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Abstract

In the large, getting a prediction of a turbulent flow right means getting the energy balance correct and

getting the rotational structures correct. In two-dimensional flows this means (in the large) matching the

energy and enstrophy statistics. In this report we consider a family of large eddy simulation approximate

deconvolution models of turbulence. Based on a rigorous analysis of their kinetic energy and helicity balance,

see [17], [27], Dunca and Epshteyn [9], we apply similarity theory to the model. We show that the model

has a helicity cascade, linked to its energy cascade developed in [20], satisfying

Helicity(k) ∼ ε
2/3
modelk

−5/3 and Energy(k) ∼ γmodelε
−1/3
modelk

−5/3 over 0 < k < 1/δ
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Helicity(k) ∼ ε
2/3
modelδ

−2k−11/3 and Energy(k) ∼ γmodelε
−1/3
modelδ

−2k−11/3 over k > 1/δ

where δ is the filter width. Thus, the method predicts the correct helicity statistics up to the cutoff frequency.

We also discuss the existence of a helicity microscale.

The analysis is carried out for differential filters. We conclude by describing how the results are modified

for other, general filters.

1 Introduction

Direct numerical simulation of many turbulent flows is not feasible for the foreseeable future within

time and resource constraints of many applications. There are thus many approaches to finding

reduced models of turbulent flows whose solutions have a smaller number of persistent scales (and

thus can be solved more quickly and economically). However, the associated closure problem cannot

be solved exactly. Thus, it is possible (and in fact not uncommon) that a given turbulence model’s

solution has little physical fidelity, quantitative agreement and qualitative agreement with the flow

averages sought.

We consider herein aspects of flow statistics and the physical fidelity related to the coherent

rotational structures and integral invariants (helicity and helicity statistics) predicted by a family

of parameter free large eddy simulation models of turbulence. Broadly, if δ is the (user-selected)

filter length scale and overbar denotes the associated local, spacial averaging, the true averages, u,

p, of an incompressible viscous fluid satisfy the well known Space Filtered Navier-Stokes equations

given by

ut +∇ · (uu)− ν∆u +∇p = f and ∇ · u = 0. (1)

The closure problem (which occurs since uu 6= uu) thus leads to the deconvolution problem:

givenu, findu (approximately). (2)

Calling this approximate deconvolution of u, D(u):

approximation to u = D(u),
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an approximate solution to the closure problem is then uu ≈ D(u) D(u). The LES model induced

is to find (w, q) (sought to approximate (u, p)) satisfying

wt +∇ · (D(w) D(w))− ν∆w +∇q = f and ∇ ·w = 0 (3)

with initial condition w(x, 0) = w0(x). Here we take Ω = (0, L)3 and impose periodic boundary

conditions on all variables (with the usual normalization condition of the periodic case
∫
Ω φ =

0, φ = w,w0, f and q)

The deconvolution problem (2) is typically ill-posed and any method for approximate solution

of an ill-posed problem can be tested as a Large Eddy Simulation (LES) model in (3). We study

herein the family (N = 0, 1, 2, . . .) of Approximate Deconvolution Models (ADM), introduced in

LES by Stolz and Adams [29], [2], based on the van Cittert algorithm, see Bertero and Boccacci

[4]. This deconvolution operator satisfies the consistency condition (for N = 0, 1, 2, . . .):

u = DN (u) + O(δ2N+2) for smooth u,

and thus uu = DN (u) DN (u) + O(δ2N+2). This model has remarkable mathematical properties

and its accuracy has been established in the tests of Stolz and Adams [29] ,[2] and the theoretical

studies in the work of Dunca and Epshteyn [9] and [18].

In this report, we study the joint energy-helicity cascade for homogeneous, isotropic turbulence

generated by the Stolz-Adams approximate deconvolution models (ADM). Our goal is to give a

comparison of the energy and helicity statistics of ADM’s to the true flow statistics and a comparison

of their respective energy and helicity cascades.

Both energy,

E(t) :=
1

2L3

∫

Ω
|u(x, t)|2 dx, (4)

and helicity,

H(t) :=
1
L3

∫

Ω
u(x, t) · (∇× u(x, t))dx, (5)
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are conserved by the Euler equations and dissipated (primarily at the small scales) by viscosity.

It is widely believed that both cascades, André and Lesieur [1], and the details of their respective

cascades are intertwined. Recent studies, confirmed by Bourne and Orszag in [5] have suggested

that for homogeneous, isotropic turbulence averaged fluid velocities exhibit a joint energy and

helicity cascade through the inertial range of wave numbers given by

E(k) = CEε2/3k−5/3, H(k) = CHγε−1/3k−5/3, (6)

where k is wave number, ε the mean energy dissipation, and γ the mean helicity dissipation, see

also Q. Chen, S. Chen and Eyink [6], Q. Chen, S. Chen, Eyink and Holm [7], Ditlevsen and Giuliani

[10]. The cascades are referred to as “joint” because they travel with the same speed through wave

space (i.e. the exponents of k are equal). The energy cascade given in (6) is the famous Kolmogorov

cascade, and the work of Q. Chen, S. Chen and Eyink [6] showed that the helicity cascade in (6) is

consistent for wave numbers up to the standard Kolmogorov wave number, kE = ν−3/4ε1/4, where

ν is the fluid viscosity. Herein, we explore the existence and details of a comparable joint cascade

in the ADM (3), to examine if this qualitative feature of the NSE is matched in the ADM.

Exact conservation of helicity for a turbulence model, a first and necessary step for correct

helicity cascade statistics, was studied in [27] for the ADM, Leray, Leray-deconvolution, and the

Bardina LES models. This work shows that all these models exactly conserve a model mass and

model momentum. However, of these only the ADM exactly conserves helicity in the absence of

viscosity and external forces, implying that the existence of a helicity cascade is possible.

Other authors have compared LES model energy cascades to energy cascades of the NSE. This

was pioneered by Muschinsky [26] for the Smagorinsky model. In [8] by Cheskidov, Holm, Olson

and Titi the energy cascade of the Leray-α model was explored, as was the energy cascade of the

ADM (3) in [20] and associated regularization in [19]. The work in [20] found that, with some key

assumptions, the energy cascade in the ADM is identical to that of the NSE up to the cutoff length

scale of δ, and begins to truncate scales like k−11/3 for length scales < δ, until viscosity takes over

at a length scale larger than ηKolmogorov. The effects of time relaxation on scale truncation was

4



explored using similar tools in [19]. There are many other applications of K41 phenomenology to

understanding LES models, Sagaut [28].

The study of helicity in fluid flow and turbulence has only recently began. It was not until 1961

that helicity’s inviscid invariance was discovered by Moreau [25], and two decades later Moffatt

gave the topological interpretation of helicity [23] that helicity is nonzero if and only if the flow

is not rotationally symmetric. This topological interpretation leads to the commonly accepted

interpretation of helicity: it is the degree to which the vortex lines are knotted and intertwined.

Another interesting and important feature of helicity is that it is a rotationally meaningful quantity

that can be checked for accuracy in a simulation. Moffat and Tsoniber gave a good summary of

the early results on helicity in [24].

In this study, we show that solutions of the ADM possess a joint energy/helicity cascade that

is asymptotically (in the filter width δ) equivalent to that of the NSE. In [20], it is shown that

there exists a piecewise cascade for energy in the ADM; that is, up to wave number 1
δ , i.e., over the

resolved scales, the ADM cascades energy in the same manner as in the NSE (k−5/3). However,

after this wave number and up to the model’s microscale, the ADM cascades energy at a faster

rate (k−11/3). Interestingly, the results for helicity in the ADM are analogous; helicity is cascaded

at the correct rate of k−5/3 for wave numbers less than 1
δ , and for higher wave numbers up to the

model’s microscale, helicity is cascaded at a rate of k−11/3. This k−11/3 rate of enhanced decay is

filter dependent, Section 6.1. We deduce the microscale helicity in the ADM and we also show that

the helicity cascade is consistent (in the sense introduced by Q. Chen, S. Chen and Eyink [6]) up

to the model’s energy microscale.

Section 2 gives notation and preliminaries and shows how the deconvolution operator renor-

malizes the energy. Section 3 gives properties of the ADM, Section 4 derives the joint cascade of

energy and helicity in the ADM, Section 5 shows how the ADM truncates scales for helicity, and

Section 6 presents conclusions.
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2 Notation and Preliminaries

The L2(Ω) norm is denoted (as usual) by ‖φ‖ = (
∫
Ω |φ(x)|2 dx)1/2 and the deconvolution weighted

L2-norm is denoted by ‖φ‖N := (φ, DNφ)1/2, where DN is defined precisely in Section 2.2. Every

other norm will be explicitly indicated. The space L2
0(Ω) contains functions in L2(Ω) with zero

mean.

Given two real quantities A, B (such as energy and helicity) we shall write

A ' B

if there are positive constants C1, C2 depending only on N (which is fixed) with

C1(N)A ≤ B ≤ C2(N)A.

For example, in Section 2.2 we show that

||φ|| ≤ ‖φ‖N ≤
√

N + 1||φ||, ∀φ ∈ L2(Ω),

which is written as ||φ|| ' ||φ||N .

2.1 Nomenclature

The nomenclature used is standard and defined where first used herein. We briefly give a summary

of it next.

u, p : The true velocity and pressure, solutions of the underlying Navier-Stokes equations.

w, q : The continuum velocity and pressure predicted by the LES model.

δ : The averaging radius of the filter used in the LES model.

v̂ : The Fourier transform of the function v for the Cauchy problem and the Fourier coefficient

of v for the periodic problem.

k, k : The dual variable or wave number vector and wave number, respectively;

k = |k| = (k2
1 + k2

2 + k2
3)

1
2 .

||v|| : The L2 norm of the indicated function, ‖v‖ = (
∫
Ω |v(·, t)|2 dx)1/2.
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||v||N : The deconvolution norm of the indicated function, ‖v‖N = (v(·, t), DNv(·, t))1/2.

E(v)(t) : The true, total kinetic energy of the indicated velocity field at time t:

E(v)(t) := 1
2L3 ||v(·, t)||2.

H(v)(t) : The true, total helicity of the indicated velocity field at time t:

H(v)(t) := 1
L3

∫
Ω v(·, t) · (∇× v(·, t))dx.

Emodel(v)(t): The kinetic energy of the LES model at time t, given by:

Emodel(v)(t) := 1
2L3 {||v(·, t)||2N + δ2||v(·, t)||2N}.

Hmodel(v)(t): The helicity of the LES model at time t, given by:

Hmodel(v)(t) := 1
L3 {v(·, t),∇× v(·, t))N + δ2(∇× v(·, t), (∇×)2v(·, t))N}.

E(v)(k): The distribution of the kinetic energy of the time average of the indicated flow field

by wave number.

H(v)(k): The distribution of the helicity of the time average of the indicated flow field by wave

number.

Emodel(v)(k) : The distribution by wave number of the LES model’s kinetic energy of time or

ensemble averages of the indicated flow field.

Hmodel(v)(k) : The distribution by wave number of the LES model’s helicity of time or ensemble

averages of the indicated flow field.

< · >: Time averaging of the indicated function,

< v >= lim supT→∞
1
T

∫ T
0 v(t) dt.

ε(v)(t) : The (non-averaged) energy dissipation rate,

ε(v)(t) := ν
L3 ||∇v(·, t)||2.

γ(v)(t) : The (non-averaged) helicity dissipation rate,

γ(v)(t) := 2ν
L3 (∇× v(·, t), (∇×)2v(·, t)).

ε : The mean (time-averaged) energy dissipation rate of the true, Navier-Stokes velocity.

ε :=< ε(v)(t) > .

γ : The mean (time-averaged) energy dissipation rate of the true, Navier-Stokes velocity.

γ :=< γ(v)(t) > .
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εmodel(v)(t) : The (non-averaged) LES model’s energy dissipation rate, given by:

εmodel(v)(t) := ν
L3 {||∇v(·, t)||2N + δ2||∆v(·, t)||2N}.

γmodel(v)(t) : The (non-averaged) LES model’s helicity dissipation rate, given by:

γmodel(v)(t) := 2ν
L3 {(∇× v(·, t), (∇×)2v(·, t))N + δ2((∇×)2v(·, t), (∇×)3v(·, t))N}.

εmodel : The mean (time-averaged) energy dissipation rate of the LES model.

εmodel :=< εmodel(v)(t) > .

γmodel : The mean (time-averaged) helicity dissipation rate of the LES model.

γmodel :=< γmodel(v)(t) > .

P (v)(t) : Power input

P (v)(t) := 1
L3 (f(·, t),v(·, t)).

Pmodel(v)(t) : Power input of the LES model

Pmodel(v)(t) := 1
L3 (f(·, t),v(·, t))N .

Re : The Reynolds number.

ρ, µ, ν : Respectively, the fluids density, viscosity and kinematic viscosity.

U,L : The large scales characteristic velocity and length scale used to define the Reynolds

number.

A : The differential operator that defines the differential filter, Av := (−δ2∆ + I)v.

G : The filter G = A−1.

DN : The approximate deconvolution operator.

v : Overbar denotes the average of the indicated function, v = Gv.

ηKolmogorov : The length scale of the smallest persistent eddies; the Kolmogorov microscale.

kE : The wave number of the smallest persistent eddies.

ηH : The length scale of the smallest persistent helical structures; analogous to the Kolmogorov

microscale for helicity.

kH : The wave number of the smallest persistent helical structures.

ηE
model : The model’s energy microscale being the length scale of the model’s smallest persistent

eddies.
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kEmodel
: The model’s energy wave number being the wave number of the model’s smallest

persistent eddies.

ηH
model : The model’s helicity microscale being the length scale of the model’s smallest persistent

helical structures.

kHmodel
: The model’s helicity wave number being the wave number of the model’s smallest

persistent helical structures.

wsmall : The velocity scale of the smallest persistent eddies in the model’s solution.

[·] : The units or dimensions.

Resmall, Relarge : A Reynolds number based on the scales of the smallest/largest persistent

eddies.

Remark 1. For notational compactness, we frequently omit explicit reference to the indicated

velocity field. We may write, for instance, E(t) instead of E(v)(t), H(t) instead of H(v)(t), and

so on.

2.2 Norm Equivalence

We focus on the case where averaging is performed by differential filters, Germano [14]. Specifically,

given φ, φ is the unique L-periodic solution of

−δ2∆φ + φ = φ, in Ω, (7)

where δ is the selected filter length scale. Differential filters are used, for example, in Q. Chen,

S. Chen, Eyink [6], Q. Chen, S. Chen, Eyink and Holm [7], Cheskidov, Holm, Olson, and Titi [8],

Dunca and Epshteyn [9], [20], [22], and [27].

Let the averaging operator be denoted by G (so φ = Gφ := (−δ2∆ + I)−1φ). The basic

problem in approximate deconvolution is thus: given φ = Gφ find useful approximations of φ. In

other words,

Gφ = φ, solve for φ.
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For most averaging operators, G is symmetric, positive semi-definite and not stably invertible.

Thus, the deconvolution problem is generically ill-posed.

The approximate deconvolution algorithm we consider was studied by van Cittert in 1931. For

each N = 0, 1, ..., it computes an approximate solution φN to the above deconvolution equation

by N steps of a fixed point iteration, Bertero and Boccacci [4]. Rewrite the above deconvolution

equation as the fixed point problem:

given φ solve φ = φ + {φ−Gφ} for φ.

The deconvolution approximation is then computed as follows.

Algorithm 2.1 (van Cittert approximate deconvolution algorithm). φ0 = φ, where

for n=1,2,...,N-1, perform

φn+1 = φn + {φ−Gφn}
φN = DNφ

By eliminating the intermediate steps, the N th deconvolution operator DN is

DNφ :=
N∑

n=0

(I −G)nφ. (8)

For example, the approximate deconvolution operators corresponding to N = 0, 1, 2 are D0φ = φ,

and D1φ = 2φ− φ, and D2φ = 3φ− 3φ + φ.

Lemma 2.2 (Stability of approximate deconvolution). Let averaging be defined by the dif-

ferential filter (7). Then DN is a self-adjoint, positive semi-definite operator on L2(Ω) with norm

||DN || := sup
�∈L2(Ω)

‖DNφ‖
‖φ‖ = N + 1.

Proof. We summarize the proof from [3] for completeness. Note that G := (−δ2∆ + I)−1 is a

self-adjoint positive definite operator with eigenvalues between zero and one, accumulating at zero.

Since DN :=
∑N

n=0(I − G)n, is a function of G, it is also self-adjoint. By the spectral mapping

theorem

λ(DN ) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n.

10



Thus, λ(DN ) ≥ 0 and DN is also positive semi-definite. Since DN is self-adjoint, the operator norm

||DN || is also easily bounded by the spectral mapping theorem by

||DN || =
N∑

n=0

λmax(I −G)n =
N∑

n=0

(1− λmin(G))n = N + 1. (9)

Definition 2.3. The deconvolution weighted norm and inner product are

‖φ‖N =
√

(φ, DNφ) and (φ,ψ)N := (φ, DNψ).

for φ, ψ ∈ L2(Ω).

Lemma 2.4. We have

||φ||2 ≤ ‖φ‖2
N ≤ (N + 1)||φ||2, ∀φ ∈ L2(Ω) . (10)

Proof. As in (9), 1 ≤ λ(DN ) ≤ N + 1 since

λ(DN ) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n, and

0 < λ(G) ≤ 1.

Since DN is a self-adjoint operator, this proves the above equivalence of norms.

It is insightful to consider the Cauchy problem or the periodic problem and visualize the ap-

proximate deconvolution operators DN in wave number space (re-scaled by k ← δk ). This shows

how the N norm reweights the usual L2(Ω) norm. The transfer function or symbol of the first three

are

D̂0 = 1,

D̂1 = 2− 1
k2 + 1

=
2k2 + 1
k2 + 1

, and

D̂2 = 1 +
k2

k2 + 1
+ (

k2

k2 + 1
)2.
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Figure 1: Approximate de-convolution operators, N=0,1,2.

Their transfer functions are plotted in figure 1 below.

Note that the plot of D̂N (k) is consistent with (10): the transfer functions are bounded below

by 1, positive and uniformly bounded by N + 1. Figure 1 also reveals that the weighted norm is

very close to the usual norm on the largest spacial scales but then overweights (by at most N + 1)

smaller scales.

The large scales are associated with the smooth components and with the wave numbers near zero

(i.e., |k| small). Thus, the fact that DN is a very accurate solution of the deconvolution problem

for the large scales is reflected in the above graph in that the transfer functions D̂N (k) have high

order contact with 1
1+k2 near k = 0.

Lemma 2.5 (Error in approximate de-convolution). For any φ ∈ L2(Ω),

φ−DNφ = (I −A−1)N+1φ

= (−1)N+1δ2N+24N+1A−(N+1)φ,

i.e., for smooth φ, φ = DNφ + O(δ2N+2).

Proof. See Dunca and Epshteyn [9].
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Proposition 2.6. For φ smooth and N fixed,

‖φ‖2
N = ‖φ‖2 + O(δ2).

Proof. This is obvious from figure 1 because D̂N (k) and 1 have second order contact at k = 0.

There is a short (but not very insightful) proof using φ−φ = O(δ2) and φ−DNφ = O(δ2N+2) as

follows:

(φ, DNφ) = (φ, φ) + (φ, DNφ− φ) + (φ, DN (φ− φ)) = ‖φ‖2 + O(δ2N+2) + O(δ2).

3 Properties of the Approximate Deconvolution LES Models

The following proposition recalls from Dunca and Epstheyn [9] and [27], respectively, the energy

and helicity balances of the ADM (3).

Proposition 3.1 (Model energy and helicity balance). Consider the ADM (3). The unique

strong solution w of (3) satisfies

1
2
[‖w(t)‖2

N + δ2‖∇w(t)‖2
N ] +

∫ t

0
ν‖∇w(t′)‖2

N + νδ2‖4w(t′)‖2
N dt′ =

=
1
2
[‖w0‖2

N + δ2‖∇w0‖2
N ] +

∫ t

0
(f(t′),w(t′))N dt′. (11)

(w(t),∇×w(t))N + δ2(∇×w(t), (∇×)2w(t))N

+ 2ν

∫ t

0
(∇×w(t′), (∇×)2w(t′))N + δ2((∇×)2w(t′), (∇×)3w(t′))N dt′

= (w0,∇×w0)N + δ2(∇w0, (∇×)2w0)N +
∫ t

0
(f(t′),w(t′))N dt′ (12)

Proof. See Dunca and Epshteyn [9] for the energy equality and [27] for the helicity balance.

13



Remark 2. From this proposition, we can clearly identify the analogs in the ADM (3) of the

physical quantities of kinetic energy, energy dissipation rate, helicity, helicity dissipation rate, and

power input, given next.

Definition 3.2.

Emodel(t) :=
1

2L3
{||w(t)||2N + δ2||∇w(t)||2N} (13)

εmodel(t) :=
ν

L3
{||∇w(t)||2N + δ2||4w(t)||2N} (14)

Hmodel(t) :=
1
L3
{w(t),∇×w(t))N + δ2(∇×w(t), (∇×)2w(t))N} (15)

γmodel(t) :=
2ν

L3
{(∇×w(t), (∇×)2w(t))N + δ2((∇×)2w(t), (∇×)3w(t))N} (16)

Pmodel(t) :=
1
L3

(f(t),w(t))N (17)

Proposition 3.3. For smooth w,

Emodel(t) = E(t) + O(δ2), εmodel(t) = ε(t) + O(δ2),

Hmodel(t) = H(t) + O(δ2), γmodel(t) = γ(t) + O(δ2)

Pmodel(t) = P (t) + O(δ2).

Proof. This follows directly from the Definition 3.2, Proposition 2.6 and Lemma 2.5.

Remark 3. The energy dissipation in the model

ε model(t) :=
ν

L3
‖∇w(t)‖2

N +
ν

L3
δ2‖4w(t)‖2

N (18)

is enhanced by the extra term (which is equivalent to νδ2‖4w(t)‖2 ). This term acts as an irre-

versible energy drain localized at large local fluctuations. The kinetic energy of the model has an

extra term

E model(t) :=
1

2L3
[‖w(t)‖2

N + δ2‖∇w(t)‖2
N ] (19)

which is uniformly equivalent to δ2‖∇w(t)‖2.
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The true kinetic energy (E(t) := 1
2L3 ‖w(t)‖2) in regions of large deformations is thus extracted,

conserved and stored in the kinetic energy penalty term δ2‖∇w(t)‖2.

3.1 Spectral Representation of the Kinetic Energy

In order to represent the true kinetic energy and the model’s kinetic energy spectrally, we expand

the velocity field w(x, t) in Fourier series as follows:

w(x, t) =
∑

k

∑

|k|=k

ŵ(k, t)eik·x, (20)

where k ∈ Z3 is the wave number and

ŵ(k, t) =
1
L3

∫

Ω
w(x, t)e−ik·x dx

are the Fourier coefficients.

Using Parseval’s equality

1
2 L3

‖w(t)‖2 =
∑

k

∑

|k|=k

1
2
|ŵ(k, t)|2 .

The above formula is equivalent to writing

E(t) =
2π

L

∑

k

E(k, t),

where

E(k, t) :=
L

2π

∑

|k|=k

1
2
|ŵ(k, t)|2 .

Then, the time averaged kinetic energy is

E =< E(t) >, or E =
2π

L

∑

k

E(k),

where E(k) =< E(k, t) >.

The model’s kinetic energy (13) and energy dissipation rate (14) can also be decomposed in

Fourier modes.
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Proposition 3.4. In Fourier space, (13) corresponds to

Emodel(t) =
∑

k

D̂N (k) (1 + δ2k2)E(k, t), (21)

or equivalently,

Emodel(t) =
2π

L

∑

k

Emodel(k, t), (22)

where

Emodel(k, t) := D̂N (k) (1 + δ2k2)E(k, t). (23)

Proof. Using Parseval’s equality again, we get

1
2L3

‖w(t)‖N =
∑

k

∑

|k|=k

1
2
D̂N (k) |ŵ(k, t)|2 (24)

and

1
2L3

‖∇w(t)‖N =
∑

k

∑

|k|=k

1
2

k2 D̂N (k) |ŵ(k, t)|2 . (25)

Adding (24) and (25) proves the claim.

Lemma 3.5. In wave number space, we can rewrite (14), the model’s energy dissipation:

εmodel(t) = ν
2π

L

∑

k

D̂N (k) k2(1 + δ2k2)E(k, t). (26)

Using (23), equation (26) can be further simplified to

εmodel(t) = ν
2π

L

∑

k

k2Emodel(k, t). (27)

Proof. Start with equation (14) and proceed as in the proof of Proposition 3.4.

Next, we turn to the spectral representation of helicity.
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3.2 Helical Mode Decomposition

Definition 3.6. The helical modes h± are orthonormal eigenvectors of the curl operator, i.e.

ik× h± = ±kh±.

Since w is incompressible, k · ŵ(k, t) = 0 and we can write ŵ(k, t) = a+(k, t)h+ + a−(k, t)h−.

For the spectral decomposition of helicity, we follow Q. Chen, S. Chen and Eyink [6] and Waleffe [30]

and expand ŵ(k, t) in a basis of helical modes. Therefore, velocity and vorticity can be expanded

as

w(x, t) =
∑

k

∑

|k|=k

∑
s=±

as(k, t)hs(k)eik·x, (28)

∇×w(x, t) =
∑

k

∑

|k|=k

∑
s=±

s k as(k, t)hs(k)eik·x (29)

Similarly,

(∇×)nw(x, t) =
∑

k

∑

|k|=k

∑
s=±

snknas(k, t)hs(k)eik·x. (30)

Recall first the definition of helicity, equation (5), for the model’s velocity w. Expanding w in

helical modes, we get

H(t) =
2π

L

∑

k

H(k, t),

where

H(k, t) := s k
L

2π

∑

|k|=k

∑
s=±

|as(k, t)|2.

Proposition 3.7. The model’s helicity spectrum, Hmodel(k, t) is related to the true helicity spec-

trum, H(k, t), as

Hmodel(k, t) = D̂N (k)(1 + δ2k2)H(k, t). (31)

Proof. Using (28)-(30), we have

1
L3

(w(t),∇×w(t))N =
∑

k

∑

|k|=k

∑
s=±

sD̂N (k)k |a(k, t)|2
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and

1
L3

(∇×w(t), (∇×)2w(t))N =
∑

k

∑

|k|=k

∑
s=±

sD̂N (k)k3 |a(k, t)|2

so that

Hmodel(t) =
2π

L

∑

k

Hmodel(k, t) =
2π

L

∑

k

D̂N (k)(1 + δ2k2)H(k). (32)

Corollary 3.8. Hmodel(k, t) and H(k, t) satisfy Hmodel(k, t) ' (1 + δ2k2)H(k, t):

(1 + δ2k2)H(k, t) ≤ Hmodel(k, t) ≤ (N + 1)(1 + δ2k2)H(k, t). (33)

Proof. By Lemma 2.2, 1 ≤ D̂N (k) ≤ N + 1 is bounded.

Lemma 3.9. In wave number space, we can rewrite (16), the model’s helicity dissipation:

γmodel(t) = ν
∑

k

∑

|k|=k

∑
s=±

D̂N (k) sk3(1 + δ2k2) |as(k, t)|2 . (34)

Using (32), equation (34) can be further simplified to

γmodel(t) = ν
2π

L

∑

k

k2Hmodel(k, t). (35)

Proof. Use (28)-(30) to write (16) in helical modes.

4 Phenomenology of the Joint ADM Energy and Helicity Cascade

Since helicity plays a key role in organizing three dimensional flows, it is important to understand

the extent to which statistics of helicity predicted by an LES model are correct. We answer that

question in this section by extending the similarity theory of approximate deconvolution models

(begun in [20]) to elucidate the details of the model’s helicity cascade and its connection to the

model’s energy. Inspired by the earlier work on helicity cascades in the Navier-Stokes equations
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done by Brissaud, Frisch, Leorat, Lesieur and Mazure [12], Ditlevsen and Giuliani [10, 11], Q. Chen,

S. Chen and Eyink [6], we investigate the existence and details of the joint cascade of energy and

helicity for the family of ADM’s adapting a dynamic argument of Kraichnan, [16].

Let Πmodel(k) and Σmodel(k) denote the total energy and helicity transfer from all wave numbers

< k to all wave numbers > k.

Definition 4.1. We say that the model exhibits a joint cascade of energy and helicity if in some

inertial range, Πmodel(k) and Σmodel(k) are independent of the wave number, i.e., Πmodel(k) =

εmodel and Σmodel(k) = γmodel.

Following Kraichnan’s formulation of Kolmogorov’s ideas of localness of interaction in k space,

we assume the following.

Assumption 1. Πmodel(k) (Σmodel(k)) is proportional to the ratio of the total energy ∼ kEmodel(k)

( total helicity ∼ kHmodel(k)) available in wave numbers of order k and to some effective rate of

shear σ(k) which acts to distort flow structures of scale 1/k.

The distortion time τ(k) of flow structures of scale 1/k due to the shearing action σ(k) of all

wave numbers ≤ k is given by:

τ(k) ∼ 1
σ(k)

with σ(k)2 ∼
∫ k

0
p2Emodel(p)dp. (36)

The conjecture of joint linear cascades of energy and helicity is based on the idea (supported in

numerical experiments of Bourne and Orszag [5]) that since energy and helicity are both dissipated

by the same mechanism (of viscosity), they relax over comparable time scales.

Assumption 2. τ(k) and σ(k) are the same for energy and helicity of the model.

We therefore write

Πmodel(k) ∼ kEmodel(k)/τ(k) and Σmodel(k) ∼ kHmodel(k)/τ(k). (37)
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In the definition of mean-square shear (36) the major contribution is from p ∼ k, in accord with

Kolmogorov’s localness assumption. This gives

τ(k) ∼ k−3/2E
−1/2
model(k). (38)

Putting (37) and (38) together with the fact that Σmodel(k) = γmodel, it follows that the ADM

model helicity spectrum is given by:

Hmodel(k) ∼ γmodelk
−5/2E

−1/2
model(k)

i.e.,

Hmodel(k) ∼ γmodelε
−1/3
modelk

−5/3. (39)

Using relation (33), we write

H(k) ∼ γmodelε
−1/3
modelk

−5/3

1 + δ2k2
,

which shows that the true helicity spectrum is cut by this family of models as

H(k) ∼ γmodelε
−1/3
modelk

−5/3, for k ≤ 1
δ
, (40)

H(k) ∼ γmodelε
−1/3
modelδ

−2k−11/3 , for k ≥ 1
δ

. (41)

The above result is depicted in Figure 2.

The energy spectrum Emodel(k) follows analogously [20]:

Emodel(k) ∼ ε
2/3
modelk

−5/3. (42)

Further,

E(k) ∼ ε
2/3
modelk

−5/3, for k ≤ 1
δ
, (43)

E(k) ∼ ε
2/3
modelδ

−2k−11/3 , for k ≥ 1
δ

. (44)

Thus, down to the cutoff length scale (or up to the cutoff wave number) the ADM predicts the

correct energy and helicity cascades.
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Figure 2: The helicity spectrum of Approximate Deconvolution Models

5 Model’s Helicity Microscale and Consistency of the Cascade

On a small enough scale, viscosity grinds down all the flow’s organized structures (including helicity)

and ends all cascades (including the helicity cascade). The length scale, ηH , at which helical

structures do not persist and begin to decay exponentially fast is called the helicity microscale (in

analogy with the Kolmogorov microscale for kinetic energy). The correct estimate of the helicity

microscale for the NSE is unclear: two estimates with strong arguments in favor of each appear in

the literature. The microscale has been estimated for isotropic turbulence by Ditlevsen and Giuliani

in [10] to be different (larger) from the Kolmogorov scale ηKolmogorov: ηH ∼ ν−3/7γ3/7ε−2/7 based

on the decomposition of helicity flux in ± helical modes. On the other hand, Q. Chen, S. Chen

and Eyink in [6] show that the net helicity flux is constant up to ηKolmogorov(= k−1
E ), so there is no

shorter inertial range for helicity cascade.

In this section, we find that the same occurs when one computes the model’s helicity mi-

croscale. Based on the equilibrium of the helicity flux, we derive a model’s helicity microscale,
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ηH
model, whereas we show that the model’s helicity cascade derived in Section 4 is consistent up to

kEmodel
(= (ηE

model)
−1), in the sense introduced by Q. Chen, S. Chen and Eyink in [6]. These two

results do not contradict each other.

5.1 Model’s helicity microscale

Using ideas in [20] from the derivation of the energy microscale, ηE
model, we estimate the ADM’s

helicity microscale to be:

ηH
model ∼ Re−3/11δ6/11L5/11, if δ < ηH

model

ηH
model ∼ Re−3/5L, if δ > ηH

model

Let the reference velocity and length scale for the large scales be U,L, and wsmall, η
H
model, for

the small scales. From [20] the analog of the small scales and large scales Reynolds number of the

model. Recall that these are given by

Relarge ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
large scales

, Resmall ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
small scales

.

Definition 5.1.

Remodel−Large =
UL

ν(1 + ( δ
L)2)

and Remodel−Small =
wsmallη

H
model

ν(1 + ( δ
ηH

model

)2)
(45)

The ADM’s energy and helicity cascade are halted by viscosity grinding down eddies exponen-

tially fast. This occurs when Remodel−Small ∼ O(1), that is, when

wsmallη
H
model

ν(1 + ( δ
ηH

model

)2)
∼ 1. (46)

Equation (46) determines wsmall

wsmall ∼
ν(1 + ( δ

ηH
model

)2)

ηH
model

. (47)

The next important equation to determine the helicity microscale comes from statistical equilibrium

of the helicity flux: the helicity input at the large scales must match helicity dissipation at the
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microscale. The rate of helicity input to the largest scales is the total helicity over the associated

time scales
Hmodel

( L
U )

=
U2

L (1 + ( δ
L)2)

( L
U )

=
U3

L2

(
1 +

(
δ

L

)2
)

. (48)

Helicity dissipation at the model’s microscale scales as

γsmall ∼ ν

(
w2

small

(ηH
model)

3

(
1 +

(
δ

ηH
model

)2
))

.

This must match the helicity input. There are three cases with the third being the only important

one: δ = O(ηKolmogorov), δ = O(L) and the typical case of δ in the inertial range: ηKolmogorov <<

δ << L. If δ ∼ O(ηKolmogorov), then the simulation reduces to a direct numerical simulation of the

NSE. If δ ∼ O(L), then we do not have LES, but VLES (Very Large Eddy Simulation). In the case

of VLES, results follow similarly to those below, but are omitted here.

In the case δ = O(ηKolmogorov), we have

(1 +
(

δ

L

)2

) ∼ 1 and (1 +
(

δ

ηN
model

)2

) ∼ 1.

Thus, at statistical equilibrium,

U3

L2
∼ ν

w2
small

(ηH
model)

3
.

Since wsmall simplifies to ν/ηH
model, we get

ηH
model ∼ Re−3/5L.

In the most important case,

ηH
model << δ << L

we have

(1 +
(

δ

L

)2

) ∼ 1 and (1 +
(

δ

ηH
model

)2

) ∼
(

δ

ηH
model

)2

.

Matching helicity microscale dissipation to large scale input thus simplifies in this case to

U3

L2
∼ ν

w2
smallδ

2

(ηH
model)

3(ηH
model)

2
. (49)
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Further, when ηKolmogorov << δ << L, the small scale velocity in (47) reduces to

wsmall ∼ νδ2

(ηH
model)

3
. (50)

Substituting (50) into (49) gives
U3

L2
∼ ν3δ6

(ηH
model)

11
. (51)

Solving (51) for ηH
model, and using Re = LU/ν gives the model’s helicity microscale,

ηH
model ∼ Re−3/11δ6/11L5/11. (52)

The ADM helicity microscale is slightly larger than the ADM energy microscale (found in [20]):

ηE
model ∼ Re−3/10L4/10δ6/10. Hence, capturing wave numbers up to the highest energetic wave

number will also capture all wave numbers containing significant helicity.

5.2 Consistency of the ADM joint cascade

The model’s energy and helicity dissipation rates are given by equations (27) and (35) above, which

are equivalent to

εmodel(t) = ν

∫ ∞

0
k2Emodel(k, t)dk. (53)

and

γmodel(t) = ν

∫ ∞

0
k2Hmodel(k, t)dk. (54)

Lemma 5.2. The wavenumber of the energy microscale of the ADM model (3) is given by

kEmodel
∼ ν−3/4ε

1/4
model.

Proof. Based on (53), the mean (time-averaged) energy dissipation equals to

< εmodel(t) >= ν

∫ kEmodel

0
k2Emodel(k)dk,
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where the upper limit of the integral is kEmodel
, the wave number of the smallest persistent scales

in the model’s solution. Using also (42) we derive the estimate for kEmodel
in the usual way as kE

was derived for NSE.

< εmodel(t) >∼ νk3
Emodel

Emodel(kEmodel
) ∼ νk3

Emodel
(ε2/3

modelk
−5/3
Emodel

) ∼ εmodel.

Solving for kEmodel
gives the result.

Since we have < γmodel(t) >= γmodel and the RHS can be calculated by spectral integration

through the inertial range, checking this equality is a way to test if the estimate derived for the

end of the inertial range is correct (or consistent).

Lemma 5.3. Provided the largest wave number containing helicity is no larger than kEmodel:

< γmodel(t) >= γmodel.

Proof. Substituting the helicity cascade result (39) and evaluating the integral (54) up to kEmodel

gives

< γmodel(t) > ∼ νγmodelε
−1/3
model(k

4/3
Emodel)

∼ νγmodelε
−1/3
modelν

−1ε
1/3
model

∼ γmodel

Remark 5.4. We want to stress out that < γmodel(t) >= γmodel only if we integrate up to kEmodel
,

i.e. only if the end of the inertial range for helicity is the same as the end of the inertial range of

energy.

6 Conclusions

A joint energy and helicity cascade has been shown to exist for homogeneous, isotropic turbulence

generated by approximate deconvolution models. The energy and helicity both cascade at the
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correct O(k−5/3) rate for inertial range wave numbers up to the cutoff wave number of O(1
δ ), and at

O(k−11/3) afterward until the model’s energy and helicity microscale. This establishes consistency

of the model’s helicity and energy cascades with the true cascades of the true, underlying turbulent

flow.

Furthermore, a microscale for helicity dissipation has been identified for flows predicted by

ADMs. As expected, it is larger than the Kolmogorov scale (i.e. the ADM truncates scales) and

the microscale for energy dissipation in the ADM (i.e. capturing all scales containing energy will

also capture all scales containing helicity).

6.1 Other Filters

With the differential filter (7), scales begin to be truncated by the model at the lengthscale l = O(δ)

by an enhanced decay of the energy and helicity cascade of k−11/3. Examining the derivation, the

exponent −11/3 (= −5/3 + (−2)) occurs because the filter decays as k−2. With a fourth order

differential filter, these results would be modified to k−14/3 (−14/3 = −5/3 + (−4)) between the

cutoff wavenumber and the microscale. Continuing, it is clear that with the Gaussian filter (which

decay exponentially after kC = 1/δ), exponential decay begins at kC = 1/δ. In other words, with

the Gaussian filter, kC = 1/δ = 1/ηH
model = 1/ηE

model.
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