wET), = —60w” + 3(s% + 2e/ W _ 45",
5w3W Tia10 = 9055”9652 +el (W (485" —125%)—27¢2 ) s L 57( 4124125 305"
It is easily seen that the metri¢ is always locally conformal to vacuum. Finally,

translating back into the original co-ordinates of the dpindle, using Maple we
find exact agreement with the general formula given in Thadze

win
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24 Special cases of the Kapadi&,-structures

Consider the case thdt= u"3, withu > 0 andm # +1 areal constant.
Then we have, after multiplying the conformal structure g tonformal factor

w2V 2
2 " /
ofswan 172
A2 f// f U
4OV ET) = —120V" + 3(m* — 9)u2V,

80w VW Tha1s = —3u~*(m — 3)(m + 3)(3m — 1)(3m + 1).

In particular in the caseg = 2, f = u~', f = u3 and f = u3, the conformal
structure of the co-spin bundle is conformally flat and inader cases it is not
conformally flat. Also in the caseg = «? and f = u~!, theG,-structure is flat,
with V' = 1, whereas in the casegs= us and f = u3, the Go-structure is flat,
with V = u3. Note that in all these cases the original space-time mistnmot
conformally flat. We summarize with a Lemma:

Lemma 6. Consider the special Kapadia conformal structures:
ds* = 2(dudv — dz* — u™ ' dy?).

Then theG,-conformal structure of the primed co-spin bundle is confally flat

if and only ifm = £3 orm = i% and in these cases gives local flat models for
the Cartan(2, 3, 5)-system: i.e. the Cartan structure has the Lie algebr&of
as symmetries. In particular, for these special valuesptthe primed co-spin
bundle is locally conformal to a de-Sitter space in five disiens.
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25 The Schwarzschild metric

Let m be a positive real constant, with the same dimensions ashefgpen the
Schwarzschild metric is:

_ 272
ds? = (7“ 2m) (dt2 — %) — r2(d6* + sin®(0)d¢?) = In — !,

T r—2m

d
l=du=dt — 2 u:t—r—2m1n<i—1), dl =0,
r—2m 2m
—2m)d 2 l
n:2dr+(r m) u) dn — mal;’alu:mgz7
r r r
6

pu=r(df +isin(0)d¢) = rsin(f)dx, x=1i¢+In (tan (5)) :
_drp , Cornp A+ (r=2m)ul 1 _
dp = ot cos(0)dfdo = 52 o cot(0) .

Note that in the(u, r, 0, ¢) co-ordinate system the tetrad is defined forialind
for r > 0. The variable® and¢ are standard spherical polar co-ordinates. The
variablez gives a local holomorphic co-ordinate for the natural caertructure
of the two-spheres of constant curvature at congtanj. We introduce the spinor
basiso, and. 4 with their conjugates , and. 4, such that:

la =04047, [la =0alar, [y = 14047, Mg = LalA’.
Then the Levi-Civita spin connection is:

doar = Poar + Buy, doy = ?OA -+ ELA,

dLA/:DOA/—PLA/, dLA :EOA—FLA,

m 1 m 1
P —= R R — 7)) = - —
<2T2) I+ ( 4T) cot (0)(p — 7) (2r2> du + 5 cos(6)do,
1\_ 1 .
B=-— <§> o= 2(d9 isin(0)do),
r—2m r—2m .
D= ( 572 )u: ( )(d9+281n(6’)d¢).
r 2r
Then we have, for the curvature, valid for any spinor field
! ! i 3m
d*va = Rupv”, Rap =-SP Cupcp, Capop = 3 0oL

In particular, the space-time is Ricci flat;;, = 0 andA = 0. Also the self-dual
Weyl curvature is never zero, except at the singularity 0.
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26 TheG,-conformal structure of Schwarzschild

In the primed co-spin bundle, introduce the fiber co-ordinaby the relation:
WAILA/)\ = 7TA/OA/.

Note that the principal spinors of the Weyl spinor, the zeroethe polynomial
1, correspond to the values= 0 and\ = oco. Using the formula of Theorem 2
above, a representative of the conformal structiiyevhich is defined whenever
A # 0 andr # 0, is given as follows:

12’(/)(7TBILBI)_4G = Gll (d)\)2 + 2G12d)\du + 2G13d)\d’l“ + 2G14d)\dl’ + 2G15d)\df

+Gga(du)® 4 2Gosdudr + 2Gosdudzs + 2GosdudT
+Ga3(dr)? + 2Gsydrdx + 2Gs5drdT 4 Gay(de)? 4 2G45dwdT + G5(dT)?.
Here the individual coefficients are assembled as follows:
G = 16,
Giy = 4\r—2(5r — 14m),
Ghs = 20\ 1,
Gis = —2X\%r7 1 (r — 2m) sin(6) — 8\ cos(h),
G15 = 8\ cos(f) — 2sin(6),
Gy = 4r~*N*(4r* — 5rm — 2m?),
Gz = 160273 (r 4+ 2m),
Goy = 2X%r73(r — 2m) (r — 4m) sin(0) — 2X%r~2(5r — 14m) cos(8),
Gos = 2X*r2(5r — 14m) cos(6) + 2Ar~2(r — 4m) sin(6),
Gl33 = 280272,
Gas = 4X3r~2(2r — Tm) sin(6) — 10A%r~" cos(h),
G35 = 10A\%r "t cos(f) — 4\r~tsin(),
Gag = Nr72(r — 2m)?sin?(0) + 2\ (r — 2m) sin(0) cos(0) + 4\* cos*(0),
Gus = — N1~ (r—2m) sin() cos(0) 5N %~ (r+4m) sin?(6) —4\* cos?(6) -+ sin(6) cos(d),
G5 = 40 cos?(0) — 2 sin(6) cos(6) + sin?(0).

. : Tat™) Gy . 1607 sin*(0
Using Maple, the determinant of the mat:g&A v )Gy is 6r' sin"(6)
12¢) ImA2

be shown that this metric is regular on the axis, wttere0, ord = .

. It may
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27 The Cartan canonical form for Schwarzschild

The torsion-free Weyl structure for Schwarzschild is akofes:

T = {w17w27w3}7
OAQA .
wy = e I — A= du — Arsin(f)dz,
LAGA _ . o A
wy = ———7 =f—An=rsin(0)dT — | — | (2rdr + (r — 2m)du),
ot r
A dm g 9

= A= (22 1 () (Ar—2m) sin(8) —r cos(8)) i+ | 5——— ) (A cos(6)+sin(6))7
= - 3 Zsin(0) r—2m) sin reos(8))ut| 5 S (0) cos sin(0))7

= d\— (AT—’?) du+ (%) (Mr—2m) sin(6) —r cos(e))dx%u cos(0)+sin(6))dz.

Now put:
p=Arsin(f), q= \rsin(f)cos(d)—A*sin*(0)(r—3m), z = cos(f)—Asin(f),
Then we have:

du — pdxr = wq,
Asin(f 1
dp — qdz = — S;n( )(r —4dm)w; — 5 sin(6)ws + 7 sin(f)ws,
r
dz — Fdr = —Mwl — sin(0)ws,

2
—2r3F = 2qr* + r3sin*(0) + p*(r — 2m).

The variables for the Cartan system ate, ¢, z, z. In these variables, we have
the Pfaffian system in the standard Cartan form:

7' = {du—pd% dp_quv dZ—F(ZE',U,p,q,Z)dI’},

3

-1 2(q—pz)?
2 3p(3m):

Note thatF' is independent of the variablesandw. This reflects that the system

is time independent and rotationally symmetric. Calcaathe conformal struc-

ture, directly in terms off’, using the Maple computing system and the metric

formula of Nurowski, we find exact agreement with our gen&ahula for the

conformal structure.

F =
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