DG APPROXIMATION OF COUPLED NAVIER-STOKES AND DARCY
EQUATIONS BY BEAVER-JOSEPH-SAFFMAN INTERFACE CONDITION

VIVETTE GIRAULT! AND BEATRICE RIVIERE?

Abstract. In this work, we couple the incompressible steady Navier-Stokes equations with the Darcy
equations, by means of the Beaver-Joseph-Saffman’s condition on the interface. Under mild regularity
conditions on the data, we prove existence of a weak solution as well as some a priori estimates. We
establish uniqueness under smallness restrictions on the data, similar to those that guatantee uniqueness
of the solution of the Navier-Stokes equations. Then we propose a discontinuous Galerkin scheme for
discretizing the equations and do its numerical analysis.
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1. INTRODUCTION

Consider a fluid occupying a bounded domain Q C IR?, decomposed into two disjoint subdomains €; and
Q. Let u denote the fluid velocity in ; and for ¢ = 1,2, let p; be the fluid pressure in ;. The fluid motion
is modelled by the Navier-Stokes equations in {2; and by the Darcy equations in 5. The viscosity, that acts
on {1, is denoted by u, assumed to be a positive constant, and the viscous effects are neglected in 2. The
body forces f; and f» respectively act on 4 and 3 . The permeability K defined in €2 is a positive definite
symmetric tensor, that is allowed to vary in space. The partial differential equations modelling the fluid are:

-V -2uD(u) —p1I)+u-Vu = f,, in O, (1.1)
V-u = 0, in Ql;
-V- KVPQ = fg, in Qg.

Here, I is the 2 x 2 identity tensor and D(v) is the deformation tensor defined by D(v) = 1/2(Vv + (Vv)T).
Equations (1.1) and (1.2) represent the momentum conservation and the incompressibility condition and equa-
tion (1.3) is the continuity equation for the Darcy flow with velocity u = —KVps. As usual, we write formally:
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FIGURE 1. Coupled domains with interface I';5.

We denote by 02 the boundary of Q and by 9Q; the boundary of ;; all three boundaries are assumed to be
Lipschitz continuous. We also define the interface I'i5 = 93 N 92, and the boundaries I'; = 9Q; \ I'1a for
1 = 1,2. Finally, the boundary I's is decomposed into two disjoint open sets I's = I'sp U T'sy, as in Figure 1.
We denote by ng, the exterior unit vector normal to 9;. System (1.1)—(1.3) is complemented by the boundary
conditions below. First we prescribe standard conditions on I';:

u = 0, on Iy, (1.4)
p2 = 0, on Isp, (1.5)
KVps-ng, = 0, on TIan. (1.6)

Here we assume on one hand that I'; is not reduced to a straight line, and on the other hand that [T'ap| > 0.
Now, let 15 be the unit normal vector to I';2 pointing from Q; to Q5 and let 715 be the unit tangent vector
to I'12. On the interface 'y, we prescribe the following interface conditions:

u-nij2 = —KVp2 M2, (17)

1
((=2uD(u) + p1I)ni2) - nys + 5 (u-u) =ps, (1.8)
U-Ti2 = —2uG(D(u)n12) *T12- (19)

Condition (1.7) represents continuity of the fluid velocity’s normal component, (1.8) represents the balance of
forces acting across the interface and (1.9) is the Beaver-Joseph-Saffman’s condition [5,31]. The constant G > 0
is given and is usually obtained from experimental data.

A problem of the form (1.1)—(1.9) has several variational formulations. We propose the following formulation
in adequate Sobolev spaces to be specified further on:

V’U,Vq, 2N(D(u)a D(v))91 + (u’ -Vu, U)Ql - (pla V- 'U)Q1 + (KVan Vq)92
+(p2 - %u ‘U, - n12)F12 + é(u *T12,0 - 7-12)F12 - (u : n12;q)F12 = (flav)fh + (f27q)92:
Vq, _(V . an)Q1 =0.

Here we use the inner-product notation for scalar functions f, g, vector functions f,g and matrices F,G on a
domain © C IR? or on a Lipschitz-continuous plane curve ~:

(r9o= [ 15 f9)o=[ 19 F.G0=Y [ Ry,
ij

(f,g)v=/7fg, (f,g)7=/7f-g-
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We approximate this variational formulation with the following discontinuous Galerkin method, symmetric or

non-symmetric for the elliptic operators, and with an upwind Lesaint-Raviart discretization of the convection
operator, again in appropriate finite-element spaces:

Vo,Yg, 2u ) (D(U),D)s+ > (KVPLVos+ Y (U'VU,’U)E-F% Y (VU U -v)g

Eceh Eecé&h Eeceh Eegp
=2u Y ({(DO)n}, ). +2an Y, (D@}, [UDe+p Y %([U], [v])e

ec'hur, eclhuUl'y ecl?PuUl’y

+ ) (HUY-np|(U™ = U™),v"™)op_\ry, — . Y ([U]-ne, {U-v}).

Ecé&lr ecThur,
- Z (Plav'v)E+ Z ({P},[’U] 'ne)e
Ecé&h e€l'hur,
- Y (KVRenbldete Y (KVenhRDet 3 (Pl
e€ltUlap ecluUlap eclhuUlap

1 1
+(P — §U -U,v-ni2)r,, — (U -n12,9)r,, + a(U'le,U “T12)T1s
= (fl)v)ﬂl + (anq)Qza
an - Z (qav . U)E + Z ({q}a [U] : ne)e =0.

Eegh e€elhury

Here & is a triangulation of Q;, T* denotes the set of edges of £, interior to €, €; are parameters that
determine the symmetry or anti-symmetry of the discrete elliptic operators and o; are appropriate weights
chosen on each edge to enforce stability. These quantities are made precise in Section 3.

The coupled problem (1.1)—(1.9) arises from important applications such as groundwater contamination
through lakes and rivers. In the case where the momentum equation (1.1) is replaced by the linear Stokes
equation —V - (2uD(u) —p1I) = f, and the interface condition (1.8) is replaced by the linear interface condition
((—2uD(u) +p I )n12) - M2 = pa, the resulting linear coupled problem has been studied in the literature: a
weak formulation is analyzed in [14,22] and several numerical discretizations are proposed in [14,15,22,27-29].

In this work, we show that under mild regularity restrictions on the data and the domain, the system of
equations (1.1)—(1.9) has at least one weak solution and the solution is unique if the data satisfy a smallness
condition analogous to the condition that guarantees uniqueness of the solution to the Navier-Stokes equations.
We then analyze the above numerical scheme, prove existence of a solution, its convergence to a weak solution
and for adequate data, prove uniqueness and a priori error estimates.

1.1. Notation and preliminaries

Let Q be a bounded, open connected domain in the plane with a Lipschitz-continuous boundary 9%, cf. [21].
The space D(2) denotes the space of infinitely differentiable functions with compact support in 2, its dual space
is denoted by D'(Q) and D(Q) denotes the space of restrictions to Q of the functions of D(IR?). For a given
integer m, we shall use the classical Sobolev space H™ () (see [1])

H™(Q) = {v e L}(Q); 0%v € L*(Q) V|k| < m},
where |k| = k1 + ko, with k; and ks non-negative integers and

dlkly

oy = —— .
dx¥r ok
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This space is equipped with the seminorm

- 1/2
ol = | 3 [ 10%P]
| |k|=m %
and norm (for which it is a Hilbert space)
- 1/2
lollam@y = | D ol
o</ k[<m

Let v be a Lipschitz-continuous plane curve in . The trace space of functions of H'(f2) on + is denoted by

H'/?(~), normed by
/2
lv(z) — v(y)|* )1
v 1/2 = dx d: .

Its dual space, is H '/2(7y). We shall also use the space H&éz('y). When « is not a closed curve, its norm is

1/2
v
Iollaggry = (I0lBscy + 1Dl )

where p is the distance function to the end-points of 7. Thus Hé({ *(v) coincides with H/2(~) when 7 is a closed
curve. The definitions of these spaces are extended straightforwardly to vectors, with the same notation.

For functions that vanish on 912, we define
H&(Q) = {’U S HI(Q) ; ’U|aQ = 0}.

We shall also need the following space of functions with zero mean value:
I3 = {e€ I*@); [ a=0}.

1.2. The boundary conditions at the interface

Let (u,p1,p2) be any solution of (1.1)—(1.3) in H'(Q)? x L%(2;) x H'(Qy). First, let us give a meaning to
the boundary conditions (1.7)—(1.9). For this, we assume from now on that the interface I'15 is a curvilinear
polygonal line of class C™! (cf. [21]). This implies that the normal vector m;2 has a finite number of points of
discontinuity, say P;, 0 <4 < L, and I';5 can be decomposed into L curvilinear segments S; of class C!'!, with
end-points P; 1 and P;, for 1 <4 < L. This is the case when I'15 is a polygonal line. As far as the data are
concerned, we assume that

fi € L*(M)?, fr € L?(Q) , K € L®(Qy)**2, (1.10)
and we suppose that K is uniformly bounded and positive definite in s: there exists Apax > 0 and Ay, > 0
such that
a.e.x € Ny, )\min|w|2 <Kz-z< )\max|w|2. (1.11)
To begin with, these assumptions on fo and K imply that any solution p» € H'(Qs) of (1.3) is such that
V - (KVps) belongs to L?(Q2) and therefore KVp, belongs to H(div;Q»). It follows from standard properties
of this space (see for instance [2]), that the normal trace (K'Vp,)-ng, belongs to H~'/2(8Q,) and the following
Green’s formula holds:

vc] € HI(QQ)a _(V . KVPQJq)fh = (Kvaqu)Q2 - <(KVP2) . In‘QzaQ>3Q2 ) (112)
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where (-,-) denotes the duality pairing. Furthermore, the normal trace (KVps) - ny» is well defined in the dual

space of HS({ 2(F12). Hence condition (1.7) is meaningful in a distributional sense, and since u - 712 belongs at

least to L*(I'y5), as u belongs to H'/2(T'13)?, (1.7) implies in particular that
(KVps) - mi2 € L*(T12).
Next, assumption (1.10) on f; implies that any solution (u,p:) in H(Q1)% x L2() of (1.1), (1.2) is such that
V- (2uD(u) — piI) € L*3()?,
i.e. each line of 2uD(u) — p1 I belongs to the space
HY3(div; 1) = {v € L*()?; V-v € LY3()}.

A standard argument proves that D(Q;)? is dense in H*/3(div; ;). This allows us to extend Green’s formula,

(V-v,0)q, = —(v,Vp)a, +{(v-ngq,,9)s0,, (1.13)

toall ¢ € H'(€) and all v € H*/3(div; ) and to show in particular that the normal trace v - m1, is well-
defined as an element of the dual space of H30/2(F12). Thus (—2uD(u) + p1I)nys belongs to the dual space of

Hé({z(r12)2, but we cannot apply it by duality to mi2 because in general, ni5 does not belong to H&f (T12)2.
At this point, we use the assumption that T2 is a curvilinear polygon of class C1''. On each segment S; of
I'12, let v be an arbitrary smooth function that vanishes at the end-points P;_; and P;. Then vmnis belongs to
HL/?(S;)? and the duality

((—2puD(u) 4+ p1I)ni2,vni2)s;

is well-defined. Thus, we express (1.8) weakly as
1 .
Yo € Hi%(S:), ((—2uD(u) + prD)nis,vnis)s, = (pr — 5w u)v)s, 1<i<L (1.14)

As v is arbitrary, (1.14) implies that (1.8) holds in the sense of distributions on each S;, hence on I'15. Further-
more, by virtue of (1.8), the fact that p» — & (u - u) belongs at least to L?(I'12) shows that

(2uD(u) — piI)nyz) - nag € L*(T1a). (1.15)

Similarly, in each S;, we express (1.9) as

. 1
Vo€ Ho®(S1), ((=2uD(w) +pil)maz, v Tiz)s, = 5w T12,0)si,
and since 712 - n12 = 0, this reduces to
1
Yo € HS({Q(Si), (—2uD(u)n12,vT12)s, = 6(1& “T12,0)s;, 1<i<L. (1.16)

Therefore (1.9) holds in the sense of distributions on each S;, hence on T'15 and

2,u(D('u,)n12) -T2 € L4(F12). (].].7)
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1.3. Weak formulation

The above considerations suggest to set our problem in the functional spaces X, M; and Ms:

X={veH'()?;v=0 on I}, (1.18)
My = L*(), (1.19)
M, ={qe H'(Q2); ¢=0 on Tap}. (1.20)

We now recall the Poincaré and Korn’s inequalities and the trace and Sobolev inequalities: there exist
constants Py, Cy, C1, Cy and Cy, that only depend on Q;, and Ps that only depends on 25, such that for all
veX,

||U||L2(Q1) < P1|U|H1(Q1) ) (121)
lvlle @) < Calv|mia) (1.22)
|| (0,) < CLlID()|| 20y (1.23)
lvllz2(ri) < Colvlmi(y)s  1Wllzeri) < Calvla@y) (1.24)
and for all ¢ € M,
lallz2(0,) < P2lalai(e,); (1.25)
moreover, owing to (1.11),
1 1/2 1 1/2
T”K V(I||L2(Qz) < |‘1|H1(92) < \/)\—'”K VC.I||L2(02)- (1.26)
max min

Inequality (1.23) is known as Korn’s first inequality and holds on X because I'y is not reduced to a straight
line.

Note that in view of (1.8), there is no undetermined constant in p;. Thus, let (u,p1,p2) € X X My X My
be a solution of (1.1)—(1.9). Choose v € X, take the scalar product of (1.1) with v over Q; and apply Green’s
formula:

2p(D(u), D(v))a, — (p1,V - v), + (u- Vu,v)o, + (—2uD(u) + p)na,, v)ee, = (f1,v)e,-  (1.27)
Since v = 0 on I'y, the boundary term in (1.27) reduces to
((=2uD(u) + pr1Inq,,v)aq, = {(—2uD(u) + p1I)ni2,v)r,,. (1.28)
Next, take the scalar product of (1.3) with ¢ € M» over Qs and apply Green’s formula:
(KVp2,Va)a, — (KVp2 - na,, @)og, = (f2,2)a,- (1.29)

Then, we have by adding (1.27) and (1.29) and by using (1.6), (1.28) and the orientation of n;s:

QIU’(D(’U’)7 D(’U))Ql + (’U, ) Vua”)fh - (p17 \E U)Q1 + (KVPZJ Vq)Qz
+{(=2uD(u) + prI)ni2,v)r,, + (KVp2 - 112,01, = (F1,0)0, + (f2,0)q,- (1.30)
On one hand, we rewrite v = (v - 12)N12 + (v - T12)T12. The regularities (1.15) and (1.17) imply:
((=2uD(u) + p1I)n12,v)r,, = ((—2,uD(u)n12) " T12,V "1'12)F12 + (((—QND(U) +pil)niz) - mia,v 'n12)r12'

Therefore (1.8) and (1.9) give

1 1
<(_2/J'D(u) +plI)n127'v)F12 = (pz - _(u . u),v ) n12)F12 + —(’Ll, "T12,V - 712)F12' (131)
2 G



On the other hand, (1.7) yields
<Kvp2 "M12, LI>F12 = _(u -ni2, Q)Fm .

Collecting these results, we propose the following variational formulation: find (u,p;,p2) € X X My X My
such that:

V('Ua q) € X x M27 2/,L(D(’U,), D(U))Q1 + (u ’ VU,U)QI - (pla V- 1’)91 + (Kvp27 VQ)QQ
(@)% +(p2—3(u-u),v n2)ry, + 5 (U T12,0 - T12)r,, — (U R12,Qry, = (F1,0)0, + (2, 00,
Vge My, —(V-u,q)o, =0.

Lemma 1.1. Let the interface I'12 be a curvilinear polygon of class C'' and assume that the data satisfy (1.10)
and (1.11). Then any solution (w,p1,p2) € X X My X Ma of the coupled problem (1.1)—(1.9) is also solution to
the variational problem (Q). Conversely, any solution of problem (@) satisfies (1.1)—(1.9).

Proof. We have just shown that (1.1)—(1.9) implies Problem (Q). Conversely, let us assume that (u,p;1,p2) is a
solution of Problem (Q). We first choose v € D(Q4)? and ¢ = 0; next v = 0 and ¢ € D(Q3). Then in the sense
of distributions on Q; and on Q5 we obtain:

-V - 2uD(u)) +u-Vu+Vp = fq, (1.32)

—V . Ksz = fz. (133)

Next, we multiply (1.32) by v € X, (1.33) by ¢ € M, apply Green’s formulas (1.12) and (1.13), which are valid
here, add the two equations and compare with (Q). This gives:

1 1
V(v,q) € X x My, (p2 — 5(“ “U),V - M12)Ty — (U -T2, Q)Tys + 5 (U - T12,V - T12)T4s

G
= ((_2/"1D(u) +plI)nQ1vv>BQ1 + <_KVp2 : anaq)BQQ' (134)

By choosing v = 0 in (1.34), we deduce:
Vg€ My, (KVp;-nq,,q)s0, = (U-N12,q)r,,- (1.35)
In particular, the choice g|r,, = 0 in (1.35) implies (1.6):
KVpy-ng, =0, on Ian.
Hence, in view of the orientation of m12, (1.35) reduces to
Vg € Ma, (KVps-ni2,q)r;, = —(U-M12,q)T,5,

whence (1.7). With this information and the boundary condition of X, (1.34) reduces to

1 1
Vv € X, (p2 - 5(“ ) u):” : n12)F12 + a(u “T12,0 - 712)F12 - <(_2:U’D(u) + plI)nIZa'U)Flz =0. (1'36)
Fix a curvilinear segment S; of I'15 and choose in (1.36) v = v 112, where v is a smooth function defined in 4
that vanishes in a neighborhood of 994 \ S;. Then v € X and we recover (1.14) that implies (1.8). A similar
argument yields (1.16) that implies (1.9). Whence the equivalence between the two problems. O

Now, we denote by Y the product space
Y =X x M,
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equipped with the norm

1/2
Vo, €Y, [@0)lly = (2uIDO) s, + 1K Valiag,) (1.37)
and associated scalar product:

((’U, q)a (wa T))Y = QM(D(”)7 D(w))91 + (KV(L VT)QZ‘

The norm (1.37) is equivalent to the product norm of Y':

9 5 1/2
Vw,q) €Y, w0l = (|ofn,) +ldn,)

via (1.23) and (1.26). Therefore, Y is a Hilbert space for the norm (1.37). Then, we define the space of
divergence-free functions:

V_{veX;V-v=0in Q},
and the associated subspace of Y:
W=V x MQ.

It is also a Hilbert space for the norm and scalar product of Y. By restricting the test functions v to V in
Problem (Q), we obtain a second variational formulation:

Find (u,p2) € W such that
(P)< Y(v,q) e W, 2u(D(u),Dw))q, + (u-Vu,v)q, + (KVps, Vq)a,
+(p2 — 5(u-u),v-n12)r,, + (- T12,0 - T12)ry, — (- 112,Q)r,, = (F1,0), + (f2, Oa.-

In order to prove that problems (P) and (Q) are equivalent, we use the following result.

Lemma 1.2. For each q € L?(Qy), there exists v € X, such that

1 |Q| 1/2
Vov—q in® ,|v|H1<Ql>s—(—) lallzon, (1.38)
K |QQ|

where k only depends on (.

Proof. The proof is easy and is not new. Let us reproduce it for the readers’ sake. The idea is to extend ¢ by
a constant function in {2 so that the extended function, say ¢, has mean-value zero in ). Clearly, the constant

function is:
1

SN
Q2] Ja,

As G € L3(2), by the classical inf-sup condition between Hg(2)? and L3(f2) (see for instance [17]), there exists
0 € H}(2)? such that

c=

L. - 1. .
Vo= mQ , [Vl < Clldllz o), (1.39)

where the isomorphism constant k only depends on €. Then (1.38) follows from the facts that

i Ql\ /2
lillz < (%) lallz2(o0,

and the restriction of v to {21 belongs to X. O
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Proposition 1.3. Problems (P) and (Q) are equivalent: if (u,p1,p2) s a solution of problem (Q), then (u,p>)
is a solution of problem (P); conversely, if (u,p2) is a solution of problem (P), then there exists a unique
p1 € My such that (u,p1,p2) is a solution of problem (Q).

Proof. Clearly, it suffices to prove that if (u, p2) is a solution of problem (P), then there exists a pressure p; € M;
such that (u,p1,p2) is a solution of problem (Q). This is a consequence of Lemma 1.2 and the Babuska—Brezzi’s
theory (cf. [4], [8] or [17]). Indeed, on one hand, (1.38) is equivalent to the inf-sup condition:

(v v, q)Ql

inf sup > 1.40
€M1 e X |,U|H1(Ql)||q||L2(Ql) ( )
where »
()
€2
In turn, (1.40) implies trivially with the same constant (3
inf  sup (V -v,9)0 > B (1.41)

&t o 2y T, )l lall oo — V2
On the other hand, given (u,p;) in W, the mapping
(v,9) €Y = 2u(D(u),D(v))q, + (u-Vu,v)q, + (KVp2,Vq)a,
+ (p2 — %(u “u),v - Mi2)ry, + l(u “T12,V * T12)ry, — (U M2, @)1,

G
- (fla'u)Ql - (f2aq)92

defines an element £ of the dual space Y, and since (u,p>) solves (P), then £ vanishes on W. Therefore the
inf-sup condition (1.41) implies that there exists a unique p; € M; such that

V(v,q) €Y, L(v,q) = (V-v,p1).

This is precisely the statement of problem (Q). O

2. EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION

Since problems (P) and (Q) are equivalent, it suffices to construct a weak solution of problem (P). As the
spaces V and M, are separable, then the space W is separable and there exist two sequences of smooth functions,
{®m}m>1 and {@m }m>1, With @, € VN H?(4)? and ¢,,, € MaN H?(Q2) such that {(®,,, om)}m>1 is a basis
of W. Now, define the finite-dimensional space:

W, = Vect{(®;,p;); 1 <i<m}.
Then the Galerkin approximation of problem (P) is

Find (wm,pm) € W,, such that
(Pn)q V1<i<m, 2u(D(um), D(®i))a; + (Um - Vim, Bi)o, + (KVDm, Vii)a,
+(pm - %um “Um, B - n12)l"12 - (um *Mi2, 4;02')1_‘12 + é(u’m T12, P - Tl?)Fm = (flv‘I'i)fh + (f2790i)92'

Proposition 2.1. Assume that the data satisfy (1.10) and (1.11). Then, for each m, problem (P,) has at
least one solution (Um,pm) € W, and there exists a constant C, independent of m, such that any solution of
problem (P,,) satisfies the uniform bound

| (%, Pm)ly < C. (2.1)
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Proof. Since W, is a Hilbert space in finite dimension, we use Brouwer’s Fixed Point Theorem. To this end,
we introduce the mapping: F,,, : W,, = W, defined for all (v,q) € W, by:

‘v’('w,r) € Whn, (fm('vJCI)J (war))Y = 2N(D(’U)aD(w))Ql + (IU . V’U,’w)gl + (Kan VT)Qz

1
+(q - EIU "U,W - n12)F12 - (U . ‘n12,7’)1‘12 + _('U *T12,W - T12)F12 - (flaw)Ql - (f25r)92'

G

Clearly, F,, defines a mapping from W, into itself. As the dimension of W, is finite, considering the operations
involved, this mapping is continuous. Furthermore, any zero of F,, is a solution of problem (P,,).
Let us evaluate (Fr,(v,q), (v,q))y:

1
(fm('vaq)7 (1’7(1))1’ = 2/J'||D('U)||%2(Ql) + ||K1/2Vq||i2(92) + (IU ) V/077])91 - 5('” ",V - n12)r12
1
+5||U ""12||%2(r12) — (f1,v)a, — (f2, @), -

However, the two nonlinear terms cancel because, by Green’s formula (1.13)

1 1 1
Vv € V; (’U ) V’U,'U)Ql = _§(V "V, 'IU)Q1 + 5("-’ “nQ,,v "v)[‘)Ql = 5(7-’ “nQ,,v "U)[‘)Ql .

Thus, by using (1.21), (1.23), (1.25) and (1.26), we have

1 1 P2 .
(Fu(v,9), (v,9))y > 2 (2N“D(’U)”%2(Ql) + ||K1/2V11||%2(92) - (ﬂp12012||f1||%2(91) + )\—2,||f2||i2(92))) .

Therefore, (Fp,(v,q), (v,q))y > 0 provided that

1 22 2 P22 2 1z
100l = (5P B + 3t falBran)

i.e. for all (v,q) € Wy, (equipped with the norm |[|(v, ¢)||y-) on the surface of the sphere centered at the origin,
with radius

1 22 2 P22 2 'z
¢ = (3P B0 + el (22

Then a classical variant of Brouwer’s Fixed Point Theorem implies that F,, has at least one zero in this ball.
This yields existence of one solution (., pm) of (Pp,) and the bound (2.1) with the constant C defined by (2.2).
Finally, the same argument shows that any solution of (P,,) satisfies this bound. O

Theorem 2.2. Assume that the data satisfy (1.10) and (1.11). Then problem (Q) has at least one solution
(u,p1,p2) in' V x My X My and every solution (u,p2) of problem (P) satisfies the a priori estimate:

l(w, p2)lly <C, (2.3)

with the constant C of (2.2).
Proof. For each m > 1, let (s, pm) be a solution of (P,,) in W,. It stems from the uniform bound (2.1) that
there exists a pair of functions (u,p2) in W and a subsequence of m, still denoted by m, such that

lim %, =u weaklyin V,
m—r o0

lim p, =ps weaklyin H'(Qy).

m—o0
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Then the Sobolev imbeddings imply that the above convergences are strong in L!(Q) for any ¢ < oco. In
particular, by extracting another subsequence,

lim u,, =u stronglyin L*(04)?.
m—»0o0

Furthermore, since for any bounded Lipschitz-continuous domain O, the trace operator is continuous from
H'(0) into H'/2(80) for the weak topology, we have that

lim wn|s0, = w|gn, weaklyin HY2(80;)?,
m—0o0

lim pmlog, = P2lan, weakly in  H'Y/2(8Q,).
m—0o0

Hence the Sobolev imbeddings imply that (by extracting another subsequence)

im w,|s0, = ulag, strongly in L*(00Q;)%
m—0o0

Therefore, by a standard argument, we pass to the limit in the equations of (P,,) as m tends to infinity and we
derive that the limit pair (u,ps) satisfies problem (P).

The a priori estimate (2.3) is obtained as in the proof of Proposition 2.1. Finally, existence of p; follows from
Proposition 1.3. O

The next corollary is straightforward.

Corollary 2.3. Under the assumptions of Theorem 2.2, every solution (u,p2) to problem (P) satisfies the a
priori estimate:

1 1 1
plID(W)1720,) + §||K1/2Vp2||%2(92) + 5”“ “T12l72r,,) < 502, (2.4)
with C defined by (2.2).

Theorem 2.4. There is a constant C* that only depends on the constants in the inequalities (1.21)-(1.24) such
that if the condition holds

2

" P
324t > C (Pfcfnfln%zmwu 2 ||f2||%2(92)), (2.5)

Amin
then problem (@) has a unique weak solution.

Proof. Assume that (u', p}) and (u2, p3) are two solutions of problem (P). Their difference, say (w, 2) satisfies:
2 2

V('u,q) € W7 2M(D(w)7 D('U))gh + (sz27Vq)Q2 + (w : V’U,I,’U)Ql + (u’2 : Vw,v)gl

1 1 1
+5(Iw "T12,0 - T12)F12 + (ZQ - E(w . ul)av . nl?)F12 - (w . n12;q)F12 - 5(“2 "W, - nl?)F12 =0.
By choosing (v,q) = (w,22) € W and applying Green’s formula (1.13) and the boundary condition on the
functions of X, this equation becomes

1
2ul| D(w)[[72(0,) + 1K Vo720, + 5”“’ “T12ll72ry,) 26)

1
+ (’LU ) VUI,’U})Ql + 5[(1‘0 ) ’LU7’U,2 . n12)F12 - (’LU ) (ul —|—’U,2),’LU ) n12)F12] =0.
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Applying formulas (1.22)—(1.24), the term in brackets in (2.6) is bounded above by

||w||%4(r12) (e[l 2rae) + 2l L2(r,))
1
ﬁIID(W)IIQLz(QI) (VEID @) z201) + 2vEl D (@) |lr2(0y)) -

Similarly, applying (1.22) and (1.23), the first non-linear term is bounded above by

< CiCoCY

A a1
[wl|Zs 0, w0 < CfoﬁHD(W)II%z(QI) (VAID(uh)lz2(sy)) -

Hence, using the a priori estimate (2.4), the second line in (2.6) is bounded above by

c? (3 A
2\/117 <§C§CO+CZ> ClID(w)|[72q,) -

Thus if
4p®l? > C3 (gcfco + éf) c,

then (w, z2) = (0,0). Of course, since problems (P) and (Q) are equivalent, this also implies that the pressures
in Q; coincide in L?(Q4). O

3. NUMERICAL SCHEME

From now on, we assume that all boundaries are polygonal lines. Let us introduce the notation related to
the spatial discretization and then present the numerical method. We consider a regular family of triangulations
of Q, denoted by £, composed of triangles with maximum diameter h. We assume that all vertices of I';5 and
0Q are vertices of £ and we assume that all segments of T';5 are composed of segments of £*. Therefore the
restriction of £ to Q; is also a regular family of triangulations of €;; we denote it by £ and observe that the
two meshes 5{‘ coincide at the interface I';5. This restriction simplifies the discussion, but it can be relaxed.
By regular, we mean that there exists a constant v > 0, independent of h, such that (cf. Ciarlet [9]):

VE € gh’ h_E =1E S v (31)
PE

where hg denotes the diameter of E (bounded above by h) and pg denotes the diameter of the ball inscribed
in E.

For i = 1,2, let T denote the set of edges of £! interior to ;. To each edge e of £" we associate once and for
all a unit normal vector n.. For the edges in ['?, this can be done by ordering the triangles of £ and orienting
the normal in the direction of increasing numbers. For e € T'12, we set n, = nis, i.e. N, is the exterior normal
to Q. For a boundary edge e € I';, n, coincides with the outward normal vector ng,. If n, points from the
element E! to the element E2, the jump [|. and average {}. of a function ¢ are given by:

1 1
[ole = plpr — @le2,  {p}e = §<P|E1 + §<P|E2-

By convention, for an edge on I';, the jump and average are defined to be equal to the trace of the function on
that edge. Also, by convention, we suppress the index e when there is no ambiguity.
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Our scheme is based on discontinuous finite element spaces of possibly different orders for the Navier-Stokes
velocity and the Darcy pressure. Let k; > 1 and ks > 1 be two integers; we set

h={vel?(W)*;VEe€&!, v|pe P (E)?},
Ml ={qe L*();VE €&, q|g € Pr,_1(E)},
M} ={qe L*(Q);VE€E!, 4|5 € Pr(E)}.

We associate with the discrete spaces X" and M} the mesh-dependent norms:

1/2
we X", vllx=1{2> ID)I}2m + Z ||[U 1Z2(e) ; (3.2)
Ecé&l eEFhUF1
1/2
Vae My, = | D IK?Valliam + > B |||[Q]||L2(e) ; (3.3)
EES; CGFSUFZD
and we take the L? norm on M}

Vge Mt lalla = llallzzo,) - (3.4)

The penalty parameters g, > 0 in (3.2), (3.3) may vary from edge to edge and satisfy:

YeeThuTl,, 1<ol,

3.5
VeEI‘gUI‘QD, 1<o?. <og,<02 (3:5)

where o? ;. and ol , i = 1,2 are independent of h. For convenience, we also introduce the broken norm for
1=1,2:

1/2
ez = | D lellie(e ; (3.6)
Eegh
and the jump bilinear forms:
Oe
Tp.) = = [l . P = % [t (57)
thuF thurgp

Next, we define the usual NIPG, SIPG and IIPG bilinear forms for Navier-Stokes and Darcy problems. The
parameters €1,€e2 € {+1,0, —1} allow to switch from symmetric to non-symmetric bilinear forms, with the option
that if e, = eo = 0, we obtain the Incomplete Interior Penalty Galerkin method introduced for elliptic problems
in [13]. The forms ag,bs and ap (the index S for Stokes and D for Darcy) correspond to the DG discretization
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of the viscous term, divergence term and Darcy term respectively, namely

Vu,v € X", as(u,v) =2u Z v))E — 21 Z uU)Ne}, [V])e
Ecé&h ethuF1
+2apn Y ( et p Z
ethuFl eerhurl
Vv eXh7vP€M1ha bs(’U,p) = - Z (pJV'U)E+ Z ({p}a[’u]'ne)ea
Eegh e€lhur,
Vp,g € M3, ap(p,q)= > (KVp,Ve)s— Y, ({KVp-n.}lg).
EES; EEFgUFQD
Oe¢
+e2 z ({KVq-ne},[p])e + Z H([p]a[q])e-
EEFgUFQD GEFSUFZD

We then discretize the trilinear form of the convection term by using the upwinding of Lesaint-Raviart [23]
adapted to DG. It has been thoroughly studied in [18,19]. For this, we introduce the following notation. For
an element E € £" we denote by np the outward normal to E, and we denote by v'™ (resp. v°*!) the trace
of the function v on a side of E coming from the interior of E (resp. the exterior of E). When the side of E
belongs to 1), then by convention we set v'™ = v and v®** = 0. Then we define:

Vu,v,w € X", dp(u;v,w) = Z(u-V'v,w)E%—%Z(V-u,v-'w)g—% Z ([u] - Mg, {v - w})e,

Eegp Eegp ec?hul’y
(3.8)
Vz,u,v,w e X", (2, u;v,w) = Z ({u} - np@™ — ™), w"™)sp_(2)\r1s> (3.9)
Eegp
Vz,u,v,w € X", ens(z,u;v,w) =dp(u;v,w) + Ly (2, u; v, w), (3.10)

where

OE_(z) ={x € OF; {z(x)} - ng < 0}.
Note that on one hand, the first argument of ¢y s only appears in the definition of the integration region 0E_(z),
and on the other hand —{u} - ng can be replaced by |{u} - ng| when z = u.

With these forms and spaces, we propose the following numerical scheme: Find (U, P, P,) € X hs M hx M
such that

Vv € Xhav‘l € M2h: as(U,'U) +b5('U,P1) +U/D(P2uq) +CNS(UaU;Ua'U)

1 1
+(P, — §U -U,v-ni2)ry, — (U 112, ¢y, + a(U “T12,V " T12)T1s
= (fl)lu)Ql + (f25q)927 (311)
Vge M}, bs(U,q) =0. (3.12)

Note that, in this scheme, the integrals on I'y5 present no ambiguity because the traces of functions come either
from €y or from Q5.

We end this section with the consistency of (3.11), (3.12). To guarantee this consistency, we assume that each
solution (u, p1, pa) of problem (Q) is sufficiently smooth for the dualities {((—2uD(u) + p1I)ne,v)., respectively
(KVpane, q)e, to be well-defined on each segment e of £, respectively €2, for any polynomial functions v and
g. By virtue of Green’s formula (1.13), respectively (1.12), such dualities are well-defined on the boundary OF of
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any triangle E of £}, respectively £, but this is not necessarily true on individual segments of £}, respectively,
&R because this property requires a little more regularity. Since this is a delicate question, we assume that this
regularity holds.

Proposition 3.1. Let (u,p1,p2) be a solution to (1.1)-(1.9), sufficiently smooth as above. Then, (u,p1,p2)
satisfies equations (3.11) and (3.12).

Proof. Multiply (1.1) by a test function v € X", apply Green’s formula (1.13) over each element E and sum
over all elements in £f:

2u Z )E — Z (p1,V-v)g + Z —2uD(u) +piI)ng,v)sE
Ecé&h Ecé&lr Ecé&h
+ Z Vu 'U E — (fl: )
Ecéeh

The above regularity assumption on u and p; and the boundary condition (1.4) imply that

20 Y (D), D@)s— Y (p,V-v)s+ Y (u-Vu,v)g+ > ({(-2uD(u)+piI)n.},[v]).
Ecégp Eegh Eecé&p e€lhur,
+ > ((-2uD(u) + prDniz, v)e +2e1p Y ({D()ne},[u))e = (£1,v)a, (3.13)
e€l2 eel“hur‘l

Similarly, multiply (1.3) by a test function gz € M%, apply Green’s formula (1.12) over each element E, sum
over all elements in £} and use the boundary conditions (1.5), (1.6) and the above regularity assumption on ps:

> (KVp,Vo)p— Y. ({KVps-nc}[a))e

Eegh e€rhUlzp
+e Y ({KVg-ne}[p])e+ Y (KVps-niz,q)ry, = (f2,9)0, (3.14)
€€F£LUF2D e€l1a

Then add (3.13) and (3.14); this gives

as(u,v) + bs(v,p1) + ap(p2,q) + ens(u, u; u,v)

+ Y ((=2pD(u) + pi)nis,v)e + Y (KVps - 12,9015, = (F1,0)0, + (f2,0)0,
e€l2 e€l'12

In this equation, the terms on the interface I';2 are the same as in equation (1.30). Those terms are handled by
the same argument as in the proof of Lemma 1.1, and we obtain (3.11). The second equation (3.12) is simply
obtained by multiplying (1.2) by a test function ¢ € M}, by integrating over one element E, summing over all
elements in £} and by using (1.4) and the regularity of w. O

4. PROPERTIES OF THE DISCRETE SPACES AND FORMS

For analyzing problem (3.11), (3.12), we require on one hand that the discrete spaces satisfy the analogues
of (1.21)—(1.25), i.e. the analogues of Poincaré’s, Korn’s, Sobolev and trace inequalities in suitable norms, and
on the other hand that the discrete forms ag, ap, cnys satisfy adequate continuity and coercivity properties
and the form bg satisfies an inf-sup condition. All of these, except possibly the trace theorems (1.24) have been
established previously.
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4.1. Poincaré, Korn, Sobolev and trace inequalities

Let us start with the trace inequalities satisfied by the components of the functions of X " on the interface
I'12. In fact, they are valid for any function zp in the space :

O ={zn;VE € glh,zh|E € Pr(E)},
where k > 1 is an integer that may vary from one element to the next. The proof is based on a comparison
with the Crouzeix-Raviart elements of degree one, an idea used by Brenner in [6] and by Girault, Riviere &

Wheeler in [19]. Indeed, since the Crouzeix-Raviart elements of degree one (cf. Crouzeix & Raviart [12)), i.e.
the functions in the space

CR" = {0,;VE € £,04|5 € IP1(E), Ve € Ty, url,/[eh] =0},

satisfy the trace inequality (cf. Girault & Wheeler [20] or Bernardi & Girault [3]) for any real number r > 2:

vé, € CR",

10nllLr(012) < CIV OnllL2(ay) 5 (4.1)

with a constant C(r), independent of h, we establish the trace inequality (4.11) by transforming z, into a
Crouzeix-Raviart element. This is achieved in two steps: first, we reduce the degree of z; by interpolating it
with the Lagrange interpolation operator I, of degree one defined independently in each E. Next we transform
I1(z) into an element of CR" by removing the mean-value of its jump across each edge of 'y, UT, as is done
in [18]. More precisely, let a;, ¢ = 1,2,3 denote the vertices of E, then in E, I;(zp) is the polynomial of IP;
defined by Ip(z1)(a;) = zp(a;). Note that, in general, I (z5,) is not continuous across interelement boundaries.
Finally, we define CR(z,) € CR" by:

CR) = 1) = 3 ([0 ) a (4.2

ecl'p, U |€

where for any e in I'y, UT'1, A, is the basis function defined as follows. Let b, be the midpoint of e and let E
be the triangle of £} adjacent to e such that m, is exterior to E. Then A.|g = 0 for all E' # E, A\ |r € IPy,
Ae(be) =1 and A (ber) = 0if €' # e. It is easy to check that CR(zp,) belongs to CR". The trace theorem follows
from the following set of lemmas. The first lemma estimates the broken and jump norms of I;(z). In the rest
of the section, we denote by E the reference element, i.e. the triangle with vertices (0,0), (1,0) and (0,1). For
each element E € &, there is an affine mapping Fr from E onto E. As usual, we denote Z = z o Fg and \v
the gradient of Z on E.

Lemma 4.1. If £} satisfies (3.1), then there erists constants Cy and Cs, independent of h, such that, for all
zZp € Op:

IV In(zr)ll 22(01) < CillV znllL2(@y) 5
1/2 1/2

(4.3)
> [ me|  <eivalea+| X [oEE]

e€ThuTy e€ThuUry
Proof. Let E be an element of £'. We write

IV In(zn) L2y < (IV(In(zn) — 20)llL2m) + |V 20l 22(E) -
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For the first term, passing to the reference element E, using the fact that I, preserves the constant functions
and is invariant by affine transformation, the equivalence of norms on the space Py and (3.1), we derive:

1 o, . 1 -~
IV(In(2n) = 21)llL2(m) < CllEll/zp—EIIV(I(Z) =2y < CzlEll/Qp—EIIVZIILz(E) < 37|V 2nll 2y -
This proves the first part of (4.3).

For the second part, we write:

1/2 1/2

_[Ih 21)] < _[Ih zn) — z1)
e lel e le]

eEFhUF

1/2
/|hP L (a4

Let e be an interior segment adjacent to two elements E; and E»; the case of e € I’y is similar and simpler.
Then

eEFhUF e€lhur,

/%[Ih(zh) - Zh]2 < 2/|1?| ((Ih(zh) - Zh)|2E1 + (In(zn) — zh)|2E2) . (4.5)

If e € Ty, then there is only one element E in this expression. Switching to the reference segment é = [0, 1],
using the finite dimension of the space, the fact that I, preserves the constant functions and the regularity of
&R given by (3.1), we obtain

[ @ =ik = () -2 < alfe) = 2ap < @ll¥ s <er?IValias - (@6

Then the second part of (4.3) follows by summing (4.6) over all segments e € I'* UT; and using (4.5) and
(4.4). O

Lemma 4.2. If £} satisfies (3.1), then for each real number r > 2, there exists a constant C(r), independent
of h, such that

1/2
Vzn € On,  lzn — In(zn)l|Lr(ryn) < Cr)RMT ( > IVl E)) ; (4.7)

e€EA12

where A5 denotes the union of all elements E € £} that are adjacent to Ty5.

Proof. Let e be any segment on I'1a. Switching to the reference segment é = [0,1], we obtain as above:

Iz — In(zn)llzr(e) = |€|1/T||2 - —f(é)HLr(é) < 01|€|1/T|W 2llL2(e) (4.8)
< eoleVT(IV 2||L2(E) < eslel' ||V znll2(E) 5

where E is the reference element with side é and E is the element of £ that is adjacent to e. Then (4.7) follows
by raising (4.8) to the r-th power, summing over all edges e of I';2 and applying Jensen’s inequality that is valid
since r > 2. O

Lemma 4.3. If £} satisfies (3.1), then for each real number r > 2, there exists a constant C(r), independent
of h, such that

Vzp € On,  (In(21) — CR(20)||ir(rsny < Cr)RY™ | IV 20220y + / e | . (4.9)

ec'huUT
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Proof. We have by definition

1n(zn) = CR() vty = ( [ it )

e! h
erkury L7 ('12)

For any e € 'y, there are at most two terms in the above sum for which A.|. # 0; they correspond to the two
edges, say e; and e;, of the triangle E that is adjacent to e. Therefore
7') 1/r

1L menle,

/ (2o s +

lej |

l15(21) — CR(zp)||Lr(r12) < (

e€l'12

Applying
' 1 1
Va>0,820,(a+ ) <2/ 457, S+ =1,

that follows from Cauchy-Schwarz inequality and is valid for any real number r > 1, switching to the reference
segment [0, 1] and applying Cauchy-Schwarz inequality, we have on one segment e € T'q5:

1 1 r
g mone+ g v

< 2r/T'|e|((/' [Zn(21)12)" /| i 12 ey + (

i

: (4.10)
[0 (z2)12,)" 2155 ey) -

e leil

il

When summing (4.10) over all segments e € I'15, each segment e; adjacent to e is counted at most once.
Therefore, considering that || A7) and [[A;||7- ) take only two constant values independent of , we obtain
(4.9) by applying Jensen’s inequality and (4.3). O

It remains to estimate ||CR(2p)||L(r,,)- As mentioned above, we know that (4.1) holds. Its proof is based on
a particular regularization of 8 by the Scott-Zhang interpolant (cf. [33]). We refer to [6] and to Crouzeix [10]
for a slightly different regularization. Then collecting the above results, we deduce the following trace theorem.

Theorem 4.4. If £} satisfies (3.1), then for each real number r > 2, there exists a constant C*(r), independent
of h, such that

1/2

. 1
Van € On,  2nllorri) < CH0) LIV 2nllizon + D /EH[Zh]g : (4.11)

eEF’fUFl

As far as Poincaré’s inequalities are concerned, we have the following proposition established, in a more
general setting, by Brenner in [6].

Proposition 4.5. Let the triangulation £ satisfy (3.1). There exist constants Cs(i), independent of h, but
depending on o' . , i =1,2, such that

min’

1/2
we X" ol <Y (IVolEaq, + 7 0.0) (4.12)

1/2
vge MY, iz < O (19 ahan) + T2(00) (4.13)
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For Sobolev’s inequality, we have the next proposition. The proof is given in [19], when the jump norm runs
over all edges of the triangulation. The above approach gives a slightly different proof, valid in more general
situations.

Proposition 4.6. Let the triangulation E} satisfy (3.1). For each real number r > 2, there exists a constant
C(r), independent of h, but depending on ol , such that

1/2
W e X", ol < C0) (IV ol + T (0,0)) . (4.14)

Of course, (4.14) reduces to (4.12) when r = 2.
The following Korn’s inequality follows immediately from a result in [7], again established in a more general
setting.

Proposition 4.7. Let the triangulation E! satisfy (3.1). There exists a constant Cs, independent of h, but
depending on ol .  such that

min’

vo € X", Vol < Csllvllx - (4.15)

Then, as is done by Riviére in [27], by combining the above results, we obtain:

Vv e X", |vllpza,) < Crllvllx, (4.16)
Vg € My, llall z2(2,) < Csllgl|a, - (4.17)

We can easily check that C7 = C(2)(1 + C2)!/2 and Cs = C{P (1 + AL )1/2.

min
4.2. Continuity and coercivity of forms ag, ap and cyg
The continuity and coercivity of as and ap stated in the next lemma are well-known (cf. for instance [18]).

Lemma 4.8. Let the triangulation E} satisfy (8.1). There ezist constants Cy and CY, independent of h and p,
such that

Vo € Xh7 CQM”/U”%( < aS(’UJv)7 (418)
Vo e X" Vw e X", as(v,w) < Cypllv||x]lwllx- (4.19)
Similarly, let the triangulation E¥ satisfy (3.1). There exist constants C1o and C},, independent of h, such that:

vq € M2h7 CIOHqH?\JQ < aD(q7Q)7 (420)
Vg e M3, vr e M, ap(q,r) < Clollallaslrllas,- (4.21)

min min

When €1 = —1, respectively ex = —1, (4.18), respectively (4.20), holds provided o™, respectively o5™™, is large
enough.

The form ¢y s is linear with respect to its arguments except the first one. The following lemma shows that
it is bounded independently of this first argument. We skip the proof that can easily be obtained following the
proof of Lemma 6.4 in [18].

Lemma 4.9. Let the triangulation E} satisfy (3.1). There exists a constant C and for any real number r > 2,
a constant C,., independent of h, but dependent on o™, such that for all u € Vi v, w,z e XM
ens(z,u;0,w) < C(IVo[l72(q,) + T (©,) " ulls @) lwllpa@)

O IVl z gy, + T, w) (190 agqy) + 7 @0,0) (VW g, + T, w) 2 (422)
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Using (3.5), (4.14) and (4.15), Lemma 4.9 yields that there is a constant N independent of h and p such

that:
CNS(Z,U; ’U,’LU)

sup < N. (4.23)

W Tullxlellxwlx
z,v,we X"

We prove next that in a certain sense, the form ¢y g is Lipschitz-continuous with respect to its first argument.
We first need a preliminary result given below.

min

Lemma 4.10. If £} satisfies (3.1), there exists a constant C, independent of h, but dependent on o™™, such
that for all edges e € TR UTy and for all u,v, w € X", we have

‘ Z ({u} "flE(Uext - Uint)a’wint)aEi (w,v)Ne — Z ({u} 'nE(UeXt - Uint)a’wint)aEi (v,u)Ne
Beer Eeep (4.24)
Oe
< Cllu = vl|z2a,) HII[U]IILz(e) l[w]llz2ce)»
where

OE* (u,v) = {x € 0E; {u(x)} -ng <0 and {v(x)} - ng # 0},

and A, is the union of elements of E} adjacent to e.

Proof. Let u,v,w € X" and define the set
OE _(u,—v) ={x € 0F; {u(x)} -ng <0 and {v(z)} -ng > 0}.

Consider first an edge e in T'?. The proof is based on the identity (see formula (5.32), Chapter IV, [17]):

A= Z ({'U'} . ’n,E(ueXt _ uint), wint)aEi(u,’v)ﬁe _ Z ({u} . nE(uext B ’U,int), ,wint)aE: W)

Eegp Eecép

== Z {u} - np(u™* - u'™), wt — wint)aE_(u,f'v)me,

Eegh
and on the remark that on 0E_ (u, —v), we have
Hu} -np| < {u—v} ngl. (4.25)

Therefore
|4l < [{u = v} - nellLe o llulll2@ l[w]l 22 (4.26)
As u and v belong to a finite-dimensional space in each element E, we easily deduce from (3.1) that

e
s~ o} < Ol = vllizcay (1.27)

where A, is the union of all elements of £} adjacent to e, and C is a constant that depends on ¢™", but not
on h. Then (4.24) follows easily from (4.26) and (4.27).
Next, we prove the result for an edge e in I';. In this case, we easily obtain that

A=-— Z (u-npu, w)sr_(u,—v)ne + Z (U - nEU, W)oE_(v,~u)ne-
Eegh Eegl

The proof is concluded as above by noting that (4.25) holds also on 0E_ (v, —u). O
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Proposition 4.11. If &} satzsﬁes (8.1), there exists a constant C*, independent of h, but dependent on oi™",
such that for all u,v,w € X" , we have

En(u, w0, w) — Lh(v,0;0,w)| < CYlu—vllxwllx(lullx + [[v]lx)- (4.28)

Proof. We first note that for any w € X", on any fixed edge e, we have either {u}-n, =0 or {u} -n, # 0 except
possibly on a finite number of points, in which case {u}-n. # 0 a.e.. Therefore, I'* UT; can be partitioned into

FfUFlzflUfQUf3,
with
Fi={e;{u}-n.=0o0one and {v}-n.#0one ae.},
Fr={e;{v}-n.=0one and {u} -n.#0one ael},

Fs=TrUT\ (FLUF).
We then have

eh(U,U;U,W) eh 'U v;v, w Z Z Z {u} TLE' lnt ext)’wint)aE_(u)me

i=1 ecF; Eegh
3

=337 > (v} ne@™ — v, w™)op_(w)ne-

i=1 eeF; EcEP

We now consider each subset F; separately:

Z Z ({u} - np(u u™ — ueXt),wint)aE_ (u)ne — ({v}- nE(’Uint - ’UeXt)awint)aE_ ('u)me)
ecF1 Eeé'h

= Z Z ({’U, - U} : nE(vint - veXt)v wint)BE_ (V)Ne
e€F1 EcER

< C(J (0,))?[Ju = v]| sy 1wl s (o),

similarly

Z Z {’U,} ’nE wmt — UeXt),’wint)aE_ (Wne — ({’U} . ,nE(,Uint _ ’UeXt),’wint)aE_ (’U)ﬁe)
e€Fa2 EeEp

< O (u,u)? e = wll Loy llwll e,

finally

3N ({u} - np@™ —u™), w™)sp_(wyne — (v} - ne@™ — ™), w™)op_@)ne)

e€F3 EcEh

— Z Z (({u} . nE(uint _ UeXt),wint)aE_ (wyne — ({’U,} . nE(uint _ uext),wint)aE_ (’U)ﬁe)

ec€F3 Eegf

+ Z Z ({’U, - IU} : nE(uim - ueXt)waim)(‘)E_(’U)ﬁe

e€Fs EcE

+ Z Z {’U} nE mt mt) _ (uext _ ,Uint)),wint)aE_ (V)ne- (429)

ecF3 Eegh
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The first line in the right-hand side of (4.29) is equivalently rewritten as

Z Z ( {u} - np(™ —u™),w™)sp. (w,v)ne — ({u}- np(u™ — ueXt),wint)aE:(v,u)me)
e€F3 EcER

and in view of Lemma 4.10, is bounded by:

Cllu —vllz2(1) Z II[U 2o [w]llp2e) < Cllw = llp2(y) 1 (u, w)' /2 Jy (w, w) /2.

86.7:3

The second and third lines in the right-hand side of (4.29) are easily bounded respectively by
Cllu — vlrs(a,)r (u, U)1/2||w||L4(91) and  Cl|v|ps(a,)Ji(u —v,u — ’0)1/2||w||L4(91)-

Then (4.28) follows from the above bounds, (4.14) and (4.15). O

The following lemma states the positivity of form cyg.

Lemma 4.12. The nonlinear form cngs satisfies the following property:

Vu,v € X", ens(u, u;v,v) z [l{z} - nE|1/2( e eXt)”%%aE_(u)\an)
E'Eé‘h
1
+|||’U. ‘no, |1/2v||%2(F1—(U)) + E(u ‘M2, - U)Fma (430)

where
Iy (u)={xely; {u(x)} ng, <0}

Proof. Integrating by parts the first term in the definition of ¢yg in (3.10), we obtain:

1
Yu,v,w € X", ens(u,u;v,w) = — Z (u-Vw,'u)E—§ Z (V- -u,v -w)g

Ecgh Ecer
; 1
+ ) ({u} - nplv™, w™ — w™)op_ o0, + 2 > ([u] - me, {v - w}).
Ecé&h ecI'?
1
+§ Z (lw-ne|,v-w)e + Z (u-m12,v - w)e.
e€l’s e€l12

Therefore, choosing v = w in (3.10) and in the above equation, and adding the resulting equations yields:

QCNs(’U,,’u.;’U,’U) = Z |||{u} . /n'Ell/z('Uint - 'UeXt)”2L2((-)E_(’U,)\891) + 2(|u . nQ1|7U . U)F1_(’U,) + (U *M12,V - U)F127
Eegh

whence (4.30). O

4.3. An inf-sup condition

In this section, we prove an inf-sup condition for the form bg.
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Proposition 4.13. Let the triangulation E satisfy (3.1). There is a constant 3* > 0 independent of h such

that

inf sup _bs(.a) > pr. (4.31)

sonp % Tollx Tallan
Proof. Clearly, it is equivalent to showing that, for any given ¢ € M}, there is a function v € X h and positive
constants -1,y such that
bs(v,q) > mlldllir, »  lwllx <vallallm,-
Fix ¢ € M} and let § € L2(Q) and © € H}(R2)? be defined as in the proof of Lemma 1.2. Let v = R (9o, )
where Ry, € L(H'(Q;)% X") is the Raviart-Thomas operator [17,26] satisfying the following properties

Yo € HY(Q,)?, VE€&}, Vge Py, _1(E), (¢,V-(Rn(v)—v))p =0, (4.32)
Yo € H'(M)?, VeeT,UTy, Vg€ Py _1(e), (q,(Rn(v)—v)-n.)e=0, (4.33)
Yv € Hl(Ql)z, VE € glh,7 |’U - Rh(v)lHl(E) + hE-ln’U - Rh(v)||L2(E) S C|U|H1(E) (434)

(From (1.39), properties (4.32) and (4.33), we can easily obtain:

bs(v,9) = llgll72(q,)-

Next, we bound ||v||x. We have from (4.34) and (1.39)

Y D)y < Y IVolliam <2 ) IVolGem) +2 Y IV = 9)lZa)

Eecgl Eegh Eegh Eeégh

. C . C |2
< UV 01y < ey < oz ooy

The jump term is bounded using property (4.34) and a trace theorem:

C |2
T (0.0) = I'(0 = 5,0 =) < ClVolxa,) < 50 Wil

Thus, there is a constant C' that only depends on Q and 25 such that
lvllx < Cllgllzze,)-
This concludes the proof. O

5. EXISTENCE AND UNIQUENESS OF NUMERICAL SOLUTION

As in the weak formulation, we introduce an equivalent numerical scheme by restricting the space of velocities
to discrete divergence-free velocities:

h={veX":Yge M} bsw,q) =0}
Scheme (3.11), (3.12) then becomes: find (U, P,) € V" x M} such that
Yo € X".Vg€ My, as(U,v)+ap(Pr,q) +cns(U,U;U,v)

1 1
+(P2 - §U : U:“ . n12)1"12 - (U . n127Q)F12 + 5(
= (flav)Q1 + (fZJq)QQ' (51)

U'T12,U '7'12)1“12
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Clearly, if (U, P;, P;) is a solution to (3.11), (3.12), then (U, P,) is also a solution of (5.1). Conversely, if
(U, P,) solves (5.1), it is easy to prove that by virtue of Proposition 4.13, there exists a unique P, € M} such
that (U, Py, Py) solves (3.11), (3.12). Therefore, it suffices to show that (5.1) has a solution (U, P).

Theorem 5.1. Let the triangulation E satisfy (3.1). Problem (5.1) has at least one solution (U, P,) and all
solutions (U, Py) satisfy the boound:

1 2

02 1/2
R 2 C8 e 2
o (Gl + G lRley) - 62

WO + 1P 2 <, witn €= (
Proof. The proof is similar to that of Proposition 2.1: let W" = V" x M} and let the mapping F" : W" — W"
be defined for all (v,q) € W as follows:

V(wvr) € Wh7 (fh('(;,q), (war))Wh = aS('an) + CNS(’U,’U;’U,’UJ) + aD(qar) - (fhw)ﬂl - (fg,’!‘)92

1 1
+(q - EIU U, W - n12)I‘12 - (’U ) n12,T)r12 + a(v TT12,W - T12)F12'

Here (-,-)yn is the inner-product on W" defined by:

((v,9), (w,r))wr =24 Z (D(v), D(w))E + pJ' (v, w) + Z (KVq,Vr)g + J*(q,7),
Eeégl Eegl

associated with the norm
1w, @)llwn = (ullvllx + llalliz)>-
Let us derive a lower bound for (F"(v,q), (v,q))wn:

(fh(UaQ)a (an))W’L = aS('Ua'U) + cNS(”aU;'Ua'U) + aD(qa q) - (flav)ﬂl - (fZaq)Q2

1 1 )
—5("’ U,V M2)ry, + 5”” : T12||L2(1"12)'
By Lemmas 4.8 and 4.12, we have with the constants of (4.18) and (4.20)
1
(F™(v,9), (v,9))wn > Copllv|lx + Crollgllas, + cllv T1allze(r,,) — (F1, )2, — (f2, @),

By Cauchy-Schwarz inequality and (4.16), (4.17) we have

(f1,v)a; < Crllfillz@pllvllx , (f2, 90, < CsllfallL2(ey)llgllaze-

This implies that

(Conlloll + Crollales, — SR By — S 1 fall2ogen)
2 CQN 1 CIO 2

DN | =

(]_-h(v,q), (Iuaq))Wh >

—

: 2 % 2 % 2
> 5 (min(Co, Cro)ll(v, @)lyn — m”flnL?(Ql) - C—lo||f2||L2(Q2) :
Thus, (F*(v,q), (v,q))w» > 0 provided that

1 C 3 Y2
_ 7 2 8 2
00w = (e (il + Gollfllia,))
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As in the proof of Proposition 2.1, this yields existence of at least one solution (U, P) of (5.1), that satisfies
(5.2). Finally, the same calculation gives that all solutions of (5.1) satisfy (5.2). O
Theorem 5.2. Under the condition

. 2 1

B> e (N + O+ CH@C WG] + 1) (CRlf sy + 1CR I Lol ), (53)

the discrete problem (5.1) has a unique solution.

Proof. Assume that (U, P}) and (U?, P?) are two solutions of (5.1) and let W = U' — U? and Z, = P} — P3.
We have

Vv EXha qu M2ha aS(Wav)+aD(Z27q)+CNS(U13U1;U13U)_CNS(U27U2;U27’U)

1 1 1
+5(W “T12,V - T12)ry, + (Z2 — W U',v-nu)r, — (§U2 -W,v-n2)r,, — (W -ni2,¢)r,, =0.

By choosing v = W and ¢ = Z, and by using Lemma 4.8, we obtain:
CoullW % + Croll Zalles, + —[[W - 7122 v,uhut,w) - U, U U W)+ A<0
ot Wik + CrollZallag, + GIW - Tiallz2y) +ens@ UL UL W) —ens(USUS U, W) + A < 0.
(5.4)

where A is defined and bounded below:
1 1
A=—-sW- U, W -n)r,, — §(U2 W, W -n12)ry, < IWllea@o) W2 10 sy, + 10 Lar.))-

Using (4.11) and the fact that ol; > 1, we can write

Wl W Loy < C@)CHA) (IVW oy, + T (W, W)
Thus using again (4.11) for U' and U?, applying (4.15) and finally (5.2), we derive

Al < CH2)CM(4)*(CE + 1)3/2#IIWII§¢(¢EIIUIIIX +VallU?|x)

3220

<C@RCUWHG+

W%, -

The two terms involving cyg in (5.4) can be rewritten as:

ens(UL UL UYL W) —ens(UA, U U W) = dpy(US W, W) + dp (WU W)
+ 4, (U, UL U, W) — £,(U*, U U, W).

Using (4.23) and (5.2), the first two terms are bounded as:

2 ~ .
[dn(Us W, W) + du(W5US, W) < NIW IR (Ul + 10711 < Z=NElIW I
(From Lemma 4.11 and (5.2), we have

2

(U ULUYL W) = 6,U2,U% 0% W)| < CHWIR(IUIx + IU7]1x) < Ji

CiCIW k-
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Combining the above bounds, inequality (5.4) becomes
2C 1
(Cgu - ﬁ(N +C + C'(2)C'(9)*(C5 + 1)3/2)> WX + Cioll Zall3s, + el T12ll72(r,,) < 0.
Thus, we have W =0 and Z, =0 if

LIS 2C—C(N + O+ CHR)CHA(CE + 1)7/2).
9

This is the case if (5.3) holds. O
6. ERROR ESTIMATES
;From the inf-sup condition (4.31), we derive an approximation operator Ry, € L(H(Q;)2, X") satisfying:

VUEXa quMlha bS(Rh(U)_v7q)=07
Vse[l,ki+1], Ywe XNH(Q)? |[|Ru(v)—v|x <Coh® v

Hs(Q1)»

with C, independent of h. Let us recall briefly its construction; the ideas can be found in [32]. It suffices to
correct a standard approximation operator, say IT, € L(H'(Q;)2, X" N X) such as the Scott-Zhang interpolant
[33] and set

Vv € X, Ry(v) = i(v) + ea(v),

where ¢j(v) € X" satisfies

Vg € M{', bs(cn(v),q) = bs(v —4(v),q) = A V- (v —TIIx(v))g. (6.7)

By virtue of the Babuska-Brezzi’s theory (cf. [4], [8] or [17]), (6.7) has a solution cp(v), unique in (V")+ (the
orthogonal being taken with respect to || - ||x), and

1
ﬂ*

Then (6.6) follows from the approximation properties of IIj, and (6.5) follows from (6.7).

llen(@)llx < IV - (v = Ta ()l L2(00)-

Remark 6.1. For k = 1,2, 3, [18] presents another operator P that is based on the non-conforming elements of
[12], [16] and [11]. This operator has the advantage of being quasi-local and hence satisfies optimal approximation
properties in Banach spaces such as L" and W' for any number r > 2, without restricting the mesh or the
domain. However, this is not fundamental here and therefore we do not use it in the present work.

Theorem 6.2. Assume that the solution (u,p1,p2) of problem (P) belongs to H**+1 ()2 x HF (1) x H*2+1(Qy).
In addition, assume that
Cy

Co®? > 2CH(2)Ct(4)2(C2 + 1)¥/2C + CCy (x/éNca + ﬁct(2)0t(4)(cg + 1)). (6.8)

Then, there exists a constant C' independent of h and p such that

C2+(C? 1 1
pllu=U|%+lp2—Pall3s, < ChQ'“IUIZMH(QI)(7+u+1)+0h2’“2(1+;)|Ipz||§1k2+1(92)+0h2’“ﬁllplllqul (@)
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Proof. Set @ = Ry (u) and take for p; and p, any optimal interpolant of p; and p, respectively. Let us denote
the numerical and approximation errors by

=U-a, G=P-p, &=PFP-ps,
u—1u, 1 =p1—p1, N2=p2— P
The error equations are:
Vo e X" Vgo € MY, as(x,v) +ap(e,q) +bs(v,&1) + ens(U,U; U, v) — ens(u, u; u, v)
+(&2,v - ma2)r,, — (X - M2, @2)ry, + é(x “T12, - T12)Ty — %
= as(¢,v) + ap(m2, ¢2) + bs(v,m)

U -U—-u-u,v- -n12)r,,

1
+(n2,v - na2)ry, — (€ - Mi12,¢2)r,, + E(C “T12,V - T12)Tys;

Vg € Mp, bs(x,q) = bs(C,q1) =0,
where we use (6.5) in the last equality. In the above equations, take v = x,q1 = &1, ¢2 = & and use Lemma 4.8:

1
Coullx|x + Croll&allis, + alx: T12ll72(r,,) + ens(U,U;U, x) — ens(u, us u, x)

1

- i(U U —u- u, X - n12)F12 = aS(C;X) + GD(772;§2) + bS(Xﬂh) (69)

1
+ (M2, X - M12)ry, — (€ M2, )y, + 5@ “T12,X " T12)T1s-
As u has no jumps and vanishes on 'y, we can write:

CNS(UJU;U7X) - CNS(U,’U.;’U,,X) = CNS(U7U; U:X) - CNS(U,’LI,;U,X)
= CNS(UJU;X7X) + CNS(U7X;,&'7X) - CNS(UJC;/E"JX) - CNS(U7U;C7X)'

Likewise,

1 1 1
Q(U U-—u 'UJX'n12)F12 = i(U-XJX-n12)F12 + §(X 'UJX'nIZ)Fm
1 1
_E(U : Cax 'n12)F12 - E(C “u, X 'n12)F12'

Then substituting into (6.9) and applying Lemma 4.12, we obtain the following error equation

1 .
Copllxll% + Croll&allns, + alx: T12l72(r0)

1
+5 2 IR} mel D o oy * 11T men X e,
Ee&h

1 - 1 1
+ i(U cNa2, X X)F12 + CNS(Ua XU, X) - §(U “Xo X n12)F12 - E(X “u, X - n12)F12 (610)

=cns(U, ¢, x) + ens(U,u; ¢, x) + as(¢, x) + ap(n2, &) + bs(x,m)
1 1
- §(U ) C: X - an)Fu - E(C U, X - n12)F12

1
+ (2, x 'n12)1"12 - (C : n127§2)r12 + E(C “T12, X - 7’12)1“12-
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We now derive upper bounds for the terms on the third line of (6.10). Using (4.11), (4.15) and (5

CRCW s

5 + 12U | xlIxl%

1
i(U'nR:X'X)Fm <

L C@)ct@?

¢
< 2 (G DRl

i

Using (4.23), the fact that x € V" by (6.5), we have

ens(U,x; %, x) < Nllallx x|l

But, from property (6.6), (1.23) and (2.4), we obtain
le)lx < CaC ¢ el
b'e 1—7=|lullx -
V2u
Thus,
C
U,x;i,x) < NC,Cr—|Ixl%-
CNS( 5X7U5X) = a lm“X”X
Similarly, using (4.11), (4.15) and (5.2), we have

1 C
7. . < CHCH(4)2 (02 + 1)3/2 2
3 XX M) < CRC WG + 1) 5 i,

Finally, using (4.11), (4.15), (1.23), (1.24) and (2.4), we have

1

50w, X - ma2)ry, < CHR)CHA)CACH(CE + 1)2\/—||X||X
Hence if (6.8) holds, the left-hand side of equation (6.10) is bounded below by

u 1
= Ixllx + Croll&laz, + Fllx - Trallzar,)-

.2), we have

(6.11)

(6.12)

(6.13)

(6.14)

Now, it remains to bound the terms in the right-hand side of (6.10). The terms on the fourth line of (6.10)

are analyzed as in [18].

ens(U, ¢, x) + envs(U,u;¢,x) +as(C,x) + ap(ne2, &2) + bs(x,m)

CQM Cho
—Ixll% + —

C?
LIl + R s, (g + 1)+ CH™ pal a0y + Ch%l—nplnml )

(6.15)

Next, by inserting into ¢ the Scott-Zhang interpolant II;, (or the standard Lagrange interpolant) and applying

Theorem 4.4 to II;(u) — Rp(u), we can write:

€llz>(rye) <€ (IIV(Hh(U)—U)IIiz(gl) +IVECl@y + D /%[CE)

CEF;LUFl €

S Chkl |U|Hk1+1(91).
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Then the integrals on the interface I'y5 are handled as follows:

1 Cgu C
53U -G x-ma)ry, < CIUIxlIxlxlI€llzae.,) < == xll% +C 3 )
Similarly,
1 c? 2k
(C U, X - M12)r;, < ||X||X + C sh |“|Hk1+1(91)
We also have
C
(772,X n12)1"12 S —“ ||X uh2k2|p2|§1k2+1(92)’
and
Cho
(€-m12,&)ry, < ||§2||M2 +Ch?h |“|Hk1+1(92)
Finally,
1 1
g6 X T)re < 5allx: T12l72ry,) + ChF [ulf 41 (g,
The final result is obtained by combining all bounds and using triangle inequality. O

Theorem 6.3. Under the assumptions of Theorem 6.2, we have

1+C+C
lp1 = Pillm, < C((N + T)hkl Wl i +1(0y) + B2 D2l +1(0,) + 1 D1 Es ()
C+C N
+ul|lU — ul|x + W”U al|x + —||(U —u) - Ti2llz2r,,) + 1P —p2||M2)

with a constant C independent of h and p.

Proof. jFrom the inf-sup condition (4.31), we have
- 1 bs(v,PL — p
1Py = frllmy, < == sup bs(v, 1 —p1)
B2 Tollx
The error equation can be written as follows:
Vv e Xy, bs(v,Pr—p1) =—as(U —u,v) +cns(u,u;u,v) — ens(U,U; U, v)

B 1
+bs(v,p1 —p1) — 5((U —u) - Ti2,V - T12)ry, + (P2 — P2, v - mi2)ry,

1

1
+ i(U -U,v- 'n12)I‘12 - 5(“’ U,V - n12)F12 + ((U - u) : n12,(]2)1"12-

It suffices to bound the terms in the right-hand side using similar techniques as in the proof of Theorem 6.2.
The details are skipped for the sake of brevity. O

An immediate consequence is the following result.

Corollary 6.4. Under the assumptions of Theorem 6.2, there is a constant C independent of h such that

pr = Pillasy < O™ |u|giisi(ay) + B2 (D2l rrati () + B P10 04))-
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7. CONCLUSIONS

In this work, we presented a mathematical model for the coupling of surface flow and subsurface flow. Because
of the nonlinear convection term in the Navier-Stokes equations, inertial forces were added in the balance of
forces across the interface between surface and subsurface. We derived a complete analysis of the weak problem,
and proposed a numerical scheme based on discontinuous finite element methods. Optimal error estimates were
obtained. As future work, we will validate our model using numerical simulations and experimental data.
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