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Abstract. We study the numerical errors in finite element discretizations of a time relaxation model
of fluid motion:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f and ∇ · u = 0

In this model, introduced by Stolz, Adams and Kleiser, u∗ is a generalized fluctuation and χ the
time relaxation parameter. The goal of inclusion of the χu∗ is to drive unresolved fluctuations to
zero exponentially. We study convergence of discretization of the model to the model’s solution as
h, ∆t → 0. Next we complement this with an experimental study of the effect the time relaxation
term (and a nonlinear extension of it) has on the large scales of a flow near a transitional point.
We close by showing that the time relaxation term does not alter shock speeds in the inviscid,
compressible case, giving analytical confirmation of a result of Stolz, Adams and Kleiser.
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1 Introduction

A fluid’s velocity at higher Reynolds numbers contains many spatial scales not economically re-
solvable on computationally feasible meshes. For this reason, many turbulence models, large eddy
simulation models, numerical regularization and computational stabilizations have been explored in
computational fluid dynamics. One of the simplest such regularization and most recent has been
proposed by Adams, Stoltz and Kleiser [1, 2]. Briefly, if u represents the fluid velocity, h the char-
acteristic mesh width, and δ = O(h) a chosen length scale, let u∗ denote some representation of the
part of u varying over length scales < O(δ), i.e. the fluctuating part of u. (This will be made specific
in Section 2.) The fluid regularization model of Adams, Stoltz and Kleiser, considered herein, arises
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by adding a simple, linear, lower order time regularization term, χu∗, (where χ > 0 has units of
1/time) to the Navier-Stokes equations, giving:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f , ∈ Ω , (1.1)
∇ · u = 0 , ∈ Ω . (1.2)

The term χu∗ is intended to drive unresolved velocity scales to zero exponentially fast. Adams,
Kleiser and Stoltz have performed extensive computational tests of this time relaxation model on
compressible flows with shocks and on turbulent flows, for example, [1, 2] as has Guenanff [7] on
aerodynamic noise. The originating study of (1.1),(1.2) was the work of Rosenau [11] and Schochet
and Tadmor [12] in which the time relaxation model was developed from a regularized Chapman-
Enskog expansion of conservation laws. Most recently, in [10] it was shown that at high Reynolds
number, solutions to (1.1),(1.2), possess an energy cascade which terminates at the mesh scale δ
with the proper choice of relaxation coefficient χ.

Our goal in this report is to connect the work studying (1.1)-(1.2) as a continuum model with the
computational experiments using (1.1)-(1.2) by a numerical analysis of discretizations of (1.1)-(1.2).
We thus consider stability and convergence of finite element discretizations of (1.1)-(1.2) as h → 0.
Our goal is to elucidate the interconnections between δ, h, χ, ν, and the algorithms used to compute
the fluctuation u∗ as a discrete function.

In Section 2 we give a precise definition of the discrete averaging operator and the de-convolution
procedure that are used to define the generalized fluctuation u∗. We also give preliminaries about
the finite element discretizations studied. Section 3 gives the convergence analysis of this method.
This analysis is for ν > 0. The Euler equations, ν = 0 in (1.1),(1.2), include shocks – a phenomenon
excluded when ν > 0. In Section 5 we complement the case ν > 0 by considering a conservation law
in one space dimension. We show that adding the time relaxation term χu∗ does not alter shock
speeds – thus confirming theoretically a result of Stoltz and Adams [1]. In Section 4 we give some
numerical tests. Our primary goal in these tests is to study the effect the time relaxation term
has on O(1) scales. We study a flow very close to its transition from one regime to another: from
equilibrium to time dependent via eddy shedding behind the forward-backward step. We investigate
experimentally which of several natural formulations of this time relaxation term least retards this
transition.

2 Analysis of the Time Relaxation Model

In order to discuss the effects of the regularization we introduce the following notation. The L2(Ω)
norm and inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev
W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖W k
p
, respectively. For the semi-norm in W k

p (Ω) we
use | · |W k

p
. Hk is used to represent the Sobolev space W k

2 , and ‖ · ‖k denotes the norm in Hk. For
functions v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , and ‖v‖m,k :=
(∫ T

0
‖v(·, t)‖m

k dt

)1/m

.

The following function spaces are used in the analysis:

Velocity Space : X := H1
0 (Ω) ,
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Pressure Space : P := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q dΩ = 0

}
,

Divergence− free Space : Z :=
{

v ∈ X :
∫

Ω
q∇ · v dΩ = 0, ∀ q ∈ P

}
.

We denote the dual space of X as X ′, with norm ‖ · ‖−1.

A variational solution of the N-S equations may be stated as: Find w ∈ L2(0, T ;X)∩L∞(0, T ; L2(Ω)),
r ∈ L2(0, T ; P ) with wt ∈ L2(0, T ; X

′
) satisfying

(wt,v) + (w · ∇w,v) − (r,∇ · v) + ν(∇w,∇v) = (f ,v) , ∀v ∈ X , (2.1)
(q,∇ ·w) = 0 , ∀q ∈ P . (2.2)

We consider in comparison to (2.1),(2.2) the problem: Find u ∈ L2(0, T ; X) ∩ L∞(0, T ; L2(Ω)),
p ∈ L2(0, T ; P ) with ut ∈ L2(0, T ;X

′
) satisfying

(ut,v) + (u · ∇u,v) − (p,∇ · v) + ν(∇u,∇v) + χ(u−GN ū,v) = (f ,v) , ∀v ∈ X , (2.3)
(q,∇ · u) = 0 , ∀q ∈ P . (2.4)

In (2.3) ū denotes a spatially averaged function of u defined as: ū := G(u) satisfying

−δ2∆ū + ū = u , in Ω , (2.5)
ū = 0 , on ∂Ω , (2.6)

where δ represents the filter length scale. The operator GN in (2.3) represents the Nth van Cittert
approximate deconvolution operator defined by

GNφ :=
N∑

n=0

(I − G)nφ , N = 0, 1, 2, . . . . (2.7)

Lemma 2.1 [3, 5] For φ ∈ L2(Ω) we have that

φ−GN φ̄ = δ2N+2 (−∆G)N+1φ . (2.8)

As the operator (I − GNG) is Symmetric Positive Definite (SPD), [10], the operator B : L2(Ω) →
L2(Ω) satisfying

B2φ := δ−(2N+2) (I − GNG)φ = δ−(2N+2)(φ−GN φ̄) (2.9)

is bounded and well defined, (i.e. B = δ−(N+1)
√

I − GNG).

Let φ∗ := δ(N+1) Bφ (≈ φ− φ̄). (2.10)

Then, from (2.8) we have

‖φ∗‖ = (φ−GN φ̄ , φ)1/2 =
(
δ2N+2(Bφ , Bφ)

)1/2

= δN+1‖Bφ‖ .
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Letting e(x, t) := w(x, t)− u(x, t), subtracting (2.3) from (2.1) we have that

(et,v) + (e·∇w,v) + (u·∇e,v) + ν(∇e,∇v) + χ(e−GN ē,v) = χ(w−GNw̄,v) , ∀v ∈ Z . (2.11)

With the choice v = e we obtain (using (u · ∇e, e) = 0)

1
2

d

dt
‖e‖2 + (e · ∇w, e) + ν‖∇e‖2 + χ (e−GN ē, e) = χ (w −GNw̄, e),

1
2

d

dt
‖e‖2 − |(e · ∇w, e)| + ν‖∇e‖2 + χ ‖e∗‖2 ≤ χ δ2N+2‖Bw‖ ‖Be‖ . (2.12)

With the estimate (using Young’s inequality),

|(e · ∇w, e)| ≤ C
√
‖e‖ ‖∇e‖ ‖∇w‖ ‖∇e‖ = C‖e‖1/2 ‖∇w‖ ‖∇e‖3/2

≤ 1
2
ν‖∇e‖2 + C1ν

−3‖∇w‖4 ‖e‖2 ,

equation (2.12) becomes

d

dt
‖e‖2 − C1 ν−3‖∇w‖4 ‖e‖2 + ν‖∇e‖2 + χ ‖e∗‖2 ≤ C2 χ δ2N+2‖Bw‖2. (2.13)

Proceeding as in Gronwall’s Lemma, multiplying through by the integrating factor
exp(−C1 ν−3

∫ τ
0 ‖∇w‖4 ds) and using ‖e‖(0) = 0, we obtain

‖e‖2 +
∫ t

0
e(C1 ν−3

R t
τ ‖∇w‖4 ds)

(
ν‖∇e‖2 + χ ‖e∗‖2

)
dτ

≤
∫ t

0
e(C1 ν−3

R t
τ ‖∇w‖4 ds)

(
C2 χ δ2N+2‖Bw‖2

)
dτ , (2.14)

i.e.,

‖e‖2 + ν

∫ t

0
‖∇e‖2 dτ +

∫ t

0
χ ‖e∗‖2 dτ ≤ C2e

C1 ν−3 ‖w‖44,1 χ δ2N+2

∫ t

0
‖Bw‖2 dτ , (2.15)

from which the following lemma follows.

Lemma 2.2 With w ∈ L4(0, T ;W 1
4 ) satisfying (2.1),(2.2) and u given by (2.3),(2.4) we have that

there exists constants C1, C2 > 0, such that

‖w − u‖2 + ν

∫ t

0
‖∇(w − u)‖2 dτ + χ

∫ t

0
‖(w − u)∗‖2 dτ

≤ C2e
C1 ν−3 ‖w‖44,1 χ δ2N+2

∫ t

0
‖Bw‖2 dτ . (2.16)
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3 Numerical Approximation of the Navier-Stokes equations using
Time Relaxation

In this section we address the error between the stabilized approximation computed using equations
(2.3),(2.4) and the solution to the Navier-Stokes equations. In view of estimate (2.16), and with the
aid of the triangle inequality, the desired error estimate reduces to finding the error between the
numerical approximation of (2.3),(2.4) and its true solution.

We begin by describing the finite element approximation framework and listing the approximating
properties used in the analysis.

Let Ω ⊂ IRd́ (d́ = 2, 3) be a polygonal domain and let Th be a triangulation of Ω made of triangles
(in IR2) or tetrahedrals (in IR3). Thus, the computational domain is defined by

Ω = ∪K; K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th

hK . Let Pk(A) denote the space of polynomials on A of degree no
greater than k. Then we define the finite element spaces as follows.

Xh :=
{
v ∈ X ∩ C(Ω̄)2 : v|K ∈ Pk(K), ∀K ∈ Th

}
,

Ph :=
{
q ∈ P ∩ C(Ω̄) : q|K ∈ Ps(K), ∀K ∈ Th

}
,

Zh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Ph} .

We assume that the spaces Xh, Ph satisfy the discrete inf-sup condition, namely there exists γ ∈ IR,
γ > 0,

γ ≤ inf
qh∈Ph

sup
vh∈Xh

∫
Ω qh∇ · vh dA

‖qh‖P ‖vh‖X
. (3.1)

Let ∆t be the step size for t so that tn = n∆t, n = 0, 1, 2, . . . , NT , with T := NT ∆t, and dtf
n :=

f(tn)−f(tn−1)
∆t . We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
NT∑

n=0

‖vn‖m
k ∆t

)1/m

, ‖|v1/2|‖m,k :=

(
NT∑

n=1

‖vn−1/2‖m
k ∆t

)1/m

.

In addition, we make use of the following approximation properties,[4]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
v∈Xh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
r∈Ph

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

(3.2)
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We define the skew-symmetric trilinear form b∗(·, ·, ·) : X ×X ×X → IR as

b∗(u,v,w) :=
1
2
(u · ∇v,w) − 1

2
(u · ∇w,v) . (3.3)

Note that for u, v, w, ∈ X, with
∫
Ω q∇ · u dA = 0 , ∀q ∈ P ,

b∗(u,v,w) = b(u,v,w) := (u · ∇v,w) .

For ease of notation in discussion the Crank-Nicolson temporal discretization we let

ŭn =
un + un−1

2
.

The time relaxed, discrete approximation to (2.3),(2.4) on the time interval (0, T ], is given by:
For n = 1, 2, . . . , NT , find un

h ∈ Xh, pn
h ∈ Ph, such that

(un
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) − ∆t (p̆n

h,∇ · v) + ∆t ν(∇ŭn
h,∇v) + ∆t χ (ŭn

h −GN
¯̆un

h,v)
= (un−1

h ,v) + ∆t (f̆n,v), ∀v ∈ Xh , (3.4)
(q,∇ · un

h) = 0 , ∀q ∈ Ph . (3.5)

As the spaces Xh and Ph satisfy the discrete inf-sup condition (3.1), we can equivalent consider the
problem:
For n = 1, 2, . . . , NT find un

h ∈ Zh, ph ∈ Ph, such that

(un
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) + ∆t ν(∇ŭn

h,∇v) + ∆t χ (ŭn
h −GN

¯̆un
h,v)

= (un−1
h ,v) + ∆t (f̆n,v), ∀v ∈ Zh . (3.6)

The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 3.1 (Discrete Gronwall’s Lemma) [9] Let ∆t, H, and an, bn, cn, γn (for integers n ≥ 0)
be nonnegative numbers such that

al + ∆t

l∑

n=0

bn ≤ ∆t

l∑

n=0

γn an + ∆t

l∑

n=0

cn + H for l ≥ 0 .

Suppose that ∆t γn < 1, for all n, and set σn = (1−∆t γn)−1. Then,

al + ∆t

l∑

n=0

bn ≤ exp

(
∆t

l∑

n=0

σn γn

){
∆t

l∑

n=0

cn + H

}
for l ≥ 0 . (3.7)

For the approximation scheme given by (3.6) we have that the iteration is computable and satisfies
the following a priori estimate.

Lemma 3.2 For the approximation scheme (3.6) we have that a solution ul
h, l = 1, . . . NT , exists

at each iteration and, for ∆t < 1, satisfies the following a priori bounds:

‖ul
h‖2 + 2∆t χ

l∑

n=1

‖ŭn ∗
h ‖2 + 2∆t ν

l∑

n=1

‖∇ŭn
h‖2 ≤ C

(‖|f‖|22,0 + ‖u0
h‖2

)
. (3.8)
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Proof : The existence of a solution un
h to (3.6) follows from the Leray-Schauder Principle [16].

Specifically, with A : Zh → Zh, defined by y = A(w)

(y,v) := −∆t b∗((w + un−1
h )/2, (w + un−1

h )/2,v) − ∆tν(∇(w + un−1
h )/2,∇v)

+∆t χ((w + un−1
h )/2−GN (w̄ + ūn−1

h )/2,v) + (un−1
h ,v) + ∆t(f̆n,v) ,

the operator A is compact and any solution of u = sA(u) , for 0 ≤ s < 1 , satisfied the bound
‖u‖ ≤ γ, where γ is independent of s.

To obtain the a priori estimates, in (3.6) setting v = ŭn
h we have

‖un
h‖2 − ‖un−1

h ‖2 + 2∆t ν‖∇ŭn
h‖2 + 2∆t χ ‖ŭn ∗

h ‖2 ≤ ∆t ‖ŭn
h‖2 + ∆t ‖f̆n‖2 . (3.9)

Summing (3.9) from n = 1 to l, implies

‖ul
h‖2 + 2∆t χ

l∑

n=1

‖ŭn ∗
h ‖2 + 2∆t ν

l∑

n=1

‖∇ŭn
h‖2

≤ ‖u0
h‖2 + ∆t

l∑

n=1

‖ŭn
h‖2 + ∆t

l∑

n=1

‖f̆n‖2 ,

≤ ‖u0
h‖2 + ∆t

l∑

n=0

‖un
h‖2 + ∆t

l∑

n=0

‖fn‖2 . (3.10)

Applying (3.7) we obtain (3.8), with C explicitly given by C = exp(T/(1−∆t)).

For the approximation error between un
h satisfying (3.6) and un satisfying (2.3) we have the following.

Theorem 3.1 For u ∈ L∞(0, T ; W k+1
4 ) ∩ W 3

2 (0, T ; L2) ∩ W 2
4 (0, T ;W 1

2 ), p ∈ L4(0, T ; W s+1
4 ) ∩

W 2
2 (0, T ; L2), f ∈ L2(0, T ; W 2

2 ) satisfying (2.3),(2.4), and uh given by (3.4),(3.5) we have that

‖|u − uh|‖∞,0 ≤ F(∆t, h, δ, χ) + Chk+1‖|u|‖∞,k+1 , (3.11)
(

ν∆t

l∑

n=1

‖∇(un+1/2 − (un
h + un−1

h )/2)‖2

)1/2

≤ F(∆t, h, δ, χ) + Cν1/2(∆t)2‖∇utt‖2,0

+Cν1/2hk‖|u|‖2,k+1 , for 1 ≤ l ≤ NT .(3.12)

where

F(∆t, h, δ, χ) := Cν−1/2
(
hk‖|u|‖2

4,k+1 + hk+1/2‖|∇u|‖2
4,0 + hs+1‖|p1/2|‖2,s+1

)

+Cν−1/2 hk
(‖|f |‖2,0 + ‖u0

h‖
)

+ Cν1/2 hk‖|u|‖2,k+1 + Cχ1/2 hk+1‖|u|‖2,k+1

+C(∆t)2
(
‖uttt‖2,0 + ν−1/2‖ptt‖2,0 + ‖ftt‖2,0

+ ν1/2‖∇utt‖2,0 + ν−1/2‖∇utt‖2
4,0

+ ν−1/2‖|∇u|‖2
4,0 + ν−1/2‖|∇u1/2|‖2

4,0

+ χ1/2 δ2N+2‖utt‖2,0 + χ1/2 ‖utt‖2,0

)
.
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Proof :

Let A : X ×X → IR be defined by

A(u,v) := ν(∇u ,∇v) + χ(u−GN ū , v) , (3.13)

and note that
A(u,u) = ν‖∇u‖2 + χ‖u∗‖2 . (3.14)

Then, (3.6) may be written as

(un
h − un−1

h ,v) + ∆tA(ŭn
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) = ∆t (f̆ ,v) , ∀v ∈ Zh . (3.15)

Also, at time t = (n− 1/2)∆t, u given by (2.3)-(2.4) satisfies

(un−un−1,v) + ∆tA(ŭn,v) + ∆t b∗(ŭn, ŭn,v) − ∆t (p̆n,∇·v) = ∆t (f̆ ,v) + ∆t Intp(un, pn;v) ,
(3.16)

for all v ∈ Zh, where Intp(un, pn;v), representing the interpolating error, denotes

Intp(un, pn;v) =
(
dtun − un−1/2

t ,v
)

+ A(ŭn − un−1/2,v) + b∗(ŭn, ŭn,v)

− b∗(un−1/2,un−1/2,v) − (p̆n − pn−1/2,∇ · v) + (fn−1/2 − f̆ ,v) . (3.17)

Subtracting (3.15) from (3.16), we have for en = un − un
h,

(en−en−1,v)+ ∆tA(ĕn,v)+ ∆t (b∗(ĕn, ŭn,v) + b∗(ŭn
h, ĕn,v)) = ∆t(p̆n,∇·v)+ ∆t Intp(un, pn;v) ,

(3.18)
for all v ∈ Zh.

Let en = un − un
h = (un −Un) + (Un − un

h) := Λn + En , where Un ∈ Zh .

With the choice v = Ĕn, and using (q,∇ · Ĕn) = 0, ∀q ∈ Ph, equation (3.18) becomes

(En − En−1, Ĕn) + ∆tA(Ĕn, Ĕn) + ∆t
(
b∗(Ĕn, ŭn, Ĕn) + b∗(ŭn

h, Ĕn, Ĕn)
)

= −(Λn − Λn−1, Ĕn) − ∆tA(Λ̆n, Ĕn) − ∆t
(
b∗(Λ̆n, ŭn, Ĕn) + b∗(ŭn

h, Λ̆n, Ĕn)
)

+∆t(p̆n − q,∇ · Ĕn) + ∆t Intp(un, pn; Ĕn) ,

i.e.,

1
2

(‖En‖2 − ‖En−1‖2
)

+ ∆t
(
ν‖∇Ĕn‖2 + χ‖Ĕn ∗‖2

)

= −∆t b∗(Ĕn, ŭn, Ĕn) − (Λn − Λn−1, Ĕn) − ∆tA(Λ̆n, Ĕn)

−∆t
(
b∗(Λ̆n, ŭn, Ĕn) + b∗(ŭn

h, Λ̆n, Ĕn)
)

+∆t(p̆n − q,∇ · Ĕn) + ∆t Intp(un, pn; Ĕn) . (3.19)

Next we estimate the terms on the RHS of (3.19).

Using b∗(u,v,w) ≤ C(Ω)
√
‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖, for u, v, w ∈ X, and Young’s inequality,

b∗(Ĕn, ŭn, Ĕn) ≤ C‖Ĕn‖1/2 ‖∇Ĕn‖3/2 ‖∇ŭn‖ (3.20)

≤ ν

10
‖∇Ĕn‖2 + C ν−3‖Ĕn‖2‖∇ŭn‖4 . (3.21)
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(Λn − Λn−1, Ĕn) ≤ 1
2
‖Λn − Λn−1‖2 +

1
2
‖Ĕn‖2 . (3.22)

A(Λ̆n, Ĕn) = ν(∇Λ̆n,∇Ĕn) + χ (Λ̆n −GN
¯̆Λ

n
, Ĕn)

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χδ2N+2‖BΛ̆n‖‖BĔn‖

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χ

1
2
(Λ̆n −GN

¯̆Λ
n
, Λ̆n) + χ

1
2
‖Ĕn ∗‖2

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χ

1
4
‖Λ̆n −GN

¯̆Λ
n‖2 + χ

1
4
‖Λ̆n‖2 + χ

1
2
‖Ĕn ∗‖2. (3.23)

b∗(Λ̆n, ŭn, Ĕn) ≤ C

√
‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖ ‖∇Ĕn‖

≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2 . (3.24)

b∗(ŭn
h, Λ̆n, Ĕn) ≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖ŭn

h‖ ‖∇ŭn
h‖ ‖∇Λ̆n‖2 . (3.25)

(p̆n − q,∇ · Ĕn) ≤ ‖p̆n − q‖ ‖∇ · Ĕn‖
≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖p̆− q‖2 . (3.26)

Substituting (3.21)-(3.26) into (3.19), and summing from n = 1 to l (assuming that ‖E0‖ = 0), we
have

‖El‖2 + ∆t
l∑

n=1

ν‖∇Ĕn‖2 + ∆tχ
l∑

n=1

‖Ĕn ∗‖2

≤ ∆t
l∑

n=1

C (ν−3‖∇ŭn‖4 + 1)‖Ĕn‖2

+ ∆t
l∑

n=1

‖Λn − Λn−1‖2 + 2∆t
l∑

n=1

C ν‖∇Λ̆n‖2

+ ∆t χ
1
2

(
l∑

n=1

‖Λ̆n −GN
¯̆Λ

n‖2 +
l∑

n=1

‖Λ̆n‖2

)

+ 2∆t
l∑

n=1

C ν−1
(
‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2 + ‖ŭn

h‖ ‖∇ŭn
h‖ ‖∇Λ̆n‖2

)

+ 2∆t
l∑

n=1

C ν−1‖p̆n − q‖2

+ 2∆t
l∑

n=1

|Intp(un, pn; Ĕn)| . (3.27)
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The next step in the proof is to bound the terms on the RHS of (3.27). We have that

2∆t
l∑

n=1

C ν‖∇Λ̆n‖2 ≤ 2∆t C ν
l∑

n=0

‖∇Λn‖2 ≤ 2C ν ∆t
l∑

n=0

h2k|un|2k+1

≤ 2C ν h2k‖|u|‖2
2,k+1 . (3.28)

Also,

∆t
l∑

n=1

‖Λn − Λn−1‖2 ≤ 4∆t
l∑

n=0

‖Λn‖2 ≤ 4∆t
l∑

n=0

C h2k+2|un|2k+1

≤ Ch2k+2‖|u|‖2
2,k+1 . (3.29)

Using (2.8), and that GNG is a bounded operator from L2(Ω) → L2(Ω),

∆t χ
1
2

(
l∑

n=1

‖Λ̆n −GN
¯̆Λ

n‖2 +
l∑

n=1

‖Λ̆n‖2

)
≤ C∆t χ

l∑

n=1

‖Λ̆n‖2 + ∆t χ
l∑

n=1

‖GNGΛ̆n‖2

≤ C∆t χ
l∑

n=0

‖Λn‖2 + ∆t χ
l∑

n=1

CN‖Λ̆n‖2

≤ C∆t χ
l∑

n=0

C h2k+2|un|2k+1 + ∆t χCN

l∑

n=0

‖Λn‖2

≤ C χ h2k+2∆t
l∑

n=0

|un|2k+1

≤ C χ h2k+2‖|u|‖2
2,k+1 . (3.30)

For the term

2∆t

l∑

n=1

C ν−1‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2 ≤ C ν−1 ∆t

l∑

n=1

(‖Λn‖ ‖∇Λn‖ + ‖Λn−1‖ ‖∇Λn−1‖

+ ‖Λn−1‖ ‖∇Λn‖+ ‖Λn‖ ‖∇Λn−1‖) ‖∇ŭn‖2

≤ C ν−1 h2k+1

(
∆t

l∑

n=1

|un|2k+1 ‖∇ŭn‖2 + ∆t

l∑

n=1

|un|k+1|un−1|k+1 ‖∇ŭn‖2

+ ∆t
l∑

n=1

|un−1|2k+1 ‖∇ŭn‖2

)

≤ C ν−1 h2k+1

(
∆t

l∑

n=0

|un|4k+1

+ ∆t
l∑

n=0

‖∇un‖4

)

= C ν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
. (3.31)
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Using the a priori estimate for ‖un
h‖, (3.8),

2∆t

l∑

n=1

C ν−1
(
‖ŭn

h‖ ‖∇ŭn
h‖ ‖∇Λ̆n‖2

)
≤ C ν−1 ∆t

l∑

n=1

‖∇ŭn
h‖ ‖∇Λ̆n‖2

≤ C ν−1 ∆t
l∑

n=1

(‖∇Λn‖2 + ‖∇Λn−1‖2
) ‖∇ŭn

h‖

≤ C ν−1 h2k ∆t
l∑

n=1

(|un|2k+1 + |un−1|2k+1

) ‖∇ŭn
h‖

≤ C ν−1 h2k

(
∆t

l∑

n=0

‖un‖4
k+1 + ∆t

l∑

n=1

‖∇ŭn
h‖2

)

≤ C ν−1 h2k
(‖|u|‖4

4,k+1 + ν−1 (‖|f |‖2
2,0 + ‖u0

h‖2)
)
. (3.32)

From (6.1),

2∆t

l∑

n=1

C ν−1‖p̆n − q‖2 ≤ C ν−1 ∆t

l∑

n=1

‖pn−1/2 − q‖2 + ‖p̆n − pn−1/2‖2

≤ C ν−1

(
h2s+2 ∆t

l∑

n=1

‖pn−1/2‖2
s+1 + ∆t

l∑

n=1

1
48

(∆t)3
∫ tn

tn−1

‖ptt‖2 dt

)

≤ C ν−1
(
h2s+2 ‖|p1/2|‖2

2,s+1 + (∆t)4 ‖ptt‖2
2,0

)
(3.33)

We now bound the terms in Intp(un, pn; Ĕn). Using (6.1),(6.2),(6.3),
(
dtun − un−1/2

t , Ĕn
)

≤ 1
2
‖Ĕn‖2 +

1
2
‖dtun − un−1/2

t ‖2

≤ 1
2
‖En‖2 +

1
2
‖En−1‖2 +

1
2

(∆t)3

1280

∫ tn

tn−1

‖uttt‖2 dt , (3.34)

(p̆n − pn−1/2,∇ · Ĕn) ≤ ε1ν‖∇Ĕn‖2 + C ν−1‖p̆n − pn−1/2‖2

≤ ε1ν‖∇Ĕn‖2 + C ν−1 (∆t)3

48

∫ tn

tn−1

‖ptt‖2 dt , (3.35)

(fn−1/2 − f̆n, Ĕn) ≤ 1
2
‖Ĕn‖2 +

1
2
‖fn−1/2 − f̆n‖2

≤ 1
2
‖En‖2 +

1
2
‖En−1‖2 +

(∆t)3

48

∫ tn

tn−1

‖ftt‖2 dt , (3.36)

A(ŭn − un−1/2, Ĕn) = ν(∇(ŭn − un−1/2) ,∇Ĕn)

+χ ((ŭn − un−1/2)−GN (ŭn − un−1/2) , Ĕn)

≤ ε2ν ‖∇Ĕn‖2 + C ν‖∇(ŭn − un−1/2)‖2 + χ
1
4
‖Ĕn ∗‖2
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+χ
(
(ŭn − un−1/2)−GN (ŭn − un−1/2), ŭn − un−1/2

)

≤ ε2ν ‖∇Ĕn‖2 +
χ

4
‖Ĕn ∗‖2 + C ν

(∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt

+χ
1
2
δ4N+4‖B2(ŭn − un−1/2)‖2 + χ

1
2
‖ŭn − un−1/2‖2

≤ ε2ν ‖∇Ĕn‖2 +
χ

4
‖Ĕn ∗‖2 + C ν

(∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt

+C χδ4N+4 (∆t)3
∫ tn

tn−1

‖utt‖2 dt + C χ(∆t)3
∫ tn

tn−1

‖utt‖2 dt , (3.37)

where in the estimate for the last term, in the last step, we use that B is a bounded operator from
L2 → L2 and (6.1).

b∗(ŭn, ŭn, Ĕn) − b∗(un−1/2,un−1/2, Ĕn) = b∗(ŭn − un−1/2, ŭn, Ĕn) + b∗(un−1/2, ŭn − un−1/2, Ĕn)

≤ C ‖∇(ŭn − un−1/2)‖ ‖∇Ĕn‖
(
‖∇ŭn‖ + ‖∇un−1/2‖

)

≤ C ν−1
(
‖∇ŭn‖2 + ‖∇un−1/2‖2

) (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt

+ ε3ν‖∇Ĕn‖2

≤ C ν−1 (∆t)3

48

(∫ tn

tn−1

2(‖∇ŭn‖4 + ‖∇un−1/2‖4) dt

+
∫ tn

tn−1

‖∇utt‖4 dt

)
+ ε3ν‖∇Ĕn‖2

≤ C ν−1 (∆t)4(‖∇ŭn‖4 + ‖∇un−1/2‖4)

+C ν−1 (∆t)3
∫ tn

tn−1

‖∇utt‖4 dt + ε3ν‖∇Ĕn‖2 . (3.38)

Combining (3.34)-(3.38) we have that

2∆t
l∑

n=1

|Intp(un, pn; Ĕn)| ≤ ∆t C
l∑

n=0

‖En‖2 + ∆t χ
1
2

l∑

n=1

‖Ĕn ∗‖2

+(ε1 + ε2 + ε3)∆t ν
l∑

n=0

‖∇Ĕn‖2

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)
. (3.39)

Thus, with (3.28)-(3.33) and (3.39), from (3.27) we obtain

‖El‖2 + ∆t
l∑

n=1

ν‖∇Ĕn‖2 + ∆t χ
1
2

l∑

n=1

‖Ĕn ∗‖2
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≤ ∆t

l∑

n=0

C( ν−3‖∇ŭn‖4 + 1)‖En‖2

+Cν−1
(
h2k‖|u|‖4

4,k+1 + h2k+1‖|∇u|‖4
4,0 + h2s+2‖|p1/2|‖2

2,s+1

)

+Cν−1 h2k(‖|f |‖2
2,0 + ‖u0

h‖2) + C χ h2k+2‖|u|‖2
2,k+1 + C ν h2k‖|u|‖2

2,k+1

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)
. (3.40)

Hence, with ∆t sufficiently small, i.e. ∆t < C(ν−3‖|∇u|‖4
∞,0 + 1)−1, from Gronwall’s Lemma (see

(3.7), we have

‖El‖2 + ∆t
l∑

n=1

ν‖∇Ĕn‖2 + ∆t χ
1
2

l∑

n=1

‖Ĕn ∗‖2

≤ Cν−1
(
h2k‖|u|‖4

4,k+1 + h2k+1‖|∇u|‖4
4,0 + h2s+2‖|p1/2|‖2

2,s+1

)

+Cν−1 h2k(‖|f |‖2
2,0 + ‖u0

h‖2) + C χ h2k+2‖|u|‖2
2,k+1 + C ν h2k‖|u|‖2

2,k+1

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)
. (3.41)

Estimate (3.11) then follows from the triangle inequality and (3.41).

To obtain (3.12), we use (3.41) and

‖∇
(
un+1/2 − (un

h + un−1
h )/2

)
‖2 ≤ ‖∇(un+1/2 − ŭn)‖2 + ‖∇Λ̆n‖2 + ‖∇Ĕn‖2

≤ (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt + Ch2k|un|2k+1 + Ch2k|un−1|2k+1 + ‖∇Ĕn‖2 .

Corollary 3.1 Under the assumptions of Lemma 2.2 and Theorem 3.1 we have that

‖|w − uh|‖∞,0 ≤ C2e
C1 ν−3/2 ‖w‖24,1 χ1/2 δN+1 ‖Bw‖∞,0 + F(∆t, h, δ, χ) + Chk+1‖|u|‖∞,k+1 (3.42)

with F(∆t, h, δ, χ) defined as in Theorem 3.1.

Proof : Equation (3.42) follows immediately from Lemma 2.2, Theorem 3.1, and the triangle in-
equality.
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4 A Numerical Illustration

We study herein a simple, underresolved flow with recirculation: the flow across a step. The most
distinctive feature of this flow is a recirculating vortex behind the step, see Figure 4.1 for illustration.
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Figure 4.1: NSE at T = 40 and ν = 1/600

We will study a flow in the transition via shedding of eddies behind the step using Navier-Stokes
equations + Time Relaxation, i.e. (2.3),(2.4) with N = 0 ( NSE + TR0 ), (2.3),(2.4) with N = 1
( NSE + TR1 ) and NSE + nonlinear Time Relaxation with N = 0 (NSE + NTR0), [10]. We will
compare these models with a LES model - the Smagorinsky model. The difference between NSE +
TR0 and NSE + NTR0 is in the time relaxation term which has the form:

χ|u− u|(u− u)

in the NSE + NTR0. In this notation, by | · | we mean the Euclidean norm of the corresponding
vector. We used χ = 0.01 in the computations presented in this section. The only difference between
the Navier-Stokes equations (NSE) and the Smagorinsky model (NSE + SMA) is in the viscous term,
which has the following form:

∇ · ((2ν + csδ
2||D(u)||F )D(u)) .

Here, cs is a positive constant (usually cs ∼ 0.01, see [18]), D(u) is the deformation tensor and || · ||F
denotes the Frobenius norm of a tensor. We used cs = 0.01 in the computations presented in this
section. Although the Smagorinsky model is widely used, it has some drawbacks. These are well
documented in the literature, e.g. see [20]. For instance, the Smagorinsky model constant cs is an á
priori input and this single constant is not capable of representing correctly various turbulent flows.
Another drawback of this model is that it introduces too much diffusion into the flow, e.g., see [19]
or Figure 4.2.

The domain of the two-dimensional flow across a step is presented in Figure 4.3. We present results
for a parabolic inflow profile, which is given by u = (u1, u2)T , with u1 = y(10 − y)/25, u2 = 0.
No-slip boundary condition is prescribed on the top and bottom boundary as well as on the step.
At the outflow we have “do nothing” boundary condition, an accepted outflow condition in CFD.

The computations were performed on various grids. For instance, for the fully resolved NSE sim-
ulation, which is our “truth” solution, we used a fine grid (level 3) whereas a much coarser grid
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Figure 4.2: SM at T = 40, ν = 1/600 and δ = 1.5

Figure 4.3: Boundary conditions

(level 1) has been used for NSE + TR0, NSE + TR1, NSE + NTR0 and NSE + SMA. The point
is obviously to compare the performance of the various options in underresolved simulations by
comparison against a “truth”/fully-resolved solution.

Figure 4.4: Mesh at level 1

The computations were performed with the software FreeFem++; see [17] for its description. The
models were discretized in time with the Crank Nicolson (an implicit scheme of second order) and in
space with the Taylor Hood finite-element method, i.e., the velocity is approximated by continuous
piecewise quadratics and the pressure by continuous piecewise linears. The coarse grid which was
used in the computations (level 1) is given in Figure 4.4. The fine grid computations were performed
on the grid for which we chose approximately two times more degrees of freedom (level 3). The
background color represents the norm of the velocity vectors.

The results pictured in Figure 4.5 give strong, although admittedly very preliminary, support for the
general form of the Time Relaxation. Comparing the Figures 4.7, 4.8, 4.9, 4.10 with 4.6 we conclude
that the NSE + TR0, NSE + TR1 and NSE + NTR0 tests replicate the shedding of eddies and
the Smagorinsky eddy remains attached. Clearly, the Smagorinsky model is too stabilizing: eddies
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Figure 4.5: NSE + TR0 at T = 50, ν = 1/600 and δ = 1.5

which should separate and evolve remain attached and attain steady state. However, regarding the
main point of study, the effects of the Time Relaxation on the truncation of scales, it is clear that
this approach of regularization of NSE improved the simulation results for this transition problem.
Figures 4.9 and 4.10 show that the effects of the time relaxation with N=1 are the same as for
the nonlinear time relaxation with N=0. Further studies and tests of this approach are thus well
merited!
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Figure 4.6: NSE at ν = 1/600
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Figure 4.7: NSE + SM at ν = 1/600, and δ = 1.5
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Figure 4.8: NSE + TR0 at ν = 1/600, and δ = 1.5
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Figure 4.9: NSE + TR1 at ν = 1/600, and δ = 1.5
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Figure 4.10: NSE + NTR0 at ν = 1/600, and δ = 1.5

5 Influence of Time Relaxation on Shocks

When one passes from the incompressible, viscous Navier-Stokes equations to the compressible,
inviscid Euler equations, the new physical phenomenon of shocks is introduced. Often a first idea of
the behavior of a model or numerical method when shocks are present is developed by considering
the model or numerical method applied to 1-d conservation laws (or even Burger’s equation) in the
absence of boundaries. For such equations a clear understanding for the correct behavior of the
shock is well known. We follow this precedent and consider the shock position, velocity, and jump
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conditions of solutions to

wt +
∂

∂x
q(w) + χw′ = 0 , −∞ < x < ∞ , t > 0 , (5.1)

w(x, 0) = w0(x) , −∞ < x < ∞ . (5.2)

Here χ > 0 (and we intend to compare the χ > 0 case to the χ = 0 case), w′ := w − w̄, and w̄ is
the differential filtered function −δ2w̄xx + w̄ = w, given explicitly by

w̄(x, t) =
1
2δ

∫ ∞

−∞
e−|x−y|/(2δ) w(y, t) dy . (5.3)

Stolz, Adams and Kleiser [1], [13], [14], [15] have shown in extensive tests that χ > 0 does not alter
the shock speed from χ = 0 in (5.1),(5.2). We give in this section a theoretical justification for this
result of Stolz, Adams and Kleiser.

Definition 5.1 Let QT := IR× [0, T ].
(1) φ is a test function if φ ∈ C∞(QT ) with compact support ⊆ QT .
(2) w is a weak solution of (5.1),(5.2) if for any test function φ,

∫

QT

w φt dx dt +
∫

IR
w0(x) φ(x, 0) dx +

∫

QT

q(w)
∂

∂x
φ + χw (φ− φ̄) dx dt = 0 . (5.4)

If w is a weak solution of (5.1),(5.2) with χ = 0, the Rankine-Hugoniot jump condition at the shock
can be calculated by an argument which is well known for conservation laws, e.g. see [21], [22]. The
results is that if Γ is the shock curve X = X(t) and [·] denotes the jump across Γ of the indicated
variable then

[w]
dX

dt
= [q(w)] , or, shock speed =

dX

dt
=

[q(w)]
[w]

. (5.5)

We now (briefly – since it is standard) review this argument for χ > 0 and verify that the same
relation (5.5) holds for any χ > 0.

Consider a test function φ with support strictly inside QT and which crosses a curve of discontinuity
Γ. Partition the support(φ) into that lying to the left of Γ, denoted DL, that lying to the right of
Γ, denoted DR, and I the portion of Γ inside support(φ),

support(φ) = DL ∪ I ∪DR .

Split the integral over QT (which can be restricted to the support(φ)) into integral over DL, DR,
and I. Integrate by parts the integrals over DL and DR. This gives, letting wL / R denote the left
and right limits of w on I, and n = [nx , nt]T the unit normal on Γ pointing from DL to DR,

0 = −
∫

DL

(
wt +

∂

∂x
q(w) + χ(w − w̄)

)
φdx dt

+
∫

I

(
wL φnt + q(wL) φnx

)
ds

−
∫

DR

(
wt +

∂

∂x
q(w) + χ(w − w̄)

)
φdx dt

−
∫

I

(
wR φnt + q(wR) φnx

)
ds .
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The integrals over DL and DR vanish, and the remaining integrals over I can be grouped to yield
the jump terms ∫

I

(
(wL − wR)nt + (q(wL) − q(wR))nx

)
φds = 0 .

No jump terms arise from the time relaxation as the χw term requires no integration by parts and
w̄ is continuous across I when w has a jump discontinuity across I. Since Γ is the shock curve
X = X(t), the shock speed is dX/dt = −nt/nx and (5.5) follows.

The above is a calculation. To complement it we give now a more intuitive explanation. Note that
by the definition of w̄, ( −δ2w̄xx + w̄ = w ), w′ = w − w̄ = −δ2w̄xx. Thus (5.1) can be rewritten
in conservation law form (with a modified flux)

wt +
∂

∂x

(
q(w) − χ δ2w̄x

)
= 0 .

The shock speed is then formally

shock speed =
[q(w) − χ δ2 w̄x]

[w]
.

For w piecewise continuous, by (5.3), w̄x will be continuous. Thus [q(w) − χ δ2 w̄x] = [q(w)]
and the shock speeds are unchanged. Clearly, modification of a conservation law’s flux function by
something continuous across the shock will not alter shock speeds. Thus, we would expect averaging
by second order differential filters, or by convolution with C1 filter kernels, in (5.1) not to effect
shock speeds (while filtering with a top-hat filter might).

6 Appendix

Lemma 6.1 ∥∥∥ŭn − un−1/2
∥∥∥

2
≤ 1

48
(∆t)3

∫ tn

tn−1

‖utt‖2 dt . (6.1)

Proof of Lemma 6.1:
∥∥∥ŭn − un−1/2

∥∥∥
2

=
∥∥∥∥
1
2
(un + un−1)− un−1/2

∥∥∥∥
2

=
1
4

∫

Ω

[∫ tn

tn−1/2

utt(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

utt(·, t) (t− tn−1) dt

]2

dx

≤ 1
4

∫

Ω
2




(∫ tn

tn−1/2

utt(·, t) (tn − t) dt

)2

+

(∫ tn−1/2

tn−1

utt(·, t) (t− tn−1) dt

)2

 dx

≤ 1
2

∫

Ω

[∫ tn

tn−1/2

(utt(·, t))2 dt

∫ tn

tn−1/2

(tn − t)2 dt

+
∫ tn−1/2

tn−1

(utt(·, t))2 dt

∫ tn−1/2

tn−1

(t− tn−1)2 dt

]
dx
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=
1
2

∫

Ω

[
1
3

(
∆t

2

)3 ∫ tn

tn−1/2

(utt(·, t))2 dt +
1
3

(
∆t

2

)3 ∫ tn−1/2

tn−1

(utt(·, t))2 dt

]
dx

=
1
48

(∆t)3
∫

Ω

∫ tn

tn−1

(utt(·, t))2 dt dx

=
1
48

(∆t)3
∫ tn

tn−1

‖utt‖2 dt .

Lemma 6.2 ∥∥∥dtun − un−1/2
t

∥∥∥
2
≤ 1

1280
(∆t)3

∫ tn

tn−1

‖uttt‖2 dt . (6.2)

Proof of Lemma 6.2:

∥∥∥dtun − un−1/2
t

∥∥∥
2

=
∥∥∥∥

1
∆t

(un − un−1)− un−1/2
t

∥∥∥∥
2

=
(

1
4∆t

)2 ∫

Ω

[∫ tn

tn−1/2

uttt(·, t) (tn − t)2 dt +
∫ tn−1/2

tn−1

uttt(·, t) (t− tn−1)2 dt

]2

dx

≤
(

1
4∆t

)2 ∫

Ω
2




(∫ tn

tn−1/2

uttt(·, t) (tn − t)2 dt

)2

+

(∫ tn−1/2

tn−1

uttt(·, t) (t− tn−1)2 dt

)2

 dx

≤ 2
(

1
4∆t

)2 ∫

Ω

[∫ tn

tn−1/2

(uttt(·, t))2 dt

∫ tn

tn−1/2

(tn − t)4 dt

+
∫ tn−1/2

tn−1

(uttt(·, t))2 dt

∫ tn−1/2

tn−1

(t− tn−1)4 dt

]
dx

= 2
(

1
4∆t

)2 ∫

Ω

[
1
5

(
∆t

2

)5 ∫ tn

tn−1/2

(uttt(·, t))2 dt +
1
5

(
∆t

2

)5 ∫ tn−1/2

tn−1

(uttt(·, t))2 dt

]
dx

=
1

1280
(∆t)3

∫

Ω

∫ tn

tn−1

(uttt(·, t))2 dt dx

=
1

1280
(∆t)3

∫ tn

tn−1

‖uttt‖2 dt .

For the vector u, u(i), i = 1, . . . d́, denotes the ith component of the vector.

Lemma 6.3 ∥∥∥∇(ŭn − un−1/2)
∥∥∥

2
≤ (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt . (6.3)
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Proof of Lemma 6.3:

∥∥∥∇(ŭn − un−1/2)
∥∥∥

2
=

1
4

∫

Ω
∇

{∫ tn

tn−1/2

utt(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

utt(·, t) (t− tn−1) dt

}

: ∇
{∫ tn

tn−1/2

utt(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

utt(·, t) (t− tn−1) dt

}
dx

interchanging differentiation and integration

=
1
4

∫

Ω

{∫ tn

tn−1/2

∇utt(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

∇utt(·, t) (t− tn−1) dt

}

:

{∫ tn

tn−1/2

∇utt(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

∇utt(·, t) (t− tn−1) dt

}
dx

=
d́∑

i,j=1

1
4

∫

Ω

(∫ tn

tn−1/2

ui
ttxj

(·, t) (tn − t) dt +
∫ tn−1/2

tn−1

ui
ttxj

(·, t) (t− tn−1) dt

)2

dx

≤
d́∑

i,j=1

1
4

∫

Ω
2




(∫ tn

tn−1/2

ui
ttxj

(·, t) (tn − t) dt

)2

+

(∫ tn−1/2

tn−1

ui
ttxj

(·, t) (t− tn−1) dt

)2

 dx

≤
d́∑

i,j=1

1
4

∫

Ω
2

[∫ tn

tn−1/2

(
ui

ttxj
(·, t)

)2
dt

∫ tn

tn−1/2

(tn − t)2 dt

+
∫ tn−1/2

tn−1

(
ui

ttxj
(·, t)

)2
dt

∫ tn−1/2

tn−1

(t− tn−1)2 dt

]
dx

=
d́∑

i,j=1

1
4

∫

Ω
2

1
3

(
∆t

2

)3 ∫ tn

tn−1

(
ui

ttxj
(·, t)

)2
dt dx

=
(∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt .
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