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Abstract. This note considers the elliptic-elliptic singular perturbation problem:
−ε2△u+ u = f , in Ω,

u = 0 , on ∂Ω.
We trace through elliptic regularity theory to find conditions under which solutions are regular
uniformly in the singular perturbation parameter. This uniformity result is important for differential
filters and approximate deconvolution models.
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1. Introduction. Let Ω be a bounded, regular domain in Rd, d = 1, 2, 3 with
Ck+2 boundary and 0 < ε ≤ 1 a small parameter. Consider the elliptic-elliptic
singular perturbation problem

−ε2△u+ u = f , in Ω, (1.1)
u = 0 , on ∂Ω.

Let Hk = Hk(Ω) denote the Sobolev space of all functions with derivatives of
order ≤ k in L2(Ω) = H0 with associated norm || · ||k and semi-norm | · |k. If k = 0
we drop the subscript 0 in the norm and write simply || · ||. The Sobolev space H10 (Ω)is H10 := {v ∈ H1 : v = 0 on ∂Ω} . For (1.1) we assume

f ∈ Hk(Ω)⋂H10 (Ω). (1.2)
In particular, we stress that this implies the important condition

f = 0 on ∂Ω. (1.3)
This condition precludes simple boundary layers in u but does not imply higher deriv-
atives of u are free of layers. From (1.1) it also implies that △u = 0 on ∂Ω.

The shift theorem, e.g.,G������ ��	 T��	����� [GT], implies that the solution
of (1.1) satisfies

u ∈ Hk+2(Ω)⋂H10 (Ω) , and ||u||k+2 ≤ C(ε)||f ||k,
where C(ε) → ∞ as ε → 0.Herein we investigate the question of uniform in ε
regularity theorem. Is there a C = C(k,Ω), independent of ε, such that the solution
of (1.1) under (1.2) satisfies

||u||k ≤ C||f ||k. (1.4)
This simple question has turned out to be more delicate than it appeared at first. We
prove the following in Section 2.
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T
����� 1.1. Suppose f ∈ H2(Ω)⋂H10 (Ω). Then
||u||l ≤ C||f ||l , for l = 0, 1, 2. (1.5)

If f ∈ H4(Ω)⋂H10 (Ω),△f ∈ H10 (Ω). Then
||u||l ≤ C||f ||l , for l = 0, 1, 2, 3, 4. (1.6)

In general, suppose f ∈ H2k(Ω)⋂H10 (Ω),△jf ∈ H10 (Ω), j = 1, · · ·, k − 1. Then for
l = 1, · · ·, 2k

||u||l ≤ C||f ||l. (1.7)

The assumption that powers of △f vanish on the boundary can be weakened in
appearance to read that normal derivatives of the same order vanish on the boundary,
Section 3. However, examples in section 4 show that some extra condition is necessary.
Without it we have the following (Section 3).

C�������� 1.2. Suppose f ∈ H3(Ω)⋂H10 (Ω). Then
||u||3 ≤ C(||f ||3 + ε−1||f ||2)

It seems likely that all the results herein are in the published literature, explicitly
or implicitly, somewhere (e.g., L���� [L73]). No claim of novelty is made. This report
is just a (not to be published) technical note/white paper that presents a result useful
for some applications.

Uniformity in the parameter is critical in some important applications, some of
the authors and collaborators papers touching on these applications are given in the
reference list; this note is motivated by one such application. Simple examples in 1d
show that Theorem 1.1 cannot be true if (1.3) does not hold and that local versions
of Theorem1.1 cannot hold as well.

2. Regularity by direct estimation of derivatives. We consider first the
cases where it may be proven by a direct argument. The estimates in Lemma 1.1
likely appear in every paper on regularity of (1.1). The estimates in Lemma 1.3
appear in T����� [T93] . All constants are uniform in ε.

L���� 2.1. Under (1.2) we have

ε2||△u||+ ε||∇u||+ ||u|| ≤ C||f ||, (2.1)
ε||△u||+ ||∇u|| ≤ C||∇f ||. (2.2)

Proof. Multiply the equation (1.1) by u and integrate over the domain Ω. This
gives

ε2||∇u||2 + ||u||2 = (f, u) ≤ 1
2 ||f ||

2 + 1
2 ||u||

2,

and the first estimate follows. For the second estimate, the equation (1.1) implies
-ε2△u = f − u and thus

ε2||△u|| ≤ ||f ||+ ||u|| ≤ C||f ||.
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The gradient bound in (2.1) is improvable. Indeed, if f ∈ H10 (Ω) then
u ∈ H3(Ω)⋂H10 (Ω).

Multiply by −△u and integrate. This gives

ε2||△u||2 + ||∇u||2 = (∇f,∇u) ≤ 1
2 ||∇f ||2 + 1

2 ||∇u||2,

and the second estimate (2.2) follows.
Next we use a reformulation of (1.1) in T����� [T93]. This reformulation is criti-

cal for the next step and the regularity question can be restated for the reformulation.
Since f ∈ H10 (Ω),

(u− f) ∈ H10 (Ω).
Subtraction gives the equation

−ε2△(u− f) + (u− f) = ε2△f , in Ω, (2.3)
(u− f) = 0 , on ∂Ω.

L���� 2.2. There is a C independent of ε such that
||u||k ≤ C||f ||k

if and only if
||u− f ||k ≤ C||f ||k.

Proof. This follows from the triangle inequality:
||u||k ≤ ||u− f ||k + ||f ||k,

||u− f ||k ≤ ||f ||k + ||u||k.

Consider therefore problem (2.3).
L���� 2.3. Under (1.2) we have

||∇(u− f)|| ≤ C||∇f ||
||u− f || ≤ Cε||∇f ||,

||∇(u− f)|| ≤ Cε||△f ||,
||u− f || ≤ Cε2||△f ||,

||△(u− f)|| ≤ C||△f ||.

Proof. Multiply (2.3) by u− f and integrate. This gives, after the usual manip-
ulations,

ε2||∇(u− f)||2 + ||u− f ||2 = (ε2△f, u) ≤ ε2||∇(u− f)||||∇f ||.
3



This proves the first two estimates. On the above RHS we can also write (ε2△f, u) ≤
ε4
2 ||△f ||2 + 1

2 ||u − f ||2 , which proves the third and fourth estimate. Equation (2.3)
now implies

ε2||△(u− f)|| ≤ ε2||△f ||+ ||u− f || ≤ Cε2||△f ||.
Thus,

||△(u− f)|| ≤ C||△f ||.

Since ∂Ω is smooth, ||△u|| and |u|2 are equivalent. Thus we have the following.
C�������� 2.4. For k = 0, 1, 2 we have

||u||k ≤ C||f ||k.

These simple estimates can be continued and give precise information. If
f ∈ H10 (Ω) , then u ∈ H3(Ω)⋂H10 (Ω)

and from the equation −ε2△u = f − u ∈ H10 (Ω), so
△u ∈ H10 (Ω).

Thus △u satisfies
−ε2△△u+△u = △f ∈ H10 (Ω), in Ω, (2.4)

△u = 0 , on ∂Ω.
Applying the above estimates to △u gives for k = 0, 1, 2, 3, 4

||u||k ≤ C||f ||k. (2.5)
Clearly this can be repeated. Repeating this argument proves Theorem 1.1.
T
����� 2.5. Suppose f ∈ H2k(Ω)⋂H10 (Ω),△jf ∈ H10 (Ω), j = 1, · · ·, k − 1.

Then for l = 1, · · ·, 2k
||u||l ≤ C||f ||l. (2.6)

3. The bootstrap argument. The usual path to regularity is via a bootstrap
argument. The section considers how the classical bootstrap argument applies to the
regularity issue. We give a different proof of the basic regularity result of the last
section. We return to the case:

f ∈ Hk(Ω)⋂H10 (Ω). (3.1)
The case k = 3.
The usual procedure, G������ ��	 T��	����� [GT] is first to use a partition

of unity. Then, change variables to locally flatten the boundary. The sought estimate
is first proven for tangential derivatives through tangential difference quotients. Fi-
nally, the last derivative in the normal direction is bounded by tangential derivatives
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through the equation. This section uses an alternate but related strategy (which was
suggested to the author by L. T����� and used in [T93]) that simplifies the argument
considerably1 . The key is the following observation.

Observation: Let L be a smooth, first order differential operator which acts
tangentially to ∂Ω. Then, for any

v ∈ H2(Ω)⋂H10 (Ω)
we have

Lv ∈ H10 (Ω) , and
△Lv = L△v +Av,

where A is a second order differential operator.
P���������� 3.1. Suppose L is a smooth, first order differential operator which

acts tangentially to ∂Ω.Then,
||△L(u− f)|| ≤ C||f ||3

Proof. Applying L to the equation
−ε2△(u− f) + (u− f) = ε2△f , in Ω,

(u− f) = 0 , on ∂Ω.
gives

−ε2△L(u− f) + L(u− f) = ε2L△f + ε2A(u− f) , in Ω, (3.2)
L(u− f) = 0 , on ∂Ω.

Apply Lemma 2.3 to (3.1). This gives
||L(u− f)|| ≤ Cε2{||L△f ||+ ||A(u− f)||},

and since A is second order, Lemma 2.2 implies ||A(u− f)|| ≤ C||f ||2. Thus,
||L(u− f)|| ≤ Cε2||f ||3.

Next, apply the idea in the proof of Lemma 2.2 to equation (3.1). This gives
ε2||△L(u− f)|| ≤ ε2||f ||3 + ||L(u− f)|| ≤ Cε2||f ||3.

Thus we have
||△L(u− f)|| ≤ C||f ||3

for any first order differential operator acting tangentially to the boundary.
There remains only to check the norm of the one third order differential operator

acting normal to ∂Ω. This is one additive term in ∇△(u − f) so that the theorem
will hold if ||△(u− f)||1 ≤ C||f ||3.

1This considerable shortening of the proof motivated writing this note after checking the much
longer argument in Gilbarg and Trudinger [GT].
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To verify this estimate, recall that the equation
−ε2△(u− f) + (u− f) = ε2△f , in Ω,

(u− f) = 0 , on ∂Ω.
implies

ε2||△(u− f)||1 ≤ ε2||△f ||1 +C||∇(u− f)||. (3.3)
At this point, the best estimate of the last term in Lemma 2.3 is

||∇(u− f)|| ≤ Cε||△f ||.
This gives the following.

C�������� 3.2. Suppose f ∈ H3(Ω)⋂H10 (Ω). Then
||u||3 ≤ C(||f ||3 + ε−1||f ||2)

To eliminate the ε−1 it suffices that △f = 0 on ∂Ω.
L���� 3.3. Suppose △f ∈ H10 (Ω) , then

||∇(u− f)|| ≤ Cε2||△f ||1. (3.4)

Proof. Begin with the equation
−ε2△(u− f) + (u− f) = ε2△f , in Ω,

(u− f) = 0 , on ∂Ω.
Taking the inner product with −△(u− f) gives

ε2||△(u− f)||2 + ||∇(u− f)|| = ε2(△f,−△(u− f)) ≤ ε2||△f ||1||△(u− f)||−1.
The key step depends upon the extra regularity △f ∈ H10 (Ω). With this we can usethe estimate

(△f,−△(u− f)) ≤ ||△f ||1||△(u− f)||−1.
Now (u− f) ∈ H10 (Ω) so △(u− f) ∈ H−1(Ω) and

||△(u− f)||−1 ≤ C||∇(u− f)||.
Thus,

||∇(u− f)||2 ≤ Cε2||△f ||1||∇(u− f)||,
completing the proof.

It is clear that all that is really needed is that the second normal derivative of the
RHS be well defined and vanish on the boundary.

C�������� 3.4. Suppose f ∈ Hk(Ω)⋂H10 (Ω) , and △f ∈ H10 (Ω). Then, for
k = 0, 1, 2, 3 we have

||u||k ≤ C||f ||k.
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4. Examples. E������ 4.1 (When f �= 0 on the boundary). This is an
example in which f ∈ H1(Ω) from L���� [L73], page 133. First note that the
estimates derived imply that u → f as ε → 0 weakly in L2(Ω). If the RHS does not
vanish on the boundary the gradients cannot converge strongly since H10 (Ω) is a closedsubspace of H1(Ω) .

The following example illustrates this. Consider the 1d problem
−ε2u′′ + u = e−x, in (0,∞),

u = 0 , at x = 0.
The solution is

u(x) = 1
1− ε2 e

−x − 1
1− ε2 e

−x
ε .

It is easy to verify that on subdomains away from x = 0 there is no difficulty: u(x) →
f(x) . The derivatives do not converge near x = 0 due to the layer at x = 0.

E������ 4.2 (Regularity is false in general). The second example is due to P.
R����� and shows that (1.4) cannot hold for all k without extra conditions on the
RHS. Consider (1.1) in one dimension, which reduces to

−ε2u′′ + u = f , in (0, 1),
u = 0 , at x = 0, 1.

Pick f ∈ C∞(0, 1) with f ′′(x) �= 0 at all x. In the equation let x → 0. This implies
|u′′(0)| = ε−2|f(0)| = 0.

Differentiate twice and repeat this argument. We have −ε2u′′′′ + u′′ = f ′′ , in (0, 1).
Thus, at x = 0

|u′′′′(0)| = ε−2|f ′′(0)| → ∞ , as ε → 0.
By the Sobolev theorem we have

|u′′′′(0)| ≤ C||u||5 � C||f ||k
for any k (in particular k = 5) since the LHS blows up while the RHS is bounded.

E������ 4.3. The following 1d example, due to X��#� C
��, connects the
regularity question to results in asymptotic analysis. Suppose Ω = (0, 1) and I = [a, b]
is properly contained in (0, 1) so that 0 < a < b < 1. Let f(x) ≡ 1 on I and → 0
smoothly off I. Consider (1.1) in one dimension, which reduces to

−ε2u′′ + u = f , in (0, 1), (4.1)
u = 0 , at x = 0, 1.

Differentiating (4.1) and setting x ∈ I , we have
u′′′ = 1

ε2u
′,

u′′′′ = ε−2u′′ = ε−4u′

and thus
u(2k) = ε−2ku′ on I.
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Now, if the Theorem 1.1 holds we must have the apparently impossible relation
ε−2k||u′||L2(I) = ||u(2k)||L2(I) ≤ ||u(2k)||L2(0,1) ≤ C(k)||f ||2k. (4.2)

From (4.2) it appears that uniform in ε regularity is impossible. However, the solution
to (1.1) (and thus (4.1)) is an approximation to f(x) and thus since this particular
function satisfies f ′(x) = 0 on I we should have u′(x) small there as well. As-
ymptotic analysis of (3.1) indicates that on I , u′(x) is, in fact, exponentially close
to f ′(x) and thus is exponentially close to zero, e.g., [B75], [B79], [E79]. Thus,
sup0<ε≤1 ε−2k||u′||L2(I) ≤ C(k) , which is consistent with the possibility of uniform
regularity. Indeed, if f(x) is extended to have compact support then the regularity
result does hold while it fails for other smooth extensions by Example 2.

Indeed, this last example cannot be a counterexample because the same local
argument leading to (4.2) would apply to the same problem under periodic boundary
conditions (where the RHS is extended periodically). In the periodic case we can
verify uniform regularity by direct calculation. Indeed, we calculate

u(x) = ∑

j∈Z

1
1 + ε2( j

2π )2
fjeijx/2π,

where fj are the Fourier coefficients of f(x). We calculate further that in the periodic
case uniform regularity holds with C(k) = 1 trivially since:

||u(k)||2 = ∑

j∈Z

[ 1
1 + ε2( j

2π )2
]2

( j
2π )

2k|fj |2 ≤

≤ ∑

j∈Z
( j
2π )

2k|fj |2 = ||f (k)||2.

5. A nonlinear singular perturbation problem. We consider some simple
extensions to a nonlinear elliptic-elliptic singular perturbation problem involving the
p-Laplacian. It is well known that the p-Laplacian operator is strongly monotone
and locally Lipschitz and thus many global estimates extend from the linear case to
the p-Laplacian with very little modification. To begin, consider the elliptic-elliptic
singular perturbation problem

−εp∇ · (|∇u|p−2∇u) + u = f , in Ω, (5.1)
u = 0 , on ∂Ω.

We assume that f is as smooth as desired (and will be specific as such assumptions
occur) and f = 0 on ∂Ω. The scaling of the small parameter is changed for dimensional
reasons. Indeed, if the dimensions of length is L and of u is denoted by [u] = U .
Then in (1.1) [ε] = L. In the above nonlinear problem we calculate

[εp∇ · (|∇u|p−2∇u)] = [ε]p · [∇ · (|∇u|p−2∇u)] =
= [ε]p 1L (UL )p−2U

L ,

so that scaling by εp instead of ε2 retains the dimensions [ε] = L and thus the meaning
of the small parameter.
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Proceeding informally, the first estimate of Section 2 is proven by multiplication
by u and integration. Following the same path, we have

ε2p||∇ · (|∇u|p−2∇u)||2L2 + εp||∇u||pLp + ||u||2L2 ≤ C||f ||2L2 .
For the second estimate, since f is smooth and vanishes on the boundary, we may
multiply by εp∇ · (|∇u|p−2∇u). This gives

εp||∇ · (|∇u|p−2∇u)||2L2 + ||∇u||pLp ≤
∫

Ω
∇f · |∇u|p−2∇udx ≤

≤ ||∇f ||Lp ||∇u||p−1
Lp .

Thus,
||∇u||Lp ≤ ||∇f ||Lp .

The estimates in Lemma 2.3 can also be extended directly. Indeed, for compact-
ness, let

N(u) := −∇ · (|∇u|p−2∇u).
With this u− f satisfies the equation

εp{N(u)−N(f)}+ (u− f) = εpN(f).
Multiplying by u − f , integrating and using strong monotonicity for the first term
gives

C(p)εp||∇(u− f)||pLp + ||u− f ||2L2 ≤ (εpN(f), u− f)
≤ Cεp

∫

Ω
|∇f |p−1|∇(u− f)|dx

≤ Cεp||∇f ||p−1
Lp ||∇(u− f)||Lp .

This gives an alternate proof of the above estimate:
||∇(u− f)||Lp ≤ C||∇f ||Lp .

6. Application to differential filters. As noted in the introduction, this note
was motivated by an application to Germano’s idea of using differential filters as a
basic for large eddy simulation , LES. In LES almost universally the cutoff length scale
is denoted δ rather than ε (while in singular perturbations it is denoted ε also almost
universally). Thus, for this section we shift notation slightly with this replacement.
Given (typically a fluid velocity) φ ∈ Hk(Ω)⋂H10(Ω), its differential filter φ is theunique solution of

Aφ : = −δ2△φ+ φ = φ , in Ω, (6.1)
φ = 0 , on ∂Ω.

The following question occurs in the analysis of the accuracy of approximate
deconvolution operators:

For what n and k do we have
||A−nφ||k ≤ C||φ||k
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uniformly in δ?
We trace through now some answers provided by Theorem 1.1. For n = 1Theorem

1.1 implies
||φ||k ≤ C||φ||k , for k = 0, 1, 2 and that
△φ = 0 on ∂Ω.

Since △φ = 0 on ∂Ω, we can apply a higher estimate to the case n = 2. Indeed,
A−2φ = A−1φ = φ so that

||φ||k ≤ C||φ||k , for k = 0, 1, 2, 3, 4 and that
△φ = △φ = 0 on ∂Ω.

Further, the equation for φ is
−δ2△φ+ φ = φ , in Ω. (6.2)

Taking the Laplacian of this equation gives
−δ2△2φ+△φ = △φ , in Ω. (6.3)

Now, let x → ∂Ω and use △φ = △φ = 0 on ∂Ω. This implies
△2φ = △φ = φ = 0 on ∂Ω

so that even higher uniform regularity can be inferred for φ.
||φ||k ≤ C||φ||k , for k = 0, 1, 2, 3, 4, 5, 6.

This argument can be continued.
A%&��'��	������ 6.1. I thank P����%& R�����, C������ T���%
�� and

L�% T����� for help on the estimates herein. The proof of Theorem 1.1 (for k > 2)
is due to P����%& R����� as well as the critical second example of Section 4. The
proof of Proposition 3.1 is due to L�% T����� and Section 3 is based on a help-
ful communication of his. Lemmas 2.2 and 2.3 are from his paper [T93]. C������
T���%
�� helped me cross check the approach in Section 3 with the longer one de-
scribed, but not given in detail, there. The third example is due to X��#� C
�� and
came from a stimulating discussion with him.
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