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Abstract. We give a simple proof of - and extend - a super-
position principle for the equation div(|∇u|p−2∇u) ≤ 0, discov-
ered by Crandall and Zhang. An integral representation comes
as a byproduct. It follows that a class of Riesz potentials is p-
superharmonic.

1. Introduction

The Newtonian potentials

V (x) = cn

∫
ρ(y)dy

|x− y|n−2
, ρ ≥ 0,

are the leading examples of superharmonic functions in the n-dimensional
Euclidean space, n ≥ 3. They are obtained through a superposition of
fundamental solutions

Aj

|x− yj|n−2
, Aj ≥ 0,

of the Laplace equation. The equation ∆V (x) = −ρ(x) holds.
For the p-Laplace equation

−div(|∇u|p−2∇u) = 0

it was recently discovered by M. Crandall and J. Zhang that a similar
superposition of fundamental solutions is possible. Indeed, they proved
in [CZ] that sums like∑

Aj|x− aj|
p−n
p−1 (2 < p < n)

are p-superharmonic functions, where Aj ≥ 0 . They also included
other exponents than the natural (p−n)/(p− 1) and allowed p to vary
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between 1 and ∞. The Riesz potentials∫
ρ(y) dy

|x− y|(n−p)/(p−1)

appear as the limit of such sums.
The purpose of our note is to give an alternative proof of the following

theorem for the Riesz potentials

Vα(x) =

∫
|x− y|αρ(y)dy.

Theorem. Let ρ ∈ C0(Rn) be a non-negative function. We have three
cases depending on p:

(i) 2 < p < n. The function Vα is p-superharmonic, if

p− n

p− 1
≤ α < 0.

(ii) p > n. The function Vα is p-subharmonic, if

α ≥ p− n

p− 1
.

If p = ∞, we may take α ≥ 1.

(iii) p = n. The function

V0(x) =

∫
log(|x− y|)ρ(y)dy

is n-subharmonic.

Before proceeding, we make a comment about the case 1 < p < 2,
which exhibits a puzzling behaviour. While the fundamental solution

|x− a|
p−n
p−1

is p-superharmonic in the whole Rn, the sum

|x− a|
p−n
p−1 + |x− b|

p−n
p−1

is not, assuming of course that a 6= b. The sum is p-subharmonic when
x 6= a and x 6= b, but it is not p-subharmonic in the whole Rn. A
p-subharmonic function cannot take the value +∞ in its domain of
definition, because of the comparison principle. This was about p < 2.

We recall from [L] that p-superharmonic functions are defined as
lower semicontinuous functions v : Rn −→ (0,∞] that obey the com-
parison principle with respect to the p-harmonic functions. A more
direct characterization is available for smooth functions. When p ≥ 2
the function v ∈ C2(Rn) is p-superharmonic if and only if

−div(|∇v(x)|p−2∇v(x)) ≥ 0
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at each point x. From the identity

div(|∇v|p−2∇v) = |∇v|p−4
{
|∇v|2∆v + (p− 2)∆∞v

}
,

where

∆∞v =
n∑

i,j=1

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj

is the ∞-Laplacian operator, we can read off that the pointwise in-
equality

|∇v|2∆v + (p− 2)∆∞v ≤ 0

is an equivalent characterization of p-superharmonic functions v in
C2(Rn) (Incidentally, this is valid also in the case 1 < p < 2. See
[JLM].)

Thus we have a practical definition for functions of class C2. The
polar set Ξ = {x : v(x) = +∞} can be exempted, if v is lower semi-
continuous in Rn and v ∈ C2(Rn \ Ξ). An example is the fundamental
solution |x−a|(p−n)/(p−1), 1 < p < n, where the point x = a is exempted.

2. Proof of the Theorem

We assume n ≥ 2. The following calculations are formal, but are
easy to justify for α > 2− n. Notice that we have

α ≥ p− n

p− 1
> 2− n when p > 2.

Differentiating

V (x) =

∫
|x− y|αρ(y)dy

under the integral sign we obtain

∂V

∂xi

= α

∫
|x− y|α−2(xi − yi)ρ(y)dy

and

∂2V

∂xi∂xj

= α(α− 2)

∫
|x− y|α−4(xi − yi)(xj − yj)ρ(y)dy

+αδij

∫
|x− y|α−2ρ(y)dy.

Aiming at ∆∞V , we write the product of the integrals in

∂V

∂xi

∂V

∂xj

∂2V

∂xi∂xj
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as a triple integral in disjoint variables.∗ This yields the formula

∆∞V (x) = α3

∫
|x− c|α−2ρ(c) dc

∣∣∣∣∫ |x− a|α−2(x− a)ρ(a) da

∣∣∣∣2
+α3(α− 2)

∫
|x− c|α−2ρ(c)

〈
x− c

|x− c|
,

∫
|x− a|α−2(x− a)ρ(a) da

〉2

dc

in vector notation. Keeping α within the prescribed range we have only
harmless singularities.

By the Cauchy-Schwarz inequality we have∣∣∣∣〈 x− c

|x− c|
,

∫
|x− a|α−2(x− a)ρ(a) da

〉∣∣∣∣ ≤ ∣∣∣∣∫ |x− a|α−2(x− a)ρ(a) da

∣∣∣∣.
In easily understandable notation we can therefore write the above
formula as

∆∞V (x) = α3A(x) + α3(α− 2)B(x)

where

0 ≤ B(x) ≤ A(x).

From this we can already read off that ∆∞V (x) ≥ 0 when α ≥ 1.
This settles the case p = ∞. There is a more succinct representation.
Lagrange’s identity

|X ∧ Y |2 =
1

2

∑
(XiYj −XjYi)

2 = |X|2|Y |2 − 〈X, Y 〉2

for vectors enables us to write

C(x) = A(x)−B(x)

=

∫
|x− c|α−2ρ(c)

∣∣∣∣ x− c

|x− c|
∧

∫
|x− a|α−2(x− a)ρ(a) da

∣∣∣∣2 dc.

Notice that C(x) ≥ 0. Thus we have arrived at the representation
formula

∆∞V(x) = α3C(x) + α3(α− 1)B(x),

which is particularly appealing for α = 1 and

V (x) =

∫
|x− y|ρ(y)dy.

∗The principle is clear from the example(∫
exdx

)2∫
e2xdx =

∫∫∫
ea+b+2cda db dc.
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Continuing the calculations, we find that

∆V (x) = α(α− 2 + n)

∫
|x− c|α−2ρ(c) dc,

and hence, after some simple manipulations

|∇V |2∆V = α3(α− 2 + n)A.

It follows that

|∇V |2∆V + (p− 2)∆∞V

= α3(n + α + p− 4)A(x) + α3(α− 2)(p− 2)B(x)

= α3 [(2− α)(p− 2)C(x) + (n− p + α(p− 1))A(x)] .

In this formula we have command over the sign of

|∇V |2∆V + (p− 2)∆∞V,

at least in the cases needed for the theorem. We may add that the
logarithmic integral in the borderline case p = n requires a separate,
but similar calculation leading to

|∇V0|2∆V0 + (n− 2)∆∞V0

= 2(n− 2)C(x)

where α = 0 in the expression for C(x). Here n ≥ 3. (Recall that
p > 2.) This concludes our proof of the theorem.

It is remarkable that the factor n − p + α(p − 1) in front of A(x)
reveals the natural exponent α = (p−n)/(p−1); the term vanishes for
this α. Thus

|∇V|2∆V + (p− 2)∆∞V = α3(2− α)(p− 2)C(x)

when α = (p− n)/(p− 1), and p > 2.
To this one may add that the method is rather flexible. For example,

in the case of a variable exponent it works for∫
|x− y|α(y)ρ(y)dy.

One can also consider V (x) + 〈a, x〉 with an extra linear term.
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3. Riesz Potentials

So far, we have assumed that the nonnegative density ρ in the Riesz
potential

V (x) =

∫
|x− y|αρ(y)dy

is smooth. The restriction can easily be relieved because of the fol-
lowing theorem: the pointwise limit of an increasing sequence of p-
superharmonic functions is either a p-superharmonic function or iden-
tically +∞. Thus we immediately reach the case with lower semicon-
tinuous ρ’s. We point out that the discrete case∑

Aj|x− aj|α

follows, if one regards the integrals as sums in disguise and takes into
account a special reasoning concerning the poles aj.

We can do more than that. Indeed, we can allow rather general
measures.

Proposition. Let µ be a Radon measure on Rn satisfying the growth
condition ∫

|y|≥1

|y|α dµ(y) < ∞.

The theorem holds for the Riesz potentials

V (x) =

∫
|x− y|αdµ(y).

In other words, we have replaced ρ(y)dy with dµ(y). The growth con-
dition guarantees that V (x) < ∞ almost everywhere. In fact V (x) ≡ ∞
if

∫
|y|αdµ(y) = +∞. See [P, Theorem 3.4, p. 78] about this.

Because of the increasing limit

V (x) = lim
R→∞

∫
|y|<R

|x− y|α dµ(y)

we may, in the proof, assume that the measure µ has compact support.
To simplify the exposition, we confine ourselves to the case

α =
p− n

p− 1
, 2 < p < n.
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The passage from integrals of the type
∫
|x − y|αρ(y)dy to the more

general kind with the Radon measure is accomplished through a regu-
larization, for example

ρt(y) =
1

(4πt)n/2

∫
e−

|y−ξ|2
4t dµ(ξ)

will do, where the heat kernel is present. We have∫
ρt(y)dy =

∫
dµ(ξ) = µ(Rn) = M.

Let us denote

Vk(x) =

∫
|x− y|αρtk(y)dy (k = 1, 2, 3, · · · )

where tk −→ 0+ as k −→ ∞. According to the theorem each Vk is
p-superharmonic. It is not difficult to see that Vk −→ V a.e., at least
for a subsequence. The proposition follows from the general theorem
about a.e. convergence in [KM, Theorem 1.17].

In the present situation a more direct proof is possible. It is based on
a compactness argument in W 1,p−1

loc (Rn). Instead of p− 1 any exponent
in the range [p− 1, n(p− 1)/(n− 1)) will do.

Alternative proof: A direct calculation yields∫
BR

|∇Vk|p−1dx ≤ 2

(
M

n− p

n− 1

)p−1

ωn−1R, k = 1, 2, 3, · · · .

To obtain such a bound, free of k, we proceed as follows:

|∇Vk(x)| ≤ |α|
∫
|x− y|α−1ρk(y)dy,

|∇Vk(x)|p−1 ≤ |α|p−1

∫
|x− y|(α−1)(p−1)ρk(y)dy

(∫
ρk(y)dy

)p−2

= |α|p−1Mp−2

∫
|x− y|1−nρk(y)dy,∫

BR

|∇Vk(x)|p−1dx ≤ |α|p−1Mp−2

∫
ρk(y)

∫
BR

|x− y|1−ndx dy.

The inner integral can be estimated as∫
BR

|x− y|1−ndx ≤ 2Rωn−1

since y ∈ BR. This yields the desired bound.
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According to the celebrated Banach-Saks theorem there exists a se-
quence of indices k1 < k2 < · · · such that for the arithmetic means

Wj =
Vk1 + Vk2 + · · ·+ Vkj

j

we have that ∇Wj −→ ∇V strongly in Lp−1(BR). Now we take ad-
vantage of the linear structure by concluding that each Wj is a p-
superharmonic function, because it can be written as a Riesz potential
with the density (ρk1 + · · ·+ ρkj

)/j. Hence∫
〈|∇Wj|p−2∇Wj, ∇ϕ〉 dx ≥ 0

for each non-negative test function ϕ ∈ C∞
0 (Rn). Given ϕ, we take a

ball BR containing its support. The strong convergence enables us to
pass to the limit under the integral sign so that also∫

〈|∇V |p−2∇V, ∇ϕ〉dx ≥ 0.

This follows from the elementary inequality∣∣∣∣|b|p−2b− |a|p−2a

∣∣∣∣ ≤ (p− 1)|b− a|(|b|+ |a|)p−2

for vectors, p ≥ 2.
We could conclude that V is a supersolution, if we knew that V

belongs to W 1,p
loc (R). Unfortunately, this is not always the case. For

example, the fundamental solution is not in W 1,p
loc (Rn). A simple cor-

rection is required. Also the cut-off functions∗

WL
j = min {Wj(x), L}

are p-supersolutions. The ordinary Caccioppoli estimate∫
ζp|∇WL

j |pdx ≤ ppLp

∫
|∇ζ|pdx

is available, cf [L, Corollary 2.5]. By weak lower semicontinuity it holds
also for

V L = min {V (x), L} .

Therefore, ∇V L ∈ Lp
loc(Rn), so that V L is in the right Sobolev space.

As before, we can conclude that∫
〈|∇V L|p−2∇V L, ∇ϕ〉dx ≥ 0

∗This proof does not work if one cuts the original functions Vj instead.
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but this time it follows that V L is a p-supersolution. Then the increas-
ing limit V = limL→∞ V L is p-superharmonic.

Strictly speaking, the conclusion is that the function

Ṽ (x) = ess lim inf
y→x

V (y)

is p-superharmonic, because it is the increasing limit of the p-superharmonic
functions ess lim inf V L(y) as L −→ ∞. See [KM, Proposition 1.7].
The lemma below concludes our proof.

Lemma. (Brelot) At each point x0 we have

V (x0) = ess lim inf
x→x0

V (x),

when 2− n < α < 0.

Proof. The function |x− y|α is superharmonic and therefore we have

−
∫

B(x0,r)

|x− y|αdx ≤ |x0 − y|α

for the volume average over the ball B(x0, r). It follows that

−
∫

B(x0,r)

V (x)dx = −
∫

B(x0,r)

∫
|x− y|αdµ(y)dx

=

∫ (
−
∫

B(x0,r)

|x− y|αdx

)
dµ(y)

≤
∫
|x0 − y|αdµ(y) = V (x0).

This is merely a restatement of the fact that V is a superharmonic
function (in the ordinary sense).

It follows from Fatou’s lemma that V is lower semicontinuous. Hence

V (x0) ≤ lim inf
x→x0

V (x) ≤ ess lim inf
x→x0

V (x)

≤ lim inf
r→0

−
∫

B(x0,r)

V (x)dx ≤ V (x0)

where the last inequality was proved above. Thus equality holds at
each step. �
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