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Abstract

We study the motion of steps along a martensitic phase boundary in a cubic lat-
tice. To enable analytical calculations, we assume antiplane shear deformation and
consider a phase transforming material with a stress-strain law that is piecewise
linear with respect to one component of shear strain and linear with respect to
another. Under these assumptions we derive a semi-analytical solution describing
a steady sequential motion of the steps under an external loading. Our analysis
yields kinetic relations between the driving force, the velocity of the steps and other
characteristic parameters of the motion. These are studied in detail for the two-step
and three-step configurations. We show that the kinetic relations are significantly
affected by the material anisotropy. Our results indicate the existence of multiple
solutions exhibiting sequential step motion.
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1 Introduction

The dissipative properties of active materials undergoing martensitic phase
transitions are due to the motion of phase boundaries. Although classical
nonlinear elasticity captures the main features of equilibrium microstructures
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(see Bhattacharya (2003) for a review), it provides no information about ki-
netics of a phase boundary due to the inherent inability of the theory to
describe phenomena in a narrow transition front where the energy dissipation
occurs. This deficiency of the continuum theory renewed the interest in the dis-
crete models of moving dislocations (Ishioka, 1971; Celli and Flytzanis, 1970;
Flytzanis et al., 1974; Atkinson and Cabrera, 1965), cracks and failure waves
(Slepyan, 1981, 1982; Slepyan and Troyankina, 1984; Marder and Gross, 1995)
and motivated recent studies of the dynamics of lattice defects (Cahn et al.,
1998; Chow, 2000; Slepyan, 2001, 2002; Kresse and Truskinovsky, 2003, 2004;
Carpio and Bonilla, 2003a,b,c; Abeyaratne and Vedantam, 2003; Slepyan and
Ayzenberg-Stepanenko, 2004). In particular, much of recent activity has fo-
cused on the dynamics of phase transitions in one-dimensional bistable chains
(Balk et al., 2001a,b; Purohit, 2002) and derivation of a kinetic relation be-
tween the driving force on a moving phase boundary and its velocity (Slepyan
et al., 2005; Truskinovsky and Vainchtein, 2005a,b, 2006).

In this paper we consider a phase boundary moving in a three-dimensional
lattice. In this setting it is important that a martensitic phase boundary is
typically not flat, even though it may appear so on the macrolevel. Instead,
a phase boundary contains steps, or ledges. A long-standing hypothesis in
materials science is that a phase boundary moves forward via a propagation of
steps along the interface (Hirth and Lothe, 1982; Hirth, 1994). This hypothesis
is confirmed by experimental observations: for example, Bray and Howe (1996)
found the fcc/hcp martensite transformation in Co-Ni occurs by the passage
of Shockley partial dislocation ledges and that the hcp martensite thickens by
the lateral movement of ledges across the fcc/hcp interface. Thus kinetics of
a phase boundary is largely determined by the kinetics of the steps. In this
paper we focus on the dynamics of multiple steps along a phase boundary.

Intuitively, it is clear that simultaneous motion of several steps is not en-
ergetically favorable. In fact, calculations of Sharma and Vainchtein (2007)
for a quasistatic stepped phase boundary show that a sequential one-by-one
propagation of steps involves significantly smaller energy barriers than simul-
taneous motion. Numerical simulations presented in the second part of this
paper (Zhen and Vainchtein, 2007), henceforth referred to as Part II, show
that the sequential propagation of steps is also preferred in dynamics. In most
simulations the steps propagate with the same average velocity, but there are
time delays between the step advancements. In this paper we construct a semi-
analytical solution describing this type of motion. Specifically, we consider a
phase boundary with an arbitrary finite number of steps in a cubic lattice
subjected to an antiplane shear deformation. One may view this setup as a
discrete analog of a twinning step considered by Tsai and Rosakis (2001).
The nonconvex interaction potential governing the bonds in one direction has
three convex quadratic regions, with the central region representing the parent
austenite phase, and the two symmetric parabolas representing two variants
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of the martensite phase. To model material anisotropy, the interaction in the
orthogonal direction is assumed to be harmonic with an elastic modulus that
may be different from the phase-transforming bonds. These assumptions yield
an explicit expression for the motion of steps, up to some integrals that need
to be evaluated numerically. We obtain the kinetic relations between the driv-
ing force and the parameters of the motion. These relations are multivalued,
suggesting that multiple solutions of this type may coexist at the same ve-
locity or driving force, as confirmed by the results of simulations presented in
Part II. The cases of two and three steps are studied in detail, and uniform
asymptotic approximations of the solutions are obtained.

The kinetic relations we obtain for the propagation of two steps are similar
to the ones describing the motion of two screw dislocations on the same slip
plane studied by Flytzanis et al. (1974). This similarity is not surprising in
view of a close connection between dislocations and ledges (Olson and Cohen,
1979; Christian, 1994). In fact, after a few simple modifications the solution
obtained in this paper may be used to describe the motion of an arbitrary
number of dislocations located on neighboring slip planes. However, there are
some important differences. In particular, the dislocation model assumes a
periodic potential, which results in the breakdown of a steady dislocation mo-
tion at a sufficiently high subsonic velocity (Flytzanis et al., 1974) and leads
to nucleation of new dislocations on the same slip plane (Koizumi et al., 2002).
Meanwhile, the three-parabola potential used here to model the phase transi-
tion delays the breakdown of steady subsonic motion. Moreover, we identify
parameter regimes in which the steady motion does not break down until
the velocity reaches a certain supersonic value, so that a steady supersonic
motion of steps becomes possible. The analysis in this paper and numerical
simulations in Part II show that the nucleation of new steps takes place at a
near-sonic critical speed, with the new steps forming on top of the existing
ones, as predicted by Ishioka (1975). In addition, unlike the dislocation model,
the model considered here allows for the austenite and martensite potential
wells to be of different height, and in general the two phases may have dif-
ferent elastic moduli, although only the equal moduli case is considered here
to simplify the calculations. Finally, the current model incorporates the elas-
tic anisotropy which is shown to have a significant effect on kinetic relations.
In particular, anisotropy alters the critical velocity at which the steady step
motion breaks down: if the harmonic bonds are sufficiently strong, it becomes
supersonic, making supersonic steady motion possible; while the weaker bonds
lead to step nucleation in the subsonic regime already. In addition, we show
that stiffer harmonic bonds result in a larger separation between the moving
steps and a lower driving force needed for the steps to move with the same
velocity.

The first part of this paper is organized as follows. Section 2 introduces the
antiplane shear lattice model. In Section 3 we derive the general solution
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and obtain the kinetic relations for a phase boundary with a finite number
of steps. A detailed analysis of alternate motion of two steps is presented in
Section 4, and the sequential motion of three steps is considered in Section 5. In
Section 6 we find the critical velocities at which the steady step motion breaks
down. The work is summarized in Section 7. Derivation of the expression for
the driving force can be found in Appendix A, and Appendix B contains
asymptotic expressions for the obtained subsonic solutions.

2 The antiplane shear lattice model

Consider a three-dimensional cubic lattice with the orthonormal basis {e1, e2,
e3} undergoing an antiplane shear deformation. This means that the atomic
rows along e3-direction are rigid and can move only along their length. The
problem thus reduces to an out-of-plane deformation of a two-dimensional
square lattice spanned by the vectors e1 and e2 and consisting of particles of
mass M located at (mε, nε), where (m,n) ∈ Z2 and ε is the lattice spacing.
The displacement of (m,n)th particle at time t is Um,n(t)e3. The deformation
of the lattice is measured by the horizontal strain

wm,n =
Um,n − Um−1,n

ε
(1)

and the vertical strain

vm,n =
Um,n − Um,n−1

ε
(2)

at each particle. We assume that each particle interacts with its four nearest
neighbors. The interaction forces due to the neighboring particles in the hor-
izontal and vertical directions are denoted by Fh(w) and Fv(v), respectively,
where w and v denote the horizontal and vertical strains defined above.

To model a martensitic phase transformation, we will assume that the inter-
action in the vertical bonds is governed by a nonconvex potential Φv(v) with
three convex regions, as shown in Fig. 1. The central convex region represents
the austenite phase (phase I), and the two other model the symmetry-related
variants of martensite (phase II). To enable analytical calculations, we will
assume that each convex region is a parabola, so that the interaction force
Fv(v) = Φ′v(v) is piecewise linear:

Fv(v) = KV(v − aθ(|v| − vc)sgn(v)), (3)

where θ(x) is the unit step function (θ(x) = 1 if x ≥ 0 and zero otherwise).
Thus each vertical bond can exist in two different phases depending on whether
the magnitude of vertical strain v is below (phase I) or above (phase II) the
critical value vc. Here KV > 0 is the elastic modulus in each phase and a > 0
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Fig. 1. Interaction potential (a) and force (b) in the vertical bonds.

denotes the transformation strain (distance between the two adjacent linear
branches); note that a and vc are generally independent. The interaction in
the horizontal bonds is assumed to be linear:

Fh(w) = KHw, (4)

with positive elastic modulus KH > 0.

The motion of the lattice is governed by the infinite system of ordinary differ-
ential equations

MÜm,n =Fh

(

Um+1,n − Um,n

ε

)

− Fh
(

Um,n − Um−1,n
ε

)

+Fv

(

Um,n+1 − Um,n

ε

)

− Fv
(

Um,n − Um,n−1
ε

)

,

(5)

where (m,n) ∈ Z2. It is convenient to introduce dimensionless variables

u =
U

ε
, τ = t

√

KV
Mε

, fh =
Fh
KV

, fv =
Fv
KV

. (6)

Note that in the new variables the strains in the horizontal and vertical bonds
are given by wm,n = um,n−um−1,n and vm,n = um,n−um,n−1, respectively; and
the force-strain relationships become

fh(w) =χw, (7)

fv(v) =v − aθ(|v| − vc)sgn(v), (8)

where χ ≡ KH/KV is the dimensionless parameter measuring relative strength
of the moduli in the two directions of the lattice. The dimensionless equations
of motion then reduce to

üm,n =χ(um+1,n − 2um,n + um−1,n) + (um,n+1 − 2um,n + um,n−1)

− a{sgn(um,n+1 − um,n)θ(|um,n+1 − um,n| − vc)
− sgn(um,n − um,n−1)θ(|um,n − um,n−1| − vc)}.

(9)
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Observe that in each phase the equation is linear and admits the plane wave
solutions of the form um,n = A exp(i(ωt +mkx + nky)), where the wave fre-
quency ω must satisfy the dispersion relation

ω2 = 4

(

χ sin2
kx
2

+ sin2
ky
2

)

. (10)

3 General solution for a multiple step configuration

Suppose now that a phase boundary divides the lattice into two regions, as
shown in Fig. 2. The vertical bonds in the lower region (shaded area) are
in phase II (high-strain phase, v > vc), while in the upper region the bonds
are in the low-strain phase I (|v| < vc). We assume that the phase boundary
consists of N steps, or ledges. Outside the step zone, the phase boundary is
flat and extends to infinity on both sides. Suppose now that each step moves

step #N

step #1

step #2

m

n

���

phase II

phase I

�
N � �

n ���
n ���
	

n �
	�� N

Fig. 2. A phase boundary with N steps (here N = 4). Vertical bonds are in phase
II in the shaded region and in phase I in the rest of the lattice.

with a constant average velocity V from left to right but the steps do not
necessarily move simultaneously. Instead, we will assume the following motion
of the steps. At the time τ = 0, the front of the highest Nth step coincides
with (0, 1)th vertical bond, which has transformed from phase I to a phase II,
while the jth step, j = 1, . . . , N , stays µN−j ∈ N lattice spaces ahead at the
(µN−j, 1−N+j)th vertical bond. At τ = Tj < 1/V , the jth step moves forward
by one lattice spacing, via the transformation of (µN−j+1, 1−N+j)th vertical
bond to phase II. By the time τ = 1/V all steps have moved forward by one
lattice spacing, and the motion pattern repeats periodically. Obviously, µ0 = 0
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and TN = 1/V . If the times Tj, j = 1, . . . , N are all distinct and nonzero, the
steps move one after another, or sequentially, with a time delay between their
motions. Note that the order in which the steps move is not predetermined
and need not coincide with the reverse order of the steps. We assume that Tj
are constant throughout the motion.

Assuming the motion described above, we can rewrite Eq. (9) as

üm,n = χ(um+1,n + um−1,n − 2um,n) + (um,n+1 + um,n−1 − 2um,n)

+ a

[

δn,1−N +
N−1
∑

p=0

(δn,1−p − δn,−p)ρ(m− V τ − αp)
]

, (11)

where

αp = µp + 1− V TN−p, p = 0, . . . , N − 1 (12)

is the dynamic separation between the (N − p)th and Nth step (note that
α0 = 0). The function ρ(x) = 1−θ(x) is the complementary unit step function
(ρ(x) = 1 for x < 0 and ρ(x) = 0 otherwise) and δm,n is the Kronecker delta
function.

We seek solution of Eq. (11) in the form of a traveling wave:

um,n(τ) = u(ξ, n), ξ = m− V τ. (13)

We assume that at infinity the vertical strain v(ξ, n) = u(ξ, n) − u(ξ, n − 1)
tends to constant values v+ < vc and v− > vc in phase I and II, respectively:

as n→ ±∞, v(ξ, n)→ v±,

as ξ → ±∞, v(ξ, n)→















v+, n ≥ 2

v±, n = 2−N, . . . , 1
v−, n ≤ 1−N.

(14)

In addition, we require that whenever each step moves to its next location,
the phase switch takes place:

v(α1−n, n) = vc, n = 2−N, . . . , 1; (15)

while the vertical bonds behind and in front of the step-like phase boundary,
as well as those outside the step zone remain in their respective phases:

v(ξ, n) ≷ vc, ξ ≶ α1−n, n = 2−N, . . . , 1,
v(ξ, n) < vc, n ≥ 2,

v(ξ, n) > vc, n ≤ 1−N.
(16)

We also assume that v > −vc in all vertical bonds.
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The problem thus consists of using the ansatz (13) to solve Eq. (11) subject
to the conditions (14–16). Not surprisingly, the problem is similar to the ones
encountered in the studies of screw dislocations (Celli and Flytzanis, 1970;
Ishioka, 1971; Flytzanis et al., 1974). In fact, by principle of superposition its
solution can be represented as the sum of solution of the problem with a flat
phase boundary and the sum of solutions due to N screw dislocations located
at the step fronts. More precisely, we write

u(ξ, n) = uSn +
N−1
∑

p=0

uDp (ξ, n). (17)

Here

uSn =







(n− 1 +N)(v− − a), n ≥ 1−N,
(n− 1 +N)v−, n ≤ −N,

(18)

is a time-independent solution of static problem with the flat interface along
n = 1−N line:

0 = uSn+1 + uSn−1 − 2uSn + aδn,1−N . (19)

Note that it satisfies the boundary conditions (14) for n 6= 2−N, . . . , 1 with
the far-field strains v± related by

v− − v+ = a. (20)

Meanwhile, uDp (ξ, n), p = 0, . . . , N−1, in Eq. (17) solves the dynamic problem
due to the screw dislocation located between the lines n = −p and n = 1− p:

V 2
∂2uDp (ξ, n)

∂ξ2
= χ(uDp (ξ + 1, n) + uDp (ξ − 1, n)− 2uDp (ξ, n)) + uDp (ξ, n+ 1)

+ uDp (ξ, n− 1)− 2uDp (ξ, n) + a(δn,1−p − δn,−p)ρ(ξ − αp). (21)

Due to Eqs. (17), (18), (20) and (14), vDp (ξ, n) = uDp (ξ, n)−uDp (ξ, n− 1) tends
to zero as |n| → ∞ (for any ξ) and as |ξ| → ∞ for n 6= 1− p, while

vDp (ξ, 1− p)→






a, ξ → −∞,
0, ξ →∞.

(22)

As in Celli and Flytzanis (1970), we apply discrete Fourier transform in n
followed by continuous Fourier transform in ξ to Eq. (21), obtaining

uDp (ξ, n) =
a

4π2

∫ ∞

−∞

eikξ(αp−ξ)

ikξ
T (n+ p, kξ)dkξ, (23)

where we defined, for any integer j,

T (j, kξ) =
∫ π

−π

(1− eiky)
V 2k2ξ − 4(χ sin2

kξ
2
+ sin2 ky

2
)
e−ikyjdky. (24)
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Note that T (j, kξ) has the symmetry property

T (−j, kξ) + T (j + 1, kξ) = 0, j ∈ Z, (25)

and hence only needs to be evaluated for j ≥ 1. Following Celli and Flytzanis
(1970), we define the function

λ(kξ) = 1 + 2χ sin2
kξ
2
− 1

2
V 2k2ξ , (26)

and let z be a complex number given by z ≡ eiky . Then the integral (24) can
be rewritten as

T (j, kξ) =
∮

|z|=1

(1− z)z−j
i(z2 − 2λz + 1)

dz. (27)

Note that it depends on kξ through λ = λ(kξ) defined in Eq. (26). In order to
evaluate T (j, kξ), we need to determine the poles of the integrand in Eq. (27).
One can see that when |λ| 6= 1 there are two poles. For |λ| > 1, both poles
are real and given by λ ±

√
λ2 − 1, one inside the unit circle and the other

outside. For |λ| < 1, these two poles are λ ± i
√
1− λ2, which are complex

numbers and lie on the unit circle (the path of integration). Here we use the
causality condition (Papoulis, 1962) requiring the inverse transform function
to be causal to determine how the path is indented. This is described below.

When ξ > 0, we can evaluate the inverse Fourier transform on the right hand
side of Eq. (23) by closing the contour in the lower half kξ-complex plane. The
causality condition requires that at τ → −∞, which corresponds to ξ → +∞,
the recovered function vanishes. This means all the possible poles on the kξ
axis should be treated as belonging to the upper half plane, which is equivalent
to shifting the path of integration below the poles, i.e., kξ 7→ kξ − iε, where ε
is a small positive real number. The causality condition is then satisfied due
to a factor of e−εξ in the integrand.

Replacing kξ by kξ − iε in Eq. (26), we have

λ(kξ − iε) ≈ λ(kξ)− iελ
′

(kξ), (28)

so that
|λ± i

√
1− λ2|2 ≈ 1∓ 4ελ

′

(kξ). (29)

Hence when λ′(kξ) > 0, the pole z = λ− i
√
1− λ2 is approached from outside

the unit circle as ε→ 0+, while the pole z = λ+ i
√
1− λ2 is approached from

inside the circle in this limit. Thus we need to replace the unit circle contour in
Eq. (27) by a new contour Γ, which coincides with |z| = 1 everywhere except
near the pole z = λ − i

√
1− λ2, where the circle is indented inward (so that

the pole is outside the circle) and the pole z = λ+ i
√
1− λ2, where the circle

is indented outward. Similarly, when λ′(kξ) < 0, the poles z = λ ± i
√
1− λ2

are approached from outside/inside the unit circle, respectively. In this case
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the new contour Γ is obtained by indenting the unit circle outward near z =
λ− i

√
1− λ2 and inward near z = λ+ i

√
1− λ2.

Consider now the region in the complex plane bounded by the contour Γ (the
indented unit circle) and the circle |z| = R with radius R → ∞. Note that
for a given nonzero kξ only one pole is located inside the region. Applying the
residue theorem to this region, we obtain

T (j, kξ) =



























π(1 +
√

λ−1
λ+1

)(λ−
√
λ2 − 1)−j, λ < −1

π(1∓ i
√

1−λ
1+λ

)(λ∓ i
√
1− λ2)−j, |λ| < 1, λ′(kξ) ≷ 0

π(1 +
√

λ−1
λ+1

)(λ+
√
λ2 − 1)−j, λ > 1

(j ≥ 1).

(30)
Using the symmetry relation in Eq. (25), we can obtain T (j, kξ) for any integer
j. Note that T is continuous across λ = 1, which includes kξ = 0. In particular,
T (j, 0) = π for j ≥ 1. Clearly, the function is discontinuous across λ = −1.

Using Eqs. (17), (18), (23), (25) and (30), we obtain the vertical strain for a
general N -step configuration at (ξ, n) as

v(ξ, n) =
a

2π

∫ ∞

−∞

e−ikξξ

ikξ





N−1
∑

p=0

eikξαpS(n+ p− 1, kξ)



 dkξ +











v+, n ≥ 2−N,
v−, n ≤ 1−N,

(31)
where we defined

S(j, kξ) =
T (j + 1, kξ)− T (j, kξ)

2π
. (32)

With Eqs. (25) and (30), Eq. (32) yields for j ∈ Z

S(j, kξ) =



























(λ−
√
λ2 − 1)−|j|(δj,0 −

√

λ−1
λ+1

), λ < −1
(λ∓ i

√
1− λ2)−|j|(δj,0 ± i

√

1−λ
1+λ

), |λ| < 1, λ′(kξ) ≷ 0

(λ+
√
λ2 − 1)−|j|(δj,0 −

√

λ−1
λ+1

), λ > 1.

(33)

We now define

gL(ξ) =
1

2π

∫ ∞

−∞

e−ikξξ

ikξ
S(L, kξ)dkξ, L = 0, 1, . . . (34)

The expression (31) for the total vertical strain then simplifies to

v(ξ, n) = a
N−1
∑

p=0

g|n+p−1|(ξ − αp) +











v+, n ≥ 2−N,
v−, n ≤ 1−N.

(35)
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This shows that the overall contribution of a specific (N − p)th step, p =
0, . . . , N − 1, to the nth layer of vertical bonds depends only on their relative
vertical distance L = |n+ p− 1| via the interaction function gL(ξ). The inter-
action functions can be found from numerical evaluation of the the integral in
Eq. (34); their asymptotic approximations are given in Appendix B.

To determine the motion parameters, we need to require that the following
phase switch conditions are satisfied at the steps:

v(α1−n, n) = v+ + a
N−1
∑

p=0

g|n+p−1|(α1−n − αp) = vc n = 2−N, . . . , 1. (36)

This system of N equations defines the kinetic relations between the driving
force

G = a(F − FM) = a(v+ − vc + a/2) (37)

and the N motion parameters: the velocity V of each step and the separation
parameters αj, j = 1, . . . , N − 1. In Eq. (37) F = v+ is the applied force and
FM = vc− a/2 is the Maxwell force dividing the graph of fv(v) into two equal
areas. The derivation of (37) can be found in Appendix A. Note that Eq. (36)
can be rewritten as

N−1
∑

p=0

(g|n+p|(α−n − αp)− g|n+p−1|(α1−n − αp)) = 0, n = 2−N, . . . , 0, (38)

a system of N − 1 equations for αj, j = 1, . . . , N − 1, and

G

a2
=

1

2
−

N−1
∑

p=0

g|n+p−1|(α1−n − αp), (39)

expressing the driving force in terms of αj and V . The last equality holds for
any integer n such that 2−N ≤ n ≤ 1.

For a particular set of motion parameters satisfying Eq. (36), a solution is
obtained from Eq. (35). In Appendix B we verify that this solution satisfies
the conditions (14) at infinity. Finally, one needs to check that the obtained
solution is consistent with our assumptions about phase distribution, i.e. that
the conditions (16) are satisfied.

4 Alternate motion of two steps

As the simplest example, we will consider a two-step configuration (N = 2). In
this case sequential motion reduces to an alternate one, with α ≡ α1 measuring
the separation between the two steps in the moving frame.
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The total vertical strain (35) reduces in this case to

v(ξ, n) = a(g|n−1|(ξ) + g|n|(ξ − α)) +











v+, n ≥ 0,

v−, n ≤ −1.
(40)

In particular, the strains in the vertical bonds at n = 0 and n = 1 (where the
steps are located) are given by

v(ξ, 0) =v+ + a(g0(ξ − α) + g1(ξ)), (41)

v(ξ, 1) =v+ + a(g0(ξ) + g1(ξ − α)). (42)

Recalling Eq. (34), we obtain

g0(ξ) =
1

2π

∞
∫

−∞

F (λ)

ikξ
e−ikξξdkξ, (43)

g1(ξ) =
1

2π

∞
∫

−∞

(

λF (λ)− 1

ikξ

)

e−ikξξdkξ, (44)

F (λ) =1−
∣

∣

∣

∣

∣

λ− 1

λ+ 1

∣

∣

∣

∣

∣

1

2

exp
(

πi

2
(θ(λ− 1)− θ(λ+ 1))sgnλ

′

(kξ)
)

. (45)

Recall that λ is a function of kξ defined in Eq. (26).

Note that the integrand in g0(ξ) (but not g1(ξ)) has a simple pole at kξ = 0.
Therefore, this integral should be understood in the principal value sense.
Using causality condition, we resolve this singularity by deforming the contour
of integration near kξ = 0 so that the contour goes below this point along a
semi-arch with radius r → 0. In addition, at each V there is a finite number
of branch points along both contours that correspond to λ = ±1. To see this,
consider the curves obtained by solving the equations λ = 1 and λ = −1 for V
as a function of kξ. By symmetry, if kξ is a branch point, so is −kξ, and hence
it suffices to show only the positive roots. The curves of roots are shown in
Fig. 3. For each velocity V , the roots are the intersections of the curves with
the horizontal line V = const. Observe that the lower curve, λ = 1 is bounded
and has the maximum value V = c at kξ = 0. Here

c =
√
χ (46)

is the long-wavelength (macroscopic) sound speed of elastic shear waves in the
horizontal direction, the direction of the step motion. If the motion of the steps
is supersonic (V > c), there is only one positive branch point kξ = k−, and
it corresponds to λ = −1. In the subsonic regime (V < c) there is an infinite
number of critical speeds V +j (dashed lines in Fig. 3) and V −j (solid horizontal
lines), j = 1, 2, . . . , that correspond to the local extrema of the curves λ = 1
and λ = −1, respectively. One can show that at the critical speeds V −j (where
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Fig. 3. (a) The roots kξ of λ = 1 (lower curve) and λ = −1 (upper curve). For
given velocity, the roots are given by the intersections of the curves with V = const.
(b) The same picture zoomed to show the critical velocities V +j and V −j . Due to
symmetry, only positive roots are shown.

λ = −1 and λ′(kξ) = 0), the integrand behaves like 1/|kξ − k−j | near the
associated critical branch point kξ = k−j . Thus these velocities correspond to
resonant states with a logarithmic singularity. In contrast, the critical speeds
V +j (λ = 1 and λ′(kξ) = 0) are merely the bifurcation points at which two
adjacent roots merge into one, while the behavior of the system is continuous.
Between each pair of critical speeds, there is an odd number of positive roots
for each equation.

A direct semi-numerical integration can be performed at all the speeds where
the system is away from resonance. One can show that the contribution of the
semi-arch of radius r → 0 below the pole kξ = 0 (for g0) equals 1/2. For very
large |kξ|, asymptotic expressions of the integrands enables the analytical eval-
uation of the contribution to infinity in terms of cosine and sine-integral func-

tions. We can also obtain asymptotes of the integral of the
√

|(λ− 1)/(λ+ 1)|
part near the non-zero branch points. Near the branch points k+ that corre-

spond to λ = 1 the integrand behaves as
√

|kξ − k+|, while near the branch
points k−, where λ = −1, the singular part of the integrand behaves as

1/
√

|kξ − k−|. Hence for ∆ > 0 sufficiently small we have the following ap-
proximations:

±
∫ k+±∆

k+

e−ikξξ
|λ−1
λ+1
|1/2

ikξ
dkξ ≈e−ik+ξ

√

|λ′(k+)|
2

ik+

∫ ∆

0
e∓ixξ

√
xdx, (47)

±
∫ k−±∆

k−
e−ikξξ

|λ−1
λ+1
|1/2

ikξ
dkξ ≈e−ik−ξ

√

2
|λ′(k−)|

ik−

∫ ∆

0
e∓ixξ

1√
x
dx. (48)

which can all be evaluated in terms of Fresnel cosine and sine functions.

The integrals over the remaining domain (outside the branch points and, for
g0(ξ), the pole at zero) are evaluated numerically. Let d be smaller than the
first non-zero root of λ = ±1. Then on the finite range (−d,−r)∪(r, d) outside
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the pole kξ = 0, the integral with the oscillatory kernel can be evaluated using
the method of Capobianco and Criscuolo (2003). The remaining parts of the
integrals can be obtained by the generalized Filon’s method (Filon (1928–29);
Flinn (1960); Iserles and Nørsett (2005)) for oscillatory integrands.

Based on the above analysis, for a given χ and a velocity V of the front, the
functions g0(ξ) and g1(ξ) can be evaluated for any ξ from Eqs. (43) and (44).
However, to get the vertical strain (40), we need to first determine α and G
(and thus v± from Eqs. (20) and (37)). In this case Eqs (38) and (39) reduce
to

g1(α) = g1(−α), (49)

G

a2
=

1

2
− g0(0)− g1(α). (50)

The vertical strains in the layers containing the steps are then readily obtained
from Eqs. (41) and (42). The strains in the other layers can be found using
the same methods from the general formula (40).

4.1 Kinetic relations

For given values of step velocity V and parameter χ, we can solve Eq. (49) for
the values of α, the dynamic separation between the two steps. Each solution
corresponds to a particular value of the driving force G found using Eq. (50).
Thus, we obtain the kinetic relations G = G(V ) and α = α(V ). Since the
functions g0(ξ) and g1(ξ) only depend on χ and V , the kinetic relations de-
pend only on χ. Recall that this dimensionless parameter measures the shear
strength of the linearly elastic horizontal bonds relative to the vertical ones.

In what follows, we will consider the velocities above the first resonance speed:
V > V −1 . Recall that in this case, by Eq. (34), there are either two positive
branch points, one with λ = 1 and one with λ = −1, in the subsonic case
(V < c, with c given by Eq. (46)), or only one, with λ = −1, in the supersonic
regime (V > c). In both cases the branch points contribute oscillations in the
functions g0(ξ) and g1(ξ) only behind the moving front (ξ < 0), while ahead
of it both functions monotonically tend to zero. Fig. 4 depicts the typical
behavior of g0(ξ) and g1(ξ) in subsonic (V = 0.833) and supersonic (V = 1.25)
regimes of step propagation in the absence of anisotropy (χ = 1).

To compute the kinetic relations, we first solve Eq. (49) numerically for roots
of α > 0 for given V > V −1 and χ. As can be seen from Fig. 4, this equation
has a large number of roots due to the oscillatory nature of g1(ξ) at ξ < 0.
Connecting the first nonzero roots at different V/c, we obtain the first branch
of α(V ). Similarly, the set of second roots forms the second branch, and so

14
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(a) subsonic, V = 0.833 (b) supersonic, V = 1.25

Fig. 4. The functions g0(ξ) and g1(ξ) for two velocities. Here χ = 1.

on. The first ten branches of α(V ) at χ = 1 (which corresponds to V −1 /c =
0.3158) are shown in Fig. 5. Similar results with multiple solution branches
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Fig. 5. The first ten branches of the kinetic relation α(V ) at χ = 1. The solid
segments contain admissible solutions. Pluses, squares and gray circles connected
by dashed lines mark the points corresponding to non-admissible solutions that
violate the inequalities (16) at n = 0, 1 and 2, respectively.

have been obtained for the motion of two screw dislocations on the same slip
plane (Flytzanis et al., 1974, Figs. 4 and 5). For given V and for a given
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branch of the relation, we can determine µ as the integer part of α: µ = bαc.
Substituting α(V ) along each branch in (50), we obtain the driving force G as
a function of V . The first four branches of G(V ) at χ = 1 are shown in Fig. 6.
Note, along each branch, solutions with sufficiently low and high velocity were
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Fig. 6. The first four branches of the kinetic relation G(V ) at χ = 1. The solid
segments contain admissible solutions. Pluses, squares and gray circles connected
by dashed lines mark the points corresponding to non-admissible solutions that
violate the inequalities (16) at n = 0, 1 and 2, respectively.

excluded since they violated the constraints (16). In some cases, the whole
branch becomes non-admissible. Our calculations show that solutions break
down in three different ways, with the inequalities (16) violated at n = 0,
n = 1 and n = 2 (see Fig. 7). The corresponding points are connected by
dashed lines and marked by pluses (failure at n = 0), squares (n = 1) and
gray circles (n = 2) in Figures 5 and 6. Note that n = 2 failure mode may
be preceded or followed by the failure at n = 1, but the markers indicate
the failure at the highest n. Note that while the driving force G becomes
single-valued in the supersonic regime, the relation α(V ) remains multivalued
for all velocities. The multivaluedness of the kinetic relations means that for a
given driving force, multiple solutions with alternate step motion coexist. Some
of these solutions, however, can be unstable, and this issue will be explored
numerically in Part II of this paper.

To investigate the effect of elastic anisotropy, we consider χ 6= 1. Kinetic
relations at χ = 0.5 and χ = 2 are shown in Figs. 8 and 9, respectively. All
the non-admissible solutions are depicted in dashed line and valid parts in
dotted solid line. Observe that at higher χ, the same velocity can be obtained
at lower driving force but the steps have a larger separation between them.
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Fig. 7. Examples of non-admissible solutions caused by oscillations violating the
inequalities at (a) n = 0 (V/c = 0.4167, α = 2.2928), (b) n = 1 (V/c = 0.5,
α = 2.7622) and (c) n = 1 and n = 2 (V/c = 1.0204, α = 2.9891). In all examples
χ = 1, vc = 0.42 and a = 0.22.

Note also as χ decreases, the threshold value of driving force below which the
alternate motion is not possible becomes larger.

4.2 Admissible strain profiles

We now consider typical strain profiles generated by the alternate step motion.
As before, we restrict our attention to velocities above the first resonance.
Fig. 10 shows the strain profiles along the two steps in terms of ξ for the case
of G/a2 = 0.18 (v− = 0.57) and µ = 1. From the kinetic curves in Figs. 5
and 6, one can see that this corresponds to V/c = 0.94 (subsonic speed) and
α = 1.587.

Recalling that vm,n(τ) = v(m − V τ, n), we can also plot vm,n(τ) across each
step for given τ . Such a plot is shown in Fig. 11. One can see that the moving
steps radiate lattice waves. At velocities above the first resonance (V > V −1 )
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0.5
 0.6
 0.7
 0.8
 0.9
 1

0


0.05


0.1


0.15


0.2


0.25


0.3


V/c


G
/a

2

1
2

3
4

0.5
 0.6
 0.7
 0.8
 0.9
 1

1


2


3


4


5


6


7


V/c


�

1

2

3

4

(a) G/a2 versus V/c (b) α versus V/c

Fig. 9. The first four branches of the kinetic relations G(V ) and α(V ) at χ = 2. The
solid segments contain admissible solutions.

- 100
 - 80
 - 60
 - 40
 - 20
 0
 20


0.35


0.4


0.45


0.5


0.55


0.6


0.65


�

v(

� ,1

)


- 100
 - 80
 - 60
 - 40
 - 20
 0
 20


0.35


0.4


0.45


0.5


0.55


0.6


0.65


�

v(

� ,0

)


(a) v(ξ, 1) (step #2) (b) v(ξ, 0) (step #1)

Fig. 10. Strain profiles in the moving frame for a subsonic two-step configuration
with G/a2 = 0.18 (v− = 0.57), V/c = 0.94, α = 1.587. The other parameters are
χ = 1, a = 0.22, vc = 0.42.

18



- 100
 - 80
 - 60
 - 40
 - 20
 0
 20


0.35


0.4


0.45


0.5


0.55


0.6


0.65


m


v m
,1

- 100
 - 80
 - 60
 - 40
 - 20
 0
 20


0.35


0.4


0.45


0.5


0.55


0.6


0.65


m


v m
,0

(a) vm,1(0+) (step #2) (b) vm,0(0+) (step #1)

Fig. 11. Snapshots of the strain profile for a subsonically moving two-step config-
uration in the stationary frame at τ = 0+. The parameters are the same as in
Fig. 10.

considered here, the lattice waves appear only behind the moving front. For
lower velocities, radiation of waves both behind and in front of the moving
steps is expected. Note also that unlike the one-dimensional case (Truski-
novsky and Vainchtein, 2005b), where the magnitude of the oscillations does
not decay, in the two-dimensional lattice model considered here the amplitude
of the lattice waves decreases as |ξ|−1/2 inside the wake zone and as |ξ|−1/3
along its boundary. See Appendix B for more details.

The distinct beat structure of the lattice waves behind the moving boundary
in Fig. 11 is due to the sampling effect, which takes place when the function
cos(kx) has a wave number k close to (but not equal to) π and x is restricted
to integer values. Using equations (41) and (42) and the asymptotic expres-
sions for g0(ξ) and g1(ξ) derived in Appendix B, one can show the following
asymptotic behavior of strains for a subsonic solution behind the moving front
(ξ << −1):

v(ξ, 0) ≈v− +
a
√
χ− V 2
2π

(

1

ξ
+

ξ

ξ2 + (χ− V 2)

)

− a
√

2

π

(

q0(ξ − α) + q1(ξ)
)

,

v(ξ, 1) ≈v− +
a
√
χ− V 2
2π

(

1

ξ
+

ξ

ξ2 + (χ− V 2)

)

− a
√

2

π

(

q0(ξ) + q1(ξ − α)
)

,

q0(ξ) =
2 cos(k−(ξ) +

π
4
)

k−
√

|λ′(k−)ξ|
,

q1(ξ) =
λ(ks+)− 1

ks+

√

√

√

√

|ξ|
|λ′(ks+)||λ(ks+)ξ2 + λ′′(ks+)|

cos(ks+ξ −
π

4
− θ+)

+
λ(ks−)− 1

ks−

√

√

√

√

|ξ|
|λ′(ks−)||λ(ks−)ξ2 + λ′′(ks−)|

cos(ks−ξ +
π

4
− θ−),

(51)

19



where k− is the root of λ(k−) = −1, and θ± (0 < θ− < θ+ < π) solve
ξ sin θ± = λ′(ks±). Here k

s
± satisfy λ(ks±) = − cos θ±. When k− is close to π,

the beats phenomenon occurs. Substituting k = π and λ = −1 into Eq. (26),
we find that the corresponding velocity V must be close to Vb ≈ 2

√
1 + χ/π

but not equal to this value. At χ = 1 this yields V/c ≈ 0.9, which is the case
in Fig. 11.

More generally, one can use the asymptotic approximations of gL(ξ) obtained
in Appendix B to predict the structure of lattice waves behind the moving
front. To demonstrate this, we compare in Fig. 12 the semi-analytical (dotted
line) and asymptotic (solid line) values of g1(ξ) at χ = 1 and V/c = 0.9395.
The agreement is excellent for sufficiently large |ξ|, and similar agreement
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Fig. 12. Comparison of semi-analytical (dotted line) and asymptotic (solid line)
values of g1(ξ). The parameters are χ = 1 and V/c = 0.9395.

can be shown for other gL(ξ). Hence at any point away from the step zone,
one can use the asymptotic expressions for gL(ξ) to obtain the whole solution
with the motion parameters satisfying the kinetic relations. Figure 13 depicts
a snapshot for a two-step configuration. In order to show the structure of the
lattice waves emitted by the moving steps more clearly, only the dynamic part
of the strain

vDm,n(τ) =
N−1
∑

p=0

vDp (m− V τ, n) (52)

is plotted.

20



- 300


- 200


-100


0


- 18


- 10


0


10


20


0


0.5


1


m


n


vm,n
�
aD


Fig. 13. Snapshot of the asymptotic approximation of the dynamic part of the verti-
cal strain (defined in Eq. (52)) at τ = 0+ showing the structure of the lattice waves
emitted by the moving steps. The parameters are a = 0.22, vc = 0.42, v− = 0.57,
χ = 1, V/c = 0.9395 and α = 1.5829.

5 Sequential motion of three steps

Consider now a phase boundary with three steps (N = 3). In this case the
vertical strains along the lines containing the three steps are

v(ξ, 1) =v+ + a(g0(ξ) + g1(ξ − α1) + g2(ξ − α2)),
v(ξ, 0) =v+ + a(g1(ξ) + g0(ξ − α1) + g1(ξ − α2)),

v(ξ,−1) =v+ + a(g2(ξ) + g1(ξ − α1) + g0(ξ − α2)).
(53)

Here g0 and g1 are given by (43) and (44), respectively, and

g2(ξ) =
1

2π

∞
∫

−∞

(

(2λ2 − 1)F (λ)− (2λ− 1)

ikξ

)

e−ikξξdkξ. (54)

The system (36) in this case reduces to

g1(−α1)+g2(−α2) = g1(α1)+g1(α1−α2) = g2(α2)+g1(α2−α1) =
1

2
−G
a2
−g0(0).

(55)
Solution of the first two equations for χ = 1 complying with the constraints
(16) is shown in Fig. 14, and its projection onto the plane α1 = 0 is depicted in
Fig. 15(a). Fig. 15(b) shows the driving force as a function of V/c and α2−α1,
the separation between second and first steps.
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Fig. 15. (a) The projection of Fig. 14 onto the plane α1 = 0. (b) The driving force
G/a2 versus V/c and α2 − α1, the separation between the first and second steps.
Here χ = 1.

Note that similar to the two-step case, in the three-step configuration the
supersonic parts of branches with sufficiently large separation α2−α1 between
the first two steps are missing since the corresponding solutions violate the
constraints (16).

For a multi-step configuration, one may find kinetic relations in a similar
manner, but with more complicated equations for the separations. One can
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show that the function S(L, kξ) in the definition (34) of gL(ξ) can be written
as

S(L, kξ) = aL(λ)F (λ)− bL(λ), L = 0, 1, . . . , (56)

where the coefficients aL(λ) and bL(λ) satisfy the following recurrence rela-
tions:

a0 = 1, b0 = 0,

a1 = λ, b1 = 1,

aL+1 = (2λ+ 1)aL − (λ+ 1)bL, L = 1, 2, . . . ,

bL+1 = 2aL − bL, L = 1, 2, . . . .

(57)

6 Breakdown of the steady step motion

Kinetic relations in Sections 4.1 and 5 clearly show that the steady sequen-
tial propagation of steps exists within certain velocity intervals [VL, VH ]. The
velocity bounds VL and VH depend on χ and the particular solution branch.
When the propagation speed is beyond the velocity range, the solution breaks
down because the inequalities (16) no longer hold. It is found that these con-
straints are violated in two different ways. At low velocities, V < VL, the
solution breaks down because the oscillations ahead of the front force some
bonds in front of one or more steps to switch to phase II, thus violating the
first inequality in (16). An additional breakdown mechanism is observed at
high velocities (V > VH). In this case, the large amplitude of waves prop-
agating behind the front causes the bonds directly above the upper step to
switch from phase I to phase II, which violates the second inequality in (16).
As will be shown in Part II, this results in nucleation of new islands of phase
II on top of the upper step. In what follows, we focus on the high-velocity
breakdown of steady step propagation and its parameter dependence, leaving
the low-velocity breakdown for a future study. For simplicity, we only consider
the single-step and two-step configurations.

We first show the upper velocity bound for the steady propagation of a single
step. In this case the kinetic relation and solution do not depend on α, and the
critical velocities for different values of anisotropy parameter χ can be easily
determined. The results of VH/c are shown in Table 1.

Table 1
The upper velocity bound with different χ for a single-step configuration.

χ 0.5 1 2 4

VH/c 0.9658 0.9908 0.9994 1.0036
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Note that VH/c increases with higher χ from subsonic to sonic and supersonic
values. This implies that if the harmonic horizontal bonds are sufficiently
strong, the island nucleation takes place only in the supersonic regime, and
the steady supersonic propagation of the step becomes possible at V < VH .
This is interesting in view of the close connection with dislocation motion and
the recent discussions about whether a dislocation can move supersonically
(Gumbsch and Gao, 1999; Rosakis, 2001). Note that the screw dislocation
model considered in Ishioka (1971) and Celli and Flytzanis (1970) precludes
this possibility, as does the Frenkel-Kontorova model studied in Earmme and
Weiner (1973, 1974), where breakdown of the steady dislocation motion at
V/c ≈ 0.94 (0.95 is predicted by Flytzanis et al. (1974)).

For weaker harmonic bonds (χ < 2), the critical speed VH is subsonic, as in
the aforementioned dislocation literature, so that the nucleation takes place
already in the subsonic regime. Note, however, that the critical speed we ob-
tained here for the case comparable to the literature (χ = 1) is much closer to
the sound speed than the above predictions for a dislocation, for the following
reason. Ishioka (1971) and Celli and Flytzanis (1970) used a bilinear periodic
potential, so that the relative displacement in the bonds behind the dislocation
is constrained from both above and below. Hence sufficiently large oscillations
behind the moving front violate the upper limit of this constraint, enabling
the formation of another dislocation on the same slip plane (Flytzanis et al.,
1974). In contrast, the non-periodic potential employed here to model phase
transitions does not constrain the strain in phase II from above, eliminating
this possibility and delaying the breakdown of steady motion. Instead, the
large magnitude of lattice waves at V > VH forces the bonds directly above

the step to change phase. This is equivalent to a new dislocation nucleating
on the neighboring slip plane, as envisioned by Ishioka (1975). This indicates
that different well structure in the two models leads to different breakdown
mechanisms.

Consider now the alternate motion of two steps. Since multiple solutions may
exist for the same velocity, the upper velocity bound depends on the solution
branch. Table 2 lists these bounds for the first four branches. At small sepa-
rations (first solution branch) solutions fail, as in the single-step case, due to
nucleation of new phase on top of the upper step. At intermediate separation
between the two steps (branches 2 and 3 in the table) the constraint (16) may
fail at n = 1 (ahead of the upper step and on top of the lower one) prior
to its failure at n = 2 (on top of the upper step). The corresponding values
are marked with an asterisk in Table 2. The different mode of failure in this
case is due to the waves emitted by the lower step. Recall that the amplitude
of these waves increases with velocity. Sufficiently large wave amplitude may
cause phase change ahead of the upper step. Note that this can only occur
when the step separation is larger than the half wave length of the oscillations
emitted by the lower step. At the same time, the amplitude of waves propa-
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gating behind the upper step also increases with velocity. When the steps are
sufficiently far apart, the waves on top of the upper step have larger ampli-
tude than the waves in front of it, and the breakdown is again due to island
nucleation at n = 2 (see Fig. 5 and branch 4 at χ = 2 and 4 in Table 2).

Table 2
The upper velocity bounds for the first four branches of solutions for a two-step
configuration. The values at which the inequalities (16) fail at n = 1 are marked
with asterisk. All other critical velocities correspond to failure at n = 2.

branch χ 0.5 1 2 4

1 VH/c 0.99 1.01 1.02 1.02

2 – 0.85∗ 0.93∗ 0.96∗

3 0.95∗ 0.98∗ 0.99∗ 0.995∗

4 – – 0.975 0.985

From Table 2 one can see that in the two-step configuration VH/c also increases
with higher χ. In addition, the average critical velocity for steady motion of
two steps is slightly higher than those for the single-step configuration. As the
separation between the steps increases for given χ, VH gradually decreases.
Note also that the velocity intervals where solutions are valid are more narrow
or even non-existent for even-numbered branches. As we will see in Part II,
admissible solutions along even-numbered branches are likely unstable.

7 Summary and discussion

In this work, we adopt an anti-plane shear lattice model to study the motion of
a finite number of steps along a phase boundary in a crystalline solid undergo-
ing a displacive phase transformation. We assume a steady sequential motion
of the steps under an external loading and obtain explicit solutions describing
this motion in terms of certain integrals. For the case of sufficiently large ve-
locity, we evaluate the integrals numerically and show that the moving steps
emit lattice waves propagating behind the front. The asymptotic expressions
of these oscillations are also obtained.

Our analysis also yields kinetic relations between the velocity of the steps, the
driving force and the characteristic motion parameters. These are studied in
detail for the two-step and three-step configurations. Our results show that
multiple solutions exhibiting sequential step motion may exist for a sufficiently
large velocity. Numerical simulations described in the second part of this paper
suggest that some of these solutions are stable.
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The obtained solutions cease to exist outside certain velocity ranges. The high-
velocity solution breakdown leads to the nucleation of new islands of bonds of
the high-strain phase on top of the existing step configuration. This is verified
by numerical simulations in Part II.

The effect of anisotropy is studied by introducing the parameter χ which
measures the relative strength of elastic bonds in the direction along the step
propagation with respect to the bonds perpendicular to it. We show that at
higher χ the steps can move at the same velocity at lower applied loading and
are spaced further apart. Another important effect of anisotropy is that the
critical speed above which the island nucleation occurs may be either below or
above the sound speed. For low enough χ the critical speed is subsonic, leading
to a nucleation in the subsonic regime. Meanwhile, at sufficiently large χ the
critical speed is slightly above the sonic limit, so that steady supersonic motion
becomes possible. In either case, supersonic velocities above the critical value
lead to island nucleation. These results are confirmed in Part II, where an
independent numerical simulation is conducted.
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A The driving force for phase boundary propagation

The lattice dynamics studied in this paper is Hamiltonian, so that the energy
is conserved on the lattice level. However, the transfer of energy from long
waves to short-wave lattice waves emitted by the moving steps results in what
is perceived on the macroscopic level as energy dissipation. To compute the
rate of macroscopic dissipation, consider a strip of lattice m1 ≤ m ≤ m2 that
at time τ = τ0 includes the moving N -step front. During the time interval
[τ0, τ0+1/V ] each step moves to the right by one lattice spacing, so that every
nodal displacement of the strip at τ = τ0 + 1/V takes the value of its nearest
left neighbor at τ = τ0. It is not hard to see that the change of internal energy
∆E is

∆E =
∞
∑

n=−∞

(

1

2
u̇2m1−1,n + φv(vm1−1,n) + φh(wm1,n)

)

−
(

1

2
u̇2m2,n

+ φv(vm2,n) + φh(wm2,n)

)

,

(A.1)
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where φv(v) and φh(w) denote the dimensionless densities of energy stored in
the vertical and horizontal bonds, respectively. As a part of the full external
work done to the system, the external loading F contributes WF , given by

WF =F
m2
∑

m=m1

(

(um−1,∞ − um,∞)− (um−1,−∞ − um,−∞)
)

=F
(

(um1−1,∞ − um1−1,−∞)− (um2,∞ − um2,−∞)
)

=F
∞
∑

n=−∞
(vm1−1,n − vm2,n).

(A.2)

In the limit m1 → −∞ and m2 → ∞ the kinetic energy terms in Eq. (A.1)
vanish along with the contribution due to elastic energy of the horizontal
bonds. Meanwhile, in Eq. (A.2), WF now contains the full external work.
Hence Eqs. (A.1) and (A.2) yield

∆E = N

(

1

2
v2− − a(v− − vc)−

1

2
v2+

)

= Na

(

vc −
a

2

)

= NFMa,

W =WF = NFa.

(A.3)

Here we have used Eqs. (14) and (20). The rate R of the macroscopic energy
dissipation is thus given by

R = V (W −∆E) = V N(F − FM)a. (A.4)

At the same time, it can be written as

R = NGV, (A.5)

whereG is the driving force. Combining (A.4) and (A.5), we obtain the formula
(37) for the driving force.

B Asymptotics of strain profiles far away from the step core

In this appendix we use the method of steepest descent to derive the asymp-
totic behavior of gL(ξ) defined in Eqs. (34) and (33). Since most admissible
solutions are subsonic, we focus on the case V < c.

In the region away from the step core (|ξ| À 1), the major contribution to
the integral in Eq. (34) is from around the singularities in kξ of its integrand,
i.e., zeros of the denominator kξ = 0 and the singular branch points. The
neighborhood of kξ = 0 gives the continuum (long-wave) part gcL(ξ) and the
singular branch points contribute an oscillatory short-wave part gsL(ξ), i.e.,

gL(ξ) = gcL(ξ) + gsL(ξ). (B.1)
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To obtain the continuum part, we introduce a new variable s by setting λ =
cosh s and rewrite gL in terms of s. Expanding the resulting integrand in
Taylor series around s = 0 (kξ = 0), we obtain

gcL(ξ) = δL,0ρ(ξ) +
1

2π

ξ
√
χ− V 2

ξ2 + (χ− V 2)L2 . (B.2)

We then derive the short-wave part gsL(ξ). Let k± denote the positive real
root of λ(kξ) = ±1, respectively (as before, we consider the velocity interval
V > V −1 , where these equations have one positive real root each in the subsonic
regime — recall Fig. 3). Defining θ such that cos θ = −λ, we then have that
kξ ∈ [k−, k+] corresponds to θ ∈ [0, π], and kξ ∈ [k−,+∞) corresponds to
θ ∈ i[0,∞) (the upper half of imaginary axis). Let

w(θ) = −i
(

kξ(θ)−
L

ξ
θ

)

sgnξ. (B.3)

One can show that

gsL(ξ) ∼ (−1)L 1
π
<
{

∫

C

1 + cos θ

kξλ
′

exp(|ξ|w(θ))dθ
}

, (B.4)

where the contour C is shown in Fig. B.1 as a double-arrowed path. Through-
out this appendix, prime (′), when associated with λ, is used only to denote
the derivative with respect to kξ.

D1

D2

D3

D4

A

A A

A

θ

C

π/4

π/4π/4

π/4

π

o

θ+θ
−

D1 D3

D2

θπ/6π/6

C

π

o

θ+θ
−

π/2

(a) (b)

Fig. B.1. Integration contour with (a) well separated, and (b) coinciding saddle
points. Here Di denote the steepest descent directions, and A denotes the ascent
directions. In (b), only the descent directions are shown.
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From cos θ = −λ, we have kξ,θ = sin θ/λ
′

, and thus

w,θ ≡
dw

dθ
= −i

(

sin θ

λ′
− L

ξ

)

sgnξ. (B.5)

In the velocity range of interest, both λ
′

and λ
′′

are negative around kξ = k±.
Hence w(θ) has saddle points only when ξ < 0 and |L/ξ| is sufficiently small.
For a specific L, one can find a critical value of ξ, such that on its two sides the
behavior of gL(ξ) differs essentially. In what follows, we shall call the region
of ξ behind such a critical value the wake zone for function gL(ξ).

We first discuss the case inside the wake zone (ξ < 0, small enough |L/ξ|). The
stationary points of w(θ) satisfy sin θ = λ

′

(kξ(θ))L/ξ. Inside the wake zone
this equation has two real roots θ±, as shown in Fig. B.1(a). If θ− and θ+ are
well separated, the correspondent kξ are close to k± (and λ are close to ±1).
In addition, at a stationary point θ we have kξ,θθ = −(λ/λ′ + (L2λ

′′

)/(ξ2λ
′

)),
hence kξ,θθ(θ+) > 0 and kξ,θθ(θ−) < 0. Thus w,θθ(θ±) = −ikξ,θθ(θ±)sgnξ is
nonzero and has an argument of ±π/4, respectively. So the steepest descent
directions of arg(θ) at θ− are 3π/4 and 7π/4, and the directions at θ+ are π/4
and 5π/4. These directions are denoted by Di, i = 1, . . . , 4, in Fig. B.1(a).
The ascent directions are marked by A when shown.

It is then readily seen that the integration contour C can be replaced by
D = (−D1) ∪ D2 ∪ (−D4) ∪ D3 up to an asymptotically negligible term.
Here and below −Di denotes the path Di traversed in the opposite direction.
Each contribution of D can be easily calculated (we refer to Bleistein and
Handelsman (1975) for the details on the steepest descent method). For ξ ¿
−1 we then have

gsL(ξ) ∼
(λ− 1)

πkξ

√

√

√

√

2π|ξ|
|λ′ ||λξ2 + L2λ′′ | cos(kξξ + L(π − θ+)−

π

4
)

∣

∣

∣

∣

∣

θ=θ+

+

(λ− 1)

πkξ

√

√

√

√

2π|ξ|
|λ′ ||λξ2 + L2λ′′ | cos(kξξ + L(π − θ−) +

π

4
)

∣

∣

∣

∣

∣

θ=θ−

.

(B.6)

The oscillatory part coincides with that given in Celli et al. (1976, formula
(4.10)), for a case of a single moving dislocation with a snapping-bond model.

As ξ increases at fixed L, θ+ − θ− decreases and eventually the two roots
merge into a single root θ0, as shown in Fig. B.1(b). In this case Eq. (B.6) is
no longer valid. To obtain the correct result we proceed in the same manner
as above and replace C by D = (−D1) ∪D3, obtaining

gsL(ξ) ∼
λ− 1

πkξ

Γ(1
3
)√
3

(−1
λ′

)

(

6

|ξ||w(3)(θ0)|

)
1

3

cos(kξξ + L(π − θ0)). (B.7)
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A procedure aiming to obtain the uniform asymptote of gL(ξ) and utilizing the
transformation w(θ) = −(t3/3 − γ2t) + β (Bleistein and Handelsman, 1975)
gives the following result:

gsL(ξ) ∼ (−1)L 1
π
<
{

2πie|ξ|β
[

a0

|ξ| 13
Ai(|ξ| 23γ2) + a1

|ξ| 23
Ai

′

(|ξ| 23γ2)
]}

, (B.8)

where

γ =i
∣

∣

∣

∣

3

4
(w(θ+)− w(θ−)

∣

∣

∣

∣

1/3

, β =
1

2
(w(θ+) + w(θ−)),

a0 =
G(γ) +G(−γ)

2
, a1 =

G(γ)−G(−γ)
2γ

,

G(t) =g(θ(t))
dθ

dt
, g(θ) =

1 + cos θ

kξλ
′

.

(B.9)

Recall that w(θ) is given in Eq. (B.3). In Eq. (B.8), Ai(x) is Airy function

Ai(x) = 1/π
∫ ∞

0
cos(τ 3/3 + τx)dτ , and Ai

′

(x) = dAi(x)/dx. For dθ/dt, we

have

dθ

dt
=
γ2 − t2
w,θ

, θ+ 6= θ− (γ 6= 0), t 6= ±γ,

dθ

dt

∣

∣

∣

∣

∣

t=±γ
=− i

∣

∣

∣

∣

∣

2γ

w,θθ(θ±)

∣

∣

∣

∣

∣

1/2

, θ+ 6= θ− (γ 6= 0),

dθ

dt

∣

∣

∣

∣

∣

t=0

=− i
∣

∣

∣

∣

∣

2

w,θθθ(θ±)

∣

∣

∣

∣

∣

1/3

, θ+ = θ− (γ = 0).

(B.10)

These are used to determine a0 and a1 in Eq. (B.9).

Recalling the asymptotic behavior of Ai(x),

Ai(x) ∼






x−1/4

2
√
π
exp

(

−2
3
x3/2

)

, xÀ 1,
(−x)−1/4
√
π

cos
(

2
3
(−x)3/2 − π

4

)

, x¿ −1,
(B.11)

and the fact that Ai(0) =
√
3Γ(1/3)/(2π32/3) and Ai

′

(0) = −1/(31/3Γ(1/3)),
one can verify that the terms of leading order in Eq. (B.8) converge to Eq. (B.6)
when θ− and θ+ are well separated, and to Eq. (B.7) when they coincide (so
that γ = 0).

We now discuss the case outside the wake zone. Recall that in this case w(θ)
has no saddle points. Instead, we expand w(θ) in Taylor series up to the third
order and expand g(θ) up to the first order around the reflection point θ0 such
that w,θθ(θ0) = 0 and substitute the result into Eq. (B.4). We then deduce
that Eq. (B.8) still holds if the parameters defined in Eq. (B.9) are replaced
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as follows:

γ = |w,θ(θ0)D|1/2 , β = w(θ0), D = −i
∣

∣

∣

∣

∣

2

w,θθθ(θ0)

∣

∣

∣

∣

∣

1/3

,

a0 =g(θ0)D, a1 = g,θ(θ0)D
2.

(B.12)

Using (35) together with (B.1), (B.2), (B.6), (B.7) and (B.8), one can show
that the conditions (14) at infinity are satisfied.
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