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Abstract: If the Navier-Stokes equations are averaged with a local, spacial convo-
lution type filter, φ = gδ ∗ φ , the resulting system is not closed due to the filtered
nonlinear term uu. An approximate deconvolution operator D is a bounded linear
operator which satisfies

u = D(u) + O(δα),

where δ is the filter width and α ≥ 2. Using a deconvolution operator as an approximate
filter inverse yields the closure

uu = D(u)D(u) + O(δα).

We derive optimal approximate deconvolution models for 3D turbulence. Specifically,
we find the optimal parameters that minimize the time averaged consistency error of
approximate deconvolution operators and models for time averaged, fully developed,
homogeneous, isotropic turbulence.

We answer important questions of How to adapt deconvolution procedures to ve-
locities from homogeneous, isotropic turbulent flows? and What is the increase in
accuracy that results?
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1 INTRODUCTION

The grand problem of singular perturbations is turbulence:
the behavior of the solution of the Navier-Stokes equations
(NSE) as the Reynolds number, Re, increases and the NSE
reduce to the Euler equation. For many turbulent flows it

is known that suitable velocity averages retain regularity
as Re → ∞. We show how to exploit this in the design
of algorithms for turbulent flow simulation. Various tur-
bulence models are used for simulations seeking to predict
flow statistics or averages. In large eddy simulation (LES)
the evolution of local, spacial averages is sought. The ac-
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curacy of a model measured in a chosen norm, || · ||, i.e.

||averaged NSE solution − LES solution||,

can be assessed in several experimental and analytical
ways. One important analytical approach is to study the
model’s consistency error as a function of the averaging
radius δ and the Reynolds number Re.

This report studies the model’s consistency error of ap-
proximate deconvolution models as begun in [LL06]. Our
goal is to minimize the time averaged consistency error of
approximate deconvolution models (ADM) for fully devel-
oped, homogeneous, isotropic turbulence.

The family of models we consider is based upon the van
Cittert approximate deconvolution algorithm. Accelera-
tion/relaxation parameters can be introduced at no extra
computational cost. This leads to a new approximate de-
convolution algorithm, the Accelerated van Cittert and a
new model for u and p. We consider the problem of how
to select and adapt the parameters to turbulence. Such
analytical guidance on parameter selection is inherently
interesting; it also helps answer two important questions
of How to adapt deconvolution procedures to data from tur-
bulent velocities? and What is the increase in accuracy
that results? Our approach is a direct calculation of the
optimal parameters for the iteration applied to functions
with the power/energy spectrum E(k) ∼ αε2/3k−5/3 of ho-
mogeneous, isotropic turbulence. Using the K − 41 theory
of turbulence, we find optimal parameter values and give a
numerical comparison of the models corresponding to the
van Cittert and Accelerated van Cittert algorithms.

Let the velocity u(x,t)=uj(x1, x2, x3, t), (j=1,2,3) and
pressure p(x,t)=p(x1, x2, x3, t) be solutions of the underly-
ing Navier Stokes equations:

ut + u · ∇u − ν4u + ∇p = f in R
3

∇ · u = 0 in R
3 (1.1)

where ν = µ/ρ is the kinematic viscosity and f is the body
force. We consider the full Cauchy problem to focus on the
interior closure model, to separated it from technical prob-
lems associated with filtering through a boundary, [DJL],
and to postpone the important question of parameter se-
lection inside a turbulent boundary layer, [JLS], until a full
treatment of that problem is possible. The results herein
are extendable from the Cauchy problem using Fourier
transforms (herein) to L-periodic problems using Fourier
series. The Navier-Stokes equations are supplemented by
the initial condition, the usual pressure normalization con-
dition

u(x, 0) = u0(x) and

∫

R3

pdx = 0, (1.2)

and the assumption that the solution, its gradient, and all
data are square integrable.

Given φ ∈ L2(R3), its differentially filtered average, over
the selected averaging radius δ, is denoted by φ and is the
unique solution of:

−δ24φ + φ = φ. (1.3)

Differential filters are well-established in LES, starting
with the work of Germano [Ger86] and have many con-
nections to regularization processes such as the Yoshida
regularization of semigroups and the work of Foias, Holm,
Titi [FHT01] (and others) on Lagrange averaging of the
Navier-Stokes equations.

Averaging the NSE shows that the true flow averages
satisfy the (non-closed) equations known as the Space Fil-
tered Navier-Stokes Equations (SFNSE)

ut + ∇ · (u u) − ν4u + ∇p = f

∇ · u = 0. (1.4)

An approximate deconvolution operator D is a bounded
operator, D : L2(R3) → L2(R3) satisfying

φ = Dφ + O(δα), for smooth φ and α ≥ 2.

In other words, D is an asymptotic (as δ → 0) approxi-
mate inverse of G. Given an approximate deconvolution
operator, the closure problem in the SFNSE can be solved
approximately (but systematically) by:

u u ' Du Du + O(δα),

for smooth u or in smooth flow regions. This closure ap-
proximation leads to approximate deconvolution model of
turbulence

wt + ∇ · (Dw Dw) − ν4w + ∇q = f

∇ · w = 0. (1.5)

Our estimates are based on assumptions on time averages
of solutions of the NSE which are implied for homogeneous,
isotropic turbulence by the Kolmogorov K − 41 theory.

The most important components of the K−41 theory are
the time (or ensemble) averaged energy dissipation rate, ε,
and the distribution of the flow’s kinetic energy across wave
numbers, E(k). Let < · > denote time averaging

< φ > (x) := lim
T→∞

1

T

∫ T

0

φ(x, t)dt. (1.6)

Given the velocity field of a particular flow, u(x, t), the
(time averaged) energy dissipation rate of that flow is de-
fined to be:

ε := lim
T→∞

1

T

∫ T

0

1

L3

∫

R3

ν|∇u(x, t)|2dx dt, (1.7)

where |∇u(x, t)|2 = ∂ui

∂xj
(x, t) · ∂ui

∂xj
(x, t).

The K-41 theory states that at high enough Reynolds
numbers there is a range of wave numbers

0 < kmin := Uν−1 ≤ k ≤ ε
1

4 ν−
3

4 =: kmax < ∞, (1.8)

known as the inertial range, beyond which the kinetic en-
ergy in u is negligible, and in this range

E(k)
.
= αε

2

3 k−
5

3 , (1.9)
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where α (in the range 1.4 to 1.7) is the universal Kol-
mogorov constant, k is the wave number and ε is the par-
ticular flow’s energy dissipation rate. The energy dissipa-
tion rate ε is the only parameter which differs from one
flow to another. Outside the inertial range the kinetic
energy in the small scales decays exponentially. Thus,
E(k) ≤ αε

2

3 k−
5

3 since E(k) ' 0 for k ≥ kmax and
E(k) ≤ E(kmin) for k ≤ kmin.

2 Consistency Error of Turbulence Models

In general, suppose u satisfies Ntrue(u) = f and w, an ap-
proximation to u, satisfies the approximate reduced model

NReduced(w) = f (2.1)

The true equation can be rewritten as Ntrue(u) = f or

NReduced(u) = f −
[
NReduced(u) − Ntrue(u)

]
(2.2)

Definition 2.1. The modelling error is e = u − w while
the reduced model’s consistency error or residual stress is
the residual of u in the approximate reduced model:

τ (u) = Ntrue(u) − NReduced(u). (2.3)

Comparing (2.2) to (2.1), the deviation of u from w is
driven by the consistency error τ (u). If an appropriate
setting is selected for (2.1) and (2.2) under which the op-
erators involved are C1, the error e = u −w satisfies

∫ 1

0

N ′

Reduced(su + (1 − s)w)e ds = τ (u).

The error is thus driven by the turbulence model’s consis-
tency error and the error’s size is related to the stability
properties of the linearization of the reduced model. From
either point of view, a small modelling error depends on a
reduced model with

(i) small consistency error, and
(ii)a sufficiently stable linearization.

When this framework is specialized to LES models
of turbulence, the consistency error is often called the
residual stress, [LL06], and is derived next.

Example 1. Given an approximate deconvolution op-
erator and the associated ADM, the model’s error u − w

is driven by the error in the deconvolution process itself.
Indeed, the exact SFNSE can be rewritten as:

ut + ∇ · (Du Du) − ν4u + ∇p = f + ∇ · τ . (2.4)

Definition 2.2. The error in the model (1.5) is e = u−w.
The consistency error of the model (1.5), τ (u) and the
deconvolution error, eDCV (u), are defined as:

τ (u) = Du Du − u u,

eDCV (u) = u − Du.

Comparing the exact SFNSE (2.4) to the LES model
(1.7), exactly as in (2.1) to (2.3), the model’s consistency
error τ drives the deviation of the true flow averages from
the model’s solution. Further, the model’s error, e = u−w

satisfies

et + ∇ ·
(
Du De + De Dw

)
− ν4e + ∇(p − q) = ∇ · τ ,

(2.5)
which gives a direct link between e and τ . Consider there-
fore τ . By rearrangement, τ satisfies

τ = Du (Du − u) + (Du − u) u

= DueDCV (u) − eDCV (u)u. (2.6)

Thus, by (2.5) minimizing the error in an LES-ADM
depends on minimizing the model’s consistency error τ (u).
By (2.6), minimizing a model’s consistency error hinges
upon minimizing the deconvolution error eDCV (u) = u −
Du.

One way to do this is to introduce and choose the relax-
ation parameters appropriately.

The theoretical results derived in Sections 3 and 4, can
be applied to other LES models as well. Examples include
the following:

Example 2. Time Relaxation Regularization [LN06]:
This model was introduced by Stolz, Adams and Kleiser
and complete mathematical theory was developed by Lay-
ton and Neda.

wt + w · ∇w − ν∆w + ∇q + χ (w − Dw) = f .

The time relaxation term χ (w − Dw) is included to damp
strongly the temporal growth of the fluctuating component
of w driven by noise, numerical errors, inexact boundary
conditions and so on.

The consistency error of time relaxation regularization
model is

τ (u) = χ (u− Du) = χeDCV (u).

Example 3. Leray Deconvolution Model :

wt + Dw · ∇w − ν∆w + ∇q = f .

The consistency error of the Leray deconvolution model is

τ (u) = uu − Duu = eDCV (u)u.

3 Approximate Deconvolution Methods

The basic problem in deconvolution is: given u find u.
In other words, solve the equation:

Gu = u, solve for u. (3.1)

If the averaging operator is smoothing, the deconvolution
problem will not be stably invertible.
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Definition 3.1. An approximate deconvolution operator,
D : L2(R3) → L2(R3) is an approximate inverse of G
satisfying:

(i) D : L2(R3) → L2(R3) is a bounded linear operator
and

(ii) Dφ = φ + O(δα), for some α ≥ 2 and sufficiently
smooth φ.

This section considers the van Cittert approximate de-
convolution algorithm, [BB98]. The approximation DNu

is computed by N steps of first order Richardson iteration
for the operator equation (3.1).

Algorithm 3.1. [The van Cittert Algorithm]:
Choose u0 = u. For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + {u− Gun}.

Set DN (u) := uN .

For example, the induced closure models corresponding
to N = 0 and 1 are

D0u = u, so u u ' u u + O(δ2),

D1u = 2u− u, so u u ' (2u − u) (2u− u) + O(δ4).
Since the deconvolution problem is ill posed, convergence

of DN (u) to u as N → ∞ is not expected.
For LES, convergence of the van Cittert approximation

DNu to u as N → ∞ (the classical question for itera-
tions) is not as significant as convergence of DNu to u as
δ → 0 and the asymptotic order of accuracy as δ → 0
for fixed N . When the averaging is given by a differen-
tial filter, the accuracy of DNu as an approximation to u

for smooth functions was addressed by Stolz and Adams
[AS01], Berselli, Iliescu and Layton [BIL04], and Dunca
and Epshteyn [DE06], in the following.

Lemma 3.1. Let the averaging operator be given by the
differential filter Gφ := (−δ24 + 1)−1φ. For any φ ∈
L2(R3),

φ − DNφ =
[
I − (−δ24 + 1)−1

]N+1
φ

= (−1)N+1δ2N+24N+1φ .

Proof. See [AS01] and [DE06].

In [LL06], the time averaged error in the van Cittert
deconvolution procedure was estimated.

Theorem 3.1. Under the K − 41 theory

< ||u−DNu||2L2(R3) >≤

(
3

2
+

1

4N + 10
3

)
αC

2

3

1 U2L3

(
δ

L

) 2

3

.

Proof. The proof follows from [LL06].

Remark 3.1. Much theory on filtering is developed in
terms of transfer function or symbol of the filtering op-
erator under Fourier transform. Consider the differential
filter given by (1.3). The Fourier transform of (1.3) is

[
δ2(k2

1 + k2
2 + k2

3)
2 + 1

]
φ̂(k) = φ̂(k), (3.2)

where k = (k1, k2, k3) is the dual variable of the Fourier
transform. Denote by k = |k| =

√
k2
1 + k2

2 + k2
3 the mag-

nitude of k. Then (3.2) gives

1

δ2|k|2 + 1
φ̂(k) = φ̂(k) (3.3)

and thus the transfer function or symbol of the filter is:

Ĝ(k) =
1

δ2k2 + 1
. (3.4)

Relaxation parameters can be introduced into Algorithm
3.1 without any increase in computational effort.

Algorithm 3.2. [Accelerated van Cittert Algorithm]:
Given relaxation parameters ωn, choose u0 = u. For n =
0, 1, 2, ..., N − 1 perform

un+1 = un + ωn{u− Gun}.

Set Dω
Nu := uN .

Further, a recursion formula for Dω
N can be proven.

Lemma 3.2. For N = 0, 1, 2, ... the following holds true

Dω
N+1 = Dω

N + ωN (I − Dω
NG).

Proof. Indeed, note that Dω
0 = I , where I is the identity

operator on L2(R3). Further more, for any integer N > 1

Dω
N+1u = uN + ωN{u− GuN} = Dω

Nu + ωN{u− GDω
Nu}

= (Dω
N + ωN{I − Dω

NG})u .

Thus, Dω
N+1 = Dω

N + ωN (I −Dω
NG) for every nonnegative

integer N .

The induced closure model corresponding to N = 1 is:

Dω
1 u = (1 + ω0)u + ω0u, so

u u ' ((1 + ω0)u + ω0u) ((1 + ω0)u + ω0u) + O(δ4).

Next, we analyze in more detail proprieties of the Accel-
erated van Cittert deconvolution operator, Dω

N .

Lemma 3.3. Let the averaging operator be the differential
filter Gφ := (−δ24 + I)−1φ. If the relaxation parameters
ωi are positive, for i = 0, 1, ..., N , then the Accelerated van
Cittert deconvolution operator Dω

N : L2(R3) → L2(R3) is
self-adjoint and positive definite.

Proof. First note that the operator G is bounded, com-
pact and self adjoint. Indeed, multiplying (1.3) by φ and
integrating over R

3 leads to

0 ≤ ||Gφ||2 ≤ ||φ||2.

This shows that G is bounded and ||G|| ≤ 1. To show
G is self-adjoint and positive definite note that for every
φ ∈ L2(R3)

0 ≤ δ2||∇φ||2 + ||φ||2 = (φ, φ) = (φ, Gφ).
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We remark that both Dω
0 and Dω

1 are symmetric, as lin-
ear combinations of I and G, the identity and the decon-
volution operators respectively. Proceeding by induction
assume Dω

l is symmetric. From Lemma 3.2

Dω
l+1 = Dω

l + ωl(I − Dω
l G),

for every nonnegative integer l. Thus Dω
l+1 is symmetric as

linear combination of two symmetric operators I and Dω
l .

Moreover, as in Remark 3.1, the symbol of G satisfies

0 < Ĝ(k) =
1

δ2k2 + 1
≤ 1.

Also the symbol of Dω
1 satisfies

1 ≤ D̂ω
1 (k) = 1 + ω0

(
δ2k2

δ2k2 + 1

)
≤ 1 + ω0

for ω0 ≥ 0 by the Spectral Mapping Theorem.

We now prove that the eigenvalues of Dω
l+1 are pos-

itive between 1 and 1 +
∑l

j=0 ωl. Proceeding by induc-
tion, assume that the eigenvalues of Dω

l are between 1 and

1 +
∑l−1

j=0 ωl. Lemma 3.2 and Spectral Mapping Theorem
give

λ(Dω
l+1) = λ(Dω

l ) + λ (ωk(I − Dω
l G))

where λ(A) denotes the eigenvalues of any operator A. Ap-

plying the induction hypothesis λ(Dω
l+1) = 1 +

∑l
j=0 ωl,

when k → 0 and λ(Dω
l+1) = 1 as k → ∞.

4 K-41 Optimized Approximate Deconvolution Models

This section considers the consistency error of the model

wt + ∇ · (Dω
Nw Dω

Nw) − ν4w + ∇q = f

∇ · w = 0,

for turbulent velocity fields. We recall that for N =
0, 1, 2, ..

τN = Dω
NuDω

Nu − uu

= (Dω
Nu − u)Dω

Nu + u(Dω
Nu − u). (4.1)

Using the time averaged Cauchy-Schwarz inequality and
stability bounds, following [LL06], we have:

< ||τN ||L1(R3) >≤ (1 + ||Dω
Nu||) < ||u||2L2(R3) >1/2

< ||u − Dω
Nu||2L2(R3) >1/2 . (4.2)

Thus, estimates for the consistency error in L1(R3) follow
from estimates of < ||u−DNu||2L2(R3) >1/2. Further opti-
mization of the model’s consistency error depends on the
minimization of the deconvolution algorithm’s error in the
appropriate sense.

Lemma 4.1. Let eDCV
N = u − Dω

Nu be the deconvolution
error. Then, eDCV

N satisfies eDCV
0 = u − u and for all

positive integers N

eDCV
N =

N−1∏

i=0

(I − ωiG)eDCV
0 . (4.3)

Proof. We will use mathematical induction. Note that the
conclusion holds true for N = 1:

eDCV
1 = (I − ω0G)u − (I − ω0G)u = (I − ω0G)eDCV

0 ,

since u = Gu. Assuming eDCV
k =

∏k−1
j=0 (I − ωjG)eDCV

0

for any k, let us prove

eDCV
k+1 =

k∏

j=0

(I − ωjG)eDCV
0 .

Indeed, since eDCV
k+1 can be rewritten as eDCV

k+1 = (I −
ωk)Gu− (I −ωkG)uk and applying the induction hypoth-
esis we obtain that:

eDCV
k+1 =

k∏

i=0

(I − ωiG)eDCV
0 , for all k ≥ 1. (4.4)

and therefore (4.3) holds true.

Lemma 4.2. We have:

< ||eDCV
N ||2L2(R3) >=

∫ kmax

kmin

[
N−1∏

i=0

(1 − ωiĜ(k))

]2

(1 − Ĝ(k))2E(k)dk.

Proof. Let HN denote the symbol of I − Dω
NG. Thus

HN (k) =

[
N−1∏

i=0

(1 − ωiĜ(k))

]2

(1 − Ĝ(k))2.

Using Parceval’s theorem:

< ||eDCV
N ||2L2(R3) >=< ||êDCV

N ||2L2(R3) >

= lim
T−>∞

1

T

∫ T

0

∫ kmax

kmin

HN (k)|ûN (k, t)|2dk

= 2

∫ kmax

kmin

HN (k) <
1

2
|ûN (k, t)|2 > dk.

But, E(k) =
∫ kmax

kmin
< 1

2 |ûN (k, t)|2 > dk and thus

< ||eDCV
N ||2L2(R3) >= 2

∫ kmax

kmin

HN (k)E(k)dk,

which concludes our proof.

So, the optimization problem reduces to finding the
minimum of the function FN : R

N
+ → R+, where

FN (ω0, ..., ωN ) is:
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∫ kmax

kmin

[
N−1∏

i=0

(1 − ωiĜ(k))

]2

(1 − Ĝ(k))2E(k)dk. (4.5)

In the case of fully developed, homogeneous, isotropic
turbulence, the integral (4.5) behaves differently for low
and high wave numbers. The transition point is the cutoff
wave number δ. This leads to several problems for selection
of the optimal ωi. The first problem is find ωi to minimize

∫ kmax

kmin

[
N−1∏

i=0

(1 − ωiĜ(k))

]2

(1 − Ĝ(k))2E(k)

subject to E(k) = αε2/3k−5/3. (4.6)

The difficulty with this problem is that the formula used
for E(k) only holds on the inertial range and only the re-
solved scales of that inertial range are calculated. Thus,
it is sensible to restrict the scales in (4.6) to the resolved
scales of the inertial range. So, we can restrict the problem
to finding ωi to minimize

∫ π
δ

0

[
N−1∏

i=0

(1 − ωiĜ(k))

]2

(1 − Ĝ(k))2E(k)

subject to E(k) = αε2/3k−5/3. (4.7)

We minimize FN in R
N by solving the N × N system:

(
∂FN

∂ω0
, ...,

∂FN

∂ωN−1

)
= 0. (4.8)

We solved the above system for N = 1, ..., 5. The K − 41
optimized relaxation parameters are given in Table 1.

N ω0 ω1 ω2 ω3 ω4

1 2.10 - - - -
2 2.02 2.02 - - -
3 1.44 4.91 1.44 - -
4 1.49 1.49 5.83 1.49 -
5 1.53 1.53 6.52 1.53 1.53

Table 1: Direct optimized parameters

Table 2 contains estimates of

< ||êDCV
N ||2L2(R3) >

αε2/3δ2/3
,

when N = 1, 2, 3, 4, 5 in the case when the specified pa-
rameters are used. It shows the exact improvements in
the deconvolution error of the models (1.5), van Cittert
versus Accelerated van Cittert for homogeneous, isotropic
turbulence, i.e. under the K − 41 theory. The van Cit-
tert deconvolution operator corresponds to the case when
the relaxation parameters ωi are all 1. In the calculations
we used the and K − 41 direct optimized parameters from
Table 1.

The reduction in the model’s consistency error depends
on the order of deconvolution. The Accelerated van Cittert
algorithm leads to a model with a consistency error much
more smaller than the regular van Cittert.

N optimized ωi unoptimized ωi

1 0.150 0.258
2 0.068 0.155
3 0.017 0.101
4 0.007 0.070
5 0.003 0.049

Table 2: Normalized Deconvolution Error

5 A Numerical Illustration and Conclusions

For an LES with deconvolution model to be feasible the
model’s consistency error must be small:

< ||τ || ><< 1.

Thus selection of parameters to minimize model consis-
tency error increases the problems for which LES is feasible
and reduces the computational effort of LES.

It is important to note that the use of optimal param-
eters requires no extra computational effort. Two main
results of this work are

(i) the values of those optimal parameters (in section 4)
and

(ii) the relative reduction in the model consistency error
that results in their use:

minω0,ω1,···,ωN−1
FN (ω0, ω1, · · ·, ωN−1)

FN (1, 1, · · ·, 1)

is at least 50%. Table 2 reflects the changes in the de-
convolution error of the two models we considered. It is
important to note that the relative increase in accuracy ob-
tained using optimal parameters itself increases with the
order of the model.

The Accelerated van Cittert deconvolution operator is
appropriate for many other LES models. We give a nu-
merical example; we consider the Time Relaxation Regu-
larization:

wt + w · ∇w − ν∆w + ∇q + χ (I − DNG)
2
w = f

∇ · w = 0. (5.1)

In (5.1), we study an underresolved flow with recirculation,
the flow across a step with N = 1. It is known that a
particularity of this flow is a recirculating vortex behind
the step, which detaches between Re = 500 and Re = 700.
The parabolic inflow profile is given by u = (u1, u2)

T , with
u1 = y(10−y)/25 and u2 = 0, no-slip boundary conditions
are imposed on the top and bottom boundaries, and the
”do nothing” boundary condition is used for the outflow.

The computations were performed with the software
FreeFem++, see [FF]. The models were discretize in time
with the implicit second order Crack-Nicholson scheme and
in space order and with the Taylor Hood finite element
method, i.e. the velocity was approximated by continu-
ous picewise quadratics and the pressure by continuous
picewise linears. The goal of this test is to use the Accel-
erated van Cittert deconvolution operator in (5.1). The
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results should be consistent with the well known behav-
ior of the fluid. Behind the step the flow simulation using
the optimal parameters corectly develops vortices separate
from the step. Figures 1 through 4 show the results at
T = 10, 20, 30, 40 for Re = 500, χ = 0.001, dt = 0.005,
δ = 1.5.

Figure 1: Flow Field at T=10.

Figure 2: Flow Field at T=20.

Figure 3: Flow Field at T=30.

Figure 4: Flow Field at T=40.

The overall analytic conclusion is that higher order mod-
els are preferable to lower order models up to the point
where their computational cost become prohibitive.

This observation, while surprising from the point of view
of traditional error analysis, is consistent with the exten-
sive experiments in the work of Stolz and Adams with
the models. We expect that the use of optimized LES-
ADMs will only increase further the competitive advantage
of higher order models over lower order models.
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