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Abstract

We study a computationally attractive algorithm (based on an extrapolated Crank-
Nickolson method) for a recently proposed family of high accuracy turbulence models
(the Leray-deconvolution family). First we prove convergence of the algorithm to the
solution of the Navier Stokes equations (NSE) and delineate its (optimal) accuracy.
Numerical experiments are presented which confirm the convergence theory. Our 3d
experiments also give a careful comparison of various related approaches. They show
the combination of the Leray-deconvolution regularization with the extrapolated Crank-
Nicolson method can be more accurate at higher Reynolds number that the classical
extrapolated trapezoidal method of Baker [6]. We also show the higher order Leray-
deconvolution models (e.g. N = 1, 2, 3) have greater accuracy than the N = 0 case of
the Leray-alpha model. Numerical experiments for the 2-dimensional step problem are
also successfully investigated, showing the higher order models have a reduced effect on
transition from one flow behavior to another. To estimate the complexity of using Leray-
deconvolution models for turbulent flow simulations we estimate the models’ microscale.

Key words. Leray-deconvolution model, Leray-alpha model, turbulence, deconvolu-
tion, large eddy simulation

AMS subject classifications: 65M12, 65M60, 76D05, 76F65

1 Introduction

The Leray-deconvolution (LerayDC) fluid flow model is a recently developed, high accuracy
regularization of the Navier-Stokes equations (NSE). The NSE are given by

ut + u · ∇u− ν∆u +∇p = f, ∇ · u = 0 , in Ω× (0, T ). (1.1)

In 1934, J. Leray [29, 30] introduced the following regularization of the NSE (now known
as the Leray model) as a theoretical tool:

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 , in Ω× (0, T ). (1.2)
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He chose u = gδ ? u, where gδ is a gaussian associated with a length scale δ and proved
existence and uniqueness of strong solutions to (1.2) and convergence as δ → 0 (modulo
a subsequence) to a weak solution of the NSE. If that weak solution is a smooth, strong
solution it is not difficult to prove additionally that ||uNSE − uLerayModel|| = O(δ2) using
only ||u− u|| = O(δ2).

These and other good theoretical properties have sparked a re-examination of the Leray
model (1.2) as a regularized model for simulations of turbulent flows with the modification
that the gaussian filter is replaced by a less expensive differential filter, u := (−δ24+1)−1u .
Properties of the resulting Leray-alpha model (1.2) are derived by Geurts and Holm [20, 19]
test in turbulent flow simulations and the theory of the model is developed in [10, 11, 22, 39].
The form of the model, its theory and the tests of Guerts and Holm [20, 19] reveal three 1

issues:

1. u is a nonlocal function of u and so must not be treated implicitly,

2. the accuracy of the model (1.2) is strictly limited to O(δ2), and

3. without additional terms added, simulations of the model can result in an accumula-
tion of energy around the cutoff length scale (i.e. wiggles).

In this report we consider a related, higher order accurate family, the Leray deconvolu-
tion models 2:

ut + DN (u) · ∇u− ν4u +∇p = f and ∇ · u = 0 , in Ω× (0, T ). (1.3)

where DN is a deconvolution operator, [7], satisfying for smooth u,

DNu = u + O(δ2N+2) N = 0, 1, 2, . . .

The model (1.3) has the following attractive properties:

• for N = 0 they include the Leray/Leray-alpha model as the lowest order special case.

• their accuracy is high, O(δ2N+2) for arbitrary N = 0, 1, 2, · · · .
• they improve upon the attractive theoretical properties of the Leray model, e.g.,

convergence (modulo a subsequence) as δ → 0 to a weak solution of the NSE and
||uNSE − uLerayDCM || = O(δ2N+2) for a smooth, strong solution uNSE , [27].

• given u the computation of DNu is computationally attractive.

• the higher order models (for N ≥ 1) give dramatic improvement of accuracy and
physical fidelity over the N = 0 case (see section 4).

• increasing model accuracy can be done in two ways: (i) cutting δ → δ/2 increases
accuracy for N = 0 by ' 1/4 but requires remeshing with ' 8× as many unknowns,
and (ii) increasing N → N + 1 increases accuracy from O(δ2N+2) to O(δ2N+4) and
requires one more Poisson solve ((−δ24+ 1)−1φ) per time step.

1It is also not frame invariant, Guermond, Prudhomme and Oden [18]
2This family of models is an idea of A. Dunca. Private communication.
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• although our analysis of (1.3) is for differential filters, the model is independent of this
filter choice and the analysis is extensible to many other filters with only technical
modifications.

This report has two goals. First, we consider two related unconditionally stable algo-
rithms for (1.3), the CN (Crank-Nickolson) and CNLE (Crank-Nickolson with linear ex-
trapolation) methods, section 3. We give a numerical analysis of the CN method and tests
of both CN and CNLE methods and delineate some of its advantages and disadvantages
beyond the usual error analysis. The numerical analysis gives analytic insight into balancing
the meshwidth h and the filtering radius δ. Second, we test the family of models themselves
for accuracy and physical fidelity (section 4) and draw tentative conclusions about the Leray
deconvolution family.

The ideas we test are outgrowths of the seminal work of J. Leray [29, 30], the recent
work on the Leray alpha model [20, 19], the early work of G. Baker [6] on extrapolated
Crank-Nicolson methods and the development of the deconvolution approach to large eddy
simulation. The deconvolution approach to modelling turbulence is an ingenious idea of
Stolz and Adams with Kleiser [1, 4] which has interesting and extensive mathematical
justification for its accuracy and effectiveness, e.g., [2, 3, 5].

We will formally present the scheme in Section 2 after giving the notation and defini-
tions necessary for the scheme and for the analysis used throughout this article. Section 3
develops the theory for the scheme, showing stability, existence of solutions, and analysis
of convergence. Numerical experiments are presented in Section 4, followed by conclusions.

The models (1.2), (1.3) are properly regularizations of the NSE. Thus, we stress that the
correct question is to study convergence of discretizations (1.2), (1.3) to solutions of the NSE
as h and δ → 0 (rather than to solution of (1.2), (1.3)). This is the question we study herein.

2 Notation and Preliminaries

This section summarizes the notation, definitions and preliminary lemmas needed. We start
by introducing the following notation. The L2(Ω) norm and inner product will be denoted
by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by
‖ · ‖Lp and ‖ · ‖W k

p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions v(x, t)

defined on the entire time interval (0, T ), we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=
(∫ T

0
‖v(t, ·)‖m

k dt

)1/m

.

We consider both, the periodic case and the case of internal flow with no slip boundary
conditions. (There is mainly only small notational differences between these two cases in
the analysis.)

In the periodic case, Ω = (0, L)d, d = 2, 3 and the velocity pressure spaces are

X := H1
# := {v ∈ H1(Ω) ∩ L2

0(Ω) : v is L periodic } , Q := L2
0(Ω) , (2.1)

while in the case of internal flow Ω is a regular, bounded domain in Rd and

X := H1
0 (Ω) , Q := L2

0(Ω) . (2.2)
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We denote the dual space of X as X?, with the norm ‖ · ‖?. The space of divergence free
functions is denoted

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} . (2.3)

The velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q are assumed to be con-
forming and satisfy the LBBh condition, e.g. [17] The discretely divergence free subspace
of Xh is, as usual

V h = {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh} . (2.4)

In addition, we make use of the following approximation properties,[9]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
v∈Xh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
r∈Qh

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

(2.5)

Taylor-Hood elements (see e.g [9][17]) are one common example of such a choice for (Xh, Qh),
and are also the elements we use in our numerical experiments.

We employ the usual skew-symmetrization used in many finite element discretizations
for fluid flow problems. Using this trilinear form ensures stability of the method.

Definition 2.1 (Skew Symmetric operator b∗). Define the skew-symmetric trilinear
form b∗ : X ×X ×X → R as

b∗(u, v, w) :=
1
2
(u · ∇v, w)− 1

2
(u · ∇w, v) (2.6)

We now list important estimates for the b∗ operator necessary in Section 3.

Lemma 2.2. For u, v, w ∈ X, and also v ∈ L∞(Ω) for the first estimate, the trilinear term
b∗(u, v, w) can be bounded in the following ways

b∗(u, v, w) ≤ 1
2

(‖u‖ ‖∇v‖∞ ‖w‖+ ‖u‖ ‖v‖∞ ‖∇w‖) . (2.7)

b∗(u, v, w) ≤ C0(Ω) ‖∇u‖ ‖∇v‖ ‖∇w‖ , (2.8)

b∗(u, v, w) ≤ C0(Ω) ‖u‖1/2 ‖∇u‖1/2 ‖∇v‖ ‖∇w‖ . (2.9)

Proof. The result of the first bound follows immediately from the definition of b∗. The proof
of the other two bounds can be found, for example, in [26].

Our analysis selects discrete differential filters. Continuous differential filters were intro-
duced into turbulence modeling by Germano [15][16] and used in NS-α and related models
[10][11][22][20],[19]. They can arise, for example, as approximations to gaussian filters of
high qualitative and quantitative accuracy [14].
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Definition 2.3 (Continuous differential filter). For periodic φ ∈ L2(Ω) and δ > 0
fixed, denote the filtering operation on φ by φ, where φ is the unique periodic solution of

−δ2∆φ + φ = φ. (2.10)

We denote by A := (−δ2∆ + I), so A−1v = v. We define next the discrete differential
filter following, Manica and Kaya-Merdan [32].

Definition 2.4 (Discrete differential filter). Given v ∈ L2(Ω), for a given filtering
radius δ > 0, vh = A−1

h v is the unique solution in Xh of

δ2(∇vh,∇χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh. (2.11)

Definition 2.5. Define the L2 projection Πh : L2(Ω) → Xh and discrete Laplacian operator
∆h : X → Xh in the usual way by

(Πhv − v, χ) = 0 , (∆hv, χ) = −(∇v,∇χ) ∀χ ∈ Xh. (2.12)

With 4h, we can write vh
h

= (−δ24h + Πh)−1vh and Ah = (−δ24h + Πh).

Remark 2.6. In the nonperiodic case, an important option is to define the differential filter
by a discrete Stokes problem so as to preserve incompressibility approximately. In this case,
given φ ∈ V , φh

h ∈ V h would be defined by

δ2(∇φh
h
,∇vh) + (φh

h
, vh) = (φ, vh) for all vh ∈ V h .

This is of course a more expensive filtering operation. Herein we study the less expensive
option (2.11). Discrete incompressibility is imposed on the approximate velocity directly in
the model. Discrete incompressibility of uh is addressed by explicit skew-symmetrization of
the trilinear form in the discrete momentum equation.

Remark 2.7 (Modification of the model). The model (1.3) is correct as written for
any filtering operation that preserves incompressibility exactly. For no-slip boundary con-
ditions and the differential filter u = (−δ24 + 1)−1u, incompressibility is only preserved
approximately (to O(δ2)). In this case the nonlinear term of the continuous model should
be modified (to preserve skew-symmetry) by

ut + DN (u) · ∇u− 1
2

(∇ ·DN (u)) u− ν4u +∇p = f , ∇ · u = 0 , in Ω× (0, T ).

This modification is consistent with our use of the skew-symmetrized trilinear form in the
discrete equations in all cases.

We now define the van Cittert approximate deconvolution operators.

Definition 2.8. The continuous and discrete van Cittert deconvolution operators DN and Dh
N

are

DNv :=
N∑

n=0

(I −A−1)nv , Dh
Nv :=

N∑

n=0

(Πh −A−1
h )nv . (2.13)
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Our numerical experiments use N = 0, 1, 2, 3 for which we have for v ∈ Xh,

Dh
0v = v, (2.14)

Dh
1v = 2v − vh, (2.15)

Dh
2v = 3v − 3vh + vh

h
, (2.16)

Dh
3v = 4v − 6vh + 4vh

h − vh
h

h

. (2.17)

DN was shown to be an O(δ2N+2) approximate inverse to the filter operator A−1 in Lemma
(2.1) of [12], recalled next.

Lemma 2.9. DN is a bounded, self-adjoint positive operator. DN is an O(δ2N+2) asymp-
totic inverse to the filter A−1. Specifically, for smooth φ and as δ → 0,

φ = DNφ + (−1)(N+1)δ2N+2∆N+1A−(N+1)φ

We begin by recalling from [8], [32] some basic facts about discrete differential filters
and deconvolution operators.

Lemma 2.10. For v ∈ Xh, we have the following bounds for the discretely filtered and
approximately deconvolved v

∥∥∥vh
∥∥∥ ≤ ‖v‖ (2.18)

∥∥∥Dh
Nvh

∥∥∥ ≤ C(N) ‖v‖ (2.19)
∥∥∥∇vh

∥∥∥ ≤ ‖∇v‖ (2.20)
∥∥∥∇Dh

Nvh
∥∥∥ ≤ C(N) ‖∇v‖ (2.21)

Proof. The proof of (2.18) follows from choosing χ = vh in (2.11), and applying Young’s
inequality. (2.19) follows exactly as in [8].

To prove (2.20), we note that the filter definition can be rewritten using ∆h as

−δ2(∆hvh, χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh.

Choosing χ = ∆hvh and using the definition of ∆h gives

δ2
∥∥∥∆hvh

∥∥∥
2
+

∥∥∥∇vh
∥∥∥

2
= (∇v,∇v)

Now Young’s inequality proves (2.20). (2.21) follows immediately from (2.20) and the
definition of Dh

N .

Lemma 2.11. For smooth φ the discrete approximate deconvolution operator satisfies

‖φ−Dh
Nφ

h‖ ≤ Cδ2N+2‖φ‖H2N+2 + C(δhk + hk+1)(
N∑

n=1

| (A−1)nφ |k+1 ) . (2.22)
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Proof. We start the proof by splitting the error

‖φ−Dh
Nφ

h‖ ≤ ‖φ−DNφ‖+ ‖DNφ−Dh
Nφ‖+ ‖Dh

Nφ−Dh
Nφ

h‖ . (2.23)

Lemma 2.9 gives

‖φ−DNφ‖ ≤ C δ2N+2‖φ‖H2N+2 . (2.24)

Lemma 2.10 gives for the third term in (2.23) that ‖Dh
Nφ −Dh

Nφ
h‖ ≤ C‖φ − φ

h‖. Then,
by using standard finite element techniques (i.e. subtracting (2.11) from the continuous
scheme of (2.10) and using standard inequalities) we have

‖φ− φ
h‖ ≤ C(δhk + hk+1)|φ|k+1 . (2.25)

It is left to bound the second term from (2.23). First, note that for N = 0, ‖D0φ
h −

Dh
0φ

h‖ = 0. Based on the Definition 2.8 of continuous and discrete deconvolution operators
and their expansion (see (2.14)- (2.17)), we note that DN is a polynomial of degree N in
A−1 (and Dh

N in A−1
h as well). Thus, the second term in (2.23) can be written as

‖DNφ−Dh
Nφ‖ = ‖

N∑

n=0

αn

(
(A−1)nφ− (A−1

h )nφ
) ‖ ≤

N∑

n=0

αn‖(A−1)nφ− (A−1
h )nφ‖ . (2.26)

For O(1) coefficients αn and for N = 1, the results (2.25) and (2.18) give

‖(A−1)φ− (A−1
h )φ‖ = ‖φ− φ

h
h

‖

≤ ‖φ− φ
h‖+ ‖φh − φ

h
h

‖
≤ ‖φ− φ

h‖+ ‖φ− φ
h‖

≤ C(δhk + hk+1) (|φ|k+1 + |φ|k+1) . (2.27)

Inductively,

‖(A−1)Nφ− (A−1
h )Nφ‖ ≤ C(δhk + hk+1)(

N∑

n=1

| (A−1)nφ |k+1 ) . (2.28)

The proof is completed by combining the derived bounds for the terms in (2.23).

Recall that a strong solution of the Navier Stokes equations satisfies u ∈ L2(0, T ; X) ∩
L∞(0, T ; L2(Ω)) ∩ L4(0, T ; X), p ∈ L2(0, T ;Q) with ut ∈ L2(0, T ; X

′
) such that

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) , ∀v ∈ X , (2.29)
(q,∇ · u) = 0 , ∀q ∈ Q . (2.30)

For simplicity and clarity of notation we let v(tn+1/2) = v((tn + tn+1)/2) for the contin-
uous variable and vn+1/2 = (vn + vn+1)/2 for both, continuous and discrete variables.
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Algorithm 2.12. [Crank-Nicholson Finite Element Scheme for Leray-deconvolution] Let
∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and M := T

∆t For n = 0, 1, 2, · · · ,M − 1, find
(wh

n+1, q
h
n+1) ∈ (Xh, Qh) satisfying

1
∆t

(wh
n+1 − wh

n, vh) + b∗(Dh
Nwh

n+1/2

h
, wh

n+1/2, v
h)− (qh

n+1/2,∇ · vh)

+ ν(∇wh
n+1/2,∇vh) = (fn+1/2, v

h) ∀ vh ∈ Xh (2.31)

(∇ · wh
n+1, χ

h) = 0 ∀χh ∈ Qh (2.32)

Remark 1. Since (Xh, Qh) satisfies the LBBh condition, (2.31)-(2.32) is equivalent to

1
∆t

(wh
n+1 − wh

n, vh) + b∗(Dh
Nwh

n+1/2

h
, wh

n+1/2, v
h) + ν(∇wh

n+1/2,∇vh)

= (fn+1/2, v
h) ∀ vh ∈ V h. (2.33)

Note that for the CNLE implementation of Algorithm 4.1, it is the deconvolved term
that is extrapolated. In CNLE, this term is from (known) previous time levels and so the
deconvolution is treated explicitly. This is particularly effective for (1.2) and (1.3). We have
also tested quadratic extrapolation. The preliminary results are much better qualitatively
than linear extrapolation.

Lemma 2.13.
∥∥un+1/2 − u(tn+1/2)

∥∥2 ≤ 1
48

(∆t)3
∫ tn+1

tn

‖utt‖2 dt , (2.34)

∥∥∥∥
un+1 − un

∆t
− ut(tn+1/2)

∥∥∥∥
2

≤ 1
1280

(∆t)3
∫ tn+1

tn

‖uttt‖2 dt , and (2.35)

∥∥∇(un+1/2 − u(tn+1/2)
∥∥2 ≤ (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt . (2.36)

The proof of Lemma 2.13 is based on the Taylor expansion with remainder. It is more
of technical nature and therefore omitted herein.

The error analysis uses a discrete Gronwall inequality, recalled from [25], for example.

Lemma 2.14 (Discrete Gronwall Lemma). Let ∆t, H, and an, bn, cn, dn (for integers
n ≥ 0) be nonnegative numbers such that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan + ∆t
l∑

n=0

cn + H for l ≥ 0. (2.37)

Suppose that ∆tdn < 1 ∀n. Then,

al + ∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑

n=0

dn

1−∆tdn

)(
∆t

l∑

n=0

cn + H

)
for l ≥ 0. (2.38)

In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
NT∑

n=0

‖vn‖m
k 4t

)1/m

, ‖|v1/2|‖m,k :=

(
NT∑

n=1

‖vn−1/2‖m
k 4t

)1/m

.

8



3 Analysis of full Crank-Nickolson Scheme

In this section, we show that solutions of the scheme (2.33), equivalently (2.31)-(2.32) are
unconditionally stable, well defined and optimally convergent to solutions of the NSE. This
error analysis, already technical, can be extended to the CNLE time stepping method.

Lemma 3.1. Consider the approximation scheme (4.1). A solution ul
h, l = 1, . . .M , exists

at each timestep. The scheme is also unconditionally stable. It satisfies the following á
priori bound:

∥∥∥wh
M

∥∥∥
2
+ ν∆t

M−1∑

n=0

∥∥∥∇wh
n+1/2

∥∥∥
2
≤

∥∥∥wh
0

∥∥∥
2
+

∆t

ν

M−1∑

n=0

∥∥fn+1/2

∥∥2

∗ . (3.1)

Proof. : The existence of a solution un
h to (4.1) follows from the Leray-Schauder Principle

[40]. Specifically, let A : V h → V h, be defined by y = A(z) satisfying

(y, v) := −4tb∗(Dh
N (z + wh

n)/2
h
, (z + wh

n)/2, v)−4tν(∇(z + wh
n)/2,∇v)

+(wh
n−1, v) +4t(fn+1/2, v) .

The operator A is compact and any solution of u = s A(u) , for 0 ≤ s < 1 , satisfies the
bound ‖u‖ ≤ γ, where γ is independent of s. Thus, a solution exists.

To obtain the á priori estimate set vh = wh
n+1/2 in (2.33)

1
2∆t

(
∥∥∥wh

n+1

∥∥∥
2
−

∥∥∥wh
n

∥∥∥
2
) + ν

∥∥∥∇wh
n+1/2

∥∥∥
2
≤ 1

2ν

∥∥fn+1/2

∥∥2

∗ +
ν

2

∥∥∥∇wh
n+1/2

∥∥∥
2

for every n,

i.e.,
1

∆t
(
∥∥∥wh

n+1

∥∥∥
2
−

∥∥∥wh
n

∥∥∥
2
) + ν

∥∥∥∇wh
n+1/2

∥∥∥
2
≤ 1

ν

∥∥fn+1/2

∥∥2

∗ , for every n.

Summing from n = 0 . . . M − 1 gives the desired result.

Our main convergence estimates are given next.

Theorem 3.2. Let (u(t), p(t)) be a sufficiently smooth, strong solution of the NSE (1.1)
satisfying either no-slip or periodic with zero-mean boundary conditions. Suppose (wh

0 , qh
0 )

are approximations of (u(0), p(0)) to the accuracy of (2.5), respectively. Then there is a
constant C = C(u, p) such that

‖|u − wh|‖∞,0 ≤ F (4t, h, δ) + Chk+1‖|u|‖∞,k+1 , (3.2)
(

ν4t
M−1∑

n=0

‖∇(un+1/2 − (wh
n+1 + wh

n)/2)‖2

)1/2

≤ F (4t, h, δ) + Cν1/2(4t)2‖∇utt‖2,0

+Cν1/2hk‖|u|‖2,k+1 . (3.3)
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where

F (4t, h, δ) := Cν−1/2 hk+1/2
(‖|u|‖2

4,k+1 + ‖|∇u|‖2
4,0

)
+ Cν1/2hk‖|u|‖2,k+1

+Cν−1/2hk
(
‖|u|‖2

4,k+1 + ν−1/2(‖wh
0‖+ ν−1/2‖|f |‖2,?)

)
+ Cν−1/2hs+1‖|p1/2|‖2,s+1

+Cν−1/2δ2N+2‖u‖2,2N+2 + Cν−1/2(δhk + hk+1)(
N∑

n=1

‖ (A−1)nu ‖2,k+1 )

+C(∆t)2
(
‖uttt‖2,0 + ν−1/2‖ptt‖2,0 + ‖ftt‖2,0

+ν1/2‖∇utt‖2,0 + ν−1/2‖∇utt‖2
4,0

+ν−1/2‖|∇u|‖2
4,0 + ν−1/2‖|∇u1/2|‖2

4,0

)
. (3.4)

Corollary 3.3. Suppose that in addition to the assumptions made in Theorem 3.2, the
finite element spaces Xh and Qh are composed of Taylor-Hood elements. Then the error in
the extrapolated trapezoidal finite element scheme for Leray-deconvolution is of the order

‖|u− wh|‖∞,0 +

(
ν∆t

M∑

n=1

‖∇(un+1/2 − wh
n+1/2)‖2

)1/2

= O(h2 + ∆t2 + δ2N+2). (3.5)

Proof of Theorem 3.2. Note that for v, w, ∈ X, with u ∈ V ,

b∗(u, v, w) = b(u, v, w) := (u · ∇v, w) .

Then, at time tn+1/2, u given by (2.29)-(2.30) satisfies

(
un+1 − un

∆t
, vh) + b∗(Dh

Nun+1/2
h, un+1/2, v

h) + ν(∇un+1/2,∇vh)− (pn+1/2,∇ · vh)

= (fn+1/2, v
h) + Intp(un, pn; vh), (3.6)

for all vh ∈ V h, where Intp(un, pn; vh), representing the interpolating error, denotes

Intp(un, pn; vh) =
(

un+1 − un

∆t
− ut(tn+1/2), v

h

)
+ ν(∇un+1/2 − ∇u(tn+1/2),∇vh)

+b∗(un+1/2, un+1/2, v
h)− b∗(u(tn+1/2), u(tn+1/2), v

h)

−b∗(un+1/2 −Dh
Nun+1/2

h, un+1/2, v
h)

−(pn+1/2 − p(tn+1/2),∇ · vh) + (f(tn+1/2)− fn+1/2, v
h) . (3.7)

Subtracting (3.6) from (2.33) and letting en = un − wh
n we have

1
∆t

(en+1 − en, vh) + b∗(Dh
Nun+1

h, un+1/2, v
h)− b∗(Dh

Nwh
n+1/2

h
, wh

n+1/2, v
h)+

ν(∇en+1/2,∇vh) = (pn+1/2,∇ · vh) + Intp(un, pn; vh) ∀vh ∈ V h. (3.8)

Decompose the error as en = (un − Un) − (wh
n − Un) := ηn − φh

n where φh
n ∈ V h. Setting

vh = φh
n+1/2 in (3.8) and using (q,∇ · φn+1/2) = 0 for all q ∈ V h we obtain

(φh
n+1 − φh

n, φh
n+1/2) + ν4t‖∇φh

n+1/2‖+4t b∗(Dh
Nwh

n+1

h
, en+1/2, φ

h
n+1/2)

+4t b∗(Dh
Nen+1/2

h, un+1/2, φ
h
n+1/2) = (ηn+1 − ηn, φh

n+1/2) +4tν(∇ηn+1/2,∇φh
n+1/2)

+4t(pn+1/2 − q,∇ · φh
n+1/2) +4t Intp(un, pn; vh) . (3.9)
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i.e.,

1
2
(‖φh

n+1‖ − ‖φh
n‖) + ν4t‖∇φh

n+1/2‖ = (ηn+1 − ηn, φh
n+1/2) +4tν(∇ηn+1/2,∇φh

n+1/2)

−4t b∗(Dh
Nηn+1/2

h, un+1/2, φ
h
n+1/2) +4t b∗(Dh

Nφh
n+1/2

h
, un+1/2, φ

h
n+1/2)

−4t b∗(Dh
Nwh

n+1/2

h
, ηn+1/2, φ

h
n+1/2) +4t(pn+1/2 − q,∇ · φh

n+1/2)

+4t Intp(un, pn; vh) . (3.10)

We now bound the terms in the RHS of (3.9) individually.
(ηn+1 − ηn, φh

n+1/2) = 0 since U is the L2 projection of u in V h.
Cauchy-Schwarz and Young’s inequalities give

ν4t(∇ηn+1/2,∇φh
n+1/2) ≤ ν4t‖∇ηn+1/2‖ ‖∇φh

n+1/2‖

≤ ν∆t

12

∥∥∥∇φh
n+1/2

∥∥∥
2
+ Cν∆t

∥∥∇ηn+1/2

∥∥2
. (3.11)

4t(pn+1/2 − q,∇ · φh
n+1/2) ≤ C4t‖pn+1/2 − q‖ ‖∇φh

n+1/2‖

≤ ν∆t

12

∥∥∥∇φh
n+1/2

∥∥∥
2
+ C4tν−1‖pn+1/2 − χh‖2 . (3.12)

Lemmas 2.2, 2.10 and standard inequalities give

4t b∗(Dh
Nηn+1/2

h, un+1/2, φ
h
n+1/2)

≤ C∆t‖Dh
Nηn+1/2

h‖1/2 ‖∇Dh
Nηn+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖φh

n+1/2‖2 + C4t ν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2 . (3.13)

4t b∗(Dh
Nφh

n+1/2

h
, un+1/2, φ

h
n+1/2)

≤ C4t‖Dh
Nφh

n+1/2

h‖1/2 ‖∇Dh
Nφh

n+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ C4t‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖3/2 ‖∇un+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖1/2 + C4t ν−3‖φh
n+1/2‖2 ‖∇un+1/2‖4 . (3.14)

4t b∗(Dh
Nwh

n+1/2

h
, ηn+1/2, φ

h
n+1/2)

≤ C‖Dh
Nwh

n+1/2

h‖1/2 ‖∇Dh
Nwh

n+1/2

h‖1/2 ‖∇ηn+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2 . (3.15)
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Combining (3.12), (3.11), (3.13), (3.14), (3.15) and summing from n = 0 to M − 1
(assuming that ‖φh

0‖ = 0) reduces (3.10) to

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ 4t
M−1∑

n=0

Cν−3‖∇un+1/2‖4 ‖φh
n+1/2‖2 +4t

M−1∑

n=0

Cν‖∇ηn+1/2‖2

+4t
M−1∑

n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2

+4t

M−1∑

n=0

Cν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2

+4t
M−1∑

n=0

Cν−1‖pn+1/2 − q‖2 +4t
M−1∑

n=0

C|Intp(un, pnφh
n+1/2)| . (3.16)

Now, we continue to bound the terms on the RHS of (3.16). We have that

4t
M−1∑

n=0

Cν‖∇ηn+1/2‖2 ≤ 4tCν
M∑

n=0

‖∇ηn‖2 ≤ 4tCν
M∑

n=0

h2k|un|2k+1

≤ Cνh2k‖|u|‖2
2,k+1 . (3.17)

For the term

4t
M−1∑

n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖ ‖∇un+1/2‖2

≤ Cν−14t
M−1∑

n=0

(‖ηn+1‖ ‖∇ηn+1‖+ ‖ηn‖ ‖∇ηn‖

+ ‖ηn‖ ‖∇ηn+1‖+ ‖ηn+1‖ ‖∇ηn‖) ‖∇un+1/2‖2

≤ C ν−1 h2k+1

(
4t

M−1∑

n=0

|un+1|2k+1 ‖∇un+1/2‖2 +4t
M−1∑

n=0

|un+1|k+1|un|k+1 ‖∇un+1/2‖2

+ 4t
M−1∑

n=0

|un|2k+1 ‖∇un+1/2‖2

)

≤ Cν−1 h2k+1

(
4t

M∑

n=0

|un|4k+1 +4t

l∑

n=0

‖∇un‖4

)

= Cν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
. (3.18)
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Using the a priori estimate for ‖wh
n‖, (3.1),

4t
M−1∑

n=0

Cν−1
(
‖wh

n+1/2‖ ‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

)

≤ Cν−14t

M−1∑

n=0

‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

≤ Cν−14t
M−1∑

n=0

(‖∇ηn+1‖2 + ‖∇ηn‖2
) ‖∇wh

n+1/2‖

≤ Cν−1h2k4t
M−1∑

n=0

(|un+1|2k+1 + |un|2k+1

) ‖∇uh
n+1/2‖

≤ Cν−1h2k

(
4t

M∑

n=0

|un|4k+1 +4t

M∑

n=0

‖∇uh
n+1/2‖2

)

≤ Cν−1h2k
(
‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

. (3.19)

From (2.13),

4t
M−1∑

n=0

Cν−1‖pn+1/2 − q‖2 ≤ Cν−14t
M−1∑

n=0

‖p(tn+1/2)− q‖2 + ‖pn+1/2 − p(tn+1/2)‖2

≤ Cν−1

(
h2s+24t

M−1∑

n=0

‖p(tn+1/2)‖2
s+1 +4t

M−1∑

n=0

1
48

(4t)3
∫ tn+1

tn

‖ptt‖2 dt

)

≤ Cν−1
(
h2s+2‖|p1/2|‖2

2,s+1 + (4t)4‖ptt‖2
2,0

)
(3.20)

We now bound the terms in Intp(un, pn; φh
n+1/2). Using Cauchy-Schwarz and Young’s

inequalities, Taylor’s theorem, and Lemma 2.11,
(

un+1 − un

∆t
− ut(tn+1/2), φ

h
n+1/2

)

≤ 1
2
‖φh

n+1/2‖2 +
1
2
‖un+1 − un

∆t
− ut(tn+1/2)‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
1
2

(∆t)3

1280

∫ tn+1

tn

‖uttt‖2 dt , (3.21)

(pn+1/2 − p(tn+1/2),∇ · φh
n+1/2)

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1‖pn+1/2 − p(tn+1/2)‖2

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1 (∆t)3

48

∫ tn+1

tn

‖ptt‖2 dt , (3.22)

(f(tn+1/2)− fn+1/2, φ
h
n+1/2)

≤ 1
2
‖φh

n+1/2‖2 +
1
2
‖f(tn+1/2)− fn+1/2‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (3.23)
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(∇un+1/2 − ∇u(tn+1/2),∇φh
n+1/2)

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν‖∇un+1/2 − ∇u(tn+1/2)‖2

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν

(∆t)3

48

∫ tn+1/2

tn

‖∇utt‖2 dt , (3.24)

b∗(un+1/2, un+1/2, φ
h
n+1/2)− b∗(u(tn+1/2), u(tn+1/2), φ

h
n+1/2)

= b∗(un+1/2 − u(tn+1/2), un+1/2, φ
h
n+1/2)− b∗(u(tn+1/2), un+1/2 − u(tn+1/2), φ

h
n+1/2)

≤ C ‖∇(un+1/2 − u(tn+1/2))‖ ‖∇φh
n+1/2‖

(‖∇un+1/2‖ + ‖∇u(tn+1/2)‖
)

≤ C ν−1
(‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + ε3ν‖∇φh
n+1/2‖2

≤ C ν−1 (∆t)3

48

(∫ tn+1

tn

2(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4) dt

+
∫ tn+1

tn

‖∇utt‖4 dt

)
+ ε3ν‖∇φh

n+1/2‖2

≤ C ν−1 (∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+C ν−1 (∆t)3
∫ tn+1

tn

‖∇utt‖4 dt + ε3ν‖∇φh
n+1/2‖2 . (3.25)

b∗(un+1/2 −Dh
Nun+1/2

h, un+1/2, φ
h
n+1/2)

≤ 1
2

(
‖un+1/2 −Dh

Nun+1/2
h‖ ‖∇un+1/2‖∞ ‖φh

n+1/2‖

+‖un+1/2 −Dh
Nun+1/2

h‖ ‖un+1/2‖∞ ‖∇φh
n+1/2‖

)

≤ C ‖un+1/2 −Dh
Nun+1/2

h‖ ‖∇φh
n+1/2‖

≤ ε4ν‖∇φh
n+1/2‖+ Cν−1‖un+1/2 −Dh

Nun+1/2
h‖2

≤ ε4ν‖∇φh
n+1/2‖+ Cν−1δ4N+4‖u‖2

H2N+2

+Cν−1(δ2h2k + h2k+2)(
N∑

n=1

| (A−1)Nu |2k+1 ) . (3.26)

Combine (3.21)-(3.26) to obtain

∆t
M−1∑

n=0

|Intp(un, pn; φh
n+1/2)| ≤ ∆t C‖φh

n+1‖2 + (ε1 + ε2 + ε3 + ε4)∆t ν‖∇φh
n+1/2‖2

+Cν−1δ4N+4‖u‖2
2,2N+2

+Cν−1(δ2h2k + h2k+2)(
N∑

n=1

‖ (A−1)Nu ‖2
2,k+1 )

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (3.27)
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Let ε1 = ε2 = ε3 = ε4 = 1/12 and with (3.17)-(3.20), (3.27), from (3.16) we obtain

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ 4t

M−1∑

n=0

C(ν−3‖∇un+1/2‖4 + 1) ‖φh
n+1/2‖2 + Cνh2k‖|u|‖2

2,k+1

+Cν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)

+Cν−1h2k
(
‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

+ Cν−1h2s+2‖|p1/2|‖2
2,s+1

+Cν−1δ4N+4‖u‖2
2,2N+2 + Cν−1(δ2h2k + h2k+2)(

N∑

n=1

‖ (A−1)nu ‖2
2,k+1 )

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (3.28)

Hence, with4t sufficiently small, i.e. 4t < C(ν−3‖|∇u|‖4
∞,0+1)−1, from Gronwall’s Lemma

(see (2.14), we have

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ Cν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ Cνh2k‖|u|‖2

2,k+1

+Cν−1h2k
(
‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

+ Cν−1h2s+2‖|p1/2|‖2
2,s+1

+Cν−1δ4N+4‖u‖2
2,2N+2 + Cν−1(δ2h2k + h2k+2)(

N∑

n=1

‖ (A−1)nu ‖2
2,k+1 )

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (3.29)

Estimate (3.2) then follows from the triangle inequality and (3.29).
To obtain (3.3), we use (3.29) and

‖∇
(
u(tn+1/2)− (wh

n+1 + wh
n)/2

)
‖2

≤ ‖∇(u(tn+1/2)− un+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φh
n+1/2‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + Ch2k|un+1|2k+1 + Ch2k|un|2k+1 + ‖∇φh
n+1/2‖2 .

4 Numerical Experiments

We now present numerical results for the linear extrapolated Algorithm given by
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Algorithm 4.1. [Extrapolated Crank-Nicholson Scheme for Leray-deconvolution] Let ∆t >
0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and M := T

∆t and (w−1, q−1) = (w0, q0). For n =
0, 1, 2, · · · ,M − 1, find (wh

n+1, q
h
n+1) ∈ (Xh, Qh) satisfying

1
∆t

(wh
n+1 − wh

n, vh) + b∗(Dh
NE(wh

n, wh
n−1)

h
, wh

n+1/2, v
h)− (qh

n+1/2,∇ · vh)

+ ν(∇wh
n+1/2,∇vh) = (fn+1/2, v

h) ∀ vh ∈ Xh (4.1)

(∇ · wh
n+1, χ

h) = 0 ∀χh ∈ Qh (4.2)

where E(wh
n, wh

n−1) = 3
2wh

n− 1
2wh

n−1. It is well-known that the choice of the first timestep
is critical for computations. For Algorithm 4.1, backward Euler suffices. Then, for n = 0,
our choice of (w−1, q−1) is just constant extrapolation. The linear extrapolation algorithm
for Navier-Stokes equations is investigated in [6] by Baker (and many other subsequently).
It is second order in time and requires only the solution of one linear system per time step.
The convergence analysis of the extrapolated CN method given by (4.1)-(4.2) follows closely
but it is technically longer that the full CN method that we performed in Section 3. The
code was written in MATLAB and run on desktop machines. The first computations used
Taylor-Hood elements on the periodic box Ω = (0, 1)3. The averaging radius δ = O(h) in all
performed computations. Because of memory limitation, the 3d computations used meshes
only as fine as h = 1/32, i.e. 112,724 degrees of freedom. While this is not sufficient for many
applications, it is adequate for verifying convergence rates and comparing errors between
models. The 3d code utilized MATLAB’s conjugate gradient squared method (CGS) to
solve the resulting linear systems from both the filtering and the schemes themselves.

4.1 3d Convergence Rate Verification

Our first experiment verifies the predicted error rates proven in Section 3 at Re = 1 for the
extrapolated trapezoidal Leray-deconvolution schemes N = 0, 1, 2, 3. For (P2, P1) elements,
all four schemes are second order accurate in the H1 norm. The N = 0 scheme is only
second order accurate in the L2 norm, and the other three higher order (in N) schemes are
third order accurate in the L2 norm. Thus one conclusion is that higher order (N ≥ 1)
Leray-deconvolution models provide better practical accuracy, even after discretization, than
the N = 0 case of the Leray-alpha model.

Table 1 contains errors and error ratios for the schemes’ approximations to the true
solution

u =




cos(2π(z + t))
sin(2π(z + t))
sin(2π(x + t))


 , p = sin(2π(x + t). (4.3)

This particular solution was chosen because it is a simple periodic function with at least a
somewhat complex structure: A quick calculation by hand shows that the helicity H = −2π
for any t, and hence we know there is at least some tangledness and knottedness of vortex
lines revealed in Figure 1. For these calculations, we set δ = h and ∆t < h3/2 (approximately
h3/2, but a multiple of .005 so that all times line up). Results are given at t = 0.5.

4.2 3d Error Comparisons at Re=5000

The goal of the second experiment is to test if the regularizing effect of the Leray-deconvolution
model is really advantageous in practical computing. Thus we consider Baker’s extrapolated
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Figure 1: A plot of the initial (t=0) velocity for (4.3)

Table 1: L2 and H1 errors and rates at Re = 1 and t=0.5
h

∥∥u− uh
LD0

∥∥
L2 ratio

∥∥u− uh
LD1

∥∥
L2 ratio

∥∥u− uh
LD2

∥∥
L2 ratio

∥∥u− uh
LD3

∥∥
L2 ratio

1/8 0.0280 - 0.0245 - 0.0240 - 0.239 -
1/16 0.0061 2.19 0.0032 2.91 0.0032 2.91 0.0032 2.91
1/32 0.0015 2.01 0.0004 2.94 0.0004 2.91 0.0004 2.91

h
∥∥u− uh

LD0

∥∥
H1 ratio

∥∥u− uh
LD1

∥∥
H1 ratio

∥∥u− uh
LD2

∥∥
H1 ratio

∥∥u− uh
LD3

∥∥
H1 ratio

1/8 0.6904 - 0.6789 - 0.6772 - 0.6769 -
1/16 0.1809 1.93 0.1750 1.96 0.1749 1.95 0.1748 1.95
1/32 0.0459 1.98 0.0441 1.99 0.0441 1.99 0.0441 1.99

Crank-Nicolson method (called CNLE) for the NSE and the Leray-deconvolution regular-
ization (called LerayDC) of the NSE.

Figures 2 and 3 present graphs of the L2 and H1 errors for the methods vs. time for
Re = 5000 on our finest mesh h = 1/32 and timestep ∆t = 0.005. From these graphs it is
clear that the extrapolated trapezoidal Leray-deconvolution schemes with N = 1, 2, 3 are all
much more accurate than both CNLE and the discrete Leray-alpha model (N = 0 case) in
the L2 and H1 norms. Furthermore, the graphs indicate that over longer time intervals, the
three higher order Leray-deconvolution schemes can remain accurate, whereas the errors in
the unregularized CNLE and the lower order regularized Leray-alpha model (LerayDC with
N = 0) can grow catastrophically.
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Figure 2: L2 Error vs. Time for CNLE and LerayDC with N=0,1,2,3
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4.3 Underresolved flows in 2d

Regularization and stabilization can often affect transitional flows negatively. The simplest
test of this is to see if the stabilization in the Algorithm 4.1 retards separation of vortices
behind a blunt body near the critical Reynolds number for detachment. To do so, we study
underresolved flow with recirculation, i.e., the flow across a step. (A discussion of this test
problem can be found in Gunzburger [17].) The most distinctive feature of this flow is a
recirculating vortex behind the step that detaches in the range 500 ≤ Re ≤ 700, see Figure
4 for illustration.

We will study this flow at ν = 1/600 since about this value of ν the flow is in the
transition from equilibrium to time dependent, via shedding of eddies behind the step. In
our simulations we used Leray Deconvolution Models, i.e. (1.2) with N = 0 (LerayDC0),
N = 1 (LerayDC1) and N = 2 (LerayDC2). We will compare these models with one
often used for underresolved flow simulation - the Smagorinsky model [8][23][37]. The only
difference between the Navier-Stokes equations (NSE) and the Smagorinsky model (SMA)
is in the viscous term, which has the following form:

∇ · ((2ν + 0.01δ2||D(u)||F )D(u)) .

Here, D(u) is the deformation tensor and || · ||F denotes the Frobenius norm. Although the
Smagorinsky model is widely used, it has some drawbacks. These are well documented in
the literature, e.g. see [38]: it introduces too much diffusion into the flow, e.g., see Figure
5.

The domain of the two-dimensional flow across a step is presented in Figure 6. We
present results for a parabolic inflow profile, which is given by u = (u1, u2)T , with u1 =
y(10 − y)/25, u2 = 0. No-slip boundary condition is prescribed on the top and bottom
boundary as well as on the step. At the outflow we also imposed the parabolic profile or
”do nothing” boundary condition.
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Figure 3: H1 Error vs. Time for CNLE and LerayDC with N=0,1,2,3
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The computations were performed on various grids with the software FreeFem++, [36].
The grid level 3 is the finest with the number of degrees of freedom being 41538. Then
the grids level 2, 1 and 0 are coarser with the number of degrees of freedom 27228, 5845
and 1535, respectively. For instance, for the fully resolved NSE simulation, which is our
“truth” solution, we used a fine grid (level 3) whereas a much coarser grid (level 1 and level
0) has been used for LerayDC0, LerayDC1, LerayDC2 and SMA. The point is to compare
the performance of the various options in underresolved simulations by comparison against
a “truth”/fully-resolved solution, Figure 4.

Therefore, the models were discretized in time with the full Crank Nicolson method 3

and in space with the Taylor Hood finite-element.

Comparing the Figures 5, 8, 9, 10 with 4 we conclude that the LerayDC0, LerayDC1
3Linear extrapolation was found to induce too much noise that affected the shedding of eddies behind

the step. Preliminary tests with quadratic extrapolation were, however, encouraging.
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Figure 4: NSE at ν = 1/600, level 3 grid

and LerayDC2 tests replicate the shedding of eddies and the Smagorinsky eddy remains
attached. Clearly, the Smagorinsky model is too stabilizing: eddies which should separate
and evolve remain attached and attain steady state.

However, regarding the main point of study, Leray Deconvolution Models improved the
simulation results for this transition problem. On the coarsest grid level 0, LerayDC0 failed
to shed eddies behind the step but LerayDC1 and LerayDC2 (see Figure 11) still give a
successful shedding.

5 Miscroscale for Leray Deconvolution Models

When the higher order Leray-deconvolution models are used to approximate turbulent flows,
an estimate of computational resources required can be obtained by estimating (under the
assumptions of isotropy and homogeneity) the model’s microscale. This was first performed
by Muschinsky [33] for the Smagorinsky model and has been used for other models recently,
e.g. [28]. We conclude our study of Leray-deconcvolution models and their discretization
by summarizing this analysis.

The Reynolds number for Navier-Stokes equations represents the ratio of nonlinearity
over the viscous terms. Then, for the Leray Deconvolution Models (LDMs) we have

Remodel ' |DNu · ∇u|
|ν4u| .

The model’s Reynolds numbers with respect to the model’s largest and persistent scales
are thus
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Figure 5: SMA at ν = 1/600, δ = 1.5 and level 1 grid

Figure 6: Boundary conditions

Large scales: Remodel−large =
UL

ν(1 + ( δ
L)2)

N∑

n=0

(
1− 1

1 + δ2

L2

)n

Small scales: Remodel−small =
wsmallηmodel

ν(1 + ( δ
ηmodel

)2)

N∑

n=0


1− 1

1 + δ2

η2
model




n

.

As in the Navier-Stokes equations, any energy cascade in the Leray-deconvolution models
is halted by viscosity grinding down eddies exponentially fast when

Remodel−small = O(1), i.e., when

wsmallηmodel

ν(1 + ( δ
ηmodel

)2)

N∑

n=0


1− 1

1 + δ2

η2
model




n

' 1.

The characteristic velocity of the model’s smallest persistent eddies wsmall is thus

wsmall ' ν

ηmodel


 1

(1 + δ2

η2
model

)

N∑

n=0


1− 1

1 + δ2

η2
model




n

−1

.
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Figure 7: Grid at level 0
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Figure 8: LerayDC0 at ν = 1/600, δ = 1.5 and level 1 grid

The second important equation determining the model’s micro-scale comes from statis-
tical equilibrium, i.e., matching energy in to energy out. The rate of energy input to the
largest scales is the energy over the associated time scale

Emodel

( L
U )

=
U2

( L
U )

=
U3

L
.

When the model reaches statistical equilibrium, the energy input to the largest scales
must match the energy dissipation at the model’s micro-scale which scales like εsmall '
ν(|∇wsmall|2) ' ν(wsmall

ηmodel
)2. Thus we have

U3

L
' ν(

wsmall

ηmodel
)2.

Inserting the above formula for the micro-eddies characteristic velocity wsmall gives

U3

L
' ν3

η4
model


 1

(1 + δ2

η2
model

)

N∑

n=0


1− 1

1 + δ2

η2
model




n

−2

(5.1)

Next, the solution to this equation depends on which term in the numerator of the RHS
is dominant: 1 or ( δ

ηmodel
)2.
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Figure 9: LerayDC1 at ν = 1/600, δ = 1.5 and level 1 grid

Case 1 when δ ¿ ηmodel, i.e. 1 + δ2

η2
model

' 1. Then

ηmodel ' Re−
3
4 L for N = 0, 1, 2, . . . .

For the case (i) the model predicts the correct microscale, i.e. Kolmogorov microscale
since that case occurs when the averaging radius δ is so small that the model is very close
to the NSE. However, the latter case is the expected case.

Case 2 when δ À ηmodel, i.e. 1 + δ2

η2
model

' δ2

η2
model

. We rewrite equation (5.1).

U3

L
' ν3

η4
model


 1

(1 + δ2

η2
model

)

N∑

n=0




δ2

η2
model

1 + δ2

η2
model




n

−2

Since δ À ηmodel we have

U3

L
' ν3

η4
model


 1

δ2

η2
model

N∑

n=0




δ2

η2
model

δ2

η2
model




n

−2

Therefore,

ηmodel ' Re−
3
4 L1/2δ1/2(N + 1)1/8 for N = 0, 1, 2, . . . .

The microscale of the Leray Deconvolution models is larger than the Kolmogorov mi-
croscale which is O(Re−3/4). An interesting result which was observed experimentally too is
that the models’ microscale is affected by the order of the de-convolution operator, meaning
that the increase of N gives more truncation of small scales but preserving high accuracy
of the models’ solution over the large scales.
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Figure 10: LerayDC2 at ν = 1/600, δ = 1.5 and level 1 grid

6 Conclusions

The van Cittert deconvolution algorithm requires only a few Poisson solves. The condition
number of the linear system associated with each solve of (−δ24+ 1) is O(δ2/h2 + 1), i.e.
O(1) if δ = O(h). Thus, the extra complexity of differential filtering and deconvolution is
negligable over solving the NSE.

On the other hand, the regularization the higher order Leray-deconvolution models give
has remarkable and positive effects on the results of the computations. Errors are observed
to be much better over much larger time intervals and the transition from one type of flow
to another is not retarded in our experiments as well.

The higher order Leray-deconvolution models had greater accuracy and physical fidelity
than the N = 0 case (Leray-alpha model).

The experiments we have given were limited by time and resources but their results
have consistently showed that: higher order is to be strongly preferred to lower order, i.e.
LerayDC for higher N to Leray-alpha (the N=0 case).

The form of the Leray-deconvolution model allows an efficient and unconditionally stable
timestepping scheme to be used. We have given a convergence analysis which was also
verified in 3d calculations. Naturally, we believe that further explorations would reveal
that higher order extrapolation (e.g. quadratic) would perform even better than the linear
extrapolation tested herein.
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