
SUPERCONVERGENCE OF FINITE ELEMENT DISCRETIZATION
OF TIME RELAXATION MODELS OF ADVECTION

WILLIAM LAYTON�

Abstract. The nodal accuracy of �nite element discretizations of advection equations including
a time relaxation term is studied. Worst case error estimates have been proven for this combination
by energy methods. By considering the Cauchy problem with uniform meshes, precise Fourier
analysis of the error is possible. This analysis shows (1)the worst case upper bounds are sharp,
(2)time relaxation stabilization does not degrade superconvergence of the usual FEM, and (3)higher
order time relaxation is preferable to maintain small numerical errors.
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1. Introduction. We consider an approach to eliminating oscillations (forcing
them to decay rapidly in time) induced by unresolved scales in conservation laws and
convection dominated problems. To reduce the problem to its simplest form (which
permits a more exact analysis) consider the advection equation: �nd u = u(x; t)
de�ned for x 2 R; t � 0 and satisfying

ut = ux;�1 < x <1; 0 < t � T; (1.1)

u(x; 0) = f(x);�1 < x <1:

Let over-bar denote a local averaging over radius O(�) (de�ned precisely in Section
1.2). Thus, given an approximate solution uh its average is denoted uh and the
�uctuation is (uh)0 := uh� uh. Let Sh;�(R) denote a �nite element space of smoothest
splines de�ned on a uniform mesh (Section 2). The zeroth order example of the
approximations we consider is: given a parameter � > 0, �nd uh : [0; T ] ! Sh;�(R)
satisfying

(uht � uhx; vh)� �((uh)0; vh) = 0;8vh 2 Sh;�(R); (1.2)

uh(x; 0) = Ih(f)(x);

where Ih is the usual spline interpolation operator. This is the usual Galerkin approx-
imation plus a time relaxation/stabilization term intended to drive small �uctuations
to zero exponentially fast, see section 1.1.

The variational multi-scale framework (see Hughes, Mazzei and Jansen [HMJ00])
gives some insight into this mechanism. Brie�y, let r(w) := wt�wx denote the residual
of w in (1.1) and decompose uh as uh = uh + (uh)0. Setting alternately vh = vh and
vh = (vh)0 in (1.2) gives the equivalent coupled system

(uht � uhx; vh) = (r((uh)0); vh) = 0;8vh 2 Sh;�(R);
((uh)0t � (uh)0x; (vh)0)� �((uh)0; vh) = (r(uh); (vh)0);8(vh)0 2 (Sh;�(R))0:

The second equation suggests that the relaxation term will tend to derive �uctuations
to zero while the �rst suggests that its e¤ects on the means will be limited to the
projected residual term on the RHS.

There are various other realizations of the same idea. For example, when the map
uh ! (uh)0 is not positive semi-de�nite, (as can arise, e.g., [LS06] and Pruett [P06]),
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the relaxation term should be instead ��((uh)0; (vh)0) . The most important variant,
analyzed herein and introduced by Stolz, Adams and Kleiser in their computations
of turbulent compressible �ows [AS02], [SA99], [SAK01a], [SAK01b], [SAK02] (see
also [Gue04]), is a higher order time relaxation operator. Brie�y, (see Section 3.2)
given a deconvolution operator DN , i.e., a bounded linear operator on L2(R) with the
property

� = DN�+O(�
2N+2) for smooth �, (1.3)

the higher order1 , generalized �uctuation is

(uh)� := uh �DNuh:

The higher order time relaxation discretization is then: given � > 0 , �nd uh : [0; T ]!
Sh;�(R) satisfying

(uht � uhx; vh)� �((uh)�; vh) = 0;8vh 2 Sh;�(R); (1.4)

uh(x; 0) = Ih(f)(x);

Note that since � = �+O(�2) (1.2) is the N = 0 case of (1.4).
If � = 0 , (1.4) reduces to the usual FEM which superconverges at the nodes

with rate O(h2�). We show that the added stabilization term in (1.4) preserves this
property. In Theorem 3.10 we proveu(t)� uh(t)

l2;h
� Cfh2�jjf jjH2�+1(R)+��

2N+2[jjf jjH2N+2(R)+h
2��2jjf jjH2N+2�(R)]g:

1.1. The genesis of the time relaxation term. The time relaxation term
combines a numerical regularization with a physical model. Because of that it is
particularly interesting computationally: it induces a deviation from an exact dis-
cretization of (1.1) intended to move the computed solution�s behavior closer to the
behavior of the physics (1.1) is often intended to model. In theoretical work on
the derivation of conservation laws, regularizations of Chapman-Enskog expansions
in Rosenau [R89], Schochet and E. Tadmor [ST92] produced conservation laws with
a time relaxation term. This added time relaxation operator is a lower order per-
turbation and thus (since the equation does not change order or type) questions of
well-posedness and boundary conditions are transparent.; in combination with a large
eddy simulation model, it has produced positive results for the Navier-Stokes equa-
tions at high Reynolds numbers and a mathematical foundation for its inclusion in
models for turbulent �ow has been derived, [LN05], [LN05b], and [ELN06] . It can
also be used quite independently of any turbulence model (and has been so used in
compressible �ow calculations). As a stand alone regularization, it has been successful
for the Euler equations for shock-entropy wave interaction and other tests, [AS02],
[SAK01a] , [SAK01b], [SAK02], including aerodynamic noise prediction and control,
Guenan¤ [Gue04]. It was observed to ensure su¢ cient numerical entropy dissipation
for numerical solution of conservation laws, Adams and Stolz [AS02], p.393.

1.2. Averaging by discrete di¤erential �lters. We study herein averaging
by a discrete di¤erential �lter2 (Germano [Ger86] and Manica and Kaya-Merdan

1As N increases to moderate values � ! DN� becomes quite close to sharp spectral cuto¤, see
the �gures in [LN05b].

2The "best" �lter depends on the neds of application at hand. Scale space analysis suggests the
gaussian �lter as the generic case. The above di¤erential �lter arises as the �rst subdiagonal Padé
approximation to it in wavenumber space, [GL00]. It is also very convenient for both mathematical
analysis and FEM implementation.
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[MM06]). Germano�s proposal of di¤erential �ltering for �uid velocities plays a key
role in a number of models of turbulence including the alpha-model, [FHT01], the ze-
roth order model, [LL03], [LL06a], [LL06b], and deconvolution models, [AS02],[SAK01a]
, [SAK01b], [SAK02] and [LMNR06].

Let � be the user selected averaging radius (typically � = O(h) in computations).
Given � 2 L2(R) its discrete average � 2 Sh;�(R) is the unique solution of

�2(�x; v
h
x) + (�; v

h) = (�; vh);8vh 2 Sh;�(R): (1.5)

Associated with (1.5) de�ne the discrete Laplacian operator 4h : L2(R) ! Sh;�(R)
and projection operator �h : L2(R)! Sh;�(R) by

(�x; v
h
x) = (�4h�; vh);8vh 2 Sh;�(R) , and

(�; vh) = (�h�; vh);8vh 2 Sh;�(R):

With these de�nitions, the discrete �lter (1.3) can be written

� = (��24h +�h)�1(�h�) , or (1.6)

(��24h +�h)� = (�h�): (1.7)

2. Notation and preliminaries. The fundamental connection between the
Galerkin method with splines and an associated di¤erence scheme at the nodes was
made by V. Thomée in the early 1970�s in [T72], [T73], see also [TW74], papers of
mathematical power and beauty. We shall use the techniques introduced in these
papers and shall thus follow the notation in them closely. De�ne, following, e.g.,
Schoenberg [Sc73], Thomée [T73], the B-spline of order � � 2. Let � denote the char-
acteristic function of [�1; 1]. De�ne � and �hl by � = ��� and �hl (x) = �(h�1x� l).
We take Sh;�(R) to be the space of splines of at most power growth:

Sh;�(R) = f
X
l

cl�
h
l (x) : cl = O(jljq) as jlj ! 1 for some qg:

The splines in Sh;�(R) are C��2 functions which reduce to polynomials of degree
�� 1 on each interval [jh; (j + 1)h] for � even and on [(j � 1

2 )h; (j +
1
2 )h] for � odd.

The usual spline interpolation operator is denoted Ih, that is, Ih(v) is that element of
Sh;�(R) satisfying Ih(v)(lh) = v(lh); l 2 Z: For � � 2 and integer �, 0 � � � 2�� 2,
de�ne the trigonometric polynomials (scaled to be independent of h)

g�;�(�) = h��1(�i)��2�
1X

l=�1
(
@���

@x���
�h0 ;

@�

@x�
�hl )e

�il� , where � = [�].

For � even, g�;�(�) is a real, positive trigonometric polynomial, [T73].
Norms associated with doubly in�nite sequences will be useful. For h > 0, the

l2;h norm of a function v(x) and sequence c = (cj)1j=�1 are de�ned by

jjvjj2l2;h = h
X
j2Z
jv(jh)j2 and jjcjj2l2 =

X
j2Z
jcj j2:

For c 2 l2 the discrete Fourier transform of c is ec(�) = (Fc)(�) =Pj2Z cje
ij�.
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3. Superconvergence at the nodes. First consider (1.2), i.e., the case N = 0
in (1.4). Expand uh(x; t) =

P
j2Z cj(t)�

h
j (x). Taking the discrete Fourier transform

(denoted by an over-tilda) of (1.2) gives

hg�;0(h�)
d

dt
ec(�; t)� ig�;1(h�)ec(�; t) + �[hg�;0(h�)ec(�; t)� ^

(uh; �h)(�; t)] = 0: (3.1)

The di¤erence between various methods of �ltering/averaging and between the time
relaxation discretization and the usual Galerkin method lies in the last term on the
LHS of the above. The analysis of this last term will be more compact and clear by
identifying two trigonometric polynomials that occur frequently. Accordingly, de�ne,
suppressing dependence on all parameters except �,

!(�) :=
g�;0(�)

( �h )
2g�;2(�) + g�;0(�)

;

d(�) := 1� !(�) =
( �h )

2g�;2(�)

( �h )
2g�;2(�) + g�;0(�)

3.1. Fourier analysis of discrete di¤erential �lters. Consider �rst the dis-
crete di¤erential �lter. If we write

uh(x; t) =
X
j2Z

cj(t)�
h
j (x) , u

h(x) =
X
j2Z

cj(t)�
h
j (x)

and (uh)0(x) =
X
j2Z

c0j(t)�
h
j (x)

then taking the discrete Fourier transform of the �lter step (1.5) relates the coe¢ cients
of the �ltered and un�ltered quantities by

�2h�1g�;2(h�)ec(�; t) + hg�;0(h�)ec(�; t) = hg�;0(h�)ec(�; t):
Thus, we can express the discrete Fourier transform of averaged quantities in terms
of non-averaged by ec(�; t) = !(h�)ec(�; t); (3.2)

and ec0(�; t) = d(h�)ec(�; t) (3.3)

3.2. Fourier analysis of discrete deconvolution operators. We consider
higher order time relaxation operators as well as the zeroth order case above. To
do so we must perform a careful Fourier analysis of the van Cittert approximate
deconvolution algorithm with the discrete di¤erential �lter. We shall go through the
�rst two steps of the deconvolution algorithm careful before analyzing the general
case.

Given

uh(x) =
X
j2Z

cj�
h
j (x) and uh(x) =

X
j2Z

cj(t)�
h
j (x);

the van Cittert approximate deconvolution algorithm, [BB98], is given as follows.
Algorithm 3.1 (van Cittert deconvolution algorithm). Given uh(x). Set

u0(x) = uh(x):Then compute u0 and set

u1 = u0 + u� u0;
4



Next compute u1 and set

u2 = u1 + u� u0;

For n = 0; 1; 2; � � �; N � 1 , given un, compute un and set

un+1 = un + u� un;

The map DN : L
2(R)! Sh;�(R) � L2(R) by DN : u! uN , i.e.,

DNu = uN

is a bounded linear map, [BIL06], [DE06]. It will be convenient to denote by HN :
L2(R)! Sh;�(R) � L2(R) the bounded linear map HN : u! DNu , i.e.,

HNu := DNu:

It is necessary to �nd the symbols of DN and HN . To be sure of the correct path,
we �rst take the discrete Fourier transforms of the �rst few steps in the van Cittert
algorithm.

The algorithm takes data

uh(x) =
X
j2Z

cj�
h
j (x), ec(�) =X

j2Z
cje

ij�;

and �lters it by

uh(x) =
X
j2Z

cj(t)�
h
j (x), ec(�; t) = !(h�)ec(�; t):

Algorithm 3.1 begins by setting u0(x) = uh(x) where if u0(x) =
P

j2Z c
0
j�
h
j (x), thenec0(�; t) = !(h�)ec(�; t): Next Algorithm 3.1 computes d0 2 Sh;�(R) by

d0 = u0;

where if d0(x) =
P

j2Z d
0
j�
h
j (x) , and ed0(�) =Pj2Z d

0
je
ij� then we have

ed0(�) = !(h�)ec0(�) = !(h�)2ec(�):
Next, it updates by u1 = u0 + u � d0. If u1(x) =

P
j2Z c

1
j�
h
j (x) , and ec1(�) =P

j2Z c
1
je
ij�, we have

ec1(�) = ec0(�) +ec(�)� ed(�), which impliesec1(�) = [2!(h�)� !(h�)2]ec(�):
Proceed similarly: since d1 = u1 , there follows

ed1(�) = !(h�)[2!(h�)� !(h�)2]ec(�):
Next since u2 = u1 + u� d1; we compute

ec2(�) = [3!(h�)� 3!(h�)2 + !(h�)3]ec(�):
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Eliminating the intermediate steps, uN can be written

uN =
NX
n=0

(I � (�4h +�h)�1)nu:

Thus, for general N = 0; 1; � � �, the operator HN : L
2(R)! Sh;�(R) can be expressed

as

HN : u!
NX
n=0

(I � (�4h +�h)�1)nu

.
Proposition 3.2. Let the Nth van Cittert deconvolution approximation be writ-

ten

uN (x) =
X
j2Z

cNj �
h
j (x) , and

fcN (�) =X
j2Z

cNj e
ij�:

Then

fcN (�) =
NX
n=0

(1� !(h�))n!(h�)ec(�)
()

gHN (�) =

NX
n=0

(1� !(h�))n!(h�)

Further,

fHn(�) = [1� (1� !(h�))N+1]

Proof. The �rst two formulas follow by a simple induction argument and the last
by summing the geometric series.

Consider the generalized �uctuation

u� := u�HNu:

Proposition 3.3. We have

fu�(�) = d(h�)N+1ec(�)
Proof. We have, by Proposition 3.2,

fu�(�) = f1� [1� (1� !(h�))N+1]gec(�) = d(h�)N+1ec(�):
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3.3. Fourier analysis of the time relaxation discretization. Consider �rst
the case N = 0. The last term on the RHS of (3.1) is thus given by

^((uh)0; �h)(�; t) = hg�;0(h�)
( �h )

2g�;2(h�)

�2hg�;2(�) + hg�;0(�)
ec(�; t)

Equation (3.1) becomes

d

dt
ec(�; t) = a0(h�)ec(�; t) , where
a0(�) : =

i

h

g�;1(�)

g�;0(�)
� �d(�):

Solving gives

ec(�; t) = exp� t
h

�
i
g�;1(h�)

g�;0(h�)
� �hd(h�)

��ec(�; 0) , (3.4)

or, equivalently (3.5)

ec(�; t+4t) = exp�4t
h

�
i
g�;1(h�)

g�;0(h�)
� (�h)d(h�)

��ec(�; t): (3.6)

Let � = 4t
h , then the symbol for the nodal �nite di¤erence scheme induced by the

zeroth order (N = 0), time relaxation-�nite element discretization (1.2) of (1.1) is

a0(�) := exp

�
�

�
i
g�;1(�)

g�;0(�)
� �hd(�)

��
(3.7)

The symbol of the solution operator for the true equation (1.1) is

exp f�i�g ;

so the nodal accuracy of the FEM-time relaxation discretization (1.2) is precisely the
order of contact of the last two symbols at � = 0, the usual de�nition of accuracy in
Fourier space for �nite di¤erence schemes.

The evaluation of the accuracy of (1.2) depends on the asymptotics (established
by V. Thomée [T73], Lemma 3.1) of g�;0(�), g�;1(�) and g�;2(�). We recall next this
key result.

Lemma 3.4. For integer �; 0 � � � 2�

g�;�(�) = ��b�(�)2� +R�;�(�);
where, as j�j ! 0,

R�;�(�) = O(�2�) , for even �;

R�;�(�) = O(�2�+1) , for odd �:

Thus,

g�;1(�)=g�;0(�) = � +O(�2�+1);

g�;2(�)=g�;0(�) = �2 +O(�2�):
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Proof. See Thomée [T73], Lemma 3.1.
In the case of the Nth order time relaxation discretization, the analysis is similar.

We have then

ec(�; t) = exp� t
h

�
i
g�;1(h�)

g�;0(h�)
� �hd(h�)N+1

��ec(�; 0) , (3.8)

or, equivalently

ec(�; t+4t) = exp�� �ig�;1(�)
g�;0(�)

� �hd(h�)N+1
��ec(�; t): (3.9)

Thus, the symbol for the nodal �nite di¤erence scheme induced by the zeroth order,
time relaxation-�nite element discretization (1.2) of (1.1) is

aN (�) := exp

�
�

�
i
g�;1(�)

g�;0(�)
� �hd(�)N+1

��
(3.10)

Lemma 3.5. Let � = O(h") for some " > 0 . Then,

d(h�) =
�2�2

1 + �2�2
+ �2h2��2O(�2�);

and

d(h�)N+1 =

�
�2�2

1 + �2�2

�N+1
+ �2N+2h2��2O(�2N+2�):

Further,

d(�) =

�
�
h

�2
�2

1 +
�
�
h

�2
�2
+

�
�

h

�2
O(�2�), and

d(�)N+1 =

 �
�
h

�2
�2

1 +
�
�
h

�2
�2

!N+1
+

�
�

h

�2N+2
O(�2N+2�):

Proof. Divide the numerator and denominator of d(�) by g�;0(�) . Using g�;2(�)=g�;0(�) =
�2 +O(�2�) (Lemma 3.4) gives

d(�) = (
�

h
)2

�2 +O(�2�)

1 + ( �h )
2�2 + ( �h )

2O(�2�)
;

so that, as j�j ! 0

d(h�) = (
�

h
)2

h2�2 + h2�O(�2�)

1 + �2�2 + �2h2��2O(�2�)

from which the �rst result follows.
For the second result, apply the binomial theorem:

d(h�)N+1 =

�
�2

�2

1 + �2�2

�N+1
+

+�2N+2h2��2O(�2N+2�) + �2N+2h4��4O(�2N�2+4�) +

+ � � � :
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Provided � > 1 the third and subsequent terms on the above right hand side are
higher order and the second result follows.

The �nal two results follow by rescaling the �rst two by �  �=h .
Lemma 3.6. Let � < 1, � < 1, h < 1, N � 0. The symbol aN (�), given by (3.10),

satis�es

aN (�) = expfi�� +  N (�; h; �; �)g

where

 N (�) = ��h
�

�2�2

1 + �2�2

�N+1
+ �h

�
�

h

�2N+2
O(�2N+2�) +O(�2�+1):

Proof. For N � 0, obviously,

 N (�) := �i�� + �
�
i
g�;1(�)

g�;0(�)
� (�h)d(�)N+1

�
:

Using Lemma 3.4, we �nd

�i
g�;1(�)

g�;0(�)
= i�� +O(�2�+1); (3.11)

Using Lemma 3.4 gives for N = 0

�hd(�) = �h

 �
�
h

�2
�2

1 +
�
�
h

�2
�2
+

�
�

h

�2
O(�2�)

!
:

while for any N � 0

�hd(�)N+1 = �h

0@ �
�
h

�2
�2

1 +
�
�
h

�2
�2

!N+1
+

�
�

h

�2N+2
O(�2N+2�)

1A : (3.12)

Equations (3.11) and (3.12) yield the claimed result.

Further properties can be inferred from the symbol. For example, the scheme is
stable if ja(�)j � 1 and dissipative if ja(�)j < 1 for � 6= 0; 2�:

Lemma 3.7. Let N = 0. The scheme (1.2) is dissipative of order 2: there is a
constant C such that

Re 0(�) � C��j�j2; j�j � �:

Proof. We have Re 0(�) = ��hd(�): Since g�;0(�) > 0; g�;2(�) > 0 for 0 < j�j � �
dissipativity follows. The upper bound follows from Lemma 3.4.

3.4. Nodal error of the associated di¤erence scheme. De�ne

PN (�) :=
1

h

�
i
g�;1(h�)

g�;0(h�)
� �hd(h�)N+1

�
;

so that at the nodes

uh(lh; t) = F�1
n
exp(tPN (�) bf(�))o (lh); l 2 Z:
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Lemma 3.8. For jh�j � �; � > 1; N � 0

jPN (�)� i�j � Ch2�j�j2�+1 + C��2N+2
(�

j�j2

1 + �2j�j2

�N+1
+ h2��2j�j2N+2�

)
� Ch2�j�j2�+1 + C��2N+2

�
j�j2N+2 + h2��2j�j2N+2�

	
:

Proof. Starting with

PN (�) :=
1

h

�
i
g�;1(h�)

g�;0(h�)
� �hd(h�)N+1

�
;

change variables by e� = h�: Then,

hPN (h
�1e�) := i

g�;1(e�)
g�;0(e�) � �hd(e�)N+1

We have shown in Lemma 3.6 that for je�j � �
hPN (h

�1e�) = i
g�;1(e�)
g�;0(e�) � (�h)d(e�)N+1 =

= ie� +O(e�2�+1)� (�h)
0B@
0@ �

�
h

�2 e�2
1 +

�
�
h

�2 e�2
1AN+1

+

�
�

h

�2N+2
O(e�2N+2�)

1CA :

Thus,

jhPN (h�1e�)� ie�j � C�h
0@ �

�
h

�2 je�j2
1 +

�
�
h

�2 je�j2
!N+1

+

�
�

h

�2N+2
je�j2N+2�

1A+ Cje�j2�+1;
from which the result follows by letting e� = h�.

Lemma 3.9. We have for 0 � t � T

etPN (�) � eti� = t(PN (�)� i�)
Z 1

0

exp(stPN (�) + (1� s)ti�)ds;

and thus for jh�j � �

jetPN (�) � eti�j � CjPN (�)� i�j:

Proof. A calculation.
With the above calculations the error estimate now follows easily using techniques

usual for the Fourier analysis of �nite di¤erence schemes.
Theorem 3.10. The error in (1.1) at the nodes satis�esu(t)� uh(t)

l2;h
� Cfh2�jjf jjH2�+1(R)+��

2N+2[jjf jjH2N+2(R)+h
2��2jjf jjH2N+2�(R)]:]
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Proof. Indeed, let the error be denoted by

e(t) := u(t)� uh(t):

Then, for any s > 0

ke(t)k2l2;h � C
Z +�

h

��
h

jetPN (�) � eti�j2j bf(�)j2d� + h2s Z +1

�1
j�j2sj bf(�)j2d�

� C
Z +�

h

��
h

[h2�j�j2�+1 + ��2N+2
�
j�j2N+2 + h2��2j�j2N+2�

	
]2j bf(�)j2d� + h2sjjf jj2Hs(R)

picking s = 2�

� Cfh4�jjf jj2H2�+1(R) + �
2�4N+4[jjf jj2H2N+2(R) + h

4��4jjf jj2H2N+2�(R)]:

4. Conclusions. The dominant terms in Theorem 3.10 are h2� and ��2N+2 If

the parameter � = O(1) then this suggests that if, as usual � = O(h), not degrading
the approximation�s basic error requires at least N � �� 1 deconvolution steps. For
example, with cubic splines, � = 4 so N � 3 steps. If �!1 as � ! 0 (as in theory
in [ST92], [LN05] and experiments in [SA99]), then even more deconvolution steps are
necessary. If N = 0 then the added stabilization term is the simple and perhaps most
commonly seen �uctuation about the local mean but the nodal error is degraded.
When coupled with the simplest discretization of piecewise linears, � = 2, the error
at the nodes is O(h4 + �2)-signi�cantly larger than desired. We conclude from this
analysis that using higher order deconvolution operators and higher order generalized
�uctuations is recommended to preserve nodal accuracy.
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