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Abstract

We consider the zeroth order model of the family of approximate deconvolution
models of Stolz and Adams. We propose and analyze fully discrete schemes using dis-
continuous finite elements. Optimal error estimates are derived. The dependence of

these estimates with respect to the Reynolds number Re is O(Re eRe), which is an im-
provement with respect to the continuous finite element method where the dependence

is O(Re eRes).
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1 Introduction

Turbulence is a phenomena that appears in many processes in the nature and it is connected
with many industrial applications because of its richness in scales. Based on the Kolmogorov
theory [10], Direct Numerical Simulation (DNS) where all the scales are captured, requires
the number of mesh points in space per each time step in to be O(Reg/ 4) in three-dimensional
problems, where Re is the Reynolds number. This is not computational economical and
sometimes not even feasible. One promising approach is Large Eddy Simulation (LES)
where we are seeking for the large scales, i.e. finding the averaged (filtered) quantities of
velocity. A good survey of the spatial filters commonly used in LES is given in [15].

We explore the discontinuous finite element techniques when applied to the zeroth order
LES model (introduced below) of local averages of the fluid velocity. First, consider the
Navier-Stokes equations under the no-slip boundary condition,

u+V-(uu) —vAu+Vp=£f in (0,7] x Q,
V-u=0 in[0,7]x Q,
u=0 in [0,7]xT,
u(0,-) =up(-) inQ,
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where Q C R?, is a convex bounded regular domain with boundary T, u is the fluid velocity,

p is the fluid pressure and f is the body force driving the flow. The kinematic viscosity
v > 0 is inversely proportional to the Reynolds number of the flow. The initial velocity is
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given by uy. A pressure normalization condition fQ p = 0 is also needed for uniqueness of
the pressure.

The zeroth-order model is obtained by applying a spatial averaging operator to (1.1)-
(1.4) defined by:

¢ = A9 inQ
¢ = 0 onTl

where A = —62A + I. Here § > 0 represents the averaging radius, in general, chosen to be
of the order of the mesh size [6]. We will assume that the following bound holds:

1Bll2,2 < Clldllog (1.7)

Using the fact that A~! commutes with A, we then obtain the following averaged
Navier-Stokes equations:

@ +V-(uu) —vAT+Vp=Ff in (0,7] x Q, (1.8)
V-u=0 in[0,7] x Q, (1.9)

u=0 onl0,7]xT, (1.10)

w(0,-) = d(-) in 0. (1.11)

If we now neglect the error V - (uu) — V - (ww), which is of order §?, and the commutation
error V - u— V-1, we obtain the zeroth-order model problem satisfied by an approximation
w of the local averages u of the velocity:

wi+V-(ww) —vAw+Vp=Ff in (0,7] xQ, (1.12)
V-w=0 in[0,7] x Q, (1.13)

w=0 on0,T]xT, (1.14)

w(0,:) =up(-) in Q. (1.15)

The zeroth order model is the lowest order model of a family of approximate decon-
volution models introduced by Stolz and Adams [1, 16]. In the case of periodic boundary
conditions, existence, uniqueness and regularity of strong solutions of these models is proved
in [4]. The particular zeroth order model is considered in [11, 12]. Even though there is
a huge amount of papers on the simulation of Stolz-Adams models for incompressible and
compressible flows, There is little published work in the literature on the numerical anal-
ysis of the models. In [13, 14], two different semi-discrete schemes using conforming finite
elements are analyzed.

In this work, we formulate and analyze a class of discontinuous finite element methods
for solving the popular lowest order of the Stolz and Adams models. The approximations of
the averaged velocity w and pressure p are discontinuous piecewise polynomials of degree
one and zero respectively. Because of the lack of continuity constraint between elements, the
Discontinuous Galerkin (DG) methods offer several advantages over the classical continuous
finite element methods: (i) local mesh refinement and derefinement are easily implemented
(several hanging nodes per edge are allowed); (ii) the incompressibility condition is satisfied
locally on each mesh element; and (iii) unstructured meshes and domains with complicated
geometries are easily handled. In the case of DNS, DG methods have been applied to
the steady-state Navier-Stokes equations in [7] and to the time-dependent Navier-Stokes



equations in [8] where they are combined with an operator splitting technique. Another
discontinuous Galerkin method for the Navier-Stokes equations based on a mixed formu-
lation are considered in [2]. For high Reynolds numbers, the numerical analysis of a DG
scheme combined with a LES turbulence model (subgrid eddy viscosity model) is derived
in [9]. This turbulence model involves two grids.

This paper is organized as follows. Section 2 introduces some notation and mathematical
properties. In Section 3, the fully discrete schemes are introduced. A priori error estimates
are derived in Section 4. Conclusions are given in the last section.

2 Notation and Mathematical Preliminaries

To obtain a discretization of the model we introduce a regular family of triangulations &}, of
Q, consisting of triangles of maximum diameter h. Let hr denote the diameter of a triangle
FE and pg the diameter of its inscribed circle. By regular, we mean that there exists a
parameter ¢ > 0, independent of h, such that

he

— =(e <(, VEE®&.

PE
We shall use this assumption throughout this work. We denote by I'j, the set of all interior
edges of £,. Let e denote a segment of I'j, shared by two triangles E¥ and E' (k < 1) of &p;
we associate with e a specific unit normal vector n, directed from E* to E' and we define
formally the jump and average of a function ¢ on e by:

9= @lp)le — Bladler {8} = 5@lp)le + 5 (Glm)le

If e belongs to the boundary I', then n, is the unit normal n exterior to {2 and the jump
and the average of ¢ on e coincide with the trace of ¢ on e. Next, we define the discrete
velocity and pressure spaces consisting of discontinuous piecewise polynomials:

X" = {ve(L’Q)?: VEc &, ve (P(E))?}, (2.1)
Q" = {qeLi(Q): VE €&, qePy(E)}. (2.2)
Here, for any domain O, L?(0) is the classical space of square-integrable functions with

inner-product (f,g9)o = [, fg and norm || - [jo,0. The space L§(2) is the subspace of
functions of L?(Q) with zero mean value:

Li(Q) = {v € L*(Q) : /qu = 0}.

We also use the standard Sobolev spaces H"(2), with norm | - ||,,o and semi-norm | - |, .
Denoting by |e| the measure of e, we associate with the spaces X; and Q" the following
norms

1 1/2
ix = (IvvilBe+ > —IMIE:) " (2.3)

ecl'p U |e|
h
lalle = llgllo0 (2.4)

where |||v|||o,o is the broken norm defined by:

/
vlloe = (32 Ivle) "

Ec&y,
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Finally, we recall some trace and inverse inequalities, that hold true on each element F
in &, with diameter hg. The constant C is independent of hg.

Ivllo.e < C(hg?|IV]l0.5 + by g), Ve€dE, VYve (H(E)?,  (25)
1V¥]lo.e < C(hg" (19 v]|o.m + h” I9%lok), Ye€dB, we(EAB), (26
IVllo.e < Chg?|IVllos, Ve€dE, VveXPh — (27)

IVVlloe < Chg?|VV]joe, Ve€cdE, VYveXt — (28)

3 Numerical Methods

In this section, we introduce the DG scheme and show existence of the numerical solution.
We first define the bilinear forms a: X" x X! 5 R d: X" x X" 5 R Jy: X" x X 5 R
and J; : X" x X» - R by

a(z by / Vz:Vv - z / (Vain, - [v] + € x / (Vvin, [z, (3.1)
d(z,v) Eé / Vz: Vv + e ; / V2, - {v}—grj / Vvin, - {z},  (3.2)
To(z,v) = eer - / 7] (3.3)

A = 3 > / Vln, (3.4)

The parameters €,, €5 take the value —1,0 or 1: this will yield different schemes that are
slight variations of each other. We will show that all the resulting schemes are convergent
with optimal convergence rate in the energy norm. In the case where ¢, = ¢ = —1, the
bilinear forms a and d are symmetric; otherwise they are non-symmetric. We remark that
the form a(w,v) is the standard primal DG discretization of the operator —Aw. The form
d is introduced here because of the action of the averaging operator A~'. Finally, we assume
that if ¢, is either —1 or 0, the jump parameter ¢ should be chosen sufficiently large to
obtain coercivity of a (see Lemma 3.3). If ¢, = 1, then the jump parameter o is taken equal
to 1. The choice of €5 does not affect the value of the jump parameter.

The incompressibility condition (1.13) is enforced by means of the bilinear form b :

h x Q" — R defined by

V-v+ {}[v ne, (3.5)
E%; / ! eE;JF/ !

Finally, we recall the DG discretization of the nonlinear convection term w- Vw, which was
introduced in [7] and studied extensively in [7, 8].

“(u;v,t) Z /qu t4 = /(V u)v - t)—— Z |- ne{v-t}

Ecé&y, e€lpuUl e

+ Z / {u}  ng|(v int _ vext) . tint, (3.6)

Eecé&),
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where

OE_={x€0E: {z} -ng <0},

the superscript z denotes the dependence of E_ on z and the superscript int (resp. ext)
refers to the trace of the function on a side of E coming from the interior of E (resp. coming
from the exterior of E on that side). When the side of E belongs to 05, the convention is
the same as for defining jumps and average, i.e., the jump and average coincide with the
trace of the function. Note that the form c is not linear with respect to z, but linear with
respect to u, v and t.

We can now define the numerical scheme that uses discontinuous finite elements in space
and backward Euler in time. For this, we let At denote the time step such that M = T/At
is a positive integer. We let 0 = ¢ty < t; < --+ < tpy = T be a subdivision of the interval
(0, 7). We denote the function ¢ evaluated at the time t,, by ¢,,,. With the above forms,
the fully-discrete scheme is : find (wh, p?),>0 € X" x Q" such that:

1 52 R
WZ+1 —wh,v)a+ —d(WZH —wp,v) + V(Wi WZ+1aV) + b(v,pZH)

XA At
+v(a(wii, v) + Jo(whi,v) + 82T (whi1,v) = (fas,V)a Vv e XP, (3.7)
b(Wpi1,9) =0 Vg€ Q" (3.8)
(wh,v)q = (Hg,v)a Vv e XM (3.9)

However, this scheme is not consistent. In order to precisely state the consistency error, we
need the following result.

Lemma 3.1. Let ¢ € (L?(Q))2. For any v € X", we have:
(aa AV)Q - (d’a V)Q = l(aa V), (310)

where

W, v)=0> > [(Ve)n.-[v]-8 > [ ¢-[VV]n..

ecTpur V€ ecly, v €

Furthermore, the following bound holds:
1(@,v) < C8(Ivllx + 1i(v, v)'?) [ bllo,0- (3.11)

where C only depends on the domain €.
Proof. By definition of ¢, we have

($a AV)Q = (aa V)Q — 6? Z (57 AV)E

Ecégy,
Using Green’s formula and the fact that ¢ € (H?(Q2))?, we have
(@, Av)a = (@, v)a +6° Y (V$,VV)E — 08" > (Vvng, ¢)op.
Ecégy, Eeé&y,

We again use Green’s formula and obtain:

(6, Av)q = (6,V)a —0° D (A$,V)E+0° > (Véng,v)or — > Y (Vvng, @)os

Ec&y, Ecégy, Eeé&y,

= (A¢,V)a+8 > [(Vome-[vV]=6* Y [[VV]ne- .

ec,Ur v € ecT,Ur v €



Using the boundary condition (1.6), we then have (3.10). In order to prove (3.11), we use
Cauchy-Schwarz’s inequality, trace inequalities (2.5), (2.6) and the bound (1.7):

@) <8 S 1V@neloelVloe + 8 3 1BloclVV] - n.

ecl'pUT ecl'y,

1 _ _
<08( ) :H[V]H%,e)l/?H(i)HQ,Q+C52J1(V,V)1/2||¢||1,Q

CEFhUF| ‘
< C8?|vixl@llon + C8* (v, v) | fllo.0.

0,e

In the inequality above and throughout the paper, the constant C is a generic constant that
is independent of h,v and At, and that takes different values at different places. O

Lemma 3.2. Consistency. Let (w,p) be the solution to (1.12)-(1.15). Using the notation
of Lemma 3.1, define

Ee(w,p,f;v) = (V- (ww),v) +1(Vp,v) + I(, v).
Then (w,p) satisfies

(Wi, v)a + 62d(wy, v) + ¢V (w; w,v) + b(v,p) + v(a(w,v) + Jo(w,V))

+82J1(w,v) = (f,v)a — Eo(w,p,f;v) VveX" Vvi>o, (3.12)
b(w,q) =0 Vqe Q" vt>0, (3.13)
(wo,v)q = (Hg, v)a Vv e X" (3.14)

Proof. Equations (3.13) and (3.14) are clearly satisfied because of (1.13), (1.14), (1.15) and
the regularity of w. Next, we multiply (1.12) by Av and integrate over one mesh element
E:

(Wi, AV) g + (V - (ww), Av)p — v(Aw, Av)p + (Vp, Av) g = (£, Av)5.
Summing over all elements F, using Lemma, 3.1 and the fact that V- (ww), Vp and f belong
to (L2(Q))?2, we have:

Z (Wi, AV)g + (V- (ww),v)g — v Z (Aw, Av)g
Eec&y, Eeé&y,

+(Vp7 V)Q = (fa V)Q - Ec(wapa f7 V).

Next, using the definition of A, Green’s formula and the fact that w; = 0 on the boundary,
we have:

Z (Wi, AV)p = (W, V) — 52 Z (W, AV) g

Ee&y, Ec&,
= (w,v)a+62 Y (Vw, VV)g — 82 > [[Vvn - {w}.
Ecéy, ecl'y €

The regularity of w; then gives:

Z (Wi, AV) g = (Wi, v)q + 0%d(wy, v).
Ecé&y,



Similarly, we have by the definition of A and Green’s formula:

—v Z (Aw, AV)p = —v(Aw, v)q + v6? Z (Aw,Av)g
Ecé&, Ec&y,

_VZ (Vw,Vv)g —v Z /VW V] 4 vd? Z(AW,AV)E.

Ecégy, ec'p, Ul Ecégy,

The regularity of w and the fact that Av = 0 then yield:

—v Z (Aw, Av)g = v(a + Jo)(w,v) + 62Ty (w, v).
Ec&y,

Therefore, we obtain the following equation for w:

(W, v)o + (52d(wt, v) +v(a+ Jy)(w,v)
+52J1(Wa V) + (V ' (WW), V)Q + (vpa V)Q = (fa V)Q - Ec(wapa f; V).

The final result is obtained by noting that Green’s formula yields
(Vp,v)a = b(v,p),
and that the incompressibility condition with the regularity of w yield

(V- (ww),v)qg = (w-Vw,v)g =cV(w;w, V).

We now recall important properties satisfied by the forms a, b, ¢ ([17, 7, 8]):

Lemma 3.3. Coercivity. If ¢, = 1, assume that o = 1. If ¢, € {—1,0}, assume that o is
sufficiently large enough. Then, there is a constant x > 0, independent of h, such that

a(v,v) + Jo(v,v) > &||v|%, vv € XM, (3.15)

It is clear that kK = 1if e, = 1. Otherwise, « is a constant that depends on the polynomial
degree of v and of the smallest angle in the mesh. A precise lower bound for ¢ is given in

[5].

Lemma 3.4. Inf-sup condition. There exists a positive constant 3, independent of h such

that B
inf sup _bvia) > (3.16)
¢ vexr |[VlIx|lglloo
Lemma 3.5. Positivity
& (v,2,2) >0, VYv,zc{tec (L*(Q)*:t|pc (H*(E))?VE € &,}. (3.17)

We can now state the existence and uniqueness of the discrete solution.

Proposition 3.1. Assume that Lemma 3.3 holds. Assume that § and At are of the order
h. In addition, if g € {—1,0}, assume that At is sufficiently small. Then, there exists a
unique solution to (3.7)-(3.9).



Proof. The existence of wg is trivial. Given w”, the problem of finding a unique wz 41 sat-
isfying (3.7)-(3.8) is linear and finite-dimensional. Therefore, it suffices to show uniqueness
of the solution. We first consider the problem restricted to the subspace V" defined by

Vi ={veX": bv,g) =0 VqecQ"}.
Let WZH and v“vgﬂ be two solutions and let x,,,; = WZH — WZH. Then, x,,, satisfies:

1 52

h
E(Xn+1a V)Q + th(Xn+1a V) + c'n (WZ, Xn+1s V)

+V(G’(Xn—|—lav) + JO(Xn—H’V)) + 52J1(XZ+1aV) =0 Vv € Vh'
Choosing v = X, 1 and using the coercivity and positivity results (3.15), (3.17) gives:

1 52
E||Xn+1||3,n + th(XnHaXnH) + vkl Xk + 0T (Xns15 Xng1) < 0. (3.18)

We now expand the term g—ztd(xnﬂ, Xnt1)-

52 62 52
th(Xn—l—laXn—f—l) = Kt|||vxn+1”|g,9 + Kt(ed - 1) egr: /e[VXn—H]ne AXns1} (319
h

In the case where ¢4 = 1, all the terms in (3.18) are non-negative and we easily conclude
that x,, ;1 = 0. Otherwise, if ¢; € {—1,0}, we bound the second term in (3.19) by using the
fact that § and At are of order h, Cauchy-Schwarz’s inequality and trace inequality (2.7):
62 62 9
Kt(ed -1) Z [VXnii]ne - {xni1} < Ejl(X’rH—laXn—I—l) + C||Xn+1||o,n-
ecl'y, €

Thus, we obtain

1 62 62
(E - C)HXn—i—ng,Q + E”'VXn—f—l”'%,Q + VK’HXn—HH?X + EJl(Xn—i—laXn—f—l) < 07
which yields that x,,,; = 0 if At is sufficiently small enough. The existence and uniqueness
of the pressure pf , is then obtained from the inf-sup condition (3.16). O

We end this section by recalling some approximation properties of the spaces X" and
Q". From [3, 7], for any v € (H}(£2))2, there is a unique discrete velocity v € X" such that

b(v—v,9) =0 VYqeQ" (3.20)

Furthermore, if v € (H}(2))? N (H?(2))?, there is a constant C' independent of h such that
[[v—¥||x < Chlviz, (3.21)

|V —¥|ma < Ch*™|v|p0, m=0,1. (3.22)

We will apply these error bounds to both w and wy.
For the pressure space, we use the approximation given by the L? projection. For any
q € L% (92), there exists a unique discrete pressure § € Q" such that

(g—G,2)a=0 VzeQ" (3.23)
In addition, if ¢ € H'(Q2), then
llg — Gllm,e < ChY ™|ql1,5, VE €&, m=0,1,2. (3.24)



4 A Priori Error Estimates

In this section, convergence of the scheme (3.7)-(3.9) is proved. Optimal error estimates in
the energy norm are obtained.

Theorem 4.1. Assume that w € 12(0,T; (H?(Q))?), w; € [?(0,T; (H?(2))?) N L*®((0,T) x
Q), wy € L2(0,T;(HY(Q))?) and p € 12(0,T; H(Q)). Assume that uy € (H?*(2))? and
f € 12(0,T; (L%(Q))?). Assume also that the coercivity Lemma 3.3 holds. If § and At are
chosen of the order of h, and if At is chosen sufficiently small, there exists a constant C,
independent of h and At but dependent on v~' such that the following error bounds holds,
foranyl <m < M:

m
|| Wi — wfn”%,ﬂ + VIﬁ]AtZ l[wp —wh||% < CR2(v™t + v+ 1).

n=1
Proof. Defining e,, = w(t") — w”(¢") and subtracting (3.7) from (3.2), we have:

1 2
(We(tns1), V) + = (ent1 — €n, V) + 62d(Wi(tns1), V) + ——d(€nt1 — €, V)

At At
h
+v(a + Jo)(ent1, V) + € (Wiy 153 Wit1, V) — ¥ (Whiwh  v) +b(v, pry1 — Pl o)
1 62
+52J1(en+1,") = ——(Wnpt1 — Wy, V) + —d(Wpi1 — Wy, V) — E(Wpi1, Dnt1,fng1;v) Vv e X"

At At

We now decompose the error e, = n,, — @,,, where ¢,, = w” —W,, and n,, is the interpolation
error 1, = w, — Wy. Choosing v = ¢, in the equation above and using the coercivity
result (3.15), we obtain:

1 &2
o7 UEnsillbn = [16all60) + 15d(Bnr1 — bu Burr) + vall by X

h
=" (W13 Wit ¢n+1) +c"n (w]nl,;wg—f—la ¢n+1) + 52J1(¢n+1a¢n+1) < (m(tn+1), ¢n+1)9

1
+62d(nt(tn+1)7 ¢n—|—1) + I/((J, + JO)("VH—I’ ¢n+1) + (Wt(tn-kl) - A_t(‘fvn-l-l - Wn)a ¢n—|—1)Q

- 1 . -
+52d(wt(tn+l) - E(Wn—l—l - W), ¢n+1) + b(¢n+1apn+1 - p2+1)
+52J1 (nn+17 ¢n+1) - Ec(wn-l—lapn—f—la fn+1; ¢n+1)' (41)

Counsider now the nonlinear terms from the above equation. We first note that since w is
continuous, we can rewrite

Cwn+1 ( WZ (

Wit 13 Wit 1, @pp1) = € (Wog 13 Wi 1, @ 41),

so, for readibility, we can drop the superscript wz in the ¢ form. Therefore, adding and
subtracting the interpolant w1 yields

h h h h
' (Wn’ Wh+1s ¢n—|—1) —cn (Wn+17 Wn+1, ¢n+1)

= C(W?u ¢n—|—1’ ¢n+1) - c(¢n’ MNn+1s ¢n+1) + C(¢na Wn+1, ¢n+1)
_c(nm VNVn_H, ¢n+1) - C(Wn, MNn+1s ¢n—|—1) - C(Wn_|_1 — Wn, Wnt1, ¢n—|—1)'



Thus, we rewrite the error equation (4.1) as

1 62
2—m(||¢n+1“(2),n - ||¢n||(2),n) + A—td(¢n+1 — &, Ppi1) + V”||¢n+1||?><

+C(W2; ¢n+17 ¢n+1) + 52J1(¢n+1a ¢n+1) S |c(¢na nn—}-la ¢n+1)| + ‘c(d)na Wn+1, ¢n+1)|

—Hc(n’n? ‘X’n'i'l’ ¢n+1)| + |C(Wn, Mn+1, ¢n+1)| =+ |C(Wn+1 — Wn, Wn+i1, d)n—{—l)‘ + |("7t(tn+1)a d)n—f—l)Q'
- 1. -
+62|d(nt(tn+l)a ¢n+1)| + V|(a’ + JO)(nn—Ha ¢n+1)| + |(wt(tn+1) - E(wn-i-l - Wn), ¢n—|—1)Q|

- 1 -
+0%1d(Wi(tn41) = 27 (Wnt1 = Wa)s Gny1)| + [D(@ug1 Pss = i)l

+|(52J1 (nn-}-l’ ¢n+1)| + ‘Ec(wn—i—lapn—l—la fn-l—l; ¢n+1)‘
< |Tol + |Tuf + -+ + |Thal- (4.2)

From property (3.17), the term c(w; ¢,, .1, ¢, 1) in the left-hand side of (4.2) is positive
and therefore it will be dropped. For the other terms of the form c(,-,-) that appear on
the right-hand side of the above error equation we obtain bounds, exactly as in the proof of
Theorem 5.2 in [9]. We recall that the constant C is a generic constant that is independent
of h,v and At, and that takes different values at different places.

Tl = Je s S]] < oliduialli + NIl

1] = Jeluwa1, bus)] < mellgnirlli + 190l

B = el St Bu)| < oellbuialle + Wwnlh

T3] = JeWn 1 burd) < ol + Hwn B,

T = JelWnit — W Wit D) < oGl + o AP e 110

Therefore, we have

|To|+--+[Ta| < 521/—6H||¢n+1||§(+CV71||¢n||§,Q+CV71h2|Wn|§,Q+CV71At2|\WtH%oo([tn,th]xn)-

(4.3)
We now consider the term D = %d(¢n+1 — ¢y, @y y1) in the left-hand side of (4.2). We
first decompose it into two parts:

52 §2
D= Ed(¢n+1’ ¢n+1) - th((ﬁn’ ¢n—|—1) = D1 + Ds.

Then, by the definition of the bilinear form d(-,-) we have

Z / Vs Voo + (ca / {(Snis} - [V Ine

EGE eel"h
= Di; + Dqo.

The term Dy, is positive and stays in the left-hand side of the error equation. In the case
where €5 = 1, the other term Dj, vanishes. In the case where ¢4 € {—1,0}, we need to
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bound Djo. Using the definition of J; term, Cauchy-Schwarz’s inequality, trace inequality
(2.7) and the fact that ¢ and At are of the order of h, we have

52 62
Dy < B JU(Ppi1, Pni1) + C(1 —€a)’ At2||¢n+1||g,ﬂ
52
< ID J1(bni1 Pni1) + C(1 — €g)? ||¢n+1||0 Q- (4.4)
Nex, we expand the term Ds:
52
Dy = 25 [ Vou: Vot T [0 Fouiine s 3 [1600): [Vouln.
EEE ecl'y ecl'p,

== D21 + D22 + D23.

To bound Dj; we simply use Cauchy—Schwarz inequality and Young’s inequality:

2
Dy < —
2 < o i lIve,

To bound D2y we use Cauchy-Schwarz inequality and Young’s inequality together with the
definition of the jump Jj, trace inequality (2.7) and the fact that § and At are of the order
of h:

(4.5)

(52
Dy, < CEJI((i)n—i—la¢n+1)1/2||¢n”079
52 52
< _J1(¢n+1a¢n+1)+CA—t2”¢n||g,Q
52
< Ji(@ni1, Pri1) + C||¢n||o Q- (4.6)

We bound Ds3 in the same way as DQQ:

52
Dy3 < KtZ||{¢n+1}|Io,e|I[V¢n]neHo,e

ecl'y,
62 62
< _J1(¢na¢n) EH¢H+1H%,Q
52
< S Ji(bn, D) + Clldnia o

We now bound the rest of the terms on the right hand side of equation (4.2). To bound
Ts we use Cauchy-Schwarz’s inequality, Young’s inequality and the approximation result
(3.22) applied to wy.

|75 [@n+1llo.glne(tnri)llon

<
< N¢ngallo o+ ChH Wit )3 0. (4.7)

We expand the term Tg:

T o< 12 Y / Vebnor : V("))

E€&y,

nrs / ()} - [V lne] + lead® 3 / {(Sni1} - [0, ()]

ecl'y, e€ly
= |Te1| + |Te2| + |T63|-

11



We bound T§; using Cauchy-Schwarz’s inequality, Young’s inequality, and the approxima-
tion result (3.21).

Tosl < &llgnpallxlme™)lix
VK —
< oellbn il + Cvo Iny (%
VK —
< Sellunllk + Cv 8 W w3 0. (4.8)

Using the definitions of the jump Ji, trace inequality (2.5), and the approximation result
(3.22) we have

2

4 n
|T62| S EJI(¢n+la¢n+1) +C(52h4|wt(t +1)|§,Q‘ (49)

The term T3 vanishes if ¢; = 0. Otherwise, we bound it using trace inequalities (2.6), (2.7)
and approximation result (3.22) and the fact that § is of the order of A:

Tes| < %) [{Bn1 Hloell[VRE)] - nelfo.e
ecl'y,
< Nlpniallg o+ CER W (t"TH)]3 g (4.10)

From the above bounds (4.8), (4.9) and (4.10), we have

VK 52 _
|Ts| < %”‘bn—kl”%(+ﬁj1(¢n+la¢n+1)+c(y LD SR W (T3 0+ | dnia o o- (411)

We also expand the term T7:

T < Y /E Vitaer: Vuil 410 3 (V001 d0e - (6]l

Eegp, e€T,UT v €
Hree 3 [{(Vhniitme: ol + 0ot boso)l
ecTpur V€
= |Tn|+ |Tr2| + |T73] + |Tral- (4.12)

We bound T%; using Cauchy-Schwarz inequality, Young’s inequality and the approximation
result (3.21)

Tl < vllgnpllxllmallx
VK
< Sgllenall + Cviimallx
VK
< Sgllnilli + Cvh?waialzg. (4.13)

Using Cauchy-Schwarz’s inequality, trace inequality (2.6) and approximation result (3.22)
we have

T2l < v Y IH{Vdneloe Y dnialllo

ecl'p Ul ecl'p Ul
1
< ov( ) g||[¢n+1]||%,e)1/2(|||V?7n+1\H0,9+h|||V2?7n+1H|0,Q)
ec',UT
VK
< LG unallk + CvRwni o (.19

12



Using Cauchy-Schwarz’s inequality, trace inequality (2.8), and approximation result (3.21),
we have

|T73| < V( Z ||{V¢n+1}ne||g,e)1/2( Z ||[nn+1]||g,e)1/2

ecl',UT ecl', UT
< Cvlgunllx( Y rollmnll)?
ecI'p Ul
< gl + Cvhwas 2 4.15
= %% Pntillx VIV {Wnt1{2,0- (4.15)

Using the approximation result (3.21) we have

g g
Tl < w( ) m”[¢n+l]||g,e)1/2( > mll[nnﬂ]\l%,e)m
ecl', Ul ecl'p, U’
< COVl|pniallxlmngallx
VK
< %H%HH%(+th2lwn+1|§,n- (4.16)

Putting together the bounds (4.13), (4.14), (4.15) and (4.16), we obtain
T7| < 4 ||¢n+1HX + Cvh? Wi g1f5 o- (4.17)

To bound the term Ty, we first use a Taylor expansion with integral remainder.

o ) 1 [ins )
W = W1 — AW (1) + 1 / (5 — tn) 72y (s)ds. (4.18)
tn

This implies that

_ W, 41 At tnt1 _
99 (tnin) = e < [ (o) s

Thus, with (3.22), we have

tn+1
1< Idnialfa+OAL [ Iou(s)fads
2 ”th 2
< asilo+0at [ fwulds. (4.19)
Using the Taylor expansion (4.18) and defining 6 = 3 ttn"“ (s — tn)Wy(s)ds, we can rewrite
the term Ty as:
Tyl = |6°d(0, ¢, i1)l
<18 Y [ Vna V04182 S [(8): (V6,0
Ecé&), ecl'y,
Heat® Y [(fnia} - (V6
CEFh
= |T91‘ + |T92| + |Tg3|. (420)
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We bound T1¢; using Cauchy-Schwarz inequality, Young’s inequality and (3.22).

Tor] < [IVoniallloellVOllog
VK —
< g lldnnllx +Cv L[V lll3 q

VK 2 14 fnt1 - 2
< %“¢n+l”X+CV oAt i [V (s)]][5,0ds
VK 2 144 fnt1 2
< %||¢n+1||x+c’/ 0"At i [|Vwi(s)]][0,0ds- (4.21)

Using the definition of Jy, trace inequality (2.7), approximation result (3.22) and the fact
that ¢ is of the order of h, we have

[ Too| < C8Ji(bnsrs bni) P (D 1{6}5,)2

ecl'y,

52 9 tnt1 _ 9

< 3R @uensbun) +OPAE [ S (o) ds
tn ecly,

52 tnt1 _ )
< 5 Busrnbuin) + AL [ (o) ods,

52 tnt1 )
< 5 Busisbain) + AL [ (o) ods: (4.22)

The term Ty3 vanishes if ¢; = 0. Otherwise, we bound it using trace inequalities (2.7), (2.8),
approximation result (3.22) and the fact that § is of the order of h.

Toal < 6° Y I{nr1loellVO] - nelloe

eEI‘h
2 2 bt - 2
< pnsilZa+Co At/t IV %72 ()| 12 s,
2 2 7;““ 2
< Nusillq + Co2AL / IVw(s)|3 s (4.23)

Putting together the three estimates (4.21), (4.22) and (4.23), we have

62 3 tn+1
T bms $st) + I bnsalq + O +1)5At / wea(3)2 .

VK

< .
12

(4.24)

ik
|9|_26

i1 lI% +

Because of (3.20) and (3.23), the pressure term T} is reduced to

|T10| = |b(¢n+17pn+1 - ﬁn—l—l) + b(¢n+1,ﬁn+1 — pg_}_l)l
= |b(¢n+1’pn+1 _ﬁn—l—l)'
SELD DY AT (" P
ecl'y, €

which is bounded by using Cauchy-Schwarz’s inequality, Young’s inequality, trace inequality
(2.5) and approximation result (3.24)

1 ~ ~
Tl < C( ), g||[¢n+1]||o,e)1/2(llpn+1 = Pntilloge + Rl VPns1 — Viniallloe)
eEFhUI‘
VK -~
S %H‘bn—}—l“%{ + Cv 1h2|pn+1|ig- (4.25)
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The term T1; is simply bounded using Cauchy-Schwarz, approximation result (3.21) and
the fact that d is of the order of h.

52
|T11| < ﬁjl (¢n+1a ¢n+1) + 062‘]1 (nn—f—la 'r’n—i—l)
52
< EJ1(¢n+1a bni1) + OB [wWyi[3 o (4.26)

We finally need to bound the consistency error term E.(Wy 1, ppt1,fot1; @y,41). Using the
bound (3.11), we have

52 VK
‘Ec(wn—l—lapn-l—l,fn—i—l; ¢n+1‘ < EJ1(¢'FL+17 ¢n+1) + %H‘bn—{—l”%&'
+C 1+ v Y - (wW))ns1ll o+ IVontillo o + [1far1ll5.0)- (4.27)

With the bounds (4.3), (4.4), (4.5), (4.6), (4.7), (4.7), (4.11), (4.17), (4.19), (4.24), (4.25),
(4.26), and (4.27), the error equation becomes:

1 9 9 VK 9 52 7 7
Z—At(”‘ﬁnﬂ“o,n —l#nllo.n) + 7H¢n+1||X + 5( UPnt1s Pnt1) — J1(dy, D))

52 B .
+E(IIIV¢H+1III3,9 —IVe,lll§0) < Cv™ + D@50+ Clldniilloe

+CR (v wWal3 o + (v + DIwnga 3o + (07 + D)wWiltas1)[3.0) + Ch*v Hpnialig

tn+1
+CAL(v ' +1) /t [wie(s) 17 ods + CACY Wil Foo (1 s 11x02)
+C* 1+ v Y (I(V - (wW)npillf o + IVPntill§ o + [1Ers11l5.0)-

where C and C are constants independent of h,v and At. We now multiply the equation
by 2At¢ and sum fromn =0ton=m — 1:

m—1

(1 —22t0)|pmll§ @ + vEAL Y [y alli + At6*Ti (b, byn) + 8[|V by

n=0

6.0

m—1

< lgpolld o + 286> 1(bo, o) + S [IVeolllF o + Cv™ +1) Y lldnlis0

n=0
m—1 m—1

+CRPALY (v wals g + (v + Vw30 + (v + D[Wiltnr1)30) + CH2v ALY Ipnialig

T
LOAR(W 1 1) /0 Iwir(s) 2 qds + CALY w2 g0 1100

m—1

+CF(L+v )AL Y (I(V - (ww)nrallf o + VPl o + [farilIF 0)-

n=0

Thus, if At is small enough, using Gronwall’s lemma, we conclude that there is a constant
C independent of h and At, but dependent on »—!, such that:

m
|@mllf. + At Y bl < lldolld o + At6>T1(do, do) + 6211V eyl o

n=1

+CR2 (vt +v+1)+C21 +v7h).
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The final result is then obtained by noting that the term ||¢0||§,Q + At62J1 (g, @) is of
order h? and by using triangle inequality and approximation results. O

5 Conclusion

In this paper, we formulated and analyzed a numerical scheme for solving the Stolz-Adams
approximate deconvolution problem for turbulent flows. The proposed method is convergent
with optimal convergence rates with respect to the mesh size. The approximations of
the average velocity and pressure are discontinuous piecewise polynomials. One benefit of
using discontinuous elements is that the error estimates depend on the Reynolds number

as O(Re eRe), whereas the dependence is O(Re eReS) for continuous finite elements [13].

In this work, since the time discretization technique is backward Euler, we limited the
order of approximation to linear and constant for the velocity w and pressure p respectively.
If we use a second order in time approach, such as Crank-Nicolson, we can increase the order
of spatial approximation to quadratic and linear for w and p. However, it does not make
sense to go to higher order since the consistency error is of second order only.

Finally, we point out that our proposed scheme contain parameters ¢,,¢4 € {—1,0,1}
that yield different but similar numerical approximations. Only numerical simulations of
benchmark problems for high Reynolds numbers, will help determine which choices of ¢,
and ¢4 are preferred for a given mesh size. This is the object of a future paper.
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