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Abstract This work is motivated by the observation of remarkably slow firing in the uncoupled Hodgkin-
Huxley model, depending on parameters τh, τn that scale the rates of change of the gating variables. After
reducing the model to an appropriate nondimensionalized form featuring one fast and two slow variables,
we use geometric singular perturbation theory to analyze the model’s dynamics under systematic varia-
tion of the parameters τh, τn, and applied current I. As expected, we find that for fixed (τh, τn), the model
undergoes a transition from excitable, with a stable resting equilibrium state, to oscillatory, featuring
classical relaxation oscillations, as I increases. Interestingly, mixed-mode oscillations (MMO’s), featuring
slow action potential generation, arise for an intermediate range of I values, if τh or τn is sufficiently
large. Our analysis explains in detail the geometric mechanisms underlying these results, which depend
crucially on the presence of two slow variables, and allows for the quantitative estimation of transitional
parameter values, in the singular limit. In particular, we show that the subthreshold oscillations in the
observed MMO patterns arise through a generalized canard phenomenon. Finally, we discuss the relation
of results obtained in the singular limit to the behavior observed away from, but near, this limit.

1 Introduction

The Hodgkin-Huxley (HH) model (Hodgkin and Huxley 1952) for the action potential of the space-
clamped squid giant axon is defined by the following 4D vector field:

C
dV

dt
= I − INa − IK − IL

dm

dt
= φ[αm(V )(1 − m) − βm(V )m] (1.1)

dh

dt
= φ[αh(V )(1 − h) − βh(V )h]

dn

dt
= φ[αn(V )(1 − n) − βn(V )n] .

We use modern conventions such that the spikes of action potentials are positive, and the voltage V̄ of
the original HH model (Hodgkin and Huxley 1952) is shifted relative to the voltage V of this model by
V̄ = (V + 65). The first equation is obtained by applying Kirchhoff’s law to the space-clamped neuron,
i.e. the transmembrane current is equal to the sum of intrinsic currents. C is the capacitance density in
µF/cm2, V is the membrane potential in mV and t is the time in ms. The ionic currents on the right
hand side are given by

INa = gnam3h(V − ENa) , IK = gkn4(V − EK) , IL = gl(V − EL) (1.2)
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Fig. 1 Action potential generated by the HH model with applied current I = 9.6 at 6.3◦C.

with a fast sodium current INa, a delayed rectifier potassium current IK and a small leak current IL,
which consists mainly of chloride current. The current densities Ix (x = Na,K,L) are measured in
µA/cm2 and the conductance densities gx in mS/cm2. The parameter I represents current injected into
the space-clamped axon and Ex are the equilibrium potentials or Nernst potentials in mV for the various
ions. The parameters are given by

gNa = 120 , gK = 36 , gL = 0.3 ,
ENa = 50 , EK = −77 , EL = −54.4 ,
C = 1 .

(1.3)

The conductances of the ionic currents are regulated by voltage dependent activation and inactivation
variables called gating variables. Their dynamics are described by the other three equations (1.1), where
m denotes the activation of the sodium current, h the inactivation of the sodium current, and n the
activation of the potassium current. Each of these equations features a temperature scaling factor φ =
(Q10)

(T−T0)/10, where Q10 is a constant, T is temperature, and T0 = 6.3, both in degrees celsius. The
gating variables are dimensionless with their ranges in the interval [0,1]. The specific functions αz and
βz (z = m,h, n) on the right hand sides are, in units of (ms)−1,

αm(V ) =
(V + 40)/10

1 − exp(−(V + 40)/10)
, βm(V ) = 4 exp(−(V + 65)/18)

αh(V ) = 0.07 exp(−(V + 65)/20) , βh(V ) = 1/ (1 + exp(−(V + 35)/10)) (1.4)

αn(V ) =
(V + 55)/100

1 − exp(−(V + 55)/10)
, βn(V ) = 0.125 exp(−(V + 65)/80).

Figure 1 shows an action potential at 6.3◦C simulated by the HH model, which is in good agreement
with measured action potential data of the squid giant axon (Hodgkin and Huxley 1952) .

FitzHugh (FitzHugh 1960) has given an elegant qualitative description of the HH equations, based on
the fact that the model variables (V,m) have fast kinetics, while (h, n) have slow kinetics. This allows
the full 4D phase space to be broken into smaller pieces (2D subspaces) by fixing the slow variables and
considering the behaviour of the model as a function of the fast variables. This idea provides a useful
way to study the process of excitation (see also Nagumo et al. 1962).

Based on FitzHugh’s analysis, another model reduction was proposed (see e.g. Rinzel 1985), which keeps
the slow-fast structure of the equations, but reduces the system to a 2D model. The reductions are based
on the following observations:

– The activation of sodium channels m is (very) fast. Therefore m will reach its equilibrium almost
instantaneously and m = αm(V )/(αm(V ) + βm(V )) =: m∞(V ) can be assumed.

– As FitzHugh already noticed (FitzHugh 1960), in the course of an action potential there appears
to be an approximately linear relation between h and n. Thus n can be approximated by a linear
function n = n(h).
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Fig. 2 Simulation of modified HH model with applied current I = 9.6. Left: τh = 1 yields a firing frequency of
approximately 70Hz. Right: τh = 2 yields a firing frequency of approximately 7Hz.

The first reduction can be mathematically justified by a center manifold reduction (see Theorem 1),
which reduces the HH model to a 1 fast, 2 slow variable model. The second reduction is a purely em-
pirical observation and has no mathematical justification. There is no a priori argument as to why the
nonlinear variables (n, h) should have a linear relation. Nonetheless, the reduced HH model resulting from
applying this relationship can describe the action potential (Figure 1) very well and can be analyzed in
the corresponding 2D phase space.

It has become conventional wisdom that the qualitative properties of the Hodgkin-Huxley model can be
reduced to a 2D flow such as that described by Rinzel (Rinzel 1985). But these reductions do not capture
the full dynamics of the full HH model. Rinzel and Miller (1980) as well as Guckenheimer and Oliva
(2002) have given evidence for chaos in the HH model. This clearly points out that a rigorous reduc-
tion to a 2D model is not possible, as chaos requires models with phase spaces of at least three dimensions.

Another interesting observation was made in a variation of the HH model by Doi et al. (Doi and Kumagai
2001, Doi et al. 2001, Doi et al. 2004, Doi and Kumagai 2005), who replaced φ in (1.1) with three
independent time constants τm, τh, τn:

C
dV

dt
= I − gnam3h(V − ENa) − gkn4(V − EK) − gl(V − EL)

dm

dt
=

1

τm
(αm(V )(1 − m) − βm(V )m) (1.5)

dh

dt
=

1

τh
(αh(V )(1 − h) − βh(V )h)

dn

dt
=

1

τn
(αn(V )(1 − n) − βn(V )n),

where τm = τh = τn = 1 corresponds to the classical HH model at 6.3 degrees celsius. In their work they
observed a dramatic slowing of the firing rate when they increased either τh or τn 10-fold. Actually, such
a big change in the time constants is not needed to observe this behaviour. If e.g. τh is changed from 1 to
2, then the firing rate of action potentials due to applied current I = 9.6 slows down dramatically, from
approximately 70Hz to 7Hz (see Figure 2). This represents a 10-fold decrease in firing rate, although the
time constant was just increased 2-fold. Note the sub-threshold oscillations in the interspike intervals for
τh = 2, which do not exist for τh = 1. Furthermore, Doi et al. (Doi and Kumagai 2001, Doi et al. 2001,
Doi et al. 2004, Doi and Kumagai 2005) also observed chaotic behaviour within this modified model (not
shown here), which indicates again that the classical 2D reduction is not appropriate to capture the full
dynamics of the classical HH model.

An interesting observation is that modifying the speed of activation and inactivation of the ion channels
leaves the monotonic steady-state current-voltage relation of the model neuron unchanged. Therefore
the modified HH model is still classified as a ‘Type II’ neuron, as is the classical HH model (Rinzel and
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Ermentrout 1989). Previously, it had been believed that slow firing rates in single neuron models could
be achieved only in ‘Type I’ neurons, which have an N-shaped current voltage relation, as found for
neurons with A-type potassium channels. The wide range of firing rates seen there is due to a homoclinic
bifurcation in the 2D phase space. The 3D analysis we present here explains a dynamic mechanism by
which ‘Type II’ model neurons can also have a wide range of firing rates. The main question we address
is the following: How does a slow firing rate emerge from the geometry of the HH model?

A similar observation of significant slowing of firing rates, as in Figure 2, has been made by Drover et al.
(Drover et al. 2004, Rubin 2005) in a network of (Type II) HH model neurons coupled with excitatory
synapses. This network synchronizes very quickly after synaptic excitation is activated and the firing rate
of the network slows down dramatically, compared to the single neuron firing rate with constant current
injection. The analysis of this network can be reduced to a 3D model. The key to understanding the
observed activity is the so called ‘canard phenomenon’ (Benoit 1983, Szmolyan and Wechselberger 2001),
which traps the solution for a significant amount of time near the expected action potential threshold
before it can fire again. Wechselberger (2005a) has shown that the extreme delay is due to canards of
folded node type (Szmolyan and Wechselberger 2001). The ‘vortex structure’ described in Drover et al.
(2004) can be rigorously understood in terms of invariant manifolds analysed in Wechselberger (2005a),
which form a multi-layered trapping region.

The solutions with significant delays that we have described above consist of a certain number of sub-
threshold oscillations combined with a relaxation oscillation type action potential, as shown in Figure
2 for τh = 2. Such solutions are called ‘mixed-mode-oscillations’ (MMO’s), and their relation to the
canard phenomenon was first demonstrated by Milik et al. (1998). A more detailed analysis of MMO’s
and generalization of the canard phenomenon was done by Brøns et al. (2006).

In this paper, we apply geometric singular perturbation techniques (Szmolyan and Wechselberger 2001,
Szmolyan and Wechselberger 2004, Wechselberger 2005a, Brøns et al. 2006) suitable for the analysis of
the single HH model neuron. We explore the geometry of the uncoupled HH neuron carefully, explain
how a significant slowing of the firing rate may occur, and explain a mechanism through which complex
oscillatory patterns may arise in this system. The outline is as follows: In Section 2 we reduce the HH
model to a 3D model that captures all the qualitative features observed in the full model. In Section
3 we give an overview of results on relaxation oscillations and MMO’s in general, using results from
geometric singular perturbation theory. In Section 4 we apply these results to the reduced 3D HH model.
This enables us to explain the mechanism underlying the observed oscillatory phenomena and to predict
what forms of solutions will arise as τh, τn, and I are varied. Finally, in Section 5 we conclude with a
discussion.

2 HH model reduction

We will apply geometric singular perturbation techniques for the analysis of the HH equation, formulated
to include the modification proposed by Doi et al. (Doi and Kumagai 2001, Doi et al. 2001, Doi et al.
2004, Doi and Kumagai 2005:

C
dV

dt
= I − gnam3h(V − ENa) − gkn4(V − EK) − gl(V − EL)

dm

dt
=

1

τmτ̂m(V )
(m∞(V ) − m) (2.6)

dh

dt
=

1

τhτ̂h(V )
(h∞(V ) − h)

dn

dt
=

1

τnτ̂n(V )
(n∞(V ) − n)

where τ̂x(V ) (in ms) and x∞(V ) (dimensionless), with x = m,h, n, are defined as follows:

τ̂x(V ) =
1

αx(V ) + βx(V )
, x∞(V ) =

αx(V )

αx(V ) + βx(V )
. (2.7)

4



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

1

2

3

4

5

6

7

8

9

10

v

Fig. 3 Functions 1/τ̂m(v) (solid), 1/τ̂h(v) (dash-dotted), and 1/τ̂n(v) (dashed); all in (ms)−1.

2.1 Dimensionless version of HH model

As a starting point we nondimensionalize system (2.6) and identify a small perturbation parameter ε
such that we can apply singular perturbation techniques. The following table shows the units of the
variables and parameters in system (2.6):

variable units parameter units

V mV Ex mV
m 1 gx mS/cm2

h 1 C µF/cm2

n 1 I µA/cm2

t ms τx 1

To make the variables (V, t) dimensionless, we have to identify a typical voltage scale kv and a typical
time scale kt, and define new dimensionless variables (v, τ) such that

V = kv · v , t = kt · τ . (2.8)

Using this transformation, the dimensionless HH system is then given by

dv

dτ
=

kt · g
C

[Ī − ḡnam3h(v − ĒNa) − ḡkn4(v − ĒK) − ḡl(v − ĒL)]

dm

dτ
=

kt

τmτ̂m(v)
(m∞(v) − m) (2.9)

dh

dτ
=

kt

τhτ̂h(v)
(h∞(v) − h)

dn

dτ
=

kt

τnτ̂n(v)
(n∞(v) − n)

with dimensionless parameters Ēx = Ex/kv, ḡx = gx/g and Ī = I/(kv ·g). The Nernst potentials Ex set a
natural range for the observed action potentials as EK ≤ V ≤ ENa. Therefore the maximum variation of
the membrane potential is 127mV in our problem, and we choose kv = 100mV as a typical scale for the
potential V . We further choose g = gna as a reference conductance since it is the maximum conductance
in this problem. Note that under this choice all terms in the square bracket of the right hand side of the
first equation in (2.9) are bounded (in absolute values) by one. Therefore the characteristic scale of this
right hand side is given by (kt · gNa)/C.

Next, let us check the right hand sides of the gating equations in (2.9). We have 0 ≤ x ≤ 1, 0 ≤ x∞(v) ≤ 1
and therefore |x∞(v)−x| ≤ 1. The only differences in the orders of magnitude of the gating equations may
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arise from the functions τ̂x(v). The functions τ̂x(v) are given in ms and therefore include characteristic
timescales. Recall from (2.7) that

1/τ̂x(v) = αx(v) + βx(v). (2.10)

Figure 3 shows a plot of the functions 1/τ̂x(v) over the physiological range v ∈ [−0.77, 0.5]. This figure
shows that maxv∈[−0.77,0.5](1/τ̂m(v)) is of an order of magnitude bigger than 1/τ̂h(v) and 1/τ̂n(v), which

are of comparable size. We define 1/τ̂x(v) = T̂x/t̂x(v) where T̂x = maxv∈[−0.77,0.5](1/τ̂x(v)). Note that T̂x

has dimension (ms)−1 while t̂x(v) is now dimensionless and 1/t̂x(v) ≤ 1 for v ∈ [−0.77, 0.5]. The values

of the scaling factors are approximately T̂m ≈ 10 (ms)−1 while T̂h ≈ T̂n ≈ 1 (ms)−1 (see Figure 3). From
(2.9), we obtain the following system

C

kt · gNa

dv

dτ
= [Ī − ḡnam3h(v − ĒNa) − ḡkn4(v − ĒK) − ḡl(v − ĒL)]

1

T̂mkt

dm

dτ
=

1

τmt̂m(v)
(m∞(v) − m) (2.11)

1

T̂hkt

dh

dτ
=

1

τht̂h(v)
(h∞(v) − h)

1

T̂nkt

dn

dτ
=

1

τnt̂n(v)
(n∞(v) − n) .

Note that (C/gNa) and (1/T̂m) are fast reference times (≤ 0.1ms) while (1/T̂h) and (1/T̂n) are slow
reference times (≈ 1ms). Our aim is to understand the long delays of action potentials, so we choose

the given slow time scale 1/T̂h ≈ 1/T̂n ≈ 1ms as a reference time and set kt = 1ms. With that setting,

the two dimensionless parameters C/(ktgNa) and 1/(T̂mkt) on the left hand side are small. Since the
activation of the sodium channel m is directly related to the dynamics of the membrane (action) potential
v, we assume that (v,m) evolve on the same fast time scale and set

ε :=
C

kt · gna
≪ 1 ,

1

T̂mkt

:=
ε

Tm
≪ 1 . (2.12)

Furthermore we define T̂hkt =: Th and T̂nkt =: Tn so that each Tx is a dimensionless parameter. With
these definitions we obtain finally the HH equations in dimensionless form and as a singularly perturbed
system

ε
dv

dτ
= [Ī − m3h(v − ĒNa) − ḡkn4(v − ĒK) − ḡl(v − ĒL)]

ε
dm

dτ
=

1

τmtm(v)
(m∞(v) − m) (2.13)

dh

dτ
=

1

τhth(v)
(h∞(v) − h)

dn

dτ
=

1

τntn(v)
(n∞(v) − n)

with (v,m) as fast variables, (h, n) as slow variables and tx(v) := t̂x(v)/Tx. This reflects exactly the
assumptions made in the pioneering work of FitzHugh (1960). The significantly faster activation of the
sodium channel m than its inactivation h and the activation of the potassium channel n makes the
creation of action potentials possible.

Remark 1 A misleading statement about the HH system is often found in the literature, namely that
the gate m evolves on the fastest time scale in this system. The correct statement is that m evolves
faster than the other two gating variables, which is essential for the creation of action potentials, but m
actually evolves slower than the membrane potential V (i.e., the parameter Tm < 1). One could argue
that the HH system evolves on three different time scales: V fast, m intermediate and (h, n) slow. But to
apply classical singular perturbation techniques, which allow for just two different time scales, we group
(V,m) as fast and (h, n) as slow, based on (2.12), as described above.
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Fig. 4 Cubic shaped critical manifold S0 of the dimensionless HH system shown in (v, h, n) space, I0 = 9.6

2.2 Reduction to 3D model

By setting ε = 0 in the 4D singularly perturbed system (2.13) we obtain the reduced system (also called
the slow subsystem). This system is a differential algebraic system describing the evolution of the slow
variables (n, h) constrained to a 2D manifold S0, called the critical manifold, which is defined by the two
equations

n4(v,m, h) =
Ī − m3h(v − ĒNa) − ḡl(v − ĒL)

ḡk(v − ĒK)
,

m(v, n, h) = m∞(v) .

If we project S0 into the (v, n, h) space by using the identity m = m∞(v), then S0 is defined by

n4(v, h) =
Ī − m∞(v)3h(v − ĒNa) − ḡl(v − ĒL)

ḡk(v − ĒK)
. (2.14)

This critical manifold S0 is a cubic shaped surface as shown in Figure 4, a typical feature of relaxation
oscillators in general. The slow dynamics on the critical manifold describes e.g. the slow depolarization
towards the action potential threshold shown in Figure 1. Whenever the neuron fires an action potential,
it changes to a fast dynamics where the slow variables are (almost) constant but the fast variables changes
rapidly. This behaviour is described by the layer problem (or fast subsystem)

dv

dτ1
= [Ī − m3h0(v − ĒNa) − ḡkn4

0(v − ĒK) − ḡl(v − ĒL)] =: f(v,m) (2.15)

dm

dτ1
=

1

τmtm(v)
(m∞(v) − m) =: g(v,m),

which is obtained by changing to the fast time τ1 = τ/ε and taking the limit ε → 0. The slow variables
h = h0 and n = n0 are now constants. The critical manifold S0 is the manifold of equilibria for the
layer problem, and trajectories of the layer problem evolve along one-dimensional sets (v, h0, n0), called
fast fibers, near this manifold S0. If we linearize the layer problem at S0 we obtain information about
the transient behaviour of solutions along these fast fibers, in the neighborhood of this manifold. It is
well known that solutions are quickly attracted along the fast fibers to one of the outer two attracting
branches of the critical manifold and, to leading order, follow the reduced flow towards the associated fold
curve. In the neighbourhood of the fold curve the dynamics changes significantly and the layer problem
will eventually cause a fast transient behaviour towards the other attracting branch observed e.g. as an
upstroke in the action potential.
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The following result shows that the transient behaviour near the fold-line is described by a 3D vector-field
representing the flow on a 3D center manifold of (2.13); for a more general result see (Brøns et al. 2006).

Theorem 1 The vector field (2.13) on the fast time scale τ1 = τ/ε possesses a three dimensional center
manifold M along the fold curve, which is exponentially attracting. The vector field (2.13) reduced to M
is given by:

ε
dv

dτ
= [Ī − m3

∞(v)h(v − ĒNa) − ḡkn4(v − ĒK) − ḡl(v − ĒL)] =: F (v, n, h)

dh

dτ
=

1

τh · th(v)
(h∞(v) − h) =: H(v, h) (2.16)

dn

dτ
=

1

τn · tn(v)
(n∞(v) − n) =: N(v, n) .

Proof: Introducing a new variable m̄ = m − m∞(v) in system (2.13) on the fast time scale τ1 = τ/ε
gives the layer problem

dv

dτ1
= [Ī − (m∞(v) + m̄)3h(v − ĒNa) − ḡkn4(v − ĒK) − ḡl(v − ĒL)] =: f(v, m̄)

dm̄

dτ1
= − 1

τmtm(v)
m̄ − m′

∞(v)f(v, m̄) =: ḡ(v, m̄) (2.17)

The critical manifold S0 is defined by {f(v, m̄) = 0, m̄ = 0}. Hence

∂ḡ

∂v

∣

∣

∣

∣

S0

= −m′
∞(v)

∂f

∂v

∣

∣

∣

∣

S0

.

Furthermore

∂ḡ

∂m̄

∣

∣

∣

∣

S0

= − 1

τmtm(v)
− m′

∞(v)
∂f

∂m̄

∣

∣

∣

∣

S0

< 0 , since
∂f

∂m̄

∣

∣

∣

∣

S0

= −3m2
∞(v)h(v − ĒNa) > 0

and m′
∞ > 0. It follows that the Jacobian

(

∂f
∂v

∂f
∂m̄

∂ḡ
∂v

∂ḡ
∂m̄

) ∣

∣

∣

∣

S0

has a single zero eigenvalue whenever (∂f/∂v)|S0
= 0, which happens along the fold curve. In that case

the Jacobian is given by
(

0 ∂f
∂m̄

0 ∂ḡ
∂m̄

)

Therefore the eigenvector for the zero eigenvalue is given by (v, m̄) = (1, 0) and the center manifold is
approximately given by m̄ = 0. The statement follows. ⊓⊔

Remark 2 This local center manifold reduction near the fold curve is one of the classical global reduction
steps (i.e., setting m = m∞(v)) in the literature. The global reduction is basically justified by the fact
that the dynamics away from the fold curves is slaved to the reduced flow of the two attracting branches
of the critical manifold.

The center manifold reduction resembles an instantaneous approach of the gating variable m to its equi-
librium state m = m∞(V ). The activation speed of m is fast compared to that of the other two gating
variables (n, h), but it is actually modest compared to the dynamics of the membrane potential v. So we
have to expect quantitative changes in the reduced 3D model (2.16) compared to the full HH model (2.13).
Indeed, we observe for the classical case (τx = 1 , x = m,n, h) the onset of firing of action potentials in
the full HH model for an injected current of I ≈ 6.3 while in the 3D model (2.16) we observe the on-
set already for I ≈ 4.0. This earlier onset reflects the increased speed of activation of the sodium channels.

Remark 3 Note that we are varying the original applied current I, which changes the dimensionless
parameter Î = I/(kv · gNa) in systems (2.13) and (2.16). This is done for easier comparison with results
on the original system (1.1).
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Remark 4 The standard 2D reduction, which includes the center manifold (m = m∞(v)), uses the relation
h = 0.8 − n, but this was obtained for 18.5 degrees celsius, using a different reduction approach (Rinzel
1985). The best empirical linear fit to the silent phase part of an action potential from the original
4D system is h = 0.91 − 1.14n, while the best linear fit to the 3D system (2.16) is h = 0.9 − 1.05n.
Interestingly, the reduction using h = 0.8−n restores the onset of action potentials to I ≈ 6.3. As far as
we are aware, this is coincidental.

The 2D critical manifold S0 of the 3D singularly perturbed system (2.16) is given by (2.14) and shown in
Figure 4. Clearly, the 1D fast vector field is tangent at folds, i.e. the eigenvalue of the 1D layer problem
is zero there. The folds represent saddle-node bifurcations of the layer problem. The outer branches of
S0 are attracting while the inner branch is repelling. The reduced 3D HH system (2.16) is a singularly
perturbed system in a form suitable for a geometric analysis.

3 Geometric analysis of singularly perturbed systems

The cubic shape of the critical manifold S0 (2.14) allows system (2.16) to exhibit relaxation oscillation
type solutions. There is the possibility of (classical) relaxation oscillations as shown in Figure 2 (left),
or more complicated dynamics like mixed mode oscillations shown in Figure 2 (right), just to name two
possibilities. The main difference in the dynamics between these two cases occurs near the lower fold
of the critical manifold, where the flow either jumps immediately to the upper branch and creates an
action potential or stays longer near the fold and produces subthreshold oscillations before jumping. In
this section, we show how one deduces these oscillatory behaviours from properties of the singular limit
systems obtained from (2.16).

3.1 Relaxation oscillations

Relaxation oscillations in 3D systems with 1 fast and 2 slow variables and a structure like the reduced
HH system (2.16) were studied by Szmolyan, Wechselberger (2004), Brøns et al. (2006) and Guck-
enheimer et al. (2005), based on geometric singular perturbation theory (Fenichel 1979, Jones 1995,
for an overview see Wechselberger 2005b). The basic assumption in the geometric singular perturba-
tion analysis is that the critical manifold is cubic shaped, as is true for the HH model (2.16). Let
S0 := {(v, h, n) ∈ R

3 : F (v, h, n) = 0}.

Assumption 1 The manifold S := {(v, h, n) ∈ S0 : h ∈ [0, 1]} is ‘cubic-shaped’, i.e. S = S−
a ∪ L− ∪

Sr ∪L+ ∪S+
a with attracting upper and lower branches S±

a , S+
a ∪S−

a := {(v, h, n) ∈ S : Fv(v, h, n) < 0},
a repelling branch Sr := {(v, h, n) ∈ S : Fv(v, h, n) > 0} and fold curves L±, L+ ∪ L− := {(v, h, n) ∈
S : Fv(v, h, n) = 0, Fvv(v, h, n) 6= 0}.

We would like to describe relaxation oscillations in their singular limit. Note that for sufficiently small
values of the perturbation parameter, 0 < ε ≪ 1, fast jumps are executed near the lower fold curve. In
the singular limit, we describe these jumps as projections along the fast fibers of the layer problem onto
the other attracting branch of the critical manifold. After the jump, the trajectory follows the reduced
flow until it reaches the other fold curve, where it gets projected back along another fast fiber onto the
first attracting branch of the critical manifold. Let P (L±) ⊂ S∓

a be the projection along the fast fibers
of the fold curve L± onto the opposite attracting branch S∓

a .

Definition 1 A singular periodic orbit Γ of system (2.16) is a piecewise smooth closed curve Γ =
Γ−

a ∪ Γ−
f ∪ Γ+

a ∪ Γ+
f consisting of solutions Γ±

a ⊂ S±
a of the reduced system connecting points of the

projection-curves P (L∓) ⊂ S±
a and the fold curves L±, where these slow solutions are connected by fast

fibers Γ±
f from L± to P (L±).

Assumption 2 There exists a singular periodic orbit Γ for system (2.16).

We show in Section 4 that this assumption is usually fulfilled for sufficiently large injected current I0. A
sketch of a singular periodic orbit is shown in Figure 5. The existence of such a singular periodic orbit
can be shown in the following way:
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Fig. 5 Schematic illustration of a critical manifold S and singular periodic orbit Γ leading to classical relaxation
oscillations. Both fold points of the singular orbit Γ are jump points.

– Show the existence of subsets N± ⊆ P (L∓) with the property that all trajectories of the reduced flow
with initial conditions in N± reach the fold curve L± (in finite time). It follows that the associated
maps Π± : N± ⊆ P (L∓) 7→ L± are well defined.

– If the return map Π := P ◦ Π+ ◦ P ◦ Π− : N− 7→ P (L+) is also well defined and has the property
that Π(N−) ⊂ N− then, by Brouwer’s fixed point theorem, the existence of a singular periodic orbit
follows, i.e. a fixed point of the return map exists. Uniqueness of the fixed point would follow if Π is
a contraction.

The key to finding singular periodic orbits Γ is to calculate the reduced flow on the critical manifold S
and to find solutions Γ±

a . Recall that, based on (2.14), S is given as a graph n(h, v), h ∈ [0, 1], v ∈ R,
along which F (v, n, h) = 0. Thus, we define a projection of the reduced system onto the (h, v)-plane.
Implicitly differentiating F (v, n, h) = 0 with respect to time gives the relationship Fv v̇ = −(FhH +FnN)
and we obtain

(

1 0
0 −Fv

)(

ḣ
v̇

)

=

(

H
Fn N + Fh H

)

. (3.18)

The equation for v̇ is singular along the fold curves, Fv = 0. Therefore we rescale time to obtain the
desingularized reduced flow on the critical manifold. Using ḣ, v̇ to represent differentiation with respect
to rescaled time, this system takes the form

(

ḣ
v̇

)

=

(

−Fv H
Fn N + Fh H

)

. (3.19)

This system has the same phase portrait as the reduced system (3.18), but the orientation of trajectories is
reversed on Sr, where Fv > 0. The local dynamics near the fold curves L± can be completely understood
from analysis of (3.19). Typically, fold points p ∈ L± are jump points and are defined by the normal
switching condition

(Fn N + Fh H)|p∈L± 6= 0. (3.20)

Under this condition the reduced flow (3.18) becomes unbounded along the fold curve L±. Thus trajec-
tories of system (2.16) reaching the vicinity of L± subsequently jump away from the fold. This jumping
behaviour near L± is part of the mechanism leading to (classical) relaxation oscillations in system (2.16)
shown in Figure 2 (left). The following assumptions guarantee the existence of such (periodic) relaxation
oscillations.

Assumption 3 The two fold points p ∈ L± of the singular periodic orbit Γ are jump points, i.e. (3.20)
is fulfilled.

Assumption 4 The singular periodic orbit is transversal to the curves P (L∓) on S±
a .

Theorem 2 (Szmolyan and Wechselberger 2004) Given system (2.16) under Assumptions 1-4, there
exists generically a periodic relaxation orbit for sufficiently small ε.

10



This theorem shows under which conditions trains of classical action potentials can be found (Figure
2, left). Obviously, if the singular periodic orbit is obtained by the contraction mapping principle as
described above then the periodic relaxation orbit is a (local) attractor. If the periodic orbit follows from
Brouwer’s fixed point theorem, then we also know that there exists a periodic relaxation orbit that is a
local attractor but additional periodic orbits could also exist. For more details on relaxation oscillations
we refer to (Szmolyan and Wechselberger 2004).

3.2 Excitable state

The approach described above for the calculation of a singular periodic relaxation oscillation assumes
that there are no equilibrium points of the reduced flow on S±

a between the subsets N± ⊆ P (L∓) and
the fold curves L±. If there exists an equilibrium of the reduced flow, e.g. on the lower branch S−

a , then

this equilibrium is usually stable and its basin of attraction includes a subset Ñ− ⊂ P (L+). For such
initial conditions the map Π is not defined and we expect the system to be in an excitable state.

Proposition 1 Consider system (2.16) under Assumption 1. If there exists a stable equilibrium on the
lower attracting branch S−

a that is a local (global) attractor of the reduced flow, then there exists a local
(global) attractor for sufficiently small ε.

If the conditions described in Proposition 1 hold, then the system is said to be locally (globally) in an
excitable state. The strategy to show excitability is as follows:

– Identify the subset Ñ− ⊆ P (L+) that lies in the basin of attraction of the equilibrium on the lower

attracting branch. If Ñ− = P (L+), then the equilibrium is a global attractor.

– Otherwise, take the complementary subset (Ñ−)c ⊂ P (L+) and check whether Π((Ñ−)c) ⊂ Ñ−, i.e.
whether the return map Π maps the complementary subset into the basin of attraction of the equilib-
rium. If this condition holds, then the equilibrium is a global attractor. If not, then the equilibrium is
just a local attractor and may co-exist with (an)other local attractor(s), e.g. singular periodic relax-
ation oscillations. Which local attractor a trajectory will approach then depends on the corresponding
initial condition of system (2.16).

3.3 MMO’s and canards

MMO’s consist of L large amplitude (relaxation) oscillations followed by s small amplitude (sub-threshold)
oscillations, and the symbol Ls is assigned to this pattern. The subthreshold oscillations of such MMO
patterns can be explained by folded singularities of the reduced flow as described in (Milik 1998, Wech-
selberger 2005a, Brøns et al. 2006). Typically, a folded singularity is an isolated point p ∈ L± which
violates the normal switching condition (3.20). Since Fv = 0 on L±, a folded singularity is an equilibrium
of the desingularized flow (3.19).

Definition 2 We call p ∈ L± a folded node, folded saddle, or folded saddle-node if, as an equilibrium
of (3.19), it is a node, a saddle, or a saddle-node.

For MMO’s to exist, folded nodes (or, in the limiting case, folded saddle-nodes) are required. A typical
phase portrait of the reduced flow near a folded node is shown in Figure 6. Note that there exists a
whole sector of solutions (shadowed region) that is funnelled through the folded node singularity to the
repelling branch Sr of the critical manifold. Solutions with such a property are called singular canards
and are a direct consequence of the existence of a folded singularity. The sector of singular canards is
called the funnel of the folded node singularity. For a detailed introduction to canard solutions we refer
to (Szmolyan and Wechselberger 2001, Wechselberger 2005a, Brøns et al. 2006) and references therein.
The borders of the funnel are given by the fold curve (F in Figure 6) and the so called primary strong
canard. This primary strong canard is the solution of the reduced flow (3.19) that corresponds to the
unique strong eigendirection of the folded node singularity. All other singular canards are tangent to
the so called primary weak canard corresponding to the weak eigendirection of the folded node. The
following assumption is needed for the existence of MMO’s as shown e.g. in Figure 2, right:

Assumption 5 The fold point p− ∈ L− of the singular periodic orbit Γ is a folded node (folded saddle-
node) singularity, while the fold point p+ ∈ L+ is a jump point.

11
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Fig. 6 Schematic illustration of the reduced flow near a folded node singularity. A) The desingularized flow near
a node singularity. The bold curve corresponds to the strong stable eigendirection of the node while the dashed
curve corresponds to the weak eigendirection of the node. The fold F lies on the z-axis. B) The reduced flow near
the folded node singularity obtained from A by reversing the flow on Sr (x > 0). All trajectories on S−

a (x < 0)
within the shadowed region are funelled through the folded node singularity to Sr (x > 0). These trajectories are
called singular canards. The bold trajectory is called the primary strong canard while the dashed trajectory is
called the primary weak canard. C) 3D representation of the reduced flow on the critical manifold.

Theorem 3 (Brøns et al. 2006) Suppose that system (2.16) satisfies Assumptions 1-2,4-5. If the segment
Γ−

a of the singular periodic orbit Γ is in the interior of the singular funnel, then for sufficiently small ε,
there exists a stable periodic orbit of MMO type 1s for some s > 0.

Actually, it is possible to calculate the (maximal) number of small oscillations s of this 1s MMO pattern.
Define µ := λ1/λ2 < 1 as the ratio of the eigenvalues λ1/2 (|λ1| ≤ |λ2|) corresponding to the node
singularity of the desingularized flow (3.19). Then the number of maximal subthreshold oscillations is
given by (Wechselbeger 2005a)

s = s(µ) =

[

1 − µ

2µ

]

(3.21)

where the right hand side denotes the greatest integer less than or equal to (1−µ)/(2µ). Different MMO

patterns Ls′

with L ≥ 1 and s′ < s can just be obtained under the variation of an additional parameter
in system (2.16) that changes the global return mechanism.

Theorem 4 (Brøns et al. 2006) Suppose that system (2.16) satisfies Assumptions 1-2,4-5. Assume that
there exist a parameter β in system (2.16) and a value β0 such that for β = β0, the segment Γ−

a of the
singular periodic orbit Γ consists of a segment of the primary strong canard. Then the following holds,
provided ε is sufficiently small: For each 1 ≤ s′ < s, there exists an interval Js′ with length of order

O(ε
1−µ

2 ) such that if β ∈ Js′ , then a stable 1s′

MMO pattern exists.

A sketch of a singular periodic orbit Γ leading to MMO’s is given in Figure 7. The existence of such a
singular periodic orbit can be shown as follows:

12



P (L−)

S+
a

P (L+)

L−

Sr

L+

S−
a

Γ

Fig. 7 Critical manifold S and singular periodic orbit Γ leading to MMO’s. The fold point in the silent phase
of the singular orbit Γ is a canard point (folded node/folded saddle-node singularity), while the fold point in the
active phase is a jump point.

– Calculate the return map Π for a single initial condition in P (L+) that lies within the basin of
attraction of the folded node resp. folded saddle-node singularity (the funnel) and show that this
initial condition is mapped back into the funnel by Π. This guarantees immediately the existence
of a unique singular periodic orbit fulfilling Assumption 5, since all trajectories within the singular
funnel are contracted to the folded singularity.

The small (subthreshold) oscillations observed in a MMO pattern occur in the neighbourhood of the
folded node singularity. The reason can be roughly explained as follows: Note that existence and unique-
ness of solutions of system (2.16) for small ε 6= 0 is guaranteed. In the singular limit, however, uniqueness
is lost for the reduced flow along the fold curve. In particular, at the folded node singularity we have a
continuum of solutions, the singular canards, passing from the attracting branch Sa through one single
point, the folded node singularity, to the repelling branch Sr as described above. Wechselberger (2005a)
showed that a discrete number of canard solutions persist under small perturbations 0 < ε ≪ 1, i.e. all
these canard solutions connect from the attracting branch Sa,ε to the repelling branch Sr,ε. The existence
of invariant manifolds Sa,ε and Sr,ε away from the fold, which are O(ε) perturbations of Sa and Sr, are
guaranteed by Fenichel theory (Fenichel 1979, Jones 1995). Furthermore, solutions of (2.16) on Sa,ε and
Sr,ε will approximately follow the reduced flow on Sa and Sr. By a pure topological argument it follows
that the only way for canard solutions to connect these manifolds Sa,ε and Sr,ε without violating the
uniqueness of other solutions nearby is given by rotations of the manifolds Sa,ε and Sr,ε near the fold
curve. For a more detailed explanation of this geometric structure we refer to (Guckenheimer and Haiduc
2005, Wechselberger 2005a).

Theorem 4 states that under the variation of an additional parameter β in system (2.16), which changes

the global return mechanism, MMO patterns of type 1s′

with 1 ≤ s′ < s are realized. Combinations
of adjacent MMO patterns 1s′

and 1s′+1 are usually observed in the transition from one stable MMO
pattern 1s′+1 to another stable MMO pattern 1s′

under variation of β. Within the transition from a 11

MMO pattern to relaxation oscillations (10 MMO pattern) one may also observe L1 patterns, L > 1, as

well as combinations of patterns. More complex Ls′

MMO patterns as well as related combinations are
found for µ → 0, such that s(µ) → ∞, and/or for larger ε. These complex patterns are not well covered
by the current theory and the development of such a theory will be the focus of future work.

4 Analysis of the 3D HH system (2.16)

In the following we show under which conditions on the parameters of system (2.16) we obtain either an
excitable system, relaxation oscillations or MMO’s.
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4.1 Singularities of the reduced flow

To analyse the reduced flow (3.18) on the critical manifold S, we calculate the desingularized system
(3.19) as described in Section 3 for the 3D HH system (2.16) and check under which conditions we find
singularities. The right hand side functions of (3.19) are given by

Fv = −(m3
∞(v)h + ḡk n4(v, h) + ḡl + 3m2

∞(v)h (v − ĒNa)m′
∞(v))

Fh = −(m∞(v) (v − ĒNa))

Fn = −(4ḡk n3(v, h) (v − ĒK))

and n(v, h) is defined in (2.14). Recall that the folds L± are defined by Fv = 0. The functions H and N
depend on the time constants τh and τn. Each of the functions Fv, Fh and Fn depends on the parameter I.

There are two classes of equilibria of system (3.19). The first occurs where H = 0, corresponding to
h = h∞(v), and N = 0, corresponding to n(v, h) = n∞(v), where the function n(v, h) depends on I but
not on τh and τn. Putting this together yields the condition n(v, h∞(v)) = n∞(v), which has a solution
v that is independent of τh and τn but depends on I, called v(I) below. The second class of equilibria,
folded singularities, arises where Fv = 0 (along the fold line) and FnN + FhH = 0. These points depend
on τh, τn and I. There are no equilibria with H = 0 and N 6= 0, because Fn 6= 0.

Remark 5 Both folded and regular singularities are equilibrium points of system (3.19), but only the
latter are actually equilibrium points of (3.18), as pointed out in Section 3.

A bifurcation occurs as I varies, for fixed τh, τn, when the the curve of equilibria v(I) intersects the
fold-line Fv = 0. This occurs at the special value of I at which

Fv(v(I), n(v(I), h∞(v(I))), h∞(v(I))) = 0.

But since the functions v(I), h∞(v), n(v, h) are independent of τh and τn, the location of this bifurcation
is independent of τh and τn as well. Parameter continuation by using XPPAUT (Ermentrout 2002) shows
that this bifurcation value is given by Ic ≈ 4.8. Figures 8-9 show this bifurcation for different values of
τh and τn, with I taken as the bifurcation parameter. Clearly, the bifurcation point is independent of τh

and τn as claimed, and the bifurcation happens on the fold curve. We will discuss further details about
these diagrams below.

Proposition 2 Generically, the reduced system (3.18) possesses, for I = Ic ≈ 4.8, a folded saddle-node
on the fold curve L− (independent of τh and τn). For nearby values I < Ic, system (3.18) possesses a
folded saddle and a stable node singularity. For nearby values I > Ic, system (3.18) possesses a folded
node and a saddle singularity. Therefore, the bifurcation of the ordinary and the folded singularity near
I = Ic resembles a transcritical bifurcation.

Remark 6 There exist two different types of folded saddle-node (FSN) singularities. The FSN type I
corresponds to a true saddle-node bifurcation of folded singularities, while a FSN type II corresponds to a
transcritical bifurcation of a folded singularity with an ordinary singularity (Szmolyan and Wechselberger
2001). Therefore, the folded singularity at I = Ic described in Proposition 2 is a FSN type II.

In general, the proposition states that there exists a folded node singularity for certain parameter values.
In these cases MMO’s are possible, depending on the global return mechanism, as described in Section
3. In the following we will split the analysis into 3 different cases: the classical case (τh = 1, τn = 1), the
case (τh > 1, τn = 1) and the case (τh = 1, τn > 1).

Classical case (τh = 1, τn = 1)

In that case, system (3.18) has a folded saddle for 0 < I < Ic, a folded saddle-node type II for I = Ic,
and a folded node for I > Ic on the lower attracting branch (in the silent phase). Furthermore, the lower
attracting branch S−

a has a stable node for 0 < I < Ic, which bifurcates via the folded saddle-node
singularity to the repelling middle branch Sr, where it becomes a saddle for I > Ic (see Proposition 2).

Figure 10 illustrates these singularities using the nullclines of the desingularized system (3.19) with
I = 1 < Ic and I = 10 > Ic, respectively. In these as well as analogous phase plane pictures below, the
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Fig. 8 Bifurcation of equilibria (black: regular, other colors: folded) for the reduced flow for different values of
τh (τh = 1 (red), τh = 15 (dark blue)). Solid curves are asymptotically stable (nodes, folded nodes), while dashed
are unstable (saddles, folded saddles). Further details are given in the text.
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Fig. 9 Bifurcation of equilibria (black: regular, all other colors: folded) for the reduced flow for different values
of τn. Solid curves are asymptotically stable (nodes), while dashed are unstable (saddles). Further details are
given in the text.

cyan curves are the solutions of FvH = 0, one corresponding to Fv = 0 (i.e., the lower fold L−) and the
other corresponding to H = 0, while the black curve consists of solutions of FnN + FhH = 0. Folded
equilibria are indicated by red symbols, while regular equilibria are indicated by blue symbols. Finally,
nodes are marked with circles, while saddles are marked with triangles. So, in Figure 10 with I = 1 (left),
we see a stable node and a folded saddle, while in Figure 10 with I = 10 (right), we see a folded node
and a saddle.

Remark 7 There exist two other folded singularities of the reduced flow which have no influence on the
dynamics of the classical case, but will become more important in the other two cases (τh > 1, τn = 1)
and (τh = 1, τn > 1). First, there is another folded saddle in the silent phase for h ≪ 1. This folded saddle
will move to the right for τn > 1 (see corresponding case study (τh = 1, τn > 1) below). Second, there
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Fig. 10 Phase plane for system (3.19) for the classical case (τh = 1, τn = 1) with I = 1 < Ic (left) and I = 10 > Ic

(right).
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Fig. 11 The h coordinate for the folded focus of system (3.19) depends on τh (solid curve). The dotted lines

demarcate h = 1 and τh = 1.4 and illustrate that the focus becomes non-physiological for τh < τf

h ≈ 1.4.

is also a folded focus in the active phase for h > 1. This folded focus will move into the physiologically
significant range 0 < h < 1 for τh > 1 (see corresponding case study (τh > 1, τn = 1) below).

Case (τh > 1, τn = 1)

This case is similar to the classical case. Again, system (3.18) has a folded saddle for 0 < I < Ic, a folded
saddle-node type II for I = Ic, and a folded node for I > Ic on the lower attracting branch (in the silent
phase), for each fixed τh > 1. As in the classical case, the lower attracting branch S−

a has a stable node
for 0 < I < Ic, which bifurcates via the folded saddle-node singularity to the repelling middle branch
Sr, where it becomes a saddle for I > Ic (see Proposition 2). In addition to showing the curve of regular
equilibria generated by varying I, Figure 8 shows examples of how the folded singularities depend on I
for τh = 1 and τh = 15, the former of which is closer to the curve of regular equilibria, illustrating that
their dependence on τh is quite weak.

The only difference between τh = 1 and τh > 1 with respect to singularities is that there exists a folded

singularity of focus type in the active phase for τh > τf
h within the physiological significant domain

0 < h < 1. Figure 11 shows the h value of the folded focus for different values of τh. At τf
h ≈ 1.4, the

h value is approximately one, while it is less than 1 for τh > τf
h . Folded foci do not support canard

solutions. The main influence of folded foci on the reduced flow is that they direct the flow a certain way.
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We shall see in the next two subsections that the folded focus has no significant impact on the solutions
that we are studying.

Case (τh = 1, τn > 1)

As can be seen in Figure 9, the bifurcation diagram for system (3.19), with bifurcation parameter I,
depends much more strongly on τn than on τh. The black curve in Figure 9, which switches from solid
(for I < Ic ≈ 4.8) to dashed (for I > Ic), is the curve of regular equilibria, which is independent of τn, as
noted earlier. As τn increases from 1, the curve of folded equilibria develops two folds, which correspond
to saddle-node bifurcations of folded equilibria in the parameter I for each fixed τn. Figure 9 shows
examples of the curves of folded equilibria for I > 0 for a variety of values of τn, including τn = 1 (red),
which is shown for comparison.

We define several critical values of τn. First, there exists a value τ c
n ≈ 4.75 such that for all τn < τ c

n,
there is a saddle-node bifurcation of folded equilibria at some I = I+

SN > Ic, lying above the curve of
regular equilibria (e.g. τn = 3 in Figure 9). Examples of the corresponding phase planes of (3.19) are
shown in Figure 12 for I = 1 < Ic, I+

SN > I = 7 > Ic and I = 10 > I+
SN , which illustrate the following:

There exist three singularities in the domain of interest, two folded saddles and one (ordinary) node, for
I = 1. The folded saddle to the right of the node bifurcates via a transcritical bifurcation at I = Ic to a
folded node to the left of the saddle. For I = I+

SN the folded node and the other folded saddle (to the
left) annihilate each other in a saddle-node bifurcation and we are only left with a saddle singularity on
the repelling side of the critical manifold. Note that the folded saddle-node singularity at I = Ic is of
type II, while the folded saddle-node singularity at I = I+

SN is of type I.

For τ c
n < τn < τ∗

n (τ∗
n ≈ 10.5), the saddle-node bifurcation at I+

SN > Ic lies below the curve of regular
equilibria, as shown for τn = 7 in Figure 9. Figure 13 shows phase planes for τ∗

n > τn = 7 > τ c
n for

I = 1 < Ic, for I = 6 and I = 7, both above Ic and below I+
SN , and for I = 10 > I+

SN . In this case,
the folded saddle to the left of the node bifurcates via a transcritical bifurcation at I = Ic to a folded
node to the right of the saddle. As I increases towards I+

SN , a folded saddle from the right (h > 1)

approaches the folded node. They finally annihilate each other for I = I+
SN in a saddle-node bifurcation.

Again, we are left with only a saddle singularity on the repelling side of the critical manifold for I > I+
SN .

In both cases, τn < τ c
n and τ∗

n > τn > τ c
n, a folded node emerges for I > Ic via a transcritical bifurcation

and persists up to the saddle-node bifurcation at I = I+
SN . In the limit τn = τ c

n these two bifurcations
merge to a single pitchfork bifurcation at I = Ic. This yields a curve of folded saddle equilibria, shown
as the τn = 4.75 curve in Figure 9. The value τn = τ c

n is the unique value for which the bifurcation at
I = Ic is not transcritical and does not create a curve of folded nodes.

As can be seen in Figure 9 for τn = 7, there is also a lower (with respect to I) saddle-node bifurcation
of folded equilibria, with a folded node at relatively negative v values for I above this bifurcation. Let
I−SN denote the I value where this lower saddle-node bifurcation occurs. In fact, the interval of τn values
over which this lower saddle-node exists is given by (τ∞

n , τ∗
n), where τ∞

n ≈ 4.2. However, the saddle-node
exists for I−SN < 0 for τ∞

n < τn < τ−
n ≈ 5.75, which explains why this bifurcation is not visible in Figure

9 for τ c
n = 4.75.

Figure 14 shows both the upper (at I = I+
SN , solid) and lower (at I = I−SN , dashed) curves of saddle-node

bifurcation points, as functions of τn. Note that the two bifurcations come together in a cusp at τ∗
n, which

is approximately given by τ∗
n ≈ 10.5. Further, as τn decreases, the lower saddle-node occurs at progres-

sively larger h and hence becomes physiologically irrelevant. In general, the lower folded nodes have no
influence on the dynamics within the physiological relevant boundaries. Therefore, we will not consider
them in the following analysis of relaxation oscillations. Note also that the upper saddle-node occurs at
progressively larger values I = I+

SN as τn decreases towards τn = 1, which is why it is not observed in the
τn = 1 bifurcation curves in Figures 8-9. Finally, if τn > τ∗

n, above the cusp of saddle-node bifurcations,
then the bifurcation diagram with respect to I becomes more like the classical case again, with a single
transcritical bifurcation at I = Ic (within the physiological relevant domain).

To summarize: In all three cases there exists a node singularity for I < Ic on the lower attracting branch
(silent phase). In the cases (τh ≥ 1, τn = 1) there exists on L− a (physiologically relevant) folded node
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Fig. 12 Phase planes for system (3.19) for τh = 1, τn = 3: I = 1 < Ic (upper left), I+

SN > I = 7 > Ic (upper

right) and I = 10 > I+

SN (lower).

singularity for I > Ic. In the case (τh = 1, τn > 1) there exists on L− a (physiologically relevant) folded
node singularity for I+

SN > I > Ic, where I+
SN approaches Ic in the (degenerate) limit τn → τ c

n, but

I+
SN > Ic for τn 6= τ c

n.

4.2 Transversality of reduced flow at P (L±)

To apply Theorems 2-4 (relaxation oscillations or MMO’s) we have to show that the associated singular
periodic orbit is transversal to the projections of the fold curves P (L±) (Assumption 4). Instead of
verifying Assumption 4 for each specific example, we give evidence that the reduced flow is transversal
to P (L±) and directed towards the fold curves in the whole domain of interest. This more general
transversality argument gives important insight into the nature of the reduced flow, since it shows that
the reduced flow (Π−,Π+) and associated projections preserve the orientation of trajectories. This
orientation preservation property will help us to calculate the return map Π defined in Section 3 in order
to find singular periodic orbits.

Proposition 3 The flow of the reduced system (3.18) is transversal to P (L±) and directed towards L∓

within the physiologically relevant domain of h (0 < h < 1 but not h ≪ 1) and the parameter range under
study (I ≥ 0, τh ≥ 1, τn ≥ 1). Moreover, in this parameter range, the return map Π, where it is defined,
preserves the orientation of trajectories, in the sense that if p1 = (h1, v1), p2 = (h2, v2) ∈ P (L+) with

h1 < h2, and Π(p1) = (ĥ1, v̂1),Π(p2) = (ĥ2, v̂2), then ĥ1 < ĥ2.

As with the propositions in Section 4.3 below, we use numerical observations to support this proposition.
In the discussion below, we omit very small values of h (h ≪ 1) and consider the rest of the physiological
range of h (0 < h < 1). All of the statements we make hold independent of the values of I, τh, τn, within
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Fig. 13 Phase planes for system (3.19) for τh = 1, τn = 7: I = 1 < Ic (upper left), I+

SN > I = 6 > Ic (upper

right), I+

SN > I = 7 > Ic (lower left) and I = 10 > I+

SN (lower right).

the ranges I ≥ 0, τh ≥ 1, τn ≥ 1. We will come back to h ≪ 1 at the end of the section.

First, note that, as can be seen in Figure 4 for example, the fold curves L± are almost parallel to the
h-axis, as long as h is not too small. Hence, the projections of the fold curves P (L±) are almost parallel
to the h-axis, away from very small h, as well. Furthermore, the subsets of the projections P (L+) and
P (L−) away from h ≪ 1 lie on opposite sides of the v-nullcline FnN + FhH = 0 of the reduced flow
(3.18). Therefore, v̇ has opposite signs along P (L+) and P (L−). We can thus use the expressions given
in (2.16) to compute numerically, from the desingularized reduced flow (3.19), that in fact v̇ > 0 along
P (L+) and v̇ < 0 along P (L−), away from h ≪ 1. Since P (L±) are almost parallel to the h-axis, this
implies that the reduced flow (3.18) is transversal along P (L±) and that the flow is directed towards
L∓. Figure 15 shows the projection of the fold curves P (L±) together with the reduced vector field from
system (3.19) for τh = τn = 1 and for different values of I ranging from 2 to 8. These observations
reflect the physiological fact that the membrane potential repolarizes in the active phase (v̇ < 0) and
depolarizes in the silent phase (v̇ > 0). Similar figures can be obtained under variation of τh and τn and
they all support Proposition 3.

For the reduced flow near P (L+) we can give an even stronger transversality argument for 0 < h < h∞(v)
but not too small, as follows (see Figure 16): P (L+) is a convex and monotonically decreasing function

with respect to h. If the reduced flow near P (L+) points into the first quadrant, i.e. ḣ > 0 and v̇ > 0, then
transversality follows immediately. But we have already given the argument that v̇ > 0 for 0 < h < 1
but not too small, while ḣ > 0 for 0 < h < h∞(v), and hence transversality follows.
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Fig. 15 Transversality of reduced flow at P (L+) (solid) and P (L−) (dashed) for τh = τn = 1 under variation of
I. The arrows indicate the vector field of the reduced system (3.18) at P (L±) and show that the flow is directed
towards the fold curves L∓ (which are not shown here).

Remark 8 The same argument cannot be used for the reduced flow near P (L−). Note that P (L−) is a
concave and monotonically increasing function with respect to h. If the reduced flow near P (L−) pointed

into the fourth quadrant, i.e. ḣ > 0 and v̇ < 0, then transversality would follow. Again, ḣ > 0 for
0 < h < h∞(v), but h∞(v) ≪ 1 for positive v. Therefore, we instead have ḣ < 0 almost everywhere along
P (L−).

Note that the projections of the fold curves P (L±) become almost parallel to the v-axis, instead of the
h-axis, for very small h values, as shown in Figure 15. We take the domain h ≪ 1 that is excluded from
Proposition 3 to consist of the h values where this occurs. In fact, we found examples where transversality
along P (L−) is violated for h ≪ 1. Fortunately, it will turn out that such h values are not relevant for
our calculations of the return map Π, used to find singular periodic orbits in Section 4.3, and hence this
exclusion does not affect our ability to analyze the solutions of systems (3.18), (3.19).
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Fig. 16 Illustration of the flow box argument establishing transversality for 0 < h < h∞(v) on P (L+), and its
inapplicability on P (L−). The short segments with arrows represent the direction field. The solid circle is the

folded focus present in the active phase for τh > τf

h ≈ 1.4. Note that since the relevant part of P (L−) lies above

h∞(v), ḣ < 0 and transversality cannot be guaranteed there.

Finally, it remains to consider the preservation of orientation under Π. Obviously, the projection P does
not change the orientation of trajectories. Moreover, as noted above, the fold curves and their projections
are almost parallel to the h-axis for h not too small, while the reduced flow (3.19) is rectifiable between
P (L+) and L− on S−

a . Theoretically, orientation of the flow could be affected by the folded focus on

L+ ⊂ S+
a for τh > τf

h . The focus lies within the intersection {(h, v) : Fv = 0}∩{(h, v) : v̇ = FnN +FhH =
0}, and we have already seen that v̇ < 0 on P (L−) ⊂ S+

a , however. Hence, the flow in the neighborhood
of the folded focus is counterclockwise in the (h, v) plane (Figure 16) and trajectories generated by all
initial conditions on P (L−) will intersect L+ without a change in orientation.

4.3 Singular periodic orbits

In this section, we consider various objects and their projections under the desingularized reduced flow,
given by system (3.19). Recall that we defined the return map Π = P ◦Π+ ◦P ◦Π− from N− ⊂ P (L+)

back to P (L+). It is now convenient to introduce the additional map Π̃ = P ◦ Π+ ◦ P : L− → P (L+),
which maps points on the lower fold curve back to the silent phase.

Classical case (τh = 1, τn = 1)

We distinguish between two different scenarios. For I < Ic, there exist two singularities, a folded saddle
and a stable node singularity. The unique canard, formed by the stable manifold of the folded saddle
singularity, is a separatrix for the basin of attraction of the node singularity. In particular, there exists a
subset of initial conditions Ñ− ⊂ P (L+) within the physiologically relevant domain 0 < h < 1 that lies

in the basin of attraction of the node equilibrium, as well as its complimentary subset (Ñ−)c ⊂ P (L+)
relative to this domain. All trajectories within the complimentary subset will reach the fold curve L−

in finite time. In theory, this system may be either excitable or oscillatory, depending on the initial
conditions. Suppose that we show

Π((Ñ−)c) ⊂ Ñ− (4.22)

for the return map Π as described in Section 3.2. If so, then no singular periodic orbit can exist. In this
case, the cell is purely excitable and all trajectories approach the stable node equilibrium, possibly after
a transient featuring excursions to the active phase. Since the stable manifold of the folded saddle forms
a boundary of the basin of attraction of the node, as long as the h-coordinate hfs of the folded saddle is
less than one, it follows that to establish (4.22), it is in fact sufficient to establish that

Π̃((L−)fs+) ⊂ Ñ−, (4.23)

where (L−)fs+ is the segment of L− on which hfs ≤ h ≤ 1. Figure 17 shows an example of this excitable
scenario with I = 3.5. We will show many plots of this type in the following exposition. The plot on
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Fig. 17 Upper left: The return map Π̃ generated by the reduced flow for τh = 1, τn = 1, and I = 3.5 < Ir < Ic.
Note that the folded singularity is a folded saddle (the corresponding canard is shown in green) and that the
black arrows illustrate the direction of the flow. Other objects are explained in the text. Upper right: Zoomed
view of the silent phase showing the canard as well as the trajectories generated from following both the initial
point on L− satisfying h = 1 (magenta, hinit = 1) and the folded saddle point itself (blue trajectory), under Π̃.
Observe that both trajectories are to the left of the canard and converge to the node, which lies near, but just
off, the (red) fold curve L−. Bottom: Same fold curves and projections from the upper left plot, as well as the
canard (green), the active phase flow of the projected folded saddle (cyan), and its return image in the silent
phase (blue), all embedded into IR3 using equation (2.14).

the upper left in Figure 17 shows the lower fold L− (red solid) and its projection P (L−) onto S+
a (red

dashed), the upper fold L+ (black solid) and its projection P (L+) onto S−
a (black dashed), the two

equilibrium points on L− (the blue circle is a node, the red triangle is a folded saddle, as in the earlier
phase plane figures), the canard trajectory formed by a branch of the stable manifold of the folded saddle
(green solid), the projection of the canard to the active phase (green dashed), the reduced flow from the
projection point in the active phase (cyan solid) up to its intersection with the upper fold, the projection
of the intersection point back to the silent phase (cyan dashed), and the reduced flow from the projection
point back to the neighborhood of the fold (blue solid). Similar trajectories from projection of the point
on L− with h = 1 are also shown.

Both upper panels of Figure 17 illustrate that Π̃ maps the endpoints of (L−)fs+ into Ñ−. Since orienta-

tion is preserved under Π (and Π̃ similarly), this finding establishes that condition (4.23) holds, which in

turn implies that the set (Ñ−)c satisfies condition (4.22), such that the cell is excitable. It is interesting
to note the strong contraction, including that resulting from the flow in the active phase, which yields
strong compression in h, from the projection back to the silent phase, which gives strong compression in
v, and from the ensuing flow there, which contracts strongly in h. The lower panel of Figure 17 shows
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the embedding of the two-dimensional plot into IR3, using equation (2.14).

Alternatively, if there exists a subset N− ⊆ (Ñ−)c of the complimentary set such that

Π(N−) ⊂ N− , (4.24)

then this will guarantee the existence of a singular periodic orbit by Brouwer’s fixed point theorem or
the contraction mapping principle. In particular, if we can show that the boundary point given by the
folded saddle is mapped under Π̃ to the right of the canard, then it follows immediately that there exists
a singular periodic orbit. For example, in Figure 18 we can show that this singular trajectory is mapped
to the right of the canard for I = 4.0, which shows the existence of a singular periodic orbit. Therefore,
we have (at least) two local singular attractors, the node and a singular periodic orbit, for all I between
I = Ir ≈ 4.0 and I = Ic.

Remark 9 Note that the value Ir ≈ 4.0 is close to the onset of relaxation oscillations observed numerically
in system (2.16) with τh = τn = 1.

By continuation it follows that there exist I values within 3.5 < I < 4.0 such that the initial condition
corresponding to the canard trajectory is mapped into the domain of attraction of the node, while the
initial condition h = 1 is mapped to the right of the canard. The range of I values for which this happens
is quite small (a subset of 3.8 < I < 4.0), as would be expected from the strong contraction observed in
Figure 17. Such a configuration neither rules out nor guarantees the existence of a singular periodic orbit.

For I = Ir ≈ 4.0, the initial value of the canard will project onto itself and therefore the image of the
folded singularity will itself form a singular periodic orbit. In general, corresponding special orbits, known
as canard cycles, will exist for system (2.16) and mark the transition from excitable to oscillatory states.
The existence of these special orbits is well known in the classical case of the HH model (Rinzel and
Miller 1980, Guckenheimer and Oliva 2002). These canard cycles are unstable periodic orbits, co-exist
with a stable relaxation orbit and are very sensitive to variation of the parameter I. Multiple unstable
canard cycles with varying amplitudes exist for certain values of I (Rinzel and Miller 1980, Gucken-
heimer and Oliva 2002) and chaotic behaviour of the system is also expected due to these canard cycles
(Guckenheimer and Oliva 2002). For more details we refer to (Rinzel and Miller 1980, Guckenheimer and
Oliva 2002).

For applied current I > Ic, Proposition 2 implies that there exists a folded node singularity. The cell is
in an oscillatory regime since no ordinary singularity exists on the attracting branches S±

a . The main
question to resolve is whether or not the cell can support MMO’s. Following Section 3.3, we have to
calculate the return map Π of an arbitrary initial condition in the domain of attraction of the folded
node (the funnel). If this trajectory is mapped back into the funnel of the folded node, then the existence
of a singular periodic orbit of MMO type follows immediately from the contraction mapping principle.
On the other hand, if this initial condition is mapped to the right of the strong canard (outside the
funnel) then the existence of a (classical) singular periodic orbit follows. Again, this is a consequence of
Proposition 3, which preserves orientation of trajectories under the map Π, and Brouwer’s fixed point
theorem or the contraction mapping principle.

Note that the branch in S−
a of the strong eigenvector of the folded node approaches the folded node with

positive slope. Hence, the funnel lies to the left of the canard, between the canard and the fold curve L−.
We find that the singular trajectory emanating from the folded node returns to the right of the canard
for all I > Ic, and the system therefore is in the classical relaxation oscillation regime for I > Ic. An
example of the return map is shown in Figure 19 for I = 5.5 > Ic. This result is consistent with the fact
that the cell enters the classical relaxation regime, with the return of the canard trajectory to the right
of the canard itself, for Ir < I < Ic with Ir ≈ 4.0, as discussed above.

Proposition 4 In the classical case (τh = 1, τn = 1), system (2.16) possesses a singular periodic orbit
Γ for applied current I > Ir. The singular periodic orbit Γ fulfills Assumption 3 for any applied current
I > Ir. Therefore, no MMO’s are expected in this system.

Despite the non-existence of MMO’s in the classical case, we can still observe the effect of the folded
node in transients, when we choose initial conditions that lie in its funnel. An example of this appears in
Figure 20 and it shows clearly the existence of the folded node through the long delay and the observed
subthreshold oscillations before the first action potential is fired. This is remarkable since that shows
that the squid giant axon has a hidden canard.
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Fig. 18 The return map Π̃ generated by the reduced flow for τh = 1, τn = 1, and I = 4.0. Left: all components
of the map for the canard and for the h = 1 point from L− are shown. Right: Zoomed view, showing that both
trajectories hit the fold L− to the right of the folded saddle (red triangle).
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Fig. 19 The image of the folded node under Π̃ lies to the right of the canard in the classical case (τh = τn = 1)
for I > Ic. Left: usual diagram for I = 5.5. Right: embedding of this diagram into IR3.

Case (τh > 1, τn = 1)

Recall that the bifurcation diagram for system (3.19) in the silent phase remains relatively invariant as τh

is increased from 1, with τn fixed (Figure 8). We shall see, however, that increasing τh does significantly
impact the dynamics in the singular limit, at least for a range of I values.

For τh > 1, we again distinguish between the two scenarios, I < Ic and I > Ic. For I < Ic, there exist
a folded saddle and a stable node singularity, the latter of which is independent of τh and τn. As in the
case of τh = 1, the unique canard corresponding to the folded saddle singularity is a separatrix for the
domain of attraction of the node singularity. Again, we denote by Ñ− ⊂ P (L+) the subset of initial

conditions in the domain of attraction of the node equilibrium and by (Ñ−)c its complement within the
physiologically relavant domain 0 < h < 1. If Π satisfies (4.22), then the cell is excitable, whereas if
(4.24) holds, then the cell is oscillatory, with a singular periodic orbit. For τh = 1, the transition from
excitable to oscillatory occurs for I > Ir ≈ 4.0. As τh > 1 increases, the I value Ir,h at which the

transition occurs increases as well. For example, for τh = 3, τn = 1, and I = 4, Figure 21 shows that Π̃
is defined on all of (L−)fs+ , since it is defined on the endpoints of (L−)fs+ and the flow is orientation
preserving, and that (4.22) holds, such that the cell is still excitable. Thus, for fixed I < Ic, increasing
τh alters the global return mechanism and therefore switches the cell from an oscillatory to an excitable
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Fig. 20 Transient effects of the folded node for the classical case (τh = τn = 1) with I = 8 > Ic. Left: Zoomed
image of the fold L− (black), the folded node (black circle), the strong canard (green), and the projection of a
trajectory generated by the three-dimensional flow from system (2.16). Differential coloring is used to highlight
qualitatively different components of this trajectory. First, from the initial condition (h, v) = (0,−0.7) in the
funnel of the folded node, this trajectory spends significant time in the vicinity of the folded node before exiting
the silent phase (red) and firing an action potential. After the action potential is fired the trajectory returns
to the silent phase (black dashed). The return occurs outside of the funnel of the folded node and hence the
trajectory is attracted to the classical periodic orbit or relaxation oscillation (blue), which subsequently yields
tonic firing. Right: The v time courses corresponding to the trajectory in the left image (red) as well as that
generated by an initial condition outside of the funnel (black).

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

h

v

0.3 0.35 0.4 0.45 0.5 0.55
−0.8

−0.75

−0.7

−0.65

−0.6

h

v

canard

canard return h
init

=1

Fig. 21 The return map Π̃ generated by the reduced flow for τh = 3, τn = 1, I = 4. Note that the return images
of both the folded saddle and the point on L− with h = 1 lie to the left of the canard, in the basin of attraction
of the node.

state. In fact, Ir,h approaches Ic as τh approaches τe
h ≈ 1.3. For τh > τe

h, there is no transition, and the
cell remains excitable for all I < Ic.

This change in excitability has a dramatic influence on the cell in the case I > Ic, where the folded
saddle bifurcates to a folded node. As for τh = 1, singular funnel of the folded node lies to the left of
the strong canard in this parameter regime, because the branch in S−

a of the strong eigenvector of the
folded node approaches the folded node with positive slope. For a range of I values, Ic < I < Ir,h, the
return map Π maps initial conditions of the singular funnel of the folded node back into the singular
funnel. Therefore, for τh > τe

h and Ic < I < Ir,h, Assumption 5 is fulfilled for the corresponding singular
periodic orbit Γ and we expect MMO’s by Theorem 3. Figure 22 shows an example of the projection of
the reduced flow for τh = 3, τn = 1, and I = 8, for which MMO’s occur, as well as the resulting MMO.

For each τh, for I > Ir,h, the return map Π maps the strong canard corresponding to the folded node to
the right of the canard. This again shows the existence of a singular periodic orbit, but we now expect
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Fig. 22 MMO’s occur for τh = 3, τn = 1, I = 8 > Ic. Upper plots: The trajectory generated by following
the folded node (canard return) returns into the singular funnel, to the left of the canard itself (green curve),
while that generated by following the point on L− with h = 1 (hinit = 1) does not. Bottom: The top panel
shows the projection of the trajectory of the three-dimensional flow (2.16) in the vicinity of the folded node. The
bottom panel shows the time course of v along the resulting 119 MMO. This MMO is classified as 119, because
19 subthreshold oscillations occur for each jump to the active phase.
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Fig. 23 Projection of the reduced flow for τh = 3, τn = 1, I = 12. The folded node returns back to the right of
the strong canard (green), and hence relaxation oscillations result.
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ordinary relaxation oscillations by Theorem 2. In the case of τh = 3, we find Ir,h ≈ 9.7. Figure 23
shows the projection of the reduced flow for τh = 3, τn = 1 and I = 12. The singular strong canard
corresponding to the folded node is mapped to the right of the funnel, so that only relaxation oscillations
occur.

Proposition 5 System (2.16) with fixed parameters τh > τe
h and τn = 1, where τe

h ≈ 1.3, possesses a
singular periodic orbit Γ for each applied current I > Ic. The singular periodic orbit Γ fulfills Assumption
5 for Ic < I < Ir,h and Assumption 3 for I > Ir,h. Therefore, a transition from an excitable state to
MMO’s to an oscillatory state is expected as the applied current I is increased.

Remark 10 Similarly to the transition from excitable to oscillatory in the classical case, there exists a
value of I close to Ir,h, where the initial condition of the strong canard corresponding to the folded node
is mapped onto the canard itself. This limiting case of a singular periodic orbit fulfilling Assumption 5
is described in Theorem 4 and explains why we can find all kinds of MMO patterns near the transition
to classical relaxation oscillations, as shown in Figure 28 in Section 4.4 below.

Case (τh = 1, τn > 1)

Unlike the previous cases, we do not consider I < Ic and I > Ic separately in our presentation for
τh = 1, τn > 1. Instead, recall from Section 4.1 that we distinguish between two subcases, τn < τ c

n and
τn > τ c

n, where τ c
n ≈ 4.75 corresponds to the critical value of τn where we observe a (degenerate) pitchfork

bifurcation at I = Ic, as shown in Figure 9. We shall see that the case of 1 < τn < τ c
n is qualitatively

quite similar to the case of τh > 1, τn = 1. For 1 < τn < τ c
n, there exist three physiologically relevant

singularities, two folded saddles and a node. The basin of attraction of the node is bounded by the two
strong canards corresponding to the folded saddles. Figure 24 illustrates the case of τn = 3, with I = 3.5
and I = 4.5. Similarly to the classical case, the folded saddle to the right of the node (i.e., at larger h) is
itself moving to the left, closer to the node, as I increases. When τn is not too large, there is a transition
to relaxation oscillations, with Π mapping the initial conditions corresponding to the strong canards of
both folded saddles outside of the basin of attraction of the node (i.e., to the right of the strong canard
of the rightmost folded saddle), as I is increased toward Ic. We denote the transitional value by Ir,n. In
the case τn = 3, Ir,n is between I = 3.5 and I = 4.5, as can be seen in Figure 24. Ir,n increases with τn,
but is always less than Ic for τn < τ c

n.

Now, since τn < τ c
n, an exchange of stability occurs at I = Ic, such that for Ic < I < I+

SN , there are
a folded node and a regular saddle, with the folded node lying to the left of (i.e., at smaller h values
than) the saddle, in addition to the folded saddle at small h. See Figure 25 for an example. Note that
as I increases through Ic, the folded singularity passes through the regular singularity and hence moves
across the h-nullcline (H = 0). Hence, the slope of the branch in S−

a of the eigenvector of the folded
singularity to which the canard trajectory is tangent switches from negative to positive. Thus, the funnel
of the folded node that emerges for I > Ic lies to the left of the canard.

For τn < τ c
n, the transition from excitable to oscillatory occurs already for I = Ir,n < Ic. For Ic < I <

I+
SN , the return map applied to an initial condition corresponding to the funnel of the folded node lies

outside of the funnel, i.e., to the right of the canard, and thus outside of the basin of attraction of the
folded node (Figure 25). Hence, a singular periodic periodic orbit exists that fulfills Assumption 3 and
relaxation oscillations will occur, without MMO’s. As I increases toward I+

SN , the folded saddle and the
folded node approach each other (at small h values). These folded singularities annihilate each other in
a true folded saddle-node bifurcation at I+

SN , but this has no influence on the existence of the singular

periodic orbit and relaxation oscillations are expected for I ≥ I+
SN as well. In summary, for τn < τ c

n, the
passage of I through Ic has little qualitative effect on the dynamics of the system.

Proposition 6 System (2.16) with fixed parameters τh = 1 and τn < τ c
n, where τ c

n ≈ 4.75, possesses a
singular periodic orbit Γ for applied current I > Ir,n. The singular periodic orbit Γ fulfills Assumption
3 for any I > Ir,n. Therefore, MMO’s are not expected and system (2.16) undergoes a direct transition
from an excitable to an oscillatory state as I increases through Ir,n.

Next, we consider the subcase τn > τ c
n. The bifurcation structure that arises as I increases is opposite

to that observed for τn < τ c
n, in that the folded saddle to the left of the node (i.e., at smaller h) moves

to the right, toward the node, with increasing I. There exists a folded saddle to the right of the node as
well as the one to the left for some τn for I such that I−SN < I < Ic, but for τn sufficiently large that
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Fig. 24 Examples of return map Π for τh = 1, τn = 3: I = 3.5 (excitable) and I = 4.5 (oscillatory). Note that for
I = 3.5, both canards map into the basin of attraction of the node, as does the point on L− with h = 1. Together,
these findings show that Π maps both Ñ− and (Ñ−)c into Ñ−, and excitability results. For I = 4.5, both canards

map outside of the basin of attraction of the node. Thus, Π(Ñ−) ⊂ (Ñ−)c, and relaxation oscillations result.
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Fig. 25 The return map generated by the reduced flow for τh = 1, τn = 3, I = 7 ∈ (Ic, I
+

SN ). This figure follows
the usual notation conventions introduced previously. The return trajectory from the folded node lies outside of
the funnel that forms the basin of attraction of the folded node, which is to the left of strong canard of the folded
node (note the positive slope with which the strong canard, shown in solid green, approaches the folded node).

I−SN > Ic, this is no longer the case (see Figure 14). When the rightmost folded saddle exists, the basin
of attraction of the node, for I < Ic, is bounded by the stable manifolds of the two saddles; otherwise, it
is bounded only by the stable manifold of the left saddle, which always exists.

As in the previous cases, there is again an exchange of stability as I passes through Ic. For τn > τ c
n,

however, as I is increased, the left folded saddle moves to the right and bifurcates to a folded node, which
is to the right of the regular saddle. Furthermore, due to the passage of the folded singularity to the
opposite side of the h-nullcline, the strong eigenvector of the reduced flow at the folded node switches
from positive slope to negative slope at Ic. Thus, the funnel lies in the region to the right of the canard,
bounded above by L− and to the right by the stable manifold of the remaining folded saddle, which lies
at larger h than the folded node.

In the subcase τ c
n < τn < τe

n, Π maps for any I > Ic the initial condition corresponding to the strong
canard of the folded node to the left of the folded node (outside the funnel). Therefore a singular periodic
orbit exists which fulfills Assumption 3 and relaxation oscillatons are expected. This is consistent with
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Fig. 26 The return map Π generated by the reduced flow for τh = 1, τn = 7 > τ c
n, and I = 5.9 (left top)

and I = 6.1 (right top), along with the corresponding solutions of the 3-d system (3.18) (bottom). For I = 5.9,
the return map takes the folded node into the singular funnel, which lies to the right of the folded node, and
11 MMO’s result (with the subthreshold oscillation labelled by the arrow on the bottom plot). Note that the
singular funnel is bounded to the right by a folded saddle, but this occurs at relatively large h for these parameter
values and hence is not visible in this figure. Also observe that while the canard approaches the folded node with
negative slope, it does so after crossing the h-nullcline (dash-dotted curve), and in fact the canard tends to small
h values in backward time. For I = 6.1, the return map takes the folded node to the left of its original location,
outside of the singular funnel, and relaxation oscillations result.

the observation that such a singular periodic orbit already exists for Ir,n < I < Ic.

In the subcase τn > τe
n, there exists a range of I values, Ic < I < Ir,n, for which Π maps the initial

condition corresponding to the strong canard of the folded node into the funnel of the folded node (to
the right). Hence a singular periodic orbit exists which fulfills Assumption 5 and MMO’s are expected.

An example of the application of the return map Π̃ for this scenario appears in Figure 26 (left).

As I is increased further, it passes through Ir,n and the return map takes the folded node outside of
the singular funnel, as shown in Figure 26 (right). In this case, a singular periodic orbit exists that
fulfills Assumtion 3, and classical relaxation oscillations are expected. Note that as I increases further
through I+

SN , the folded saddle and folded node annihilate, but this does not affect the existence of
relaxation oscillations. Finally, if τn is sufficiently large, then there is no saddle node bifurcation of
folded singularities (see Figure 14). Hence, the folded node persists for all I, but the same transition
from MMO’s (for Ic < I < Ir,n) to relaxation oscillations (for I > Ir,n) occurs.

Proposition 7 Fix τh = 1 and τn > τ c
n. There exists a value τe

n ≈ 4.83 such that if τ c
n < τn < τe

n, then
system (2.16) possesses a singular periodic orbit Γ for applied current I > Ir,n with Ir,n < Ic, and Γ
fulfills Assumption 3 for any I > Ir,n. Thus, a direct transition from the excitable state to an oscillatory
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state, without MMO’s, is expected as the applied current I is increased. Alternatively, if τn > τe
n, then

(2.16) possesses a singular periodic orbit Γ for applied current I > Ic. In this case, the singular periodic
orbit Γ fulfills Assumption 5 for Ic < I < Ir,n and Assumption 3 for I > Ir,n. Therefore, a transition
from an excitable state to MMO’s to an oscillatory state is expected as I is increased.

We conclude this section with a final point of discussion, the importance of which was already established
in our analysis of the case of τn > τ c

n. For all values of τh and τn, as I increases through Ic, there is an
exchange of stability between a folded singularity and a regular singularity. As noted above, these sin-
gularities meet when Fv = H = 0 at the same point, and in the associated stability exchange, the folded
singularity moves across the h-nullcline. When a folded singularity lies to the right of the h-nullcline,
any associated canards approach the singularity with ḣ < 0. If a canard does not cross the h-nullcline in
backward time and return toward small h values, then all of P (L+) lies to the left of the canard, such
that the canard does not constrain any basins of attraction. This is the reason, for example, that the
rightmost saddle does not impact the dynamics for τn > τ c

n with I < Ic.

In the classical case, when the folded singularity is to the right of the h-nullcline, it is a folded saddle.
For sufficiently small I, the associated canard does not cross the h-nullcline. Hence, condition (4.22)
must hold and the system must be excitable. However, the canard does intersect the h-nullcline for all
I > Ih ≈ 1.1, a fairly small value, and relaxation oscillations are no longer ruled out. When the folded
saddle becomes a folded node, it lies to the left of the h-nullcline, and hence intersections of the canard
and the h-nullcline do not play a role in the (non-)existence of MMO’s in the classical case. Further,
as discussed earlier and shown in Figure 8, τh does not have a big influence on the bifurcation diagram
in the silent phase. Indeed, under variation of τh, the same qualitative silent phase dynamics persists,
although the active phase (global return) changes the structure sufficiently to cause MMO’s for τh > τe

n.

In constrast, as can be seen in Figure 9, τn has a big influence on the position of the singularities in the
silent phase, and that is the main reason why the reduced flow for τn > 1 becomes significantly different
than for τh > 1 or the classical case. In the case τn < τ c

n, the exchange of stability occurs when a folded
saddle moves from the right of the h-nullcline to the left as I increases through Ic. This is qualitatively
similar to the classical case. In the case τn > τ c

n, however, the exchange of stability occurs when a folded
saddle moves from the left of the h-nullcline to the right with increasing I. Hence, this is the only case in
which the singular funnel lies to the right of the canard. The return map can only map points from L−

into the singular funnel, and create MMO’s, if the corresponding canard turns to the left, toward h = 0,
in backward time. The folded singularity must be sufficiently close to the nullcline for this to happen,
and this is only possible for I sufficiently close to Ic, as shown in the following table:

τn Ih→1 Ih→0

6 ≥ 5.5 ≤ 5.4
7 ≥ 6.0 ≤ 5.9
8 ≥ 6.5 ≤ 6.4
9 ≥ 7.0 ≤ 6.9
10 ≥ 7.4 ≤ 7.3

Here, the column Ih→0 refers to I values for which the canard crosses the h-nullcline and intersects
P (L+) with h < 1 in backward time, while Ih→1 refers to I values for which this does not happen. The
window of I values where there is a theoretical possibility for MMO’s to exist is given by Ic < I < Ih→0,
which is a small range for τn near τe

n but increases with τn. This increase suggests that Ir,n, at which
the onset of relaxation occurs, increases with τn, which is consistent with the increase of Ir,n with τn for
τn < τe

n noted earlier. Indeed, for fixed I > Ic but sufficiently close to Ic, there will be a switch from
relaxation oscillations to MMO’s as τn increases. The table, combined with Figure 9, also shows that
I+
SN > Ih→1 in all cases for which the saddle-node bifurcation occurs. Hence, MMO’s will always be lost

below I = I+
SN and the saddle-node bifurcation at I = I+

SN itself will not have an influence on the global
dynamics.

4.4 MMO’s

The main observation of the previous section is that if τh, τn are such that the reduced system remains
excitable up to I = Ic, then for I > Ic not too large, a singular periodic orbit exists that fulfills
Assumption 5, and MMO’s are expected (Propositions 4.4 and 4.6).
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Case (τh > τe
h ≈ 1.3, τn = 1)

The theory presented in Section 3 predicts MMO’s for Ic < I < Ir,h and sufficiently small perturbations
ε ≪ 1. In the case of the 3D HH system (2.16) this value of ε ≈ 0.008 is not very small. Therefore the
perturbation has a big influence on the system, especially on folded nodes close to the folded saddle-node.
In particular, if the corresponding µ value of the folded node is of the order µ = O(

√
ε) ≈ 0.09 or smaller,

then the perturbation ε can be strong enough to push the saddle singularity back to the attracting branch
S−

a , whereby it becomes a node singularity and hence an attractor. Therefore the onset of MMO’s can
be substantially shifted. For example, in the case (τh = 3, τn = 1), we see the onset of MMO’s around
I ≈ 7.8 although the singular limit value is Ic ≈ 4.8. The µ value of the corresponding folded node for
I = 7.8 is given by µ ≈ 0.02, which clearly explains why the onset of MMO’s is significantly shifted since
the folded node has a very small µ value compared to the perturbation ε. If we make the perturbation ε
(artificially) smaller in system (2.16), then the onset of MMO’s should be observed closer to the singular
limit value of Ic ≈ 4.8. Indeed, we observe the onset of MMO’s in the case (τh = 3, τn = 1) already for
I ≈ 4.9 if we set ε = 0.0001 instead of ε = 0.008, as shown in Figure 27.

This dependence on the singular perturbation parameter ε for the onset of MMO’s can also be explained
as follows: The singular limit predicts the onset of MMO’s at I = Ic. At Ic we have a FSN type II
singularity, which is related (using a blow-up calculation) to the Hopf bifurcation value in system (2.16)
shown in classical bifurcation diagrams using the applied current I as the bifurcation parameter. Using
XPPAUT (Ermentrout 2002) to calculate the Hopf bifurcation point1 for system (2.16) away from the
singular limit, one obtains I ≈ 7.8 for (τh ≥ 1, τn = 1), which coincides with our observation for the
onset of MMO’s. We decreased ε in (2.16) and repeated the AUTO calculation to find that the Hopf
point converges to Ic for ε → 0, as expected from our singular perturbation analysis. The following table
displays some values from this AUTO calculation:

ε IHopf , (τh = 1, τn = 1) IHopf , (τh = 10, τn = 1) IHopf , (τh = 1, τn = 10)

.01 8.3 8.4 6.0
.0083 7.8 7.8 5.9
.001 5.2 5.2 5.0
.0001 4.9 4.9 4.9

Therefore, the Hopf bifurcation value IHopf converges relatively fast to Ic. This confirms our theory
nicely and shows that our predictions on the existence of different oscillatory patterns like MMO’s are
valid as we move away from the singular limit, albeit just qualitatively.

The transition from MMO’s to relaxation oscillation is close to the expected singular value I = Ir,h and
does not display the same sensitivity to the perturbation ε as the onset of MMO’s. The following table
shows that the values of I at which this transition occurs remain close to I = 9.7, the value predicted
in the singular limit, even as ǫ increases over several orders of magnitude, for τh = 3, τn = 1. The global
return mechanism is robust under perturbation, so this insensitivity is expected.

ǫ Ir,h(τh = 3, τn = 1) Ir,n(τh = 1, τn = 7)

.01 9.2 6.0
.0083 9.3 6.0
.001 9.7 5.9
.0001 9.7 −−

Figure 28 shows examples of MMO’s for τh = 3, for different values of I. In general, we observe MMO’s of
the form Ls, where L, s are positive integers such that L increases with I and, for each fixed L, s decreases
as I increases. However, we also observe MMO’s that are not of the form Ls over the transitions between
Ls MMO’s. Examples of MMO’s of this type appear in the upper and lower right plots in Figure 28. One
can find a wide variety of MMO patterns of the form 1k1m · · · 1l. Figure 29 shows the 1s MMO patterns
predicted by our analysis in the singular limit. These were obtained by reducing ε in system (2.16) to
0.001. A complete explanation of the transitions between 1s, Ls, and more exotic MMO patterns as ε
varies is beyond the scope of this work.

1 The Hopf bifurcation is always sub-critical.
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Fig. 27 MMO’s for I = 4.9 and ε = 10−4 in the case τh = 3, τn = 1 (left) and τh = 1, τn = 7 (right). Lower
figures are zooms of the rectangular areas of corresponding upper figures

Case (τn > τe
n ≈ 4.8, τh = 1)

Similarly to the (τh = 3, τn = 1) case, MMO’s are only observed for 5.7 < I < 6.0 in the case
(τn = 7, τh = 1). The µ value of the corresponding folded node for I = 5.7 is given by µ ≈ 0.07
which again explains why the onset of MMO’s is significantly shifted, since the folded node has a small
µ value compared to the singular perturbation parameter ε. If we make the perturbation ε (artificially)
smaller in system (2.16), then the onset of MMO’s should be observed closer to the singular limit value
of Ic ≈ 4.8. Indeed, we observe the onset of MMO’s in the case (τh = 1, τn = 7) already for I ≈ 4.9 if
we set ε = 0.0001 instead of ε = 0.008, as shown in Figure 27. Figure 30 shows some examples of MMO
patterns observed for (τn = 7, τh = 1) under variation of I. Over the whole MMO range, the MMO’s
appear to be the form 1s, where s decreases as I increases.

As was seen for τh > 1, the transition from MMO’s to relaxation oscillations for τn > 1 is not as sensitive
to the perturbation ε as is the onset of MMO’s, due to the robustness of the global return mechanism,
and occurs close to the expected value I = Ir,n ≈ 5.9 computed in the singular limit. The table above
gives values at which the transition to relaxation oscillations occurs for τh = 1, τn = 7 for different
positive ε values. Note that for ε = .0001, we experience some loss of numerical accuracy, and hence no
value is given in that case.

5 Discussion

In this paper, we have systematically explored the transitions in activity patterns that emerge as time con-
stants τh, τn associated with the activation/inactivation variables n, h in the Hodgkin-Huxley equations
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Fig. 28 Projections from system (2.16) and voltage time courses for four MMO’s generated with τh = 3, τn = 1.
Note that the axis scales are different for different plots. Upper left: I = 9 yields 23 MMO’s. Upper right: I = 9.13
yields 212222 MMO’s. Lower left: I = 9.22 yields 31 MMO’s. Lower right: I = 9.254 yields 3141 MMO’s.

(1.5) are varied. To do this, we nondimensionalized the system to obtain equations (2.13) and applied a
center manifold reduction to obtain system (2.16). Capitalizing on the decomposition of system (2.16)
into one fast and two slow variables, we performed a geometric analysis of the solution structure in the
singular limit, using relevant theory from the literature on relaxation oscillations, canards, and MMO’s
(Szmolyan and Wechselberger 2001, Szmolyan and Wechselberger 2004, Wechselberger 2005b, Brøns et
al. 2006). This analysis relies heavily on the study of the reduced system (3.18).

The three key parameters in our analysis are τh, τn and I. To avoid further lengthening of the work,
we focused on the cases (τh > 1, τn = 1) and (τh = 1, τn > 1), in addition to the classical case of
τh = τn = 1. Within these cases, the main results of the analysis can be summarized very succinctly.
For all (τh, τn) studied, the system is excitable, with an asymptotically stable fixed point corresponding
to a quiescent state, for I small. For all parameters other than the unique point (τh = 1, τn ≈ 4.75),
system (3.18) experiences a transcritical bifurcation at the same fixed value of I, namely Ic ≈ 4.83. The
universality of this structure implies that, as I increases through Ic, only two progressions are possible.
One possibility is that a transition from the excitable state to the existence of relaxation oscillations will
occur for I < Ic, and then relaxation oscillations will persist for I > Ic. The other possibility is that
the system will remain excitable up to I = Ic, in which case MMO’s arise on some range Ic < I < Ir,
and relaxation oscillations exist for I > Ir. Our analysis shows that if either τh or τn is increased from
1, then a transition from the former to the latter case will occur. Moreover, the analysis predicts where
in parameter space all of these transitions are expected to occur, for ε sufficiently small, which gives
an approximation to the transition values as ε moves away from zero. Based on the universality of the
mechanisms underlying these transitions in the HH model, and the weak effect of τh on the bifurcation
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Fig. 29 Projections from system (2.16) and voltage time courses for four MMO’s generated with τh = 3, τn = 1
with ǫ reduced to 0.001. Upper left: I = 8.5 yields 14 MMO’s. Upper right: I = 8.7 yields 13 MMO’s. Lower left:
I = 9.0 yields 12 MMO’s. Lower right: I = 9.4 yields 11 MMO’s.

of relevant structures when τn = 1 (Figure 8), we predict that similar results arise when τh, τn are both
increased from 1, albeit with quantitative differences.

The existence of the MMO’s that we study here, in the modified HH equations (1.5), was pointed out in
several earlier works (Doi and Kumagai 2001, Doi et al. 2001, Doi et al. 2004, Doi and Kumagai 2005).
However, the earlier consideration of these solutions was incomplete, in that only isolated parameter
values were considered. Moreover, the existence of these solutions was attributed to a one-slow-variable
mechanism. Indeed, the analysis in the earlier papers was based on assuming that h was a slow vari-
able and setting n = n∞(v) or assuming that n was a slow variable and setting h = h∞(v). Canards
in a two-dimensional reduction of the HH model, with one slow variable, have been studied previously
(Moehlis 2006). The one-slow-variable approach is problematic for the three-dimensional HH model,
however, because as our nondimensionalization demonstrates, (h, n) evolve at comparable speeds and
are significantly slower than v. The one-slow-variable treatment for the 3-d model led to a claim that
fundamentally different bifurcation structures are responsible for slow oscillatory solutions depending on
whether τh or τn is increased (Doi et al. 2001, Doi et al. 2004, Doi and Kumagai 2005). Our two-slow-
variable analysis corrects this claim, showing that in fact the slow solutions are MMO’s and that the
differences in solution structure relate to the distance of I from Ic, not to differences between the τh > 1
and τn > 1 cases. We want to emphasize that the same local structure responsible for MMO’s, canards
of folded node type, exists in the classical case (τh = τn = 1) of the HH equations and can be observed in
transients as shown in Figure 20 (‘the hidden canard of the squid giant axon’). This observation strongly
supports the two-slow-variable approach. The properties of the MMO’s explored in our work also depend
on µ, the ratio of the eigenvalues of the folded node equilibrium of the desingularized reduced system,
and on the image of certain sets under the global return map Π, relative to the funnel of the folded node,
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Fig. 30 Projections from system (2.16) and voltage time courses for four MMO’s generated with τh = 1, τn = 7.
Upper left: I = 5.7 yields 18 MMO’s. Upper right: I = 5.725 yields 15 MMO’s. Lower left: I = 5.75 yields 13

MMO’s. Lower right: I = 5.8 yields 12 MMO’s.

as indicated in our many figures and elaborated within the theory of the generalized canard phenomenon
(Wechselberger 2005a, Brøns et al. 2006). In particular, the nature of the subthreshold oscillations asso-
ciated with the MMO’s is determined by precisely these factors.

Note that the onset of oscillations that we observe by studying the desingularized reduced system also
corresponds to a bifurcation for the full system (2.16). In past work, Guckenheimer et al. have studied
MMO’s in the vicinity of codimension-two subcritical Hopf-homoclinic bifurcations in three-dimensional
systems (Guckenheimer et al. 1997, Guckenheimer and Willms 2000). In the singular limit, we may indeed
obtain an orbit homoclinic to a fixed point on the repelling middle branch Sr of the critical manifold S0,
providing a theoretical opportunity for the existence of some form of singular Hopf-homoclinic bifurca-
tion. However, blow-up calculations can be done to show that this homoclinic orbit does not persist when
ε is made positive. Hence, the relationship of the phenomena that we have analyzed in the HH model to
the work in (Guckenheimer et al. 1997, Guckenheimer and Willms 2000) requires further clarification.

Finally, we point out that the canard mechanism studied here also supports the possibility of chaos,
which has been studied in the Hodgkin-Huxley equations previously (Rinzel and Miller 1980, Gucken-
heimer and Oliva 2002) but is beyond the scope of this paper. A further exploration of the ǫ-dependence
of the pattern of large and small oscillations seen in the observed MMO’s, along with the development
of a general theory that spells out the full range of patterns expected for µ = O(

√
ε) or smaller, also

remains for future work.
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