
BOUNDS ON ENERGY AND HELICITY DISSIPATION RATES OF
APPROXIMATE DECONVOLUTION MODELS OF TURBULENCE

WILLIAM LAYTON�

Abstract. We consider a family of high accuracy, approximate deconvolution models of tur-
bulence. For body force driven turbulence, we prove directly from the models equations of motion
the following bounds on the model�s time averaged energy dissipation rate, < "ADM >, and helicity
dissipation rate, < ADM (w) >;
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where U;L are the global velocity scale and length scale and � is the LES �lter radius. We also give
a partial result on the helicity dissipation rate of solutions of the Navier-Stokes equations.

Key words. energy dissipation rate, helicity, helicity dissipation rate, large eddy
simulation, turbulence, deconvolution

1. Introduction. Turbulent �ows consist of complex, interacting three dimen-
sional eddies of various sizes down to the Kolmogorov microscale, � = O(Re�3=4) in
3d. A direct numerical simulation of the persistent eddies in a 3d �ow thus requires
roughly O(Re+9=4) mesh points in space per time step. Therefore, direct numerical
simulation of turbulent �ows is often not computationally economical or even feasible.
On the other hand, the largest structures in the �ow (containing most of the �ow�s
energy) are responsible for much of the mixing and most of the �ow�s momentum
transport.

One promising approach to predicting a �ow�s large structures is called Large
Eddy Simulation or LES. LES seeks to model and predict the evolution of local, spa-
tial averages over a user-selected length scale �. If the LES model does not dissipate
enough energy, there can be an accumulation of energy around the smallest resolved
scales (i.e., wiggles in the computed velocity). The energy dissipation rates in various
LES models are adjusted in various ways, such as using mixed models (i.e., adding
eddy viscosity) and picking the parameters introduced (e.g., Lilly[L67]) to match the
model�s time averaged energy dissipation rate to that of homogeneous, isotropic turbu-
lence. Parameter free (not mixed) models have many advantages and understanding
their important statistics, such as their energy dissipation rate, is critical to advancing
their reliability.

Herein we consider one family of high-accuracy, parameter free models, Approx-
imate Deconvolution Models (ADMs), and bound the ADMs time averaged energy
and helicity dissipation rates. The bounds derived mirror both the energy dissipation
rate of the underlying solution of the NSE (in the limit � ! 0) and the estimate of it
derived in [LN05], [LMNR06] by dimensional analysis (in the limit Re!1).

To begin, consider the Navier-Stokes equations (NSE) in a periodic box in R3,

 = (0; L
)

3 :

ut + u � ru� �4u+rp = f (x) in 
 = (0; L
)3; t > 0; (1.1)

r � u = 0 in (0; L
)3;
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subject to periodic (with zero mean) conditions

u(x+ L
ej ; t) = u(x; t) j = 1; 2; 3 and; (1.2)Z



�dx = 0 for � = u; u0; f; p:

We suppose throughout that the data u0(x); f(x) are smooth and satisfy

r � u0 = 0 , and r � f = 0:

Many averaging operators are used in LES, see, e.g., Sagaut [S01], John [J04],
and [BIL06]. Herein we consider a di¤erential �lter, Germano [Ger86], associated
with length-scale � > 0 related to the Yoshida regularization (and sometimes called a
Helmholz-�lter in the alpha-model literature, e.g., Cheskidov, Holm, Olson and Titi
[CHOT05]) de�ned as follows. Given �(x), �(x) is the unique L-periodic solution of

A� := ��24�+ � = � ; in 
:

Averaging the NSE (i.e., applying A�1 to (1.1)) gives the exact space �ltered NSE
for u

ut + u � ru� �4u+rp = f(x) and
r � u = 0:

This is not closed since (noting that u � ru = r � (uu) )

uu 6= u u:

There are many closure models used in LES, see Sagaut[S01], John[J04], Lesieur,
Metais and Comte[LMC05] and [BIL06] for surveys. Approximate deconvolution mod-
els, studied herein, are used, with success, in many simulations of turbulent �ows, e.g.,
the works of Adams, Kleiser and Stolz [AS01], [AS02], [SA99], [SAK01a], [SAK01b],
[SAK02]. They are among the most accurate of turbulence models, and one of the
few turbulence models for which a mathematical con�rmation of their e¤ectiveness is
known, [LL06b] and Dunca and Epshteyn [DE06]. Brie�y, an approximate deconvo-
lution operator (constructed in Section 3) denoted by DN is an operator satisfying

� = DN (�) +O(�
2N+2) for smooth �:

Since DNu approximates u to accuracy O(�
2N+2) in the smooth �ow regions it is

justi�ed to consider the closure approximation:

uu ' DNuDNu+O(�2N+2): (1.3)

Using this closure approximation, the resulting family of ADMs is given by1

wt +r � (DNw DNw)� �4w +rq = f(x), (1.4)

r � w = 0, N = 0; 1; 2; � � �:

1 In practical computations with ADMs an additional time relaxation term, � (w�w), has often
been added to (1.4). This term can be used as a numerical regularization in any model and is studied
in [LN05], [ELN06], Adams and Stolz [AS02], Pruett [P06] and Guena¤ [Gue04].
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As a special case, D0u = u+O(�
2) gives the zeroth order ADM:

wt +r � (w w)� �4w +rq = f(x) and r � w = 0:

We consider two important �ow statistics: the time averaged energy and helicity
dissipation rates. The energy dissipation rate is a fundamental statistic in experi-
mental and theoretical studies of turbulence, e.g., Sreenivasan [S84], [S98], Bourne
and Orszag [BO97], Pope [P00], Frisch [Frisch], Lesieur [Les97]. In the early 90�s
Constantin and Doering [CD92] (see also Doering and Gibbon [DG95] )established a
direct link between the phenomenology of energy dissipation and that predicted for
shear �ows directly from the NSE. This work builds on earlier work of Busse [B78],
Howard [H72] (and others) and has developed in many important directions, includ-
ing Childress, Kerswell and Gilbert [CKG01], Kerswell [K98] and Wang [W97] (shear
�ows) and Foias [F97], Doering and Foias [DF02] (body force driven �ows). Because
of the greater di¢ culties of studying helicity directly from the NSE, this connection
remains open for helicity dissipation rates, see Section 5.1.

Let < � > denote long time averaging (de�ned in Section 2). K41 phenomenology,
e.g., Frisch[Frisch], Pope[P00], in [LN05] suggests the scaling of the energy dissipation
rate < "ADM >

< "ADM >� U3

L
(1 +

�2

L2
):

In Section 4, we prove directly from the equations of motion (1.4) that the energy
dissipation rate of the model satis�es

< "ADM >� 2U
3

L
+Re�1

U3

L
(1 + (

�

L
)2) .

Here U;L denote natural velocity and length scales associated with the largest scales
of the model (1.4), de�ned precisely in Section 2.1.

The helicity dissipation rate is de�ned several ways in the literature on the phe-
nomenology of helicity cascades due to possible coupling with energy dissipation rates.
Section 5 uses a de�nition which is natural from the point of view of the equa-
tions of motion for the model (1.4). We prove that the helicity dissipation rate,
j < ADM (w) > j, satis�es

j < ADM (w) > j �
U3

L2
+
p
2Re�

1
2 (1 +

�2

L2
)
1
2
U3

L2
+Re�1(1 +

�2

L2
)
U3

L2
:

This estimate of j < ADM (w) > j is consistent with the dimensional analysis estimate
of U

3

L2 .
The cases of the zeroth order model and the entire family of ADMs are closely

related. Proofs will be given for the zeroth order model and the corresponding results
(whose proofs involve only additional subscripts) for the N th ADM stated. Aside
from the family of ADMs, we also believe that the techniques used herein (beginning
with their similar kinetic energy balances) can be used to prove parallel estimates of
energy and helicity disssipation rates for the alpha-model.

2. Notation and preliminaries. The time average of a function �(t) is de�ned
by

< � >:= lim sup
T!1

1

T

Z T

0

�(t)dt:
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First consider the zeroth order model. With j
j the volume of the �ow domain,
the scale of the body force and large scale velocity are de�ned by

F : = (
1

j
j

Z



jf(x)j2dx) 12 , and

U : =<
1

j
j

Z



jw(x; t)j2dx > 1
2

Let jj � jj; (�; �) denote the usual L2(
) norm and inner product (other norms are
explicitly indicated by a subscript). The global length scale associated with the power
input the large scales, i.e., with f(x), is

L := minfL
;
F

jjrf jjL1(
)
;

F

( 1j
j jjrf jj2)
1
2

;
F

( 1j
j jjr � f jj2)
1
2

;
F

1
2

( 1j
j jj4f jj2)
1
4

g:

It is easy to check that L has units of length and satis�es the inequalities:

jjrf jjL1 � F

L
;

1

j
j

Z



jrf(x)j2dx � F 2

L2
; and

1

j
j

Z



jr � f(x)j2dx � F 2

L2
(2.1)

1

j
j

Z



j4f(x)j2dx � F 2

L4
:

The kinetic viscosity is denoted � and the associated global Reynolds number is Re :=
LU
� .
The energy dissipation rate induced by the model depends on the precise form

of the model�s kinetic energy balance. Let w denote the solution of the zeroth order
model. The appropriate de�nitions (see Proposition 3.1 and Remark 3.1, (3.2) through
(3.5) as well as [LL03], [LL06a], [LL06b]) for the zeroth order model are

"ADM�0(w)(t) =
�

L3
fjjrw(t)jj2 + �2jj4w(t)jj2g and

< "ADM�0 >:=< "ADM�0(w)(t) > :

Before introducing the notation for the general case we must �rst de�ne the van
Cittert approximate deconvolution operators.

2.1. Approximate Deconvolution Operators. The �ltering or convolution
operator u ! u is a bounded map: L2(
) ! L2(
). If (as in the case we study)
it is smoothing, its inverse cannot be bounded due to small divisor problems. An
approximate deconvolution operator DN is an approximate inverse u ! DN (u) � u
which

� is a bounded operator on L2(
),
� approximates u in some useful (typically asymptotic) sense, and
� satis�es other conditions necessary for the application at hand.

The de-convolution operator we consider was studied by van Cittert in 1931, e.g.,
Bertero and Boccacci[BB98], and its use in LES pioneered by Adams, Kleiser and
Stolz [AS01], [SA99], [AS02], [SAK01a], [SAK01b], [SAK02]. The Nth van Cittert
approximate deconvolution operator DN is de�ned by N steps of Picard iteration,
[BB98], for the �xed point problem:

given u solve u = u+ fu�A�1ug for u:
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Algorithm 2.1 (van Cittert Approximate Deconvolution Operator). u0 = u ,
for n=1,2,...,N-1, perform
un+1 = un + fu�A�1ung
De�ne DNu := uN .
By eliminating the intermediate steps, the N th de-convolution operator DN is

given explicitly by

DN� :=
NX
n=0

(I �A�1)n�: (2.2)

For example, the approximate de-convolution operator corresponding to N = 0; 1; 2
are:

D0u = u;

D1u = 2u� u;
D2u = 3u� 3u+ u:

Definition 2.1. The deconvolution weighted inner product and norm, (�; �)N and
jj � jjN are

(u; v)N := (u;DNv) ; jjujjN := (u; u)
1
2

N

Lemma 2.2. Consider the approximate deconvolution operator

DN : L
2(
)! L2(
)

DN is a bounded, self-adjoint, positive-de�nite operator and satis�es

jj�jj2 � jj�jjN � (N + 1)jj�jj2; 8� 2 L2(
) :

Proof. DN is a function of the bounded, self-adjoint operator A�1 and is thus
bounded and self-adjoint. By the spectral mapping theorem we have

�(DN ) =

NX
n=0

�(I �A�1)n =
NX
n=0

(1� �(A�1))n, and

0 < �(A�1) � 1 by the de�nition of operator A:

Thus, 1 � �(DN ) � N + 1: Since DN is a self-adjoint operator, this proves positive
de�niteness and the above equivalence of norms.

3. Kinetic energy balance of ADM turbulence models. To see the math-
ematical key to the estimates of energy and helicity dissipation rates we �rst recall
from [LL03], [DE06] (see also [LL06a], and [MM06] for the di¢ cult case of no-slip
boundary conditions) the energy equality for the ADM (1.4).
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Proposition 3.1. If w is a weak or strong solution2 of (1.4), w satis�es

1

2
[jjw(T )jj2N + �2jjrw(T )jj2N ] +

Z T

0

�jjrw(t)jj2N + ��2jj4w(t)jj2Ndt =

=
1

2
[jju0jj2N + �2jjru0jj2N ] +

Z T

0

(f; w(t))N dt:

Proof. (Sketch) Let (w; q) denote a periodic solution of the ADM (1.4). Multi-
plying (1.4) by ADNw and integrating over 
 givesZ




wt �ADNw +r � (DNw DNw) �ADNw � �4w �ADNw +rq �ADNwdx =

=

Z



f �ADNwdx:

The nonlinear term exactly vanishes exactly becauseZ



r � (DNw DNw) �ADNwdx =
Z



A�1(r � (DNw DNw)) �ADNwdx =

=

Z



r � (DNw DNw) �DNwdx = 0:

Integrating by parts the remaining terms gives

d

dt

1

2
fjjw(t)jj2N + �2jjrw(t)jj2Ng+ �fjjrw(t)jj2N + �2jj4w(t)jj2Ng = (f; w(t))N : (3.1)

The results follows by integrating this from 0 to t.
From Proposition 3.1, the ADMs kinetic energy, energy dissipation rate and power

input are clearly identi�ed.

ADM energy:

EADM�N (w)(t) :=
1

2j
j fjjw(t)jj
2
N + �

2jjrw(t)jj2Ng; (3.2)

ADM dissipation rate:

"ADM�N (w)(t) :=
�

j
j fjjrw(t)jj
2
N + �

2jj4w(t)jj2Ng; (3.3)

Time averaged dissipation rate:

< "ADM�N >:=< "ADM�N (w)(t) >; (3.4)

ADM power input:

PADM�N (w)(t) :=
1

j
j (f; w(t))N : (3.5)

Let jj � jjN denote the deconvolution-weighted L2(
) norm (De�nition 2.1). The
deconvolution weighted scales of the body force and large scale velocity are de�ned
by

FN := (
1

j
j jjf jj
2
N )

1
2 , and UN :=<

1

j
j jjwjj
2
N >

1
2

2Unlike the NSE case, it is known that weak=strong for the ADM and both exist and are unique.

6



Note that these are related to F and U by

F � FN � (N + 1)
1
2F , U � UN � (N + 1)

1
2U , and also

< "ADM�0(w) >�< "ADM�N (w) >� (N + 1)
1
2 < "ADM�0(w) > :

For N = 1; 2; 3; � � � the deconvolution-weighted global length scale associated with the
power input to the large scales, i.e., with f(x), is de�ned to be

LN := minfL
;
FN

jjD
1
2

Nrf jjL1(
)
;

FN

( 1j
j jjrf jj2N )
1
2

;
FN

( 1j
j jjr � f jj2N )
1
2

;
F

1
2

N

( 1j
j jj4f jj2N )
1
4

g:

It is easy to check that LN has units of length and satis�es the deconvolution-weighted
form of the inequalities (2.1) above.

Lemma 3.2. As � ! 0, for N = 0; 1; 2; � � �

EADM�N (w)(t)! E(w)(t) =
1

2j
j jjw(t)jj
2;

"ADM�N (w)(t)! "(w)(t) =
�

2j
j jjrw(t)jj
2; and

PADM�N (w)(t)! P (w)(t) =
1

j
j (f(t); w(t)):

Proof. As � ! 0 all the �2 terms drop out in the de�nitions above, DN ! I and
jj�jjN ! jj�jj.

Corollary 3.3. Let f = f(x) 2 L2(
) and w be a solution of the ADM turbu-
lence model (1.4) then

sup
t2(0;1)

EADM�N (w)(t) � C(data) <1;

1

T

Z T

0

"ADM�N (w)(t)dt � C(data) <1:

Proof. We begin with (3.1) from the proof of the Proposition 3.1. Using the
Poincaré and Cauchy-Schwarz inequalities we have from (3.1)

d

dt
EADM�N (t) + �EADM�N (t) � jjf jj2N ;

for some � > 0 which implies EADM�N (w)(t) is uniformly bounded in time. For
boundedness of the time averaged dissipation rate, divide the energy estimate of the
ADM turbulence model energy equality from Proposition 3.1 by T :

1

T
EADM�N (w)(T ) +

1

T

Z T

0

"ADM�N (w)(t)dt =

=
1

T
EADM�N (w)(0) +

1

T

Z T

0

(f; w(t))Ndt �

� 1

T
EADM�N (w)(0) + jjf jjN [

1

T

Z T

0

jjw(t)jj2Ndt]
1
2 � (3.6)

� C(data): (3.7)

the result follows by letting T !1:
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4. Bounds on energy dissipation rates. We prove the following estimate on
the model�s time averaged energy dissipation rates.

Proposition 4.1. For all cases N = 0; 1; 2; 3; � � �

< "ADM�N (w) >� 2
U3N
LN

+Re�1
U3N
LN

(1 +
�2

L2N
)

The proof in the general case follows the zeroth order case by adding subscripts as
appropriate. The mathematics driving the proof in both cases is the precise estimate
of the model�s energy balance. In the general case, the model�s kinetic energy bal-
ance satis�es the analog of the zeroth order�s energy balance with norms replaced by
deconvolution weighted norms. We shall give the proof in detail for the notationally
clearest, N = 0, case and prove:

Proposition 4.2. For the case N = 0;

< "ADM�0(w) >� 2
U3

L
+Re�1

U3

L
(1 +

�2

L2
) .

The proof of this estimate combines the energy estimate for the ADM in Proposi-
tion 3.1 with the breakthrough arguments of Foias[F97] and Doering and Foias[DF02]
from the NSE case. The �rst of two key bounds is obtained by time averaging the
energy inequality of Proposition 3.1. Using Corollary 3.3 we have for N = 0; 1; 2; 3; � � �

lim sup
T!1

1

T

Z T

0

�jjrw(t)jj2N + ��2jj4w(t)jj2Ndt � lim sup
T!1

1

T

Z T

0

(f; w(t))N dt:

For the general case the same holds with norms and inner products replaced by their
deconvolution-weighted versions (by adding subscripts N). The Cauchy-Schwarz in-
equality and Corollary 3.3 imply

< "ADM�0 >� FU , and < "ADM�N >� FNUN (4.1)

Time averaging the ADM turbulence model (1.4) gives for N = 0; 1; 2; � � �

< w >t +r � (< DNw DNw >)� �4 < w > +r < q >=< f > (x), (4.2)

r� < w >= 0.

Set N = 0 and recall that D0 = I . Take the inner product of the time averaged model
(4.2) with Af . Note that f = f(x); (f;Af) = (A�1f;Af) = jjf jj2, analogously for
the nonlinear term, and that r � f = 0 so the pressure term vanishes. This gives

1

j
j jjf jj
2 =

1

j
j (Af;< w >t)�
1

j
j (rf;< D0w D0w >) +
�

j
j (Arf;r < w >).

The time derivative term vanishes in the limit as T ! 1 by the Cauchy-Schwarz
inequality and Corollary 3.2. The remaining terms on the RHS are integrated by
parts (as in the derivation of the energy equality):

1

j
j jjf jj
2 = � 1

j
j (rf;< D0w D0w >)+

+
�

j
j f(rf;r < w >) + �
2(4f;4 < w >)g:
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Thus, using the Cauchy-Schwarz inequality,

1

j
j jjf jj
2 � � 1

j
j (rf;< D0w D0w >) + "ADM�0(f)
1
2 "ADM�0(< w >)

1
2 : (4.3)

Next, consider the nonlinear term on the above RHS. By the de�nitions of L;F; U we
have (recall D0w = w)

1

j
j (rf;< w w >) � jjrf jjL
1 <

1

j
j jjwjj
2 >� FU2

L
: (4.4)

By the triangle inequality we have

jjr < w > jj2 �< jjrwjj2 > , and jj4 < w > jj2 �< jj4wjj2 > : (4.5)

(This step is not sharp.) This implies, by the de�nitions of F;L;

"ADM�0( < w >)
1
2 �< "ADM�0(w) >

1
2 , (4.6)

�

j
j jjrf jj
2 � � F

2

L2
, and

��2

j
j jj4f jj
2 � ��2F

2

L4
:

Using the bounds (4.4), (4.6) and (4.7) in (4.3) gives

F 2 � FU2

L
+ (

�F 2

L2
+
��2F 2

L4
)
1
2 < "ADM�0(w) >

1
2 (4.7)

From the �rst basic estimate < "ADM�0(w) >� FU . Inserting this in the RHS and
cancelling the obvious terms gives

< "ADM�0(w) >� FU �
U3

L
+ U(

�

L2
+
��2

L4
)
1
2 < "ADM�0(w) >

1
2 : (4.8)

Thus, by Young�s inequality

< "ADM�0(w) >� 2
U3

L
+
�U2

L2
(1 +

�2

L2
) ,

and Proposition 4.2 is proven:

< "ADM�0(w) >� 2
U3

L
+Re�1

U3

L
(1 +

�2

L2
) .

Remark 4.1. Exactly as in the NSE case, Foias [F97] and Doering and Foias
[DF02], the estimate can be improved by more careful treatment of the quadratic equa-
tion. The result is elimination of the multiplier 2 on the RHS and a slight modi�cation
of the second term.

5. Bounds on Helicity dissipation rates. Kinetic energy is a fundamental
integral invariant of the Euler equations. The other fundamental integral invariant
in 3d, discovered only in 1961 by Moreau[M61] (see also Mo¤att[M84], Mo¤att and
Tsoniber[MT92]), is helicity or streamwise vorticity:

H(u)(t) :=
1

j
j

Z



u � r � udx: (5.1)
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For the NSE, it is known3 that the helicity satis�es the balance equation

H(u)(T ) +

Z T

0

(u)(t)dt = H(u0) +

Z T

0

1

j
j (r� f; u)dt; (5.2)

where (u) is the helicity dissipation rate given by

(u) :=
�

j
j (r� u;r�r� u): (5.3)

The interaction of helicity and energy is thought to play a key role in organizing
�ows. However, much less is known about helicity than energy and its mathematical
study is more di¢ cult than that of energy because more derivatives are involved and
neither H nor  has one sign. Helical modes with both signs exist, see Ditlevsen and
Giuliani [DG01a], [DG01b], and are fundamental to the analysis of helicity cascades,
studied in [LMNR06], Andre and Lesieur [AL77], Brissaud, Frisch, Leorat and Lesieur
[BFL73], Chen, Chen and Eyink and Holm [CCE03], [CCEH03] and Ditlevsen and
Giuliani [DG01a], [DG01b]. The best current mathematical (i.e., directly from the
NSE) result on helicity appears to be Foias, Hoang and Nicolenko [FHN04] in which
it is proven that if the body force is potential (and can thus be incorporated into
the pressure) then H(u)(T ) ! 0 as T ! 1 for � > 0. Nevertheless, a similarity
theory of coupled helicity and energy cascades has recently been developed for both
the NSE and the family of ADM turbulence models [LMNR06]. In this theory the
time averaged helicity dissipation rate plays a key role analogous to that of the time
averaged energy dissipation rate.

This section considers bounds on the time averaged helicity dissipation rate for
both the NSE and the ADM turbulence model (1.4). We consider the NSE case �rst
and derive a partial result. The expected result predicted by dimensional analysis in
the NSE case is recovered if it is known that the helicity of a solution of the NSE
is eventually bounded-a property that seems physically obvious but mathematically
intractable. Because of the enhanced kinetic energy bound available for the ADM tur-
bulence model, we are able to prove a bound on the ADM helicity, < ADM�N (w) >.

5.1. Helicity dissipation for the NSE. Because of the incomplete nature of
the �nal result, we proceed formally. Dividing the helicity balance equation by T
gives

1

T
H(u)(T ) +

1

T

Z T

0

(u)(t)dt =
1

T
H(u0) +

1

T

Z T

0

1

j
j (r� f; u)dt

If the initial velocity is smooth, 1TH(u0)! 0 as T !1 . Further, if r� f is square
integrable, then

lim sup
T!1

j 1
T

Z T

0

1

j
j (r� f; u)dtj <1:

Thus, the following limit superiors satisfy

lim sup
T!1

j 1
T
H(u)(T ) +

1

T

Z T

0

(u)(t)dtj � lim sup
T!1

j 1
T

Z T

0

1

j
j (r� f; u)dtj <1:

3Derived formally by multiplication by the vorticity, integration over the �ow domain and inte-
gration by parts.
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By the Cauchy-Schwarz inequality

lim sup
T!1

j 1
T

Z T

0

1

j
j (r� f; u)dtj <
FU

L
(<1): (5.4)

In the NSE case, Foias[F97] and Doering and Foias[DF02] prove, as a step to
bounds on energy dissipation rates, the following intermediate result on the numerator
of the RHS:

FU � U3

L
+ �

1
2
U

L
< " >

1
2 : (5.5)

(For example, formally set � = 0 in the estimate (4.9).) Using this and the bound of
energy dissipation of Foias[F97] and Doering and Foias[DF02], < " >� 2U3

L +Re
�1 U3

L ,
in (5.5) gives

lim sup
T!1

j 1
T
H(u)(T ) +

1

T

Z T

0

(u)(t)dtj � U3

L2
+
p
2Re�

1
2
U3

L2
+Re�1

U3

L2
: (5.6)

If H(T ) is eventually bounded (as is expected physically but unknown mathemati-
cally) this gives the upper bound

j <  > j � U3

L2
+
p
2Re�

1
2
U3

L2
+Re�1

U3

L2
: (5.7)

Thus, it is clear that obtaining a bound on the helicity dissipation, i.e., completing
the step between (5.6) and (5.7) depends on proving boundedness H(T ).

5.2. Helicity dissipation in ADM turbulence models. From the NSE case,
it is clear that the key to completing the argument of Section 5.1 for the ADM
turbulence model will be proving HADM�N (w)(T ) is bounded. We begin by recalling
the ADM turbulence model�s helicity balance (the essential �rst ingredient in the
analysis) discovered by Rebholz [R06]. De�ne the conserved, Rebholz [R06], ADM
helicity

HADM�N (w)(t) :=
1

j
j [(w;r� w)N + �
2(r� w;r�r� w)N ]: (5.8)

For the ADM, it is known, Rebholz [R06], that the ADM helicity satis�es the balance
equation

HADM�N (w)(T ) +

Z T

0

ADM�N (w)(t)dt = H(w(0)) +

Z T

0

1

j
j (r� f; w)dt; (5.9)

where ADM�N (w) is the model�s helicity dissipation rate given by

ADM�N (w) :=
�

j
j [(r�w;r�r�w)N +�
2(r�r�w;r�r�r�w)N ]: (5.10)

Note that (in the zeroth order model-to simplify notation)

HADM (w) = H(w) + �
2H(r� w) and

ADM (w) = (w) + �
2(r� w) :

11



5.3. Bounding model helicity. Arguing as in [LN05], the zeroth order model,
(1.4) with N = 0, is equivalent to r �Aw = 0 and

Awt + w � rw +rAq � �4Aw = f: (5.11)

Lemma 5.1. Suppose � > 0 then

sup
0�T<1

[jjw(T )jj+ jjrw(T )jj+ jj4w(T )jj] � C(data; �) <1: (5.12)

Proof. First we note that it has been proven that the ADM turbulence model
(1.4) has a unique strong solution that is as smooth as the problem data so formal
manipulations of the model are mathematically justi�ed. The bound on w and rw
follow from the energy inequality for the model in Proposition 3.1. Taking the inner
product of (5.11) with Aw gives

1

2

d

dt
jjAwjj2 + �jjrAwjj2 = (Af;w)� (w � rw:Aw):

Basic inequalities and the bounds on w and rw give
j(Af;w)j � C(data);

j(w � rw;Aw)j � Cjjrwjj2jjrAwjj2 � C(data; �) + �
2
jjrAwjj2:

Thus,

1

2

d

dt
jjAwjj2 + �jjrAwjj2 � C(data; �) + �

2
jjrAwjj2;

and the result follows by a Poincaré type inequality and an integrating factor.
Corollary 5.2. If � > 0 then jHADM�N (w)(T )j is uniformly bounded.
Proof. There follows

jHADM�N (w)(T )j � C(jjwjjjjrwjj+ �2jjrwjjjj4wjj) � C(data; �):

With these bounds, the �nal step lacking in the argument from Section 5.1 in the
NSE case can be carried through successfully.

Proposition 5.3. Let � > 0 , then

j < ADM (w) > j �
U3

L2
+
p
2Re�

1
2 (1 +

�2

L2
)
1
2
U3

L2
+Re�1(1 +

�2

L2
)
U3

L2

Proof. Time averaging the ADM turbulence model helicity balance relation, both
helicity terms drop out by Corollary 5.2. Thus we have

lim sup
T!1

j 1
T

Z T

0

ADM (w)(t)dtj � lim sup
T!1

j 1
T

Z T

0

1

j
j (r� f; u)dtj �
FU

L
:

Inserting the bounds on FU and < "ADM (w) > from Section 4 gives

j < ADM (w) > j �
FU

L
� U3

L2
+
U

L
(
�

L2
+
��2

L4
)
1
2 < "ADM�0(w) >

1
2�

� U3

L2
+Re�

1
2 (
U

L
)
3
2 (1 + �2)

1
2 [2
U3

L
+Re�1

U3

L
(1 +

�2

L2
)]

1
2 �

� U3

L2
+
p
2Re�

1
2 (1 + �2)

1
2
U3

L2
+Re�1(1 + �2)

U3

L2
;

as claimed.
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