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Abstract. We apply the phenomenology of homogeneous, isotropic turbulence to the family
of approximate deconvolution models proposed by Stolz and Adams. In particular, we establish
that the models themselves have an energy cascade with two asymptotically di¤erent inertial ranges.
Delineation of these gives insight into the resolution requirements of using approximate deconvolution
models. The approximate deconvolution model�s energy balance contains both an enhanced energy
dissipation and a modi�cation to the model�s kinetic energy. The modi�cation of the model�s kinetic
energy induces a secondary energy cascade which accelerates scale truncation. The enhanced energy
dissipation completes the scale truncation by reducing the model�s micro-scale from the Kolmogorov
micro-scale.
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1. Introduction. Turbulent �ows consist of complex, interacting three dimen-
sional eddies of various sizes. In 1941 Kolmogorov gave a remarkable, universal de-
scription of the eddies in turbulent �ow by combining a judicious mix of physical
insight, conjecture, mathematical and dimensional analysis. In his description, the
largest eddies are deterministic in nature. Those below a critical size are dominated
by viscous forces, and die very quickly due to these forces. This critical length, the
Kolmogorov microscale, is � = O(Re�3=4) in 3d, so the persistent eddies in a 3d �ow
requires taking

�x = �y = �z = O(Re�3=4)

giving O(Re+9=4) mesh points in space per time step. Therefore, direct numerical
simulation of turbulent �ows (down to the Kolmogorov microscale) is often not com-
putationally economical or even feasible. On the other hand, the largest structures in
the �ow (containing most of the �ow�s energy) are responsible for much of the mixing
and most of the �ow�s momentum transport. Thus, various turbulence models are
used for simulations seeking to predict a �ow�s large structures.

One promising approach to the simulation of turbulent �ows is called Large Eddy
Simulation or LES. In LES the evolution of local, spatial averages over length scales
l � � is sought where � is user selected. The selection of this averaging radius �
is determined typically by three factors: computational resources i.e. � must be
related to the �nest computationally feasible mesh, turnaround time needed for the
calculation, and estimates of the scales of the persistent eddies needed to be resolved
for an accurate simulation. On the face of it, LES seems feasible since the large
eddies are believed to be deterministic. The small eddies (accepting Kolmogorov�s
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description) have a universal structure so, in principle, their mean e¤ects on the large
eddies should be model-able. The crudest estimate of cost is

�x = �y = �z = O(�);

with thus O(��3) storage required in space per time step. On the other hand, it is
entirely possible that the computational mesh must be smaller than O(�) to predict
the O(�) structures correctly. It is also entirely possible that, since LES models
are themselves inexact and uncertain, solutions to an LES model contain persistent
energetic structures smaller than O(�) . Even with an accurate closure model (in
the sense of consistency error or residual stress), the resulting LES model must be
solved to �nd the LES velocity. The nonlinear interactions and the sensitivity to
perturbations of the LES model might also introduce unintended and persistent small
scales.

To begin, consider the Navier-Stokes equations in a periodic box in R3:

ut + u � ru� �4u+rp = f in 
 = (0; L)3; t > 0; (1.1)

r � u = 0 in (0; L)3;

subject to periodic (with zero mean) conditions

u(x+ Lej ; t) = u(x; t) j = 1; 2; 3 and; (1.2)Z



�dx = 0 for � = u; u0; f; p:

LES computes an approximation to local spatial averages of solutions to (1.1)-(1.2).
Many averaging operators are used in LES. Herein we choose a di¤erential �lter, [11],
associated with a length-scale � > 0. (The case of other �lters is summarized in
section 5.1.) Given �(x), �(x) is the unique L-periodic solution of

A� := ��24�+ � = � ; in 
:

Averaging the NSE (meaning: applying A�1 to (1.1)) gives the exact space �ltered
NSE for u

ut + u � ru� �4u+rp = f and
r � u = 0:

This is not closed since (noting that u � ru = r � (uu) )

uu 6= u u:

There are many closure models used in LES, see [24], [13], [4] for a surveys. Ap-
proximate de-convolution models, studied herein, are used, with success, in many
simulations of turbulent �ows, e.g., [1], [2], [25]. They are among the most accurate
of turbulence models, [6], [18] and one of the few for which a mathematical con�rma-
tion of their e¤ectiveness is known. Brie�y, an approximate deconvolution operator
(constructed in section 2) denoted by DN is an operator satisfying

� = DN (�) +O(�
2N+2) for smooth �:

Since DNu approximates u to accuracy O(�
2N+2) in the smooth �ow regions it is

justi�ed to consider the closure approximation:

uu ' DNuDNu+O(�2N+2): (1.3)
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Using this closure approximation results in an LES model whose solutions are intended
to approximate the true �ow averages, w � u; q � p. The resulting models, introduced
by Adams and Stolz [1], [2], [25], are given by

wt+r�(DNw DNw)��4w+rq+� (w�w) = f , and r�w = 0, N = 0; 1; 2; ���: (1.4)

The time relaxation term � (w � w) is included in numerical simulations of (1.4) to
damp strongly the temporal growth of the �uctuating component of w driven by
noise, numerical errors, inexact boundary conditions and so on. It can be used as a
numerical regularization in any model and is studied in [2] [19], [23]. In this report
we study the parameters-free deconvolution model that results by setting � = 0.

This report investigates the following questions for the family of approximate
deconvolution model (1.4): What is the length scale of the smallest persistent eddy in
the model�s solution? (This length scale corresponds to the Kolmogorov dissipation
length scale for a turbulent �ow.) Do solutions of the LES model exhibit an energy
cascade and, if so, what are its details? How does the model act to truncate the
small eddies? Inspired by Muschinsky�s study of the Smagorinsky model [20], the
answers to these questions will come from two simple but powerful tools: a precise
energy balance for the models themselves in [15], [16], [18], and [6]1 and Kolmogorov�s
similarity theory2 , e.g., [4], [9], [22], [17], [24], suitably adapted.

1.1. Summary of results. By adapting the reasoning of Richardson and Kol-
mogorov, we establish the model�s energy cascade. The micro-scale of the model (the
length-scale of the smallest persistent structure in the model�s solution) is shown to
be

�model ' Re�
3
10L

2
5 �

3
5 :

This depends upon the �lter chosen (see section 5.1). For the second order di¤erential
�lter (the case above), it is typically smaller than the desired cuto¤ length-scale of
O(�). In fact it is easy to calculate that � = �model , � ' Re�3=4 and the �ow is fully
resolved. Thus the behavior of the model in the intermediate range � � l � �model
is critical. By examining the details of the energy cascade of the model, we see a
second mechanism for fast but not exponential truncation of the number of scales of
the model�s solution. Over the wave numbers corresponding to the resolved scales,
0 � k � 1

� , i.e. over length scales: L � l � � we see that the model correctly predicts
an energy spectrum of the form � model"

2=3
modelk

�5=3. Above the cuto¤ frequency and
down to the model�s micro-scale, the kinetic energy in the model�s solution drops
algebraically almost like k�4 according to � model"

2=3
model�

�2k�11=3: The model thus
algebraically truncates the e¤ective scales present. The derivation of these results
involves the classical dimensional analysis arguments of Kolmogorov coupled with
precise mathematical knowledge of the model�s kinetic energy balance.

2. Approximate deconvolution models of turbulence.

2.1. The van Cittert Algorithm. The basic problem in approximate de-
convolution is: given u �nd useful approximations DN (�u) of u that lead to accurate

1To keep this report as self-contained as posible, we have included the key ideas in the proofs of
the results used from these papers.

2See also the supplement to this report at www.math.pitt.edu/techreports.html.
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and stable LES models. In other words, solve the equation below for an approximation
which is appropriate for the application at hand

A�1u = u; solve for u:

The de-convolution algorithm we consider was studied by van Cittert in 1931 and its
use in LES pioneered by Stolz and Adams [1], [25]. For each N = 0; 1; ::: it computes
an approximate solution uN to the above de-convolution equation by N steps of a
�xed point iteration, [3], for the �xed point problem:

given u solve u = u+ fu�A�1ug for u:

The de-convolution approximation is then computed as follows.
Algorithm 2.1 (van Cittert approximate de-convolution algorithm). u0 = u ,
for n=1,2,...,N-1, perform
un+1 = un + fu�A�1ung
Call uN = DNu .
By eliminating the intermediate steps, it is easy to �nd an explicit formula for

the N th de-convolution operator DN :

DN� :=

NX
n=0

(I �A�1)n�: (2.1)

For example, the approximate de-convolution operator corresponding to N = 0; 1; 2
are:

D0u = u;

D1u = 2u� u;
D2u = 3u� 3u+ u:

We begin by reviewing a result of Stolz, Adams and Kleiser [26] and Dunca and
Epshteyn [6].

Lemma 2.1. [Error in approximate de-convolution] For any � 2 L2(
);

��DN� = (I �A�1)N+1�
= (�1)N+1�2N+24N+1A�(N+1)�:

Proof. Let B = I�A�1: Since � = A�1�; � = (I�B)� . Since DN :=
PN

n=0B
n;

a geometric series calculation gives

(I �B)DN� = (I �BN+1)�:

Subtraction gives

��DN� = ABN+1� = BN+1A� = BN+1�:

Finally, B = I �A�1; so rearranging terms gives the claimed result:

��DN� = (A� I)N+1A�(N+1)�
= A�(N+1)((�1)N+1�2N+24N+1)�:
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The simplest example of an approximate deconvolution model (1.4) arises when
N = 0 and � = 0. This zeroth order model also arises as the zeroth order model in
many di¤erent families of LES models and has been studied carefully in [15], [16], and
[21].

wt +r � (w w)� �4w +rq = f; and r � w = 0: (2.2)

To see the mathematical key to the energy cascade that follows we �rst recall from
[15] the energy equality for (2.2).

Proposition 2.2. Let u0 2 L20(
); f 2 L2(
� (0; T )). If w is a weak or strong
solution of (2.2), w satis�es

1

2
kw(t)k2 + �

2

2
krw(t)k2 +

Z t

0

� krw(t0)k2 + ��2 k4w(t0)k2 dt0 =

=
1

2
ku0k2 +

�2

2
kru0k2 +

Z t

0

(f(t0); w(t0))dt0: (2.3)

Proof. For strong solutions, multiplying (2.2) by Aw := (��24 + 1)w and inte-
grating over the �ow domain givesZ




wt �Aw +r � (w w) �Aw � �4w �Aw +rq �Awdx =
Z



f �Awdx:

The nonlinear term exactly vanishes becauseZ



r � (w w) �Awdx =
Z



A�1(r � (w w)) �Awdx =

=

Z



r � (w w) � wdx = 0:

Integrating by parts the remaining terms gives

d

dt

1

2
fjjw(t)jj2 + �2jjrw(t)jj2g+ �fjjrw(t)jj2 + �2jj4w(t)jj2g =

Z



f(t) � w(t)dx:

The results follows by integrating this from 0 to t. For weak solutions a more precise
version of this argument, [15], is used.

Definition 2.3. The deconvolution weighted inner product and norm, (�; �)N and
jj � jjN are

(u; v)N := (u;DNv) ; jjujjN := (u; u)
1
2

N

Lemma 2.4. Consider the approximate deconvolution operator DN as de�ned
above. Then

jj�jj2 � jj�jjN � (N + 1)jj�jj2; 8� 2 L2(
) :
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Proof. By the spectral mapping theorem we have

�(DN ) =
NX
n=0

�(I �A�1)n =
NX
n=0

(1� �(A�1))n, and

0 < �(A�1) � 1 by the de�nition of operator A:

Thus, 1 � �(DN ) � N + 1: Since �(DN ) is a self-adjoint operator, this proves the
above equivalence of norms.

Definition 2.5. Given two quantities A and B (such as Emodel, "model) we shall
write A � B if there are positive constants C1(N); C2(N) with

C1(N)A � B � C2(N)A

Proposition 2.6. Suppose � = 0 in the ADM (1.4). Then, if w is a strong
solution of (1.4), w satis�es

1

2
[jjw(t)jj2N + �2jjrw(t)jj2N ] +

Z t

0

�jjrw(t0)jj2N + ��2jj4w(t0)jj2Ndt0 =

=
1

2
[jju0(t)jj2N + �2jjru0(t)jj2N ] +

Z t

0

(f(t0) ; w(t0))N dt
0:

Proof. Let (w; q) denote a periodic solution of the Nth order model with � = 0.
Multiplying (1.4) by ADNw and integrating over the �ow domain givesZ




wt �ADNw +r � (DNw DNw) �ADNw � �4w �ADNw +rq �ADNwdx =

=

Z



f �ADNwdx:

The nonlinear term exactly vanishes exactly as in the zeroth order case becauseZ



r � (DNw DNw) �ADNwdx =
Z



A�1(r � (DNw DNw)) �ADNwdx =

=

Z



r � (DNw DNw) �DNwdx = 0:

Integrating by parts the remaining terms gives

d

dt

1

2
fjjw(t)jj2N + �2jjrw(t)jj2Ng+ �fjjrw(t)jj2N + �2jj4w(t)jj2Ng = (f(t) � w(t))N :

The results follows by integrating this from 0 to t.
Remark 2.1. We can clearly identify three physical quantities of kinetic energy,

energy dissipation rate and power input. Let L =the selected length-scale; then these
are given by

Model�s energy: Emodel(w)(t) :=
1

2L3
fjjw(t)jj2N + �2jjrw(t)jj2Ng; (2.4)

Model�s dissipation rate: "model(w)(t) :=
�

L3
fjjrw(t)jj2N + �2jj4w(t)jj2Ng; (2.5)

Model�s power input: Pmodel(w)(t) :=
1

L3
(f(t); w(t))N : (2.6)
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Remark 2.2. The ADM thus has two terms which re�ect extraction of energy
from resolved scales. The energy dissipation in the model (2.5) is enhanced by the
extra term which is equivalent to ��2 k4w(t)k2 (by Lemma 2.4). Thus, this term
dissipates energy locally where large curvatures in the velocity w occur, rather than
large gradients. This term thus acts as an irreversible energy drain localized at large
local �uctuations. The second term, which is uniformly equivalent to �2 krw(t)k2 ;
(by Lemma 2.4) occurs in the models kinetic energy given by (2.4). The true kinetic
energy ( 12 kw(t)k

2) in regions of large deformations is thus extracted, conserved and
stored in the kinetic energy penalty term �2 krw(t)k2. Thus, this reversible term acts
as a kinetic "Energy sponge". Both terms have to an obvious regularizing e¤ect.

Lemma 2.7. As � ! 0,

Emodel(w)(t)! E(w)(t) =
1

2L3
jjw(t)jj2;

"model(w)(t)! "(w)(t) =
�

2L3
jjrw(t)jj2; and

Pmodel(w)(t)! P (w)(t) =
1

L3
(f(t); w(t)):

Proof. As � ! 0 all the �2 terms drop out in the de�nitions above, DN ! I and
jj�jjN ! jj�jj.

3. Energy Cascades of Approximate Deconvolution Models. If we apply
A to the model (1.4) (with � = 0) it becomes:

@

@t

�
w � �24w

�
+DN (w) � rDN (w)� �

�
4w � �242w

�
+rP = f ; in 
� (0; T ):

Since DN is spectrally equivalent to the identity (uniformly in k, �, nonuniformly in
N) the nonlinear interaction DN (w) � rDN (w) (like those in the NSE) will pump
energy from large scales to small scales. The viscous terms in the above equation
will damp energy at the small scales (more strongly than in the NSE in fact). Lastly,
when � = 0, f � 0 the model�s kinetic energy is exactly conserved (Remark 2.1 and
Proposition 2.6)

Emodel(w)(t) = Emodel(u0):

Thus, (1.4) satis�es all the requirements for the existence of a Richardson - like energy
cascade for Emodel. We thus proceed to develop a similarity theory for ADM�s (par-
alleling the K-41 theory of turbulence) using the �-theorem of dimensional analysis,
recalled next. We stress that the �-theorem is a rigorous mathematical theorem. The
only phenomenology or physical intuition involved is the selection of variables and
assumptions of dimensional homogeneity.

Theorem 3.1 (The �-theorem). If it is known that a physical process is governed
by a dimensionally homogeneous relation involving n dimensional parameters, such as

x1 = f(x2; x3; :::xn); (3.1)

where the x�s are dimensional variables, there exists an equivalent relation involving
a smaller number, (n� k), of dimensionless parameters, such that

�1 = F (�2;�3; :::;�n�k); (3.2)
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where the ��s are dimensionless groups constructed from the x�s. The reduction, k, is
usually equal, but never more than, the number of fundamental dimensions involved
in the x�s.

Proof. The proof can be found in [5].
Let < � > denote long time averaging

< � > (x) := lim sup
T!1

1

T

Z T

0

�(x; t)dt: (3.3)

To de�ne the kinetic energy distribution recall that the total kinetic energy in a
velocity w (assuming unit density) at time t is, E(w)(t) :=

R


1
2 jw(x; t)j

2dx. Thus,
the time averaged kinetic energy distribution in physical space (at the point x in
space) is given by E(x) :=< 1

2 jw(x; t)j
2 > : We will similarly de�ne a distribution in

wave number space. Expand the velocity w in a Fourier series

w(x; t) =
X
k

bw(k; t)e�ik�x; where k = 2�n

L
is the wave number and n 2 Z3.

The Fourier coe¢ cients are given by

bw(k; t) = 1

L3

Z



w(x; t)e�ik�xdx:

The magnitude of k;n are de�ned by

jnj = fjn1j2 + jn2j2 + jn3j2g1=2; jkj =
2�jnj
L

:

jnj1 = maxfjn1j; jn2j; jn3jg; jkj1 =
2�jnj
L

:

The length-scale of the wave number k is de�ned by l = 2�
jkj1 : In studies of the periodic

problem the wave-number vector k = (k1; k2; k3) is often called a triad. Begin by
recalling Parseval�s equality.

Lemma 3.2 (Parseval�s equality). For w 2 L2(
) ,

1

L3

Z



1

2
jw(x; t)j2dx =

X
k

1

2
j bw(k; t)j2 =

=
X
k

0@X
jkj=k

1

2
j bw(k; t)j2

1A ;where k = 2�n

L
is the wave number and n 2 Z3.

Definition 3.3. The kinetic energy distribution functions are de�ned by

E(k; t) =
L

2�

X
jkj=k

1

2
j bw(k; t)j2; Emodel(k; t) =

L

2�

X
jkj=k

1

2

�dDN (k) + �2k2dDN (k)� j bw(k; t)j2
E(k) = < E(k; t) >; Emodel(k) =< Emodel(k; t) >
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Parseval�s equality thus can be rewritten as

1

L3

Z



1

2
jw(x; t)j2dx = 2�

L

X
k

E(k; t); and

<
1

L3

Z



1

2
jw(x; t)j2dx >= 2�

L

X
k

E(k):

The units of a variable will be denoted by [�]. Thus, for example, [velocity] = L=T .
We start the dimensional analysis for the approximate deconvolution model following
Kolmogorov�s analysis of the NSE by selecting the variables:

� Emodel - energy spectrum of model with [Emodel(k)] = [L]3[T ]�2 ,
� "model - time averaged energy dissipation rate of the model�s solution with
["model(k)] = [L]

2[T ]�3 ,
� k - wave number with [k] = [L]�1 and
� � - averaging radius with [�] = [L] .

Choosing the set of fundamental or primary dimensions M, L and T, we then
work with to 2 dimensionless ratios, �1 and �2 . Choosing " and k for the repeating
variables (note that " and k cannot form a dimensionless group) we obtain �1 =
"amodelk

bE model and �2 = "cmodelk
d� for some a; b; c; d real numbers. Equating the

exponents of the corresponding dimensions in both dimensionless groups gives us:

�1 = "
�2=3
modelk

5=3E model and �2 = k�

The �-theorem implies that there is a functional relationship between �1 and �2 ,
i.e., �1 = f(�2) , or

E model"
�2=3
modelk

5=3 = f(k�) or E model = "
2=3
modelk

�5=3f(k�):

The simplest case3 is when f(�2) = � model . In this case we have

Emodel(k) = � model"
2=3
modelk

�5=3:

It is not surprising that, since the ADM is dimensionally consistent with the
Navier-Stokes equations, dimensional analysis would reveal a similar energy cascade
for the model�s kinetic energy. However, interesting conclusions result from the dif-
ference between E(w) and Emodel(w).

E model(w) := <
1

2L3
(jjwjj2N + �2jjrwjj2N ) >

� < 1

2L3
[jjwjj2 + �2jjrwjj2] > by Lemma (2.4)

'
X
k

(1 + �2 k2)E(k) using Parceval�s equality:

Further, since E model(k) ' �model"2=3modelk
�5=3 we have:

E(k) ' � model"
2=3
modelk

�5=3

1 + �2k2
: (3.4)

3We shall show in subsection (3.1) that this case is implied by Kraichnan�s dynamic argument.
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Fig. 3.1. Kinetic Energy Spectrum of the Model

Equation (3.4) gives precise information about how small scales are truncated by the
ADM. Indeed, there are two wave number regions depending on which term in the
denominator is dominant: 1 or �2k2. The transition point is the cuto¤ wave number
k = 1

� . We thus have:

E(k) ' � model"
2=3
modelk

�5=3; for k � 1

�
,

E(k) ' � model"
2=3
model�

�2k�11=3; for k � 1

�
.

This asymptotic behavior is depicted in the �gure.

3.1. Kraichnan�s Dynamic Analysis Applied to ADM�s. The energy cas-
cade will now be investigated more closely using the dynamical argument of Kraich-
nan, [14]. Let �model(k) be de�ned as the total rate of energy transfer from all wave
numbers < k to all wave numbers > k. Following the Kraichnan [14] we assume that
�model(k) is proportional to the total energy ( kEmodel(k) ) in wave numbers of the
order k and to some e¤ective rate of shear �(k) which acts to distort �ow structures
of scale 1=k. That is:

�model(k) ' �(k) k Emodel(k) (3.5)

Furthermore, we expect

�(k)2 '
Z k

0

p2Emodel(p)dp (3.6)
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The major contribution to (3.6) is from p ' k, in accord with Kolmogorov�s localness
assumption. This is because all wave numbers � k should contribute to the e¤ective
mean-square shear acting on wave numbers of order k, while the e¤ects of all wave
numbers � k can plausibly be expected to average out over the scales of order 1=k
and over times the order of the characteristic distortion time �(k)�1.

We shall say that there is an energy cascade if in some "inertial" range, �model(k)
is independent of the wave number, i.e., �model(k) = "model. Using the equations (3.5)
and (3.6) we get:

Emodel(k) ' "2=3modelk
�5=3

Then, using the relation E model(k) ' (1 + �2k2)E(k) we have:

E(k) ' "2=3modelk
�5=3; for k � 1

�
,

E(k) ' "2=3model�
�2k�11=3 , for k � 1

�
.

This is consistent with our previous derived result using dimensional analysis.

3.2. The micro-scale of approximate deconvolution models. The model�s
Reynolds numbers with respect to the model�s largest and smallest scales are

Large scales: Remodel�large =
UL

�(1 + ( �L )
2)

Small scales: Remodel�small =
wsmall�model
�(1 + ( �

�model
)2)
:

As in the Navier-Stokes equations, the ADM�s energy cascade is halted by viscosity
grinding down eddies exponentially fast when

Remodel�small ' O(1), i.e., when
wsmall�model
�(1 + ( �

�model
)2)

' 1:

This last equation allows us to determine the characteristic velocity of the model�s
smallest persistent eddies wsmall and eliminate it from subsequent equations. This
gives

wsmall ' �(1 + (
�

�model
)2)=�model:

The second important equation determining the model�s micro-scale comes from
matching energy in to energy out. The rate of energy input to the largest scales is
the energy over the associated time scale

Emodel

(LU )
=
U2(1 + ( �L )

2)

(LU )
=
U3

L
(1 + (

�

L
)2):

When the model reaches statistical equilibrium, the energy input to the largest scales
must match the energy dissipation at the model�s micro-scale which scales like "small '
�(jrwsmallj2 + �2j4wsmallj2) ' �(wsmall

�model
)2(1 + ( �

�model
)2). Thus we have

U3

L
(1 + (

�

L
)2) ' �(wsmall

�model
)2(1 + (

�

�model
)2):
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Inserting the above formula for the micro-eddies characteristic velocity wsmall gives

U3

L
(1 + (

�

L
)2) ' �3

�4model
(1 + (

�

�model
)2)3:

First note that the expected case in LES is when ( �L )
2 << 1 (otherwise the procedure

should be considered a VLES4). In this case the LHS simpli�es to just U3

L . Next,
with this simpli�cation, the solution to this equation depends on which term in the
numerator of the RHS is dominant: 1 or ( �

�model
)2: The former case occurs when the

averaging radius � is so small that the model is very close to the NSE so the latter is
the expected case. In this case we have �model ' Re�

3
4L , when � < �model: In the

expected case, solving for the micro-scale gives

�model ' Re�
3
10L

2
5 �

3
5 , when � > �model:

4. Design of an Experimental Test of the Model�s Energy Cascade. The
main open question not resolved in the similarity theory pertains to the unknown,
non-dimensional function f(�2). The principle of economy of explanation suggests
that f(�2) is constant, and this is supported, strongly by Kraichnan�s dynamic theory
of turbulence, subsection (3.1). This question can be resolved by numerical experi-
ments on the model itself (not on the Navier-Stokes equations) establishing the curve
between the � �s. Having this curve we can get complete quantitative information.
Suppose that the Emodel is desired for conditions ka and �a. The dimensionless group
(�2)a can be immediately evaluated as ka�a. Corresponding to this value of (�2)a ,
the value of (�1)a is read o¤ the plot. (Emodel)a is then computed.

5. Conclusions and open problems. The basic Approximate Deconvolution
Model possesses an energy cascade that truncates the true energy spectrum in two
ways. First, there is an enhanced viscosity acting in the model. This enhanced
viscosity does not dissipate energy for laminar shear �ows and its amount is related
to the local curvature of the velocity �eld. Further, it disappears when � = 0 .
The action of this enhanced viscosity is to trigger exponential decay of eddies at the
model�s micro-scale of

�model ' Re�
3
10L

2
5

�
3
5

(1 + ( �L )
2)

1
10

(>> �NSE):

The second way the ADM truncates the scales of motion is through an energy sponge
in the model�s kinetic energy. The extra term triggers an accelerated energy decay of
O(k�

11
3 ) at the cuto¤ length scale. Above the cuto¤ length scale the ADM predicts

the correct energy cascade!
This analysis presupposes two things. First, the relaxation term in the original

model is zero. Its e¤ects were studied separately in [19] where a similarity theory
was developed for the model: Navier-Stokes + time relaxation term. It was showed
that the action of this relaxation term is to induce a micro-scale, analogous to the
Kolmogorov micro-scale in turbulence, and to trigger decay of eddies at the model�s
micro-scale. Based on this, the intent of adding the time relaxation term is clearly to
further truncate the energy cascade of deconvolution models. The result of combining
ADM and time relaxation is currently under study.

4Very Large Eddy Simulation. The estimates of the micro-scale are easily extended to this case
too.
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5.1. Other Filters. Tracking the e¤ects of the choice of �lter backward through
the analysis leads to a very simple conclusion. The secondary cascade (k�11=3) in the
energy cascade of the model�s solution results because the �lter decays likedA�1(k) ' k�2 and � 5=3 + (�2) = �11=3
It is easy to check, for example, tracking forward that if the �lter arises from 4th order
(hyperviscosity like) operator with symbol decaying like k�4 then the secondary cas-
cade will have exponent k�17=3 (i.e. -17/3=-5/3+(-4)). Continuing, if a gaussian �lter
(which has exponential decay in wave number space) is used, then exponential decay
of the energy spectrum begins at the cuto¤ frequency. This immediate truncation
might compensate in some calculation for its extra complexity.
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