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Abstract

We study quasistatic propagation of steps along a phase boundary in a two-
dimensional lattice model of martensitic phase transitions. For analytical simplic-
ity, the formulation is restricted to antiplane shear deformation of a cubic lattice
with bi-stable interactions along one component of shear strain and harmonic inter-
actions along the other. Energy landscapes connecting equilibrium configurations
with periodic and non-periodic arrangements of steps are constructed, and the en-
ergy barriers separating metastable states are calculated. We show that a sequential
one-by-one step propagation along a phase boundary requires smaller energy barri-
ers than simultaneous motion of several steps.

Keywords: phase boundary, steps, energy landscape, energy barrier

1 Introduction

Although they may appear planar on the macroscopic level, martensitic phase boundaries
typically contain multiple steps, or ledges. A long-standing hypothesis in materials science
states that a phase boundary moves forward via a propagation of steps along the interface
[6, 7]. Recent experimental observations confirm this hypothesis: for example, Bray and
Howe [1] found the fcc/hcp martensite transformation in Co-Ni occurs by the passage of
Shockley partial dislocation ledges and that the hcp martensite thickens by the lateral
movement of ledges across the fcc/hcp interface. The mechanism of step motion thus
largely determines the kinetics of martensitic phase boundaries, which in turn determines
the dissipative properties of active materials undergoing such transformations.
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Let us consider the following thought experiment. Suppose a material body contains
a phase boundary with a large number of steps. Consider an external loading that is
so slow that inertial effects can be neglected. In this case the propagation of steps, and
hence the phase boundary, is quasistatic and can be represented by a series of equilibrium
configurations connected by non-equilibrium paths that go through energy barriers sep-
arating the equilibria. In this situation we expect that a simultaneous motion of a large
number of steps would involve a much higher energy barrier than a motion in which these
steps move one at a time. In this paper we show that this hypothesis is in fact justified
by directly calculating the energy barriers associated with both types of motion under
certain simplifying assumptions.

Specifically, we consider a staircase-like phase boundary in a three-dimensional cubic
lattice undergoing an antiplane shear deformation. This reduces the model to, effectively,
a two-dimensional lattice deforming out of its plane. To model phase transitions in a
simple way that allows explicit analytical calculations, we assume that a bi-parabolic
potential governs the interaction in the vertical bonds, with the two parabolas representing
two different material phases with same vertical shear moduli, while the horizontal bonds
are harmonic. The shear moduli in horizontal and vertical directions may differ, modeling
material anisotropy. Under these assumptions, we use techniques developed by Duffin [4]
and Maradudin [12] to construct stable (in the sense of local energy minimum) equilibrium
configurations with a phase boundary that has a rational slope and therefore consists of
periodically distributed steps. We then construct a Green’s function that allows us to
obtain stable equilibria with a local break in periodicity that lie near the periodic states
in the energy landscape. For each of these states, we can compute the range of applied
strains under which these equilibria exist, similar to the propagation failure range studied
by Cahn et al. [2] for a different two-dimensional lattice model. This range depends on
the slope of the phase boundary and the material anisotropy.

Generalizing the approach used in Fedelich and Zanzotto [5] and Truskinovsky and
Vainchtein [13] for a one-dimensional chain of bi-stable springs (see also the related work
of Hobart [8, 9, 10, 11] for the Frenkel-Kontorova dislocation model), we construct non-
equilibrium paths connecting the neighboring periodic and non-periodic energy minima in
the present two-dimensional lattice model, with a finite number n of vertical bonds chang-
ing phase along a path. Among all possible paths connecting two neighboring equilibria,
we select the one that involves a minimal (Peierls) energy barrier. The key ingredient in
our construction is the vector order parameter describing the phase change along the path.
The construction projects the infinite-dimensional energy landscape on an n-dimensional
surface that includes neighboring equilibria with different locations of steps along the
phase boundary. This allows us to compute the minimal energy barriers separating the
equilibria and compare the energy barriers along different paths.

We apply our construction to a specific example involving the quasistatic motion of n
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neighboring steps along a phase boundary with integer slope and consider two different
paths connecting the initial and final states at a fixed applied strain. Along the first path,
the steps are allowed to move simultaneously, while the second path involves one-by-one,
or sequential, step propagation. We show that the energy barrier for the propagation of an
initial one step along the second path is smaller than the energy barrier needed to initiate
the simultaneous step propagation along the first path; in fact, our calculations show that
the ratio of two energy barriers is close to n. In addition, we show that depending on
the material anisotropy parameter χ and the slope µ of the phase boundary, the energy
barriers along the sequential path can either increase, decrease or reach a maximum value.
In particular, sufficiently small χ results in energy barriers decreasing along the path, so
that overcoming the energy barrier to move an initial one step indeed results into a cascade
motion of the subsequent steps sequentially. For higher material anisotropy parameter
χ, the largest energy barrier occurs further along the path. This may result in arresting
the motion if the system does not have enough energy to overcome all energy barriers;
however, the largest energy barrier decreases as χ grows.

Our analysis suggests that there are purely energetic reasons for the steps to prop-
agate sequentially along a phase boundary under quasistatic loading. Recent analysis
and simulations of the full dynamic problem [14, 15] show that sequential motion is also
preferred when step velocities are sufficiently high.

The paper is organized as follows. In Section 2 we formulate the lattice model. Periodic
solutions with integer slope are found in Section 3, and the results are generalized to
the case of rational slope in Section 4. Neighboring non-periodic solutions are obtained
in Section 5. In Section 6 we construct a minimal barrier path connecting a periodic
equilibrium to the lower energy non-periodic state obtained by moving one step. The
procedure is generalized to the case of finite number of steps and a vector order parameter
in Section 7. Our main results for sequential and simultaneous step propagation for
the case of integer slope are presented in Section 8, and in Section 9 we consider an
example illustrating these results. Section 10 is devoted to concluding remarks. Proofs
and technical results can be found in appendices.

2 Lattice Model

Consider an antiplane shear deformation of a cubic lattice with interatomic distance ε.
This means that the problem can be equivalently formulated as an out-of-plane defor-
mation of a two-dimensional lattice of rigid columns. The columns will be henceworth
referred to as “particles”. Let Z denote the set of integers. Let wm,n denote the out-of-
plane displacement of the (m, n)th particle where m, n ∈ Z. We take into account only
nearest-neighbor interactions between the particles and assume that these are modeled

3



by elastic springs with energy densities (per unit length) φh(u) for horizontal springs and
φv(v) for vertical ones. Here u and v are the horizontal and vertical components of the
antiplane shear strain. Note that the two energy densities are in general different due to
anisotropy of the crystal lattice. The elastic energy of the system is then given by

E({wm,n}m,n∈Z) = ε
∑

m,n

φh

(

wm,n − wm,n−1

ε

)

+ φv

(

wm,n − wm−1,n

ε

)

, (1)

and the equilibrium equations are

φ′
h

(

wm+1,n − wm,n

ε

)

− φ′
h

(

wm,n − wm−1,n

ε

)

+ φ′
v

(

wm,n+1 − wm,n

ε

)

− φ′
v

(

wm,n − wm,n−1

ε

)

= 0.

(2)

To model phase transitions, we now assume that the vertical springs are bi-stable, i.e.
they can exist in two different phases (phase variants), each corresponding to a potential
well of φv(v). To simplify analysis, we further assume the two-parabola potential

φv(v) =
1

2
Kvv

2 − Kva(v − vc)θ(v − vc), (3)

where Kv > 0 is the elastic modulus in each well, a > 0 is the transformation strain and
θ(v) is a unit step function. The critical strain vc separates phase I (v < vc) from phase
II (v > vc) for the vertical springs. Meanwhile, the horizontal springs are assumed to be
linearly elastic, with

φh(u) =
1

2
Khu

2, (4)

where Kh > 0 is the elastic modulus for these springs.
To reduce the number of parameters, it is convenient to rescale the problem, introduc-

ing dimensionless variables w̄m,n = wm,n/(aε), φ̄ = φ/Kv and parameters χ = Kh/Kv > 0,
dimensionless measure of material anisotropy, and v̄c = vc/a, dimensionless critical strain.
After dropping the bars we obtain

φh(u) =
1

2
χu2, φv(v) =

1

2
v2 − (v − vc)θ(v − vc), (5)

and the equilibrium equations (2) become

χ(wm+1,n + wm−1,n − 2wm,n) + (wm,n+1 + wm,n−1 − 2wm,n)

= θ(wm,n+1 − wm,n − vc) − θ(wm,n − wm,n−1 − vc)
(6)
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In addition we assume that at infinity the solution satisfies certain far-field boundary
conditions, to be specified later, that correspond to homogeneous deformation in each
phase.

In this paper we consider equilibrium configurations with a single phase boundary
that contains steps and focus our attention on how these steps evolve as we change the
boundary conditions.

3 Phase boundary with a periodic array of steps: in-

teger slope

We begin by considering equilibrium configurations with a single phase boundary that
consists of a periodic array of steps of length µ ≥ 1 and unit height each, as shown in the
Fig. 1. The vertical springs below and along the steps are in phase II, while the springs

Figure 1: A phase boundary with periodic steps. Here the period µ is an integer.

above are in phase I. In this simplest case the slope of the phase boundary is the integer
µ. Later we will consider more general periodic configurations in which the slope is a
rational number.

It is convenient to introduce vertical strains vm,n that measure the deformation of the
bi-stable vertical springs and are related to the out-of-plane displacements wm,n via

vm,n = wm,n − wm,n−1.
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Subtracting from (6) the equation obtained by replacing n in (6) by n− 1, we obtain the
equilibrium equations in terms of vertical strains only:

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= θ(vm,n+1 − vc) − 2θ(vm,n − vc) + θ(vm,n−1 − vc).
(7)

We will solve (7) subject to the condition that vertical strains tend to constant values at
infinity:

vm,n → v± as m → ±∞ for a fixed n. (8)

As we shall see shortly, due to the force equilibrium the strains v± are not independent, so
that only one of these can be prescribed (say, v−) by controlling the vertical component
of stress at infinity.

We assume an equilibrium with a single phase boundary. If the phase boundary is
horizontal (µ = ∞), the problem (7), (8) is trivially solved by the piecewise constant
vertical strain

vm,n =

{

v+, n > n0

v−, n ≤ n0,
(9)

where n = n0 is the location of the phase boundary and we have v+ = v− − 1, v+ < vc,
v− > vc. Thus in what follows we will assume a non-flat phase boundary with 1 ≤ µ < ∞.
As we shall see, the periodic step arrangement creates a boundary layer around the phase
boundary and oscillations that die away from it, in agreement with (8).

Note that due to our special choice (5) of interaction potentials, the left hand side of the
system (7) is linear, with nonlinearity in the right hand side given by a combination of unit
step functions that depend on the unknown strains. However, for a given phase boundary
location the nonlinear right hand side can be written as a combination of Kronecker delta
functions δm,n (equal to 1 if m = n and zero otherwise). In particular, for the periodic
ansatz such as shown in Fig. 1, (7) reduces to

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= −
∑

p

µ
∑

l=1

δm,l−pµ(δn,p − δn−1,p),
(10)

where the index p in the left hand side fixes the step and the index l fixes the particle in
each step of the phase boundary.

Taking discrete Fourier transform of both sides of the equation (10), we obtain

v̂(x, y) =
π

2

∑

q δ(y − µx − 2πq)(1 − eiy)(eiµx − 1)

(1 − e−ix)(χ sin2 x
2

+ sin2 y
2
)

, (11)
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where δ(·) is the Dirac delta (generalized) function, x, y are the wave numbers, and v̂(x, y)
is the (generalized) Fourier transform of v − v− formally defined by

v̂(x, y) =
∑

m,n

(v − v−)eixm+iyn. (12)

To obtain (11) we used the identity

∑

p

eipz = 2π
∑

q

δ(z − 2πq), (13)

which holds for any real z. Due to the sum of Dirac delta functions in the right hand side
of (11), the inverse Fourier transform

vm,n = v− +
1

4π2
P.V.

∫ π

−π

∫ π

−π

v̂(x, y)e−i(xm+yn)dxdy

can be reduced to the single integral

vm,n = v− − 1

4πi
P.V.

∫ π

−π

sin2 µx
2

eix(m+µ(n−1)− 1

2
)

sin x
2
(χ sin2 x

2
+ sin2 µx

2
)
dx.

Here the notation P.V. (principal value integral) is used because the integrand in (14)
possesses a singularity at x = 0. To resolve the singularity, we deform the contour of
integration in the complex plane so that the new contour Γ goes from −π to π along the
real axis everywhere except a small neighborhood near the origin, where it goes below the
real axis (see Fig. 2). We thus obtain

vm,n = v− − 1

4πi

∫

Γ

sin2 µx
2

eixξ

sin x
2
(χ sin2 x

2
+ sin2 µx

2
)
dx, (14)

where we defined

ξ = m + µ(n − 1) − 1

2
. (15)

Notice that ξ = 0 is a straight line separating the vertical springs that are in phase I
(ξ > 0) from the ones that are in phase II (ξ < 0). The integral in (14) can be evaluated
using the residue theorem, closing the contour of integration by a rectangular contour of
height R, R → ∞, in the upper half-plane (Im x > 0) when ξ > 0 and lower half-plane
otherwise, as shown in Fig. 2a. When µ is an even integer, the integrand in (14) has four
symmetric poles with real parts equal to ±π. By periodicity, we only need to include
the pair of roots with real part equal π, so the vertical parts of the contour are deformed
as shown in Fig. 2b. We can show that the contribution due to the vertical sides of the
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Figure 2: The contours of integration and the poles in the case of odd (a) and even (b)
µ. The sets M± are the nonzero poles inside the upper and lower closed contours.

rectangular contour cancel each other out. Meanwhile, the contribution due to the part
of the contour parallel to the real axis tends to zero as the height R of the rectangle tends
to infinity. For example, for x = x + iR, −π ≤ x ≤ π, with large R we have

∣

∣

∣

∣

sin2 µx
2

eixξ

sin x
2
(χ sin2 x

2
+ sin2 µx

2
)

∣

∣

∣

∣

∼ e−(ξ+ 1

2
)R → 0

as R → ∞ for ξ > 0. Thus by residue theorem the value of the integral in (14) is
determined by the sum of residues inside the closed contour. In addition to the simple
pole at the origin, there is a finite number of complex poles (with nonzero real and
imaginary parts) contained in the sets

M± = {x : sin2 µx

2
+ χ sin2 x

2
= 0, Im x ≷ 0, −π < Re x ≤ π}. (16)

It is easy to see that the poles come in symmetric quadruples: if x ∈ M+, then −x̄ ∈ M+

and −x, x̄ ∈ M−; see Fig. 2. The number of elements in M± increases with µ. The
imaginary parts of the poles tend to zero as µ tends to infinity or χ tends to zero.

In the degenerate case µ = 1, the sets M± are empty, and the solution has piecewise
constant vertical strain:

vm,n =

{

v+, ξ > 0,
v−, ξ < 0.

(17)

In the generic case when 1 < µ < ∞, the sets (16) contain at least two elements each,
and the solution is given by

vm,n =

{

v+ −
∑

x∈M+
h(x)eixξ, ξ > 0,

v− +
∑

x∈M−

h(x)eixξ, ξ < 0,
(18)
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Figure 3: (a) A typical solution for vertical strain vm,n in the case of periodic steps with
an integer period; (b) the strain profile along the line n = 1. Here µ = 5, v− = 1.55,
vc = 1 and χ = 1.

with

h(x) =
sin2 µx

2

sin x
2
(µ sin µx + χ sin x)

. (19)

In both (17) and (18) ξ is given by (15) and the vertical strains at infinity are related by

v+ = v− − µ2

µ2 + χ
. (20)

A typical graph of vertical strain is shown in Figure 3a. As expected, solution is
periodic, with period 1 in n-direction and period µ in m-direction. We see that unlike
the cases µ = 1 and µ = ∞, the strain is no longer piecewise constant. Instead, there are
now boundary layers near the phase boundary. In particular, the strain profile at each
fixed n is monotonically decreasing in a transition layer around the phase boundary (see
Figure 3b), due to the imaginary parts of the roots contained in M±. The real parts of
these roots contribute to oscillations outside the transition layer. The amplitude of these
oscillations rapidly decays, and the strain reaches the constant values v± as m → ±∞.

For consistency with our assumptions we must also require that all vertical springs
located at or below the phase boundary (ξ < 0) are in phase II, while the rest are in
phase I:

vm,n > vc for ξ < 0 and vm,n < vc for ξ > 0. (21)

This gives bounds on v− and hence on the vertical component of the applied stress. Due
to the monotone structure of the solution around the phase boundary for each fixed n,
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the first vertical springs to violate (21) are the ones on and directly in front of a step.
Indeed, consider for example the strain profile along n = 1 shown in Figure 3b. As v− is
increased, the first strain to reach the critical value vc = 1 is v1,1, in the vertical spring
just in front of the step. Similarly, as we decrease the applied strain, the strain v0,1 in the
vertical spring along the step reaches the critical value first. But the strain is periodic,
so the strain profile at any fixed n is a translated version (by an integer multiple of µ) of
the one just considered. This suggests that the constraints (21) are satisfied whenever

v1,1 < vc, v0,1 > vc. (22)

Hence the constructed solution exists, whenever the applied strain stays within the bounds
vl
− < v− < vu

−, where the lower and upper bounds are given by

vl
− = vc − S, vu

− = vc +
µ2

µ2 + χ
+ S, (23)

with
S =

∑

x∈M+

h(x) exp(ix/2). (24)

The upper bound v− = vu
− corresponds to the springs just in front of each step reaching

the critical strain, ready to switch to phase II. Meanwhile, the lower bound indicates that
the springs along the steps are about to change phase back to phase I if v− is further
decreased.

To complete solution we also need to find the strains in the horizontal springs. As
before, we only need to consider the case 1 ≤ µ < ∞. Let

um,n = wm,n − wm−1,n

denote the horizontal strains. Using (6) and periodicity of the phase boundary, we obtain
the equilibrium equation in terms of um,n only:

χ(um+1,n + um−1,n − 2um,n) + (um,n+1 + um,n−1 − 2um,n)

= −
∑

p

µ
∑

l=1

(δm,l−pµ − δm−1,l−pµ)δn,p.

This equation can again be solved by Fourier transform. We obtain

um,n = u− − 1

4πi
P.V.

∫ π

−π

sin µx
2

eixη

χ sin2 x
2

+ sin2 µx
2

dx, (25)

where

η = m + µ(n − 1

2
) − 1 (26)
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and we assumed that the horizontal strains tend to constant values at infinities: um,n →
u±. As in the case of vertical strains, the integral in (25) can be evaluated using the
residue theorem. We find that in the case µ = 1 the horizontal strains are piecewise
constant:

um,n =

{

u+, η > 0,
u−, η < 0,

(27)

while in the generic case 1 < µ < ∞ we have

um,n =

{

u+ −
∑

x∈M+
g(x)eixη, η > 0,

u− +
∑

x∈M−

g(x)eixη, η < 0,
(28)

with

g(x) =
sin µx

2

µ sin µx + χ sin x
. (29)

In both cases the horizontal strains at infinity are related by

u+ = u− − µ

µ2 + χ
. (30)

Having solved the equations of equilibrium for horizontal and vertical strains that are
derived from the equations (6) for displacement, we need to show that these solutions are
compatible. Since the difference equations are linear, it suffices to show that the boundary
conditions for the strains are compatible. In view of (20) and (30), we need to prove that
the horizontal strains and vertical strains at infinity are related by

v+ − v− = − 1

1 + χ/µ2
= µ(u+ − u−). (31)

The proof is presented in Appendix A.

4 Phase boundary with a periodic array of steps: ra-

tional slope

In the previous section we considered the case when the length of each step equals the
period of the array, and the slope of the phase boundary is thus an integer. We now
consider a more general situation where the array of steps is still periodic but each periodic
cell may contain steps of variable length, so that the slope of the phase boundary is a
rational number. An example of such periodic arrangement of steps is shown in Fig. 4,
where the slope is µ = 5

2
. In this case each periodic cell contains steps of length 2 and 3.
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Figure 4: Periodic steps with a rational slope µ. Here µ = 5
2
.

Let µ = r/s with r, s ∈ Z r {0} be the rational slope of the phase boundary and let
µj ⊂ Z, j = 1, . . . , s, denote the length of jth step within one period. Clearly,

µ =
1

s

s
∑

j=1

µj.

The equations of equilibrium for the displacements wm,n are

χ(wm+1,n + wm−1,n − 2wm,n) + (wm,n+1 + wm,n−1 − 2wm,n)

= −
∑

p

s
∑

j=1

µj
∑

l=1

δm,l−pr+µ1+...µj−1
δn,ps−j+1.

(32)

Hence for the vertical strains we obtain

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= −
∑

p

s
∑

j=1

µj
∑

l=1

δm,l−pr+µ1+...µj−1
(δn,ps−j+1 − δn−1,ps−j+1).

Discrete Fourier transform (12) of both sides in the above equation yields

v̂(x, y) =
π

2

∑

q δ(sy − rx − 2πq)(1 − eiy)

(1 − e−ix)(χ sin2 x
2

+ sin2 y
2
)

s
∑

j=1

e−i(j−1)yeix
∑j−1

t=0
µt(eiµjx − 1),
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where we again used the identity (13). Observing that

∑

q

δ(sy − rx − 2πq) =
∑

q

s
∑

p=1

δ(s(y − µx − 2πp/s − 2πq))

and applying inverse Fourier transform, we obtain

vm,n = v− − 1

4πis

s
∑

p,j=1

∫

Γ

sin(µx
2
− πp

s
) sin

µjx

2
ei(xξj+αj,p)

sin x
2
(χ sin2 x

2
+ sin2(µx

2
− πp

s
))

dx.

Here we defined

ξj = ξ + jµ −
j

∑

k=1

µk +
µj − µ

2
, (33)

where ξ is given in (15), and

αj,p = (3 − 2j − 2n)πp/s; (34)

as before, the contour Γ goes along the segment [−π, π] of the real axis except a small
neighborhood near the origin, where it goes below the real axis. Applying the residue
theorem to evaluate the above integral, we obtain

vm,n = v− −
s

∑

j=1

{

µµj

s(µ2+χ)
+

∑s
p=1

∑

x∈M+,p
hj,p(x)eixξj , ξj > 0,

−
∑s

p=1

∑

x∈M−,p
hj,p(x)eixξj , ξj < 0.

(35)

Here ξj are defined in (33),

M±,p = {x : sin2

(

µx

2
− πp

s

)

+ χ sin2 x

2
= 0, Im x ≷ 0, −π < Re x ≤ π} (36)

denote the sets of poles for p = 1, . . . , s, and

hj,p(x) =
sin (µx

2
− πp/s) sin µj

x
2

s sin x
2
(µ sin (µx − 2πp/s) + χ sin x)

eiαj,p

with αj,p defined in (34) above. Observe that the strains far away above the phase
boundary (ξj > 0, j = 1, . . . , s) tend to the constant strain v+ given by

v+ = v− −
µ

∑s
j=1 µj

s(χ + µ2)
= v− − µ2

χ + µ2
,
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so that as in the periodic solution with integer period, the vertical strains at infinity are
related by (20). In the special case of integer period (s = 1, µ1 = µ), the above solution
(35) reduces to the solution (18) we obtained in the previous section, with ξj = ξ given
in (15), h1,1(x) = h(x) defined in (19) and M±,1 = M± as in (16).

For the horizontal strains um,n the equilibrium equations are

χ(um+1,n + um−1,n − 2um,n) + (um,n+1 + um,n−1 − 2um,n)

= −
∑

p

s
∑

j=1

µj
∑

l=1

(δm,l−pr+µ1+...µj−1
− δm−1,l−pr+µ1+...µj−1

)δn,ps−(j−1).

Solving this equation by Fourier transform, we obtain

um,n = u− −
s

∑

j=1

{

µj

s(µ2+χ)
+

∑s
p=1

∑

x∈M+,p
gj,p(x)eixηj , ηj > 0,

−
∑s

p=1

∑

x∈M−,p
gj,p(x)eixηj , ηj < 0.

(37)

Here

ηj = η + jµ −
j

∑

k=1

µk +
µj − µ

2
,

where η is given by (26), and

gj,p(x) =
sin(µj

x
2
)

s(µ sin (µx − 2πp/s) + χ sin x)
e2πp(1−j−n)/s.

We can see that the strains u± at infinity are related by (30), and the solution reduces to
(28) in the special case s = 1.

As before, we need to impose the constraint that all vertical strains above (below) the
phase boundary are in phase I (II). In addition, the equation of compatibility (31) can be
proved in the same manner as for integer µ.

5 Equilibria with a non-periodic array of steps

The periodic solutions constructed in the previous sections exist only in a certain range
of the applied strain, vl

− < v− < vu
−. For example, in case of integer period the lower and

upper bounds are given by (23). At the upper bound v− = vu
−, vertical springs in front of

each step reach the critical strain vc. If all of these springs transform to phase II at once,
the whole phase boundary will move forward perpendicular to itself, and the solutions
will transform to another periodic equilibrium. However, this scenario appears unlikely
since it requires an infinite number of springs to transform at once. Another possibility
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is that only a finite number of springs change phase. In this case the transformation will
result in a non-periodic equilibrium that differs from the initial periodic state by a local
perturbation. For example, in Fig. 5 a non-periodic state results from the phase change
in the (1, 1)th vertical spring directly in front of a step. In this section we will show how

Figure 5: Transition from a periodic to a non-periodic equilibrium via transformation of
a vertical spring in front of a step.

such equilibrium configurations can be calculated.
Consider first an equilibrium state obtained by transforming (p, q)th vertical spring

adjacent to a periodic phase boundary. We assume that in the initial state the phase
boundary has a rational slope, which includes the integer case. Equilibrium equations for
displacement then read

χ(wm+1,n + wm−1,n − 2wm,n) + (wm,n+1 + wm,n−1 − 2wm,n)

= −
∑

k

s
∑

j=1

µj
∑

l=1

δm,l−kr+µ1+...µj−1
δn,ks−j+1 + δm,p(δn,q−1 − δn,q).

(38)

We can see that the first term in the right hand side of (38) is the same as in the periodic
problem (32), with the additional term due to the transformed spring. By linear superpo-
sition, the vertical and horizontal strains for the non-periodic state under consideration
can be written as

vm,n = vP
m,n + Vm,n;p,q, um,n = uP

m,n + Um,n;p,q, (39)
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where vP
m,n and uP

m,n denote the solutions (35) and (37) obtained previously for vertical
and horizontal strains in a periodic equilibrium, and the additional components Vm,n;p,q

and Um,n;p,q satisfy the equations

χ(Vm+1,n + Vm−1,n − 2Vm,n) + (Vm,n+1 + Vm,n−1 − 2Vm,n)

= δm,p(δn,q−1 − 2δn,q + δn,q+1).

and

χ(Um+1,n + Um−1,n − 2Um,n) + (Um,n+1 + Um,n−1 − 2Um,n)

= (δm,p − δm,p+1)(δn,q−1 − δn,q),

respectively (for brevity, we omitted the indices p, q in the left hand side). Since the total
strains vm,n, um,n satisfy the same conditions at infinity as the periodic components, we
must also require that Vm,n;p,q, Um,n;p,q → 0 as m, n → ±∞. Applying Fourier transform,
we obtain

Vm,n;p,q =
1

π2

∫ π

0+

∫ π

0+

cos(p − m)x cos(q − n)y sin2 y
2

χ sin2 x
2

+ sin2 y
2

dxdy (40)

and

Um,n;p,q = − 1

π2

∫ π

0+

∫ π

0+

sin(p + 1
2
− m)x sin(q − 1

2
− n)y sin y

2
sin 3x

2

χ sin2 x
2

+ sin2 y
2

dxdy; (41)

here and in what follows 0+ in the integral limit denotes the zero limit from above. The
functions Um,n;p,q and Vm,n;p,q are Green’s functions that can be used to construct solutions
when a phase change occurs in a bond adjacent to a phase boundary.

The complete solution for a non-periodic equilibrium that differs by one spring from
the periodic state is then given by (39), (35), (37), (40) and (41). In addition we need
to require that the vertical strains stay in their respective phases on either side of the
phase boundary. This constraint will result in bounds for v−. Clearly, we can also
obtain solutions with phase boundaries that differ from periodic by any number of springs,
adjacent to the phase boundary, by superimposing the corresponding local perturbations
Vm,n;p,q and Um,n;p,q.

As a simple example of a non-periodic equilibrium, consider the state obtained by
transforming (1, 1) vertical spring (p = q = 1) in front of a step of a periodic phase
boundary with an integer slope, as shown in Fig. 5. In the resulting equilibrium state
all steps are of length µ except two adjacent steps that are of length µ + 1 and µ − 1,
respectively. The graph of vertical strain is shown in Fig. 6. Similar to the periodic case,
for each fixed n the solution is monotonically decreasing inside a transition layer around
the phase boundary. In view of the monotonicity, in order to find bounds on v− it suffices
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Figure 6: Typical solution for the vertical strain in the non-periodic equilibrium with
(1, 1) spring in phase II. Here µ = 5, v− = 1.55 and χ = 1.

to require that the vertical springs directly in front and along each step are in phase I
and II, respectively. In other words, we must require that

max
p

vf
p < vc, min

p
va

p > vc,

where vf
p = vµp+1,1−p, p 6= 0, vf

0 = v2,1 are the strains in vertical springs just in front of
pth step, and va

p = vµp,1−p, p 6= 0, va
0 = v1,1 are the strains in springs along each step.

For example, suppose that we start increasing the applied strain v−. Recall that in the
periodic solution this eventually leads to all vertical springs directly in front of the steps
reaching critical strain vc first. In the present case, due to a break in periodicity, there is a
preference among these springs: namely, the strains in the springs behind and in front of
the longer step, vf

1 = vµ+1,0 and vf
−1 = v−µ+1,2, are the largest and thus will reach vc first

as we increase v−. Similarly, as we decrease v− comparison of strain in vertical springs
just behind the phase boundary shows that the strain va

0 = v1,1 is significantly smaller
than the others and hence will reach the critical value first. See Fig. 7. Thus in order
for this non-periodic equilibrium state to exist, the applied strain must be in the interval
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Figure 7: The strains along (a) and in front (b) of pth step along the phase boundary in
the non-periodic equilibium with (1, 1) spring in phase II. Here µ = 5, v− = 1.55, vc = 1
and χ = 1.

vl
− < v < vu

−, where the upper and lower bounds are given by

vu
− = vc +

µ2

χ + µ2
+ S

+
1

π

∫ π

0

cos(µx)dx

(1 + 2χ sin2(x
2
))[(1 + (1/χ)cosec2(x

2
))

1

2 + 1] + 1

vl
− = vc +

µ2

χ + µ2
+ S − 2

π
arctan

1√
χ

,

where S is defined in (24).

6 Minimal barrier path between periodic and non-

periodic arrays of steps

Consider an equilibrium with a periodic array of steps at a given applied force, or, equiv-
alently, given v−. For simplicity, we may assume that the period is an integer. Suppose
now that at the same v− there exists a non-periodic equilibrium which can be obtained
from the periodic one by changing phase in a vertical spring in front of a step, as shown in
Fig. 5. For instance, assume that in the non-periodic state the strain v1,1 = w1,1−w1,0 has
changed phase. It is not hard to see that both equilibria are stable, in the sense that each
is a local minimum of total energy, since in each state the strains are inside their respec-
tive energy wells. If the non-periodic equilibrium has less energy than the periodic one
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(at a given applied force), the system may prefer to switch from periodic to non-periodic
state. In order to do so, it has to follow a non-equilibrium path in the energy landscape
that connects two local energy minima and goes through an energy barrier separating the
two states.

Following similar constructions in [5] and [13] for a one-dimensional bi-stable chain,
we can obtain a minimal barrier path from the periodic state to the non-periodic one by
observing that along the path only (1, 1) vertical spring changes phase, while the other
vertical springs stay in their respective phases. The idea is then to minimize the energy
along the path by performing the constrained minimization of the total energy at a given
value of v1,1. More precisely, we choose the order parameter α ∈ [0, 1] such that

v1,1 = αvNP
1,1 + (1 − α)vP

1,1, (42)

where vNP
m,n and vP

m,n denote the strains in periodic and non-periodic equilibria, respectively.
Thus as α increases from 0 to 1 along the path, v1,1 increases from vP

1,1 < vc (α = 0) to
vNP
1,1 > vc (α = 1). We then minimize the total energy subject to the above constraint

(42):
min {E({wm,n}m,n∈Z) + λ(w1,1 − w1,0 − αvNP

1,1 − (1 − α)vP
1,1)},

where E =
∑

m,n(φh(um,n) + φv(vm,n)) is the total elastic energy of the system, and λ is
the Lagrange multiplier due to the constraint. This results in the following equation for
vertical strains:

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= θ(vm,n+1 − vc) − 2θ(vm,n − vc) + θ(vm,n−1 − vc)

− λδm,1(δn,0 − 2δn,1 + δn,2).

Observe that there exists α∗ ∈ [0, 1) such that v1,1(α
∗) = vc. This value of the order

parameter corresponds to the saddle point separating the two local minima in the energy
landscape; 1 at this point the energy along the path is maximal. For α < α∗ we still have
the periodic arrangement of steps (although clearly the strains are no longer periodic),
whereas for α ≥ α∗ the arrangement is necessarily non-periodic. Thus we obtain

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= −
∑

p

µ
∑

l=1

δm,l−pµ(δn,p − δn−1,p)

+ (θ(α − α∗) − λ)δm,1(δn,0 − 2δn,1 + δn,2).
1Due to nonsmoothness of the energy in the bi-stable springs, (1, 1) and (1, 0) particles are in general

not in equilibrium in the saddle-point configuration; indeed, observe that the Lagrange multiplier λ is
nonzero at α = α∗ unless α∗ equals zero.
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Solving this equation and applying the constraint (42), we obtain

λ(α) = θ(α − α∗) − α

and
vm,n(α) = vP

m,n + αVm,n,

where Vm,n = Vm,n;1,1 is the perturbation solution given by (40) with p = q = 1. Similarly,
the horizontal strains along the path reduce to

um,n(α) = uP
m,n + αUm,n,

with Um,n = Um,n;1,1 given in (41). Finally, we can find α∗ by requiring that v1,1(α
∗) = vc.

This yields

α∗ =
1

V1,1
(vc − vP

1,1). (43)

The free energy along the path is given by

G(α) =E(α) −
∑

m

((χu+ + v+)wm,+∞ − (χu− + v−)wm,−∞)

−
∑

n

((χu+ + v+)w+∞,n − (χu− + v−)w−∞,n).

Since this energy is infinite, we evaluate instead the difference between the free energy
along the path and at the initial periodic equilibrium (α = 0):

Ψ(α) = G(α) − G(0)

= E(α) − E(0) − α
∑

m

((χu+ + v+)Wm,+∞ − (χu− + v−)Wm,−∞)

− α
∑

n

((χu+ + v+)W+∞,n − (χu− + v−)W−∞,n),

where Wm,n is the displacement due to the perturbation solution. But Wm,n vanishes at
points far from (1, 1), so that Wm,−∞ = W−∞,n = 0 and we obtain

Ψ(α) = E(α) − E(0) =
∑

m,n

φh(u
P
m,n + αUm,n) −

∑

m,n

φh(u
P
m,n)

+
∑

m,n

φv(v
P
m,n + αVm,n) −

∑

m,n

φv(v
P
m,n).
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Using (5), we obtain

Ψ(α) =
1

2

{

χ
∑

m,n

(α2U2
m,n + 2αUm,nuP

m,n) +
∑

m,n

(α2V 2
m,n + 2αVm,nv

P
m,n)

}

−
∑

m,n

(vP
m,n − vc){θ(vP

m,n + αVm,n − vc) − θ(vP
m,n − vc)}

− α
∑

m,n

Vm,nθ(vP
m,n + αVm,n − vc).

Observe that in the last two terms we are summing only over the springs in the second
phase. Recall that for α < α∗ the phase arrangement is the same as in the initial periodic
state, i.e. vP

m,n + αVm,n > vc for all m and n satisfying m + µ(n − 1) < 1
2
; for α > α∗ we

also have vP
1,1 + αV1,1 ≥ vc. Thus we obtain

Ψ(α) =
α2

2
S0 + αS1 − (vP

1,1 + αV1,1 − vc)θ(α − α∗), (44)

where

S0 = χ
∑

m,n

U2
m,n +

∑

m,n

V 2
m,n (45a)

S1 = χ
∑

m,n

Um,nuP
m,n +

∑

m,n

Vm,nvP
m,n −

∑

n

m0(n)
∑

m=−∞
Vm,n; (45b)

in the last expression we set m0(n) = b1/2 − µ(n − 1)c. Finally, recall that Ψ must have
local extrema at α = 0 and α = 1 since these are the states of equilibrium. Hence

Ψ′(0) = (αS0 + S1)|α=0 = 0 (46a)

Ψ′(1) = (αS0 + S1 − V1,1)|α=1 = 0, (46b)

which implies that S1 = 0 and S0 = V1,1. Therefore the desired minimal barrier path is
given by

Ψ(α) =
α2

2
V1,1 − (vP

1,1 + αV1,1 − vc)θ(α − α∗). (47)

Here α∗ is given in (43),

V1,1 =
1

π2

∫ π

0

∫ π

0

sin2 y
2

χ sin2 x
2

+ sin2 y
2

dxdy =
2

π
arctan

1√
χ

and

vP
1,1 = v− − 1

1 + χ/µ2
− S,
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with S defined in (24).
We can now evaluate the energy barrier which is equal to the difference between the

energies at the saddle point α = α∗ and the initial periodic state (α = 0):

∆E = Ψ(α∗) =
(α∗)2

2
V1,1 =

2π

arctan(1/
√

χ)
(vc − v− +

1

1 + χ/µ2
+ S)2.

The energy barrier is zero when the strain at infinity equals the upper bound, v− = vu
−,

which is defined in (23). Following [13] and by analogy with dislocation theory, we will
refer to the corresponding applied stress as the Peierls stress. Recall that at this stress all
vertical springs in front of each step in the periodic equilibrium have reached the critical
strain and thus can change phase with zero energy barrier. This Peierls state corresponds
to the saddle-point equilibrium where α∗ = 0.

The energy barrier is maximal when the periodic and non-periodic states have the
same energy: Ψ(1) = Ψ(0) = 0. This occurs when the applied stress equals to its Maxwell
value, or v− = vM

− , where

vM
− = vu

− − 1

2
V1,1 = vc +

1

1 + χ/µ2
+ S − 1

2π
arctan

1

χ
,

and the energy barrier is

∆Emax =
1

4π
arctan

1√
χ

.

Note that the Maxwell energy barrier depends only on χ. For v− < vM the periodic state
has lower energy than the non-periodic one, and hence the transition to the non-periodic
state is energetically unfavorable; instead, the reverse transition may take place.

7 Minimal barrier path in an energy landscape: a

general order parameter

We can now generalize the construction of the minimal barrier path to the case when
a finite number of springs change phase along the path, either simultaneously or in a
sequence of transitions. We start with a periodic equilibrium with generally a rational
period and assume that the vertical springs (pi, qi), i = 1, . . . , nα may change phase along
the path which thus connects the periodic state to one or more neighboring non-periodic
equilibria at the same value of the applied stress.

In this case we choose the vector order parameter α = (α1, . . . , αnα
), 0 ≤ αi ≤ 1 for

i = 1, . . . , nα. The values α = 0 and α = 1 correspond to the initial periodic and final
non-periodic equilibrium states, respectively; along the path, each component αi of the
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order parameters is either fixed at 0 or monotonically increases from 0 to 1. Minimizing
the total elastic energy along the path subject to the constraints

vpi,qi
= αivpi,qi

|αi=1 + (1 − αi)vpi,qi
|αi=0, i = 1, . . . , nα, (48)

we obtain the following equation for vertical strains:

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= θ(vm,n+1 − vc) − 2θ(vm,n − vc) + θ(vm,n−1 − vc)

−
nα
∑

i=1

λiδm,pi
(δn,qi−1 − 2δn,qi

+ δn,qi+1)

with the Lagrange multipliers λi determined by the constraints (48).
Let the set σi be defined by

σi = {α : vpi,qi
(α) > vc}, (49)

i.e. α ∈ σi whenever the (pi, qi)th vertical spring is in phase II, and let |α − σi| denote
the distance between α and the set σi. Using this and the fact that the initial state is a
periodic equilibrium, we obtain

χ(vm+1,n + vm−1,n − 2vm,n) + (vm,n+1 + vm,n−1 − 2vm,n)

= −
∑

p

s
∑

j=1

µj
∑

l=1

δm,l−pr+µ1+...µj−1
δn,ps−j+1

+ [θ(−|α − σi|) − λi]δm,pi
(δn,qi−1 − 2δn,qi

+ δn,qi+1).

Solving these equations and enforcing the constraints (48), we get

λi(α) = θ(−|α − σi|) − αi

and

vm,n(α) = vP
m,n +

nα
∑

i=1

αiVm,n;pi,qi
.

Similar calculations yield the horizontal strains

um,n = uP
m,n +

nα
∑

i=1

αiUm,n;pi,qi
.
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Here vP
m,n and uP

m,n are the strains in the initial periodic equilibrium. The boundaries
of the sets σi defined in (49) are given by the hyperplanes Si that represent the higher-
dimensional version of α∗ introduced in the previous section. They are defined by

Si = {α : vP
pi,qi

+

nα
∑

j=1

αjVpi,qi;pj ,qj
= vc}.

Thus we have

θ(−|α − σi|) = θ(|α − Si|) = θ(vP
pi,qi

+

nα
∑

j=1

αjVpi,qi;pj ,qj
− vc).

We now evaluate Ψ(α):

Ψ(α) =
χ

2

∑

m,n

(uP
m,n +

nα
∑

i=1

αiUm,n;pi,qi
)2 − χ

2

∑

m,n

(uP
m,n)

2

+
1

2

∑

m,n

(vP
m,n +

nα
∑

i=1

αiVm,n;pi,qi
)2 − 1

2

∑

m,n

(vP
m,n)2

−
∑

m,n

{(vP
m,n +

nα
∑

j=1

αjVm,n;pj ,qj
− vc)θ(v

P
m,n +

nα
∑

j=1

αjVm,n;pj ,qj
− vc)

− (vP
m,n − vc)θ(v

P
m,n − vc)}.

As in previous section, we can simplify this expression by observing that in the last two
terms the sums are only over the vertical springs that are in second phase in the initial
periodic state, plus the additional transformed springs (pi, qi) if α ∈ σi. Using this and
the fact that Ψ(α) must have local extrema at any α0 such that all its components are
either zero or one, we obtain

Ψ(α) =
1

2

nα
∑

i=1

nα
∑

j=1

αiVpi,qi;pj ,qj
αj

−
nα
∑

i=1

(vP
pi,qi

+
nα
∑

j=1

αjVpi,qi;pj ,qj
− vc)θ(v

P
pi,qi

+
nα
∑

j=1

αjVpi,qi;pj ,qj
− vc).

It is convenient to rewrite the above expression in vector form. Let {ei}nα

i=1 denote a unit
orthonormal basis of R

nα so that α can be represented as α =
∑nα

i=1 αiei. Let V denote a
tensor second order tensor for R

nα so that V =
∑nα

i=1

∑nα

j=1 Vijei⊗ej with Vij = Vpi,qi;pj ,qj
.

Then the expression for Ψ can be written as

Ψ(α) =
1

2
α ·Vα −

nα
∑

i=1

(vP
pi,qi

+ ei · Vα − vc)θ(v
P
pi,qi

+ ei · Vα − vc). (50)
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Note that Ψ(α) represents a multidimensional energy landscape. This landscape is a
projection that restricts the actual energy landscape (which involves an infinite number
of equilibrium states) to several neighboring equilibria with different locations of steps.
These stable equilibrium configurations are the local minima separated by the energy
barriers. Various curves parametrized by α describe paths in this landscape that connect
the stable equilibria.

8 Sequential versus simultaneous propagation of steps

To explore the energy landscape constructed in the previous section and its implications
for possible motion of the steps, we now consider two particular paths involving sequential
and simultaneous propagation of a steps and compute the energy barriers along these
paths. For simplicity, we consider a periodic equilibrium with integer slope µ. We assume
that at the end of both paths under consideration a finite number n of springs just in
front of the steps change phase. Without loss of generality, we set (p1, q1) = (1, 1), so that
(pj, qj) = ((j − 1)µ + 1, 2 − j), j = 1, . . . , n.

Along the first path the steps propagate sequentially. To apply the calculations from
the previous section, we set the n-dimensional order parameter

α(t) =















(t, 0, 0, . . . , 0), 0 ≤ t ≤ 1
(1, t − 1, 0, . . . , 0), 0 ≤ t ≤ 2
. . . . . . . . .
(1, . . . , 1, t − n + 1), n − 1 ≤ t ≤ n.

(51)

Here t ∈ [0, n] is the single order parameter along the path tuned so that at the (pk, qk)th
spring changes phase at some t∗k ∈ [k − 1, k]. The above implies that for t ∈ [k − 1, k],
k = 1, . . . , n, the jth component of α(t) is given by

αj(t) =







1, j ≤ k − 1
t − k + 1, j = k
0, j ≥ k + 1.

(52)

Using (50), (52) and the symmetry of tensor V defined in the previous section, we obtain
for t ∈ [k − 1, k]

Ψ(t) =
1

2
(t − k + 1)2Vk,k −

1

2

k−1
∑

i=1

k−1
∑

j=1

Vi,j + (k − 1)(vc − vP
(k−1)µ+1,2−k)

− θ(t − t∗k)

(

vP
(k−1)µ+1,2−k +

k−1
∑

j=1

Vk,j + (t − k + 1)Vk,k − vc

)

,
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where

t∗k = k − 1 +
vc − vP

(k−1)µ+1,2−k −
∑k−1

j=1 Vk,j

Vk,k
,

if k ≥ 2 and

Ψ(t) =
1

2
t2V1,1 − θ(t − t∗1)(v

P
1,1 + tV1,1 − vc)

with

t∗1 =
vc − vP

1,1

V1,1

if k = 1. Thus, the energy barrier for (pk, qk)th spring to switch phase is

∆Ek = Ψ(t∗k) − Ψ(k − 1) =
1

2Vk,k
(vc − vP

(k−1)µ+1,2−k −
k−1
∑

j=1

Vk,j)
2 (53)

for k ≥ 2 and

∆E1 = Ψ(t∗1) − Ψ(0) =
1

2V1,1
(vc − vP

1,1)
2. (54)

We now recall that for the periodic equilibrium we have

vP
(k−1)µ+1,2−k = v− − µ2

µ2 + χ
− S,

for all k, where S is given by (24). The components of tensor V are given by

Vi,j = V(i−1)µ+1,2−i;(j−1)µ+1,2−j

=
1

π2

∫ π

0

∫ π

0

cos[(j − i)µx] cos[(j − i)y] sin2 y
2

χ sin2 x
2

+ sin2 y
2

dxdy.
(55)

In particular,

Vi,i = V1,1 =
1

π2

∫ π

0

∫ π

0

sin2 y
2

χ sin2 x
2

+ sin2 y
2

dxdy =
2

π
arctan

1√
χ

. (56)

Let Z
+ denote the set of positive (non-zero) integers. We define a sequence of functions

{Ik}k∈Z+ with

Ik(µ, χ) = − 1

π

∫ π

0

cos(kµx)

√

λ − 1

λ + 1
(λ −

√
λ2 − 1)kdx, (57)

where
λ = 1 + 2χ sin2 x

2
. (58)

26



As shown in Appendix B, the off-diagonal entries reduce to

Vi,j = I|j−i|, (59)

as i 6= j. It is also convenient to define a sequence of functions {Jk}k∈Z+ with

Jk(µ, χ) ≡
{

∑k−1
j=1 Vk,j, k ≥ 2

0, k = 1
(60)

Using (57), we obtain, after some algebraic manipulations,

Jk(µ, χ) = − 1

π

∫ π

0

√

λ − 1

λ + 1
Kk(λ −

√
λ2 − 1, µ, x)dx, (61)

where we defined

Kk(b, µ, x) ≡ bk cos(µkx) − bk+1 cos(µ(k − 1)x) + b2 − b cos(µx)

2b cos(µx) − b2 − 1
(62)

for k ≥ 2 and set K1 ≡ 0. Then the energy barriers (53), (54) are given by

∆Ek(µ, χ) =
π

4 arctan(1/
√

χ)
(vc − v− +

µ2

µ2 + χ
+ S − Jk(µ, χ))2, (63)

with Jk(µ, χ) given by (61), (62).
The behavior of energy barriers is thus determined by the properties of functions in

the set {Ik}k∈Z+ that represent the off-diagonal entries of the tensor V by (57) and (59).
The following proposition summarizes these properties:

Proposition 1:

(a) |∑k
j=1 Ij| < 1

2
V1,1 for all k ∈ Z

+.
(b) The elements of the sequence {Ik}k∈Z+ tend to zero as k → ∞, monotonically at

large k and χ 6= µ2.
(c) There exists a sequence of functions {χk : Z → R}k∈Z+ such that for all µ, k ∈ Z

+,
Ik(µ, χk(µ)) = 0 and Ik(µ, χ) > 0 for 0 < χ < χk(µ).

The proof of this proposition can be found in Appendix C. In addition, we state the
following conjecture:

Conjecture: For each k, µ ∈ Z
+, χk(µ) as defined in Proposition 1(c) is the unique

positive root of Ik(µ, χ) = 0. The sequence {χk(µ)} strictly monotonically increases with
k and tends to µ2 as k → ∞.

Although we were unable to prove it, the conjecture is strongly supported by our
numerical calculations; see, for example, Figure 8. Note also that the leading term in the
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Figure 8: (a) The function I4(3, χ) and (b) the sequence χk(µ) at µ = 2 and µ = 3.

asymptotic expression (73) for Ik at large k vanishes at χ = µ2, suggesting that this is
the limit of the sequence. The conjecture immediately implies

Corollary:

(1) Ik(µ, χ) > 0 for all k ∈ Z
+ when χ < χ1(µ). When χ > µ2, Ik(µ, χ) < 0 for all

k ∈ Z
+.

(2) For χ such that χ1(µ) ≤ χ ≤ µ2, we have Ij(µ, χ) < 0 for j < k, Ik(µ, χ) ≤ 0,
where k is such that χk(µ) ≤ χ < χk+1(µ), and Ij(µ, χ) > 0 for j > k.

We can now use these results to obtain
Proposition 2:

(a) As k → ∞, the energy barriers along the path approach the limiting value

∆E∞(µ, χ) ≡ lim
k→∞

∆Ek(µ, χ) =
π

4 arctan(1/
√

χ)

{

vc − v− +
µ2

µ2 + χ
+ S

− arctan
√

χ

π
− χIm

(

∑

x∈M+

sin2(x
2
)

µ sin(µx) + χ sin x

)}2

.

The limiting energy barrier is higher than the first energy barrier (∆E∞(µ, χ) > ∆E1(µ, χ))
if and only if χ > χ∗(µ), where χ∗(µ) is the solution of the transcendental equation

arctan
√

χ

χ
− πIm

(

∑

x∈M+

sin2(x
2
)

µ sin(µx) + χ sin x

)

= 0, (64)

and the two energy barriers are equal when χ = χ∗(µ).
(b) If χ < χ1(µ), the energy barriers ∆Ek monotonically decrease to the limiting value

∆E∞. If χ > µ2, the energy barriers monotonically increase to the limiting value. In the
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intermediate range of χ, χ1(µ) ≤ χ ≤ µ2, the energy barriers ∆Ek increase for k ≤ k∗ to
reach the maximum energy barrier ∆Ek∗

, where k∗ is such that χk∗−1(µ) ≤ χ < χk∗
(µ),

and monotonically decrease for k > k∗ to the limiting value.
The proof can be found in Appendix C. Note that Proposition 2 implies that the first

energy barrier along the path exceeds the second (∆E1(µ, χ) > ∆E2(µ, χ)) if and only if
χ > χ1(µ), where χ1(µ) solves the transcendental equation

∫ π

0

cos(µx)

√

λ − 1

λ + 1
(λ −

√
λ2 − 1)dx = 0 (65)

with λ given by (58). The monotonicity for χ < χ1(µ) implies that the first energy barrier
is greater than the limiting one, so that χ1(µ) < χ∗(µ).

Figure 9 shows the threshold values χ∗(µ), χ1(µ) at integer µ along with the graph of
χ(µ) = µ2. We can see that χ1(µ) < χ∗(µ) < µ2.
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Figure 9: The threshold values χ1(µ) (black dots) and χ∗(µ) (grey dots) at integer µ.

To illustrate the results of Proposition 2, we consider the case µ = 3. In this case we
have χ1 = 8.20 and χ∗ = 8.49. At χ = 7 < χ1, the energy barriers ∆Ek monotonically
decrease to ∆E∞ for all k, so that the first energy barrier is the largest one, as shown in
Fig. 10a. Thus if the system has enough energy H to overcome the first energy barrier
(H ≥ ∆E1), it can automatically overcome all other (smaller) energy barriers. So in this
case climbing over the first energy barrier (moving one step) initiates a cascade motion
of the other steps.

At χ in the intermediate range, χ1 < χ < µ2, the first energy barrier is smaller
than the second, and after reaching the maximum energy barrier, the energy barriers
monotonically decrease to the limiting energy barrier satisfying ∆E∞ < ∆E1 if χ < χ∗
(see, for example, the case χ = 8.3 in Fig. 10b) and ∆E∞ > ∆E1 if χ > χ∗ (e.g. χ = 8.71
in Fig. 10c). In this case the maximum energy barrier along the path occurs at finite k
(second barrier in Fig. 10b and third in Fig. 10c). If the amount H of energy in the system
is less than this maximum energy barrier (but greater than the first), only several steps
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Figure 10: Energy barriers during sequential propagation of steps: (a) χ = 7 (χ < χ1(µ);
(b) χ = 8.3 (χ1 < χ < χ∗); (c) χ = 8.71 (χ∗ < χ < µ2); (d) χ = 10 (χ > µ2). In all cases
µ = 3, vc = 1 and v− = 1.3.

in the sequence will move. Physically, this means that on one hand, sufficiently strong
horizontal bonds appear to be limiting the step motion. Note, however, that on the other
hand, the maximum energy barrier along the path decreases with χ (at fixed v−), so that
less energy is needed to overcome it.

Finally, the case of large χ (χ = 10 > µ2) is shown in Fig. 10d. In this case the
energy barriers monotonically increase to the maximal limiting value for all k (recall that
monotone increase at large k follows from the Proposition 1). As in the previous case,
this leads to only several steps moving if H is less than the maximal energy barrier.

Now consider a path along which all n springs are allowed to change phase together.
In this case the n-dimensional vector order parameter is given by

α(t) =

(

t

n
,
t

n
, . . . ,

t

n

)

,
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with t ∈ [0, n] as before. The energy (50) along this path reduces to

Ψ(t) =
1

2

(

t

n

)2 n
∑

i=1

n
∑

i=1

Vi,j −
n

∑

i=1

(

vP
1,1 +

t

n

n
∑

j=1

Vi,j − vc

)

θ(t − t∗i ),

where we used periodicity of the initial equilibrium and defined

t∗i =
vc − vP

1,1
∑n

j=1 Vi,j

n

as the value of the parameter t at which (pi, qi)th and (pn−i+1, qn−i+1) springs change
phase (so that t∗i = t∗n−i+1). Note that the two springs must necessarily change phase
together along this path because

n
∑

j=1

Vi,j =
n

∑

j=1

Vn−i+1,j.

This is true because of the special Toeplitz structure of the tensor V: in the basis un-
der consideration it is represented by a multidiagonal symmetric matrix with constant
entries along each diagonal. Observe, however, that unless n = 2 the n springs under
consideration do not change phase at the same value of t but rather do so in pairs at
successive values t = t∗i for each pair. Thus the phase change along this path is not truly
simultaneous unless n = 2.

To compute the energy barrier, we determine the smallest t∗i :

t∗ = min
1≤i≤n

t∗i =
vc − vP

1,1

max
1≤i≤n

∑n
j=1 Vi,j

n

and recall that vP
1,1 = v− − µ2

µ2+χ
− S. We then obtain

∆E = Ψ(t∗) =

∑n
i,j=1 Vi,j

2

(

max
1≤i≤n

∑n
j=1 Vi,j

)2

(

vc − v− +
µ2

µ2 + χ
+ S

)2

(66)

This is the energy barrier for the first pair of springs to switch phase but we can show
that it is also the energy barrier for all n springs because the energy Ψ(t) starts decreasing
after the first pair of springs changes phase.

We can now compare the computed energy barrier for “simultaneous” phase change
to the first energy barrier the system needs to overcome in order to initiate sequential
step propagation. Recalling (63) and (56), we see that the latter is given by

∆E1 =
1

2V1,1

(

vc − v− +
µ2

µ2 + χ
+ S

)2

.
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We now claim that for n ≥ 2 the inequality ∆E > ∆E1 always holds, i.e. the energy
barrier (66) for “simultaneous” phase change is strictly greater than the first energy barrier
for sequential propagation:

Proposition 3:

For n ≥ 2,
∆E

∆E1
=

V1,1

∑n
i,j=1 Vi,j

(

max
1≤i≤n

∑n
j=1 Vi,j

)2 > 1.

The proof can be found in Appendix C.

9 Example: sequential versus simultaneous step prop-

agation.

We start by considering the energy landscape that involves a periodic equilibrium with
integer slope µ and nonperiodic states with either one or both vertical springs in front of
two neighboring steps transformed to phase II. In this case nα = 2, (p1, q1) = (1, 1) and
(p2, q2) = (µ + 1, 0). Recall that

vP
µ+1,0 = vP

1,1 = v− − 1

1 + χ/µ2
− S,

with S given in (24). Substituting this along with (56), (57) and (59) in (50), we obtain
two-dimensional energy landscape Ψ(α1, α2) an example of which is shown in Figure 11.
Here the parameters µ and χ are chosen so that χ < χ1(µ) As in the previous section,
we now consider sequential (path 1) versus simultaneous (path 2) propagation of the
two steps involved. Due to the symmetry of the landscape, it does not matter which
of the two springs changes phase first along path 1: if the order is reversed, the energy
profile is exactly the same. As already discussed, the energy barrier along the second
path is almost twice as high as the first energy barrier along sequential propagation. See
Figure 12. Moreover, the energy barrier ∆E along path 2 (simultaneous propagation) is
strictly greater than the sum of energy barriers ∆E1 and ∆E2 along the (sequential) path
1: ∆E −∆E1 −∆E2 ≈ 0.0013 > 0. This is because the second energy barrier along path
1 is smaller than the first (as predicted for the case χ < χ1(µ)). These results suggest
that sequential propagation of steps is energetically preferred.

Similarly, we can consider the case when four springs can transform (nα = 4): (p1, q1) =
(1, 1), (p2, q2) = (µ + 1, 0), (p3, q3) = (2µ + 1,−1) and (p4, q4) = (3µ + 1,−2). In this
case the energy landscape Ψ(α1, α2, α3, α4) is a four-dimensional surface that is hard to
visualize. Instead, we again consider sequential (path 1) versus “simultaneous” (path
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Figure 11: Energy landscape for connecting periodic equilibrium with integer slope to
neighboring nonperiodic minimizers, with two springs changing phase. Along path 1 the
two springs change phase sequentially. Path 2 corresponds two simultaneous phase change
in the two springs. Parameters: µ = 5, v− = 1.55, vc = 1 and χ = 1.

2) propagation. As we recall from the previous section, the propagation is not truly
simultaneous along the second path. Instead, two pairs of springs change phase one after
another; for example, in the case considered here (µ = 5, χ = 1, v− = 1.55), the two
middle springs, (p2, q2) and (p3, q3), change phase first at t = t∗1 = 1.483, and the other
two springs change phase at t = t∗2 = 1.498.

Figure 13 compares the energy profiles along the two paths. The energy barrier ∆E =
0.14 along path 2 is 3.9 times higher than the first energy barrier ∆E1 = 0.036 along the
sequential path and is even larger than the sum of all energy barriers along path 1 which
are slightly decreasing (∆E2 = 0.034, ∆E3 = 0.0335, ∆E4 = 0.0332) since χ < χ1(µ).

As we discussed above, in the case χ > µ2 the energy barriers along the sequential
path are slightly increasing. For example, in the case µ = 2, χ = 5, v− = 1.7 and vc = 1
we have ∆E1 = 0.0165, ∆E2 = 0.0178, ∆E3 = 0.0182 and ∆E4 = 0.0184 along path
1, while the energy barrier for path 2 is ∆E = 0.0669 ≈ 4.05∆E1. So in this case the
sequential path is again preferred, although the system may only move the first few steps
if the energy barriers along the path become too high.

Finally, in the case χ1(µ) < χ < µ2, the maximum energy barrier along the sequential
path is an interior one. For instance, at χ = 8.71 and µ = 3 (yielding χ1 ≈ 8.2, χ2 ≈ 8.66
and χ3 ≈ 8.82, so that χ2 < χ < χ3) we have ∆E1 = 0.007991, ∆E2 = 0.008139,
∆E3 = 0.008144 and ∆E4 = 0.008139 along path 1, so that the third energy barrier
is slightly higher than others, as predicted by Proposition 2(b). Meanwhile, the energy
barrier for path 2 is ∆E = 0.032 ≈ 4.005∆E1. Note also that ∆E/∆E3 ≈ 3.93, so that
the energy barrier for path 2 is almost four times higher than the maximum energy barrier
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Figure 12: Sequential versus simultaneous propagation of two neighboring steps in a
periodic equilibrium. Parameters: µ = 5, v− = 1.55, vc = 1 and χ = 1. Here χ < χ1(µ).

along path 1. Hence if the system has enough energy to overcome the third energy barrier
along path 1, sequential propagation would be energetically preferred.

10 Concluding remarks

In this paper we studied the quasistatic motion of steps along a phase boundary in a
two-dimensional lattice model of phase transitions that incorporates material anisotropy.
Assuming a bilinear interaction force in phase-transforming bonds, we constructed equi-
libria that contain a phase boundary with a rational slope as well as the neighboring
non-periodic equilibria. Using a vector order parameter, we constructed minimal barrier
paths connecting these equilibria and showed that the sequential motion of a finite number
of steps requires a smaller energy barrier than simultaneous motion of the steps.

Our analysis shows that the size of energy barriers and the resulting step motion are
significantly affected by material anisotropy parameter χ and the slope µ of the phase
boundary. In particular, if χ is higher than a certain threshold (that increases with µ)
step propagation may be prevented when the available energy to cause such motion is
less than the largest energy barrier along the path, which, however, decreases as χ grows.
Meanwhile, at smaller χ the motion of first step initiates the cascade motion in a sequential
manner.

Although the analysis presented here relied on a number of modeling assumptions and
simplifications in order to make the calculations as explicit as possible, our simple model
contains the essential physics in order to illustrate the main features of quasistatic motion
of a martensitic phase boundary. Future work will include deriving continuum formula-
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Figure 13: Sequential versus simultaneous propagation of four neighboring steps in a
periodic equilibrium. Parameters: µ = 5, v− = 1.55, vc = 1 and χ = 1. Here χ < χ1(µ).

tion that exhibits some of the results presented here, developing a numerical method to
compute energy barriers for a fully nonlinear potential and conducting a comprehensive
simulation of step motion under quasistatic loading.

Acknowledgements. This work was supported by the National Science Foundation
grant DMS-0443928 (A.V.).

A Proof of compatibility condition

In this Appendix we prove the compatibility condition (31).
Let m0, n0 ∈ Z be such that ξ0 = m0+µ(n0−1)−1/2 > 0 and m0+µ(n0−2)−1/2 < 0.

Let N > 0 be an integer. Then

N
∑

n=n0

vm0,n =
N

∑

n=n0

wm0,n −
N

∑

n=n0

wm0,n−1 = wm0,N − wm0,n0−1

so that um0,N = wm0,N−wm0−1,N = um0,n0−1+
∑N

n=n0
(vm0,n−vm0−1,n). Similarly, um0,−N =

wm0,−N − wm0−1,−N = um0,n0−1 −
∑n0−1

n=−N+1(vm0,n − vm0−1,n). Therefore

um0,∞ − um0,−∞ = lim
N→∞

(um0,N − um0,−N) = vm0,n0
− vm0−1,n0

+
∑

x∈M+

h(x)eixξ0(1 − e−ix)
eixµ

eixµ − 1
+

∑

x∈M−

h(x)eixξ0(1 − e−ix)
1

eixµ − 1
.
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We now consider two possibilities.
Case 1: ξ0 − 1 < 0.
This case is possible only when m0 = −µ(n0 − 1) + 1 so ξ0 = 1/2. Using the fact that

x ∈ M+ whenever x ∈ M−, we obtain

um0,∞ − um0,−∞ = − 1

1 + χ
µ2

+
∑

x∈M+

h(x)eixξ0

{

1 − e−ix

1 − e−ixµ
− 1

}

+
∑

x∈M−

h(x)eixξ0

{

1 − e−ix

eixµ − 1
− e−ix

}

= − 1

1 +
χ

µ2

− 2
∑

x∈M+

h(x)
sin(1

2
x(µ − 1))

sin(1
2
xµ)

(67)

Compatibility condition can then be shown by considering the contour integral

Figure 14: Contour Γ used in the proof of compatibility.

I =

∫

Γ

sin 1
2
µz sin 1

2
(µ − 1)z

sin 1
2
z(χ sin2 z

2
+ sin2 µz

2
)
dz

with contour Γ as shown in Fig. 14 and using the residue theorem. This yields

1 − 1/µ

1 + χ/µ2
+ −2

∑

x∈M+

h(x)
sin(1

2
x(µ − 1))

sin(1
2
xµ)

= 0,

which together with (67) establishes (31).
Case 2: ξ0 − 1 > 0.
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In this case m0 = −µ(n0 − 1) + ν with ν = 2, 3, . . . , µ, so ξ0 = ν − 1/2. Proceeding as
in the previous case, we obtain

um0,∞ − um0,−∞ =
∑

x∈M+

h(x)eixξ0(−1 + e−ix) +
∑

x∈M+

h(x)eixξ0(1 − e−ix)
eixµ

eixµ − 1

+
∑

x∈M−

h(x)eixξ0
1 − e−ix

eixµ − 1
= 2

∑

x∈M+

h(x) cos(x(ν − µ/2 − 1))
sin x

2

sin 1
2
xµ

The compatibility can be proved similarly to the previous case by considering the contour
integral

I =

∫

Γ

sin 1
2
µz cos(z(ν − µ/2 − 1))

χ sin2 z
2

+ sin2 µz
2

dz

with Γ as shown in Fig. 14.

B Asymptotic behavior of the off-diagonal entries of

the tensor V for sequential step propagation

In this appendix we reduce the double integral expression (55) for off-diagonal terms of
tensor V for sequential step propagation to a single integral and obtain the asymptotic
behavior of these terms when |j − k| is sufficiently large.

First observe that (55) can be rewritten as Vk,j = I(|j − k|), where

Ik(µ, χ) =
1

π2

∫ π

0

∫ π

0

cos[µmx] cos[my] sin2 y
2

χ sin2 x
2

+ sin2 y
2

dydx (68)

for integer k ≥ 0. Consider the interior integral

Lk(x, χ) =
1

π2

∫ π

0

cos[ky] sin2 y
2

χ sin2 x
2

+ sin2 y
2

dy

=
1

2

∫ π

−π

cos[ky] sin2 y
2

χ sin2 x
2

+ sin2 y
2

dy

(69)

Following the procedure in [3] for a similar integral, we introduce a new variable z = eiy

and define λ by (58). Note that 1 ≤ λ ≤ 1 + 2χ. We can now rewrite (69) as

Lk(x, χ) =
1

2π2
(Tk+1(x, χ) + Tk−1(x, χ) − 2Tk(x, χ)),
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where

Tk =

∮

|z|=1

zmdz

i(z2 − 2λz + 1)
(70)

is the counterclockwise integral over the unit circle in the complex plane. Here we used
the symmetry property of T : Tk(x, χ) = T−k(x, χ).

To evaluate (70) for k ∈ Z
+ (off-diagonal entries of V), observe that at λ > 1 the

integrand has two real poles, z = λ ±
√

λ2 − 1. The pole z = λ −
√

λ2 − 1 is inside the
unit circle, and the other pole is outside. As λ → 1, both poles approach z = 1 on the
unit circle. Using residue theorem, we obtain, for λ > 1,

Tk(x, χ) = −π
(λ −

√
λ2 − 1)k

√
λ2 − 1

,

and thus the interior integral (69) reduces to

Lk(x, χ) = − 1

π

√

λ − 1

λ + 1
(λ −

√
λ2 − 1)k, k ∈ Z

+. (71)

We can show that this formula works for λ = 1 as well. Using this expression and the
fact that

Ik(µ, χ) =

∫ π

0

cos(kµx)Lk(x, χ)dx, (72)

we reduce the double integral (68) to the single integral (57).
We now construct an asymptotic expression for Ik(µ, χ) at large k. To this end, observe

that for λ > 1 (x > 0) we have λ −
√

λ2 − 1 < 1, so at large k Lk(x, χ) decays fast away
from x = 0. Hence the asymptotic behavior of the integral (57) is primarily determined
by the behavior of Lk(x, χ) at small x (λ ≈ 1). Thus we approximate Lk(x, χ) by the
function ax exp(−bx), where the constants a and b are chosen so that the first two terms
of the Taylor series of ax exp(−bx) and Lk(x, χ) about x = 0 coincide. This yields

Lk(x, χ) ≈ −
√

χ

2π
xe−

√
χkx.

Substituting this approximation in (72), we can integrate exactly, obtaining

Ik(µ, χ) ≈
√

χ(µ2 − χ + (−1)µke−
√

χkπ(χ − µ2 +
√

χ(χ + µ2)πk)

2(χ + µ2)2k2π
. (73)

Clearly, the approximation improves at larger k. At large k for χ 6= µ2 the dominant term
is √

χ(µ2 − χ)

2(χ + µ2)2k2π
,
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so Ik(µ, χ) = O(1/k2). This implies that at µ2 > χ and sufficiently large m the off-
diagonal terms are positive. Meanwhile µ2 < χ means negative off-diagonal terms at least
for large enough m. In fact, numerical evaluation of the exact integral (57) at various
parameters satisfying µ2 < χ shows that all off-diagonal terms are negative in this case.

C Proofs of propositions in Section 8

Proof of Proposition 1:

(a) We have

|
k

∑

j=1

Ij(µ, χ)| ≤
k

∑

j=1

|Ij(µ, χ)| ≤ 1

π

∫ π

0

√

λ − 1

λ + 1

k
∑

j=1

1

(λ +
√

λ2 − 1)j
dx.

Therefore

|
k

∑

j=1

Ij(µ, χ)| <
1

π

∫ π

0

√

λ − 1

λ + 1

∞
∑

j=1

1

(λ +
√

λ2 − 1)j
dx = J∗(χ).

It can be shown that J∗(χ) = 1
2π

∫ π

0
(1 −

√

λ−1
λ+1

)dx = 1
2
V1,1, and (a) follows. This clearly

implies that |Ik(µ, χ)| < 1
2
V1,1 for all k ∈ Z

+.

(b) Note that (a) also implies that limk→∞ Ik(µ, χ) → 0. Monotonicity of Ik(µ, χ) at
large k and χ 6= µ2 follows immediately from the asymptotic expression (73) obtained in
Appendix C at large k ∈ Z

+.

(c) To prove this part, observe that Ik can be written as (72), with the amplitude
Lk(x, χ) of the integrand given by (71). From (58) it follows that Lk(x, χ) ≤ 0. The
smoothness of this function at χ > 0 and x ∈ [0, π] ensures that Ik can be differentiated
under the integral at χ > 0. Since Ik depends on χ only through Lk(x, χ), this dependence
is determined by the properties of Lk(x, χ). Simple analysis reveals that as a function of
x for given χ, Lk has a single minimum point. If

χ ≤
√

1 + k2 − k

2k
,

the minimum is reached at x = π. Otherwise, the minimum depends only on k and is
attained at

x∗(k, χ) = 2 arcsin

√√
1 + k2 − k

2χk
< π,

39



and Lk is a convex function of x in the interval (0, x∗).
We claim that Ik < 0 for large χ. By definition

Ik(µ, χ) = −I
(1)
k (µ, χ) + I

(2)
k (µ, χ),

with I
(1)
k (µ, χ) = −

∫

π
2kµ

0 Lk(x, χ) cos(kµx)dx and I
(2)
k (µ, χ) =

∫ π
π

2kµ

Lk(x, χ) cos(kµx)dx.

Let λ̂ = λ( π
2kµ

, χ). For large enough χ > 0 such that x∗ < π
2kµ

, we have

I
(2)
k (µ, χ) < (1 − 1

2kµ
)

√

λ̂ − 1

λ̂ + 1
(λ̂ −

√

λ̂2 − 1)k =
C

(2)
k (µ)

χk
+ o(

1

χk
),

at large χ, where

C
(2)
k (µ) =

(

1 − 1

2kµ

)

1

4k sin2k π
2kµ

> 0

for µ, k ∈ Z
+. Since x∗ < π

2kµ
, the integrand in I

(1)
k is nonnegative. Using this along with

convexity of Lk in the interval (0, x∗), we obtain

I
(1)
k (µ, χ) > − cos(kµx∗)

∫ x∗

0

Lk(x, χ)dx > −1

2
L∗

kx∗ cos(µkx∗),

where L∗
k ≡ Lk(x∗(χ, k), χ) is independent of χ. Hence at large χ

I
(1)
k (µ, χ) >

C
(1)
k√
χ

+ o(
1√
χ

),

where

C
(1)
k =

1

π

(
√

1 + k2

k
− 1

)(
√

1 + k2 − 1

k

)k√

1 − 2k(
√

1 + k2 − k) > 0

The claim that Ik < 0 for large χ follows immediately. At small χ > 0 we have

∂Lk

∂χ
≈ − 1

2π
√

χ
sin

x

2
,

so
∂Ik

∂χ
≈ − 1

2π
√

χ

∫ π

0

sin
x

2
cos(kµx)dx = − 1

π
√

χ(1 − 4µ2k2)
> 0,

since µ, k ∈ Z
+. This and Ik(µ, 0) = 0 imply that Ik(µ, χ) > 0 for small χ. By continuity

of Ik and intermediate value theorem there exists χk(µ) > 0 such that Ik(µ, χk(µ)) = 0
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and Ik(µ, χk(µ)) > 0 for 0 < χ < χk(µ). This concludes the proof.

Proof of Proposition 2:

(a) First, note that for b ≤ 1 we have

Kk(b, µ, x) → b(b − cos(µx))

2b cos(µx) − b2 − 1

as k → ∞. Using the fact that b = λ −
√

λ2 − 1 ≤ 1, we can show that

J∞(µ, χ) ≡ lim
k→∞

Jk(µ, χ) =
arctan

√
χ

π
− χ

2π

∫ π

0

sin2 x
2
dx

sin2 µx
2

+ χ sin2 x
2

. (74)

From (63) it follows that ∆E∞(µ, χ) > ∆E1(µ, χ) if and only if J∞(µ, χ) > 0 and
∆E∞(µ, χ) = ∆E1(µ, χ) if and only if J∞(µ, χ) = 0. Applying the residue theorem
to evaluate the integral in (74), we obtain the transcendental equation (64) that deter-
mines χ∗(µ).

(b) If χ < χ1(µ), the Corollary to the conjecture following Proposition 1 and the
definition of Jk imply that Jk+1 − Jk = Vk+1,1 = Ik > 0 for all m ∈ Z

+. Hence Jk(µ, χ)
monotonically increase with k to the limiting value J∞(µ, χ). From (63) it follows that
∆Ek must monotonically decrease in this range of χ. Similarly, the same Corollary implies
Jk+1 < Jk for all m ∈ Z

+ if χ > µ2, so that the energy barriers monotonically increase.
Finally, if χ1 ≤ χ ≤ µ2 and k∗ is such that χk∗−1(µ) ≤ χ < χk∗

(µ), the Corollary implies
that Jk ≤ Jk−1 for k ≤ k∗ and Jk > Jk−1 for k > k∗, which results in the maximum energy
barrier at k = k∗. This completes the proof.

Proof of Proposition 3:

We start with two general observations that hold for any χ > 0, µ ∈ Z and n ∈ Z+.
First, Proposition 1(a) implies that

n+1
∑

i=1

n+1
∑

i=1

Vi,j −
n

∑

i=1

n
∑

i=1

Vi,j = V1,1 + 2

n
∑

k=1

Ik > 0,

and therefore
n+1
∑

i=1

n+1
∑

i=1

Vi,j >
n

∑

i=1

n
∑

i=1

Vi,j. (75)

Second, note that
∣

∣

∣

∣

max
1≤i≤n

n
∑

j=1

Vi,j

∣

∣

∣

∣

≤ V1,1 + 2
n−1
∑

k=1

|Ik| < 2V1,1, (76)
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where the second inequality follows from Proposition 1(a).
Now consider

Rn =
∆E

∆E1

=
V1,1

∑n
i,j=1 Vi,j

(

max
1≤i≤n

∑n
j=1 Vi,j

)2 .

We need to show that Rn > 1 for all integer n ≥ 2. We consider the following three cases.
Case I: χ ≥ µ2

Recall that in this case Ik < 0 for n ∈ Z+, by the first part of the corollary to the
conjecture following Proposition 1. Hence max

∑n
j=1 Vi,j ≤ V1,1, and by (75), we have

∑n
i=1

∑n
i=1 Vi,j > V1,1 for n ≥ 2. Thus Rn > 1.

Case II: χ ≤ χ1(µ)
In this case I1 ≥ 0 and Ik > 0 for k ≥ 2. Thus

n
∑

i=1

n
∑

i=1

Vi,j = nV1,1 + 2
n−1
∑

k=1

(n − k)Ik > nV1,1.

Using (76), we obtain

Rn >
n

4
> 1

if n > 4. The cases n = 2, 3 and 4 will be considered separately. For n = 2,

R2 =
2V1,1(V1,1 + I1)

(V1,1 + I1)2
=

2V1,1

(V1,1 + I1)
> 1

because I1 < V1,1. For n = 3, we write

max
1≤i≤3

n
∑

j=1

Vi,j = V1,1 + S,

where S is given by either S = 2I1 ≥ 0 or S = I1 + I2 > 0. If S = 2I1,
∑3

i=1

∑3
i=1 Vi,j =

3V1,1 + 4I1 + 2I2 > 2V1,1 + 4I1, so that

R3 >
2V1,1(V1,1 + 2I1)

(V1,1 + 2I1)2
=

(V1,1 + 2I1)
2 + V 2

1,1 − 4I2
1

(V1,1 + 2I1)2
> 1

since I1 < V1,1/2 and thus V 2
1,1 > 4I2

1 . If S = I1 +I2, we write
∑3

i=1

∑3
i=1 Vi,j > 2(V1,1 +S)

and hence

R3 >
2V1,1(V1,1 + S)

(V1,1 + S)2
=

(V1,1 + S)2 + V 2
1,1 − S2

(V1,1 + S)2
> 1

since S2 < V 2
1,1. The proof of R4 > 1 is similar.
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Case III: χ1(µ) < χ < µ2

In this case the second part of the corollary states that there exists an integer k∗ ≥ 2
such that Ik < 0 for k < k∗, Ik∗

≤ 0 and Ik > 0 for k > k∗. Consequently, there exists
n∗ > k∗ (n∗ ≥ 3) such that

∑n
k=1(n − k)Ik ≥ 0 for n ≥ n∗ and

∑n
k=1(n − k)Ik < 0 for

n < n∗.
For n < k∗ the situation is the same as in Case I (all Ik are negative), and we can

prove that Rn > 1. For n ≥ n∗ + 1 we can use (75) repeatedly along with the definition
of n∗ to obtain

n
∑

i=1

n
∑

i=1

Vi,j >

n∗+1
∑

i=1

n∗+1
∑

i=1

Vi,j = (n∗ + 1)V1,1 + 2

n∗
∑

k=1

(n − k)Ik ≥ (n∗ + 1)V1,1.

Using this and (76), we have

Rn >
n∗ + 1

4
≥ 1,

since n∗ ≥ 3. Finally, consider n such that k∗ ≤ n ≤ n∗. In this case we have
∑n−1

k=1(n −
k)Ik < 0. Since the sum of entries in all rows of V is greater than the maximum sum of
entries in a row, and each row contains V1,1, we have

max
1≤i≤n

n
∑

j=1

Vi,j < 2
n−1
∑

k=1

(n − k)Ik + V1,1.

Since n ≥ 2, this yields

Rn >
V1,1(nV1,1 + 2

∑n−1
k=1(n − k)Ik)

(V1,1 + 2
∑n−1

k=1(n − k)Ik)2
>

V1,1

V1,1 + 2
∑n−1

k=1(n − k)Ik

> 1,

due to the negative sum in the denominator. Thus Rn > 1 for all n ≥ 2 in Case III.
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