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Abstract

This paper presents computable lower bounds of the penalty parameters for sta-
ble and convergent symmetric interior penalty Galerkin methods. In particular,
we derive the explicit dependence of the coercivity constants with respect to the
polynomial degree and the angles of the mesh elements. Numerical examples in all
dimensions and for different polynomial degrees are presented. We investigate the
numerical effects of loss of coercivity.
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1 Introduction

The Symmetric Interior Penalty Galerkin (SIPG) method for elliptic problems
was first introduced in the late seventies by Douglas and Dupont [9], Wheeler
[21] and Arnold [1,2] and was revived more recently as a popular discontinuous
Galerkin method. Some of the general attractive features of the method are
the local and high order of approximation, the flexibility due to local mesh
refinement and the ability to handle unstructured meshes and discontinuous
coefficients. More specific properties include the optimal error estimates in
both the H1 and L2 norms and the resulting symmetric linear systems easily
solved by standard solvers for symmetric matrices (such as conjugate gradi-
ent). The analysis and application of SIPG to a wide range of problems can be
found in the literature: a non-exhaustive list is given in [4,5,7,11,16,18,19,14]
and the references herein.

1 This research is partially funded by NSF-DMS 0506039.



The SIPG method is obtained by integrating by parts on each mesh element,
and summing over all elements. Two stabilization terms are then added: a
symmetrizing term corresponding to fluxes obtained after integration by part,
and a penalty term imposing a weak continuity of the numerical solution. It
is well known that there exists a threshold penalty above which the bilinear
form is coercive and the scheme is stable and convergent. Another related
discontinuous Galerkin method is the non-symmetric interior penalty Galerkin
(NIPG) method [17,12]: this method differs from the SIPG method by only
one sign: the symmetrizing term is added instead of being subtracted. On one
hand, the loss of symmetry in the scheme gives an immediate coercivity of the
bilinear form; the NIPG scheme is stable and convergent for any value of the
penalty. On the other hand, optimal error estimates in the L2 norm cannot
be proved via the standard Nitsche lift. As of today, this remains an open
problem.

The objective of this work is to derive rigorous computable bounds of the
threshold penalty that would yield a stable and convergent SIPG. We con-
sider a general second order elliptic problem on a domain in any dimension,
subdivided into simplices. Our main result is an improved coercivity result. In
particular, we show that the constant of coercivity depends on the polynomial
degree and the smallest sin θ over all angles θ in the triangular mesh in 2D or
over all dihedral angles θ in the tetrahedral mesh in 3D. We also investigate
the effects of the penalty numerically and exhibit unstable oscillatory solutions
for penalty values below the threshold penalty. Our results also apply to the
incomplete interior penalty Galerkin method [8], that differs from SIPG and
NIPG in the fact that the symmetrizing stabilizing term is removed. For this
method, the error analysis in the energy norm is identical to the analysis of
the SIPG method.

The outline of the paper is as follows: the model problem and scheme are
presented in Section 2. Section 3 contains the improved coercivity theorems.
Section 4 shows numerical examples in all dimensions that support our theo-
retical results. Some conclusions follow.

2 Model Problem and Scheme

Let Ω be a domain in R
d, d = 1, 2, 3. Let the boundary of the domain ∂Ω be

the union of two disjoint sets ΓD and ΓN . We denote n the unit normal vector
to each edge of ∂Ω exterior of Ω. For f given in L2(Ω), uD given in H

1

2 (ΓD)
and uN given in L2(ΓN), we consider the following elliptic problem:
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−∇ · (K∇u) + αu= f in Ω, (1)

u= uD on ΓD, (2)

K∇u · n= uN on ΓN . (3)

Here, the function α is a nonnegative scalar function and K is a matrix-valued
function K = (kij)1≤i,j≤d that is symmetric positive definite, i.e. there exist
two positive constants k0 and k1 such that

∀x ∈ R
d, k0x

T x ≤ xT Kx ≤ k1x
Tx. (4)

We can assume that the problem (1)-(3) has a unique solution in H1(Ω) when
|ΓD| > 0 or when α 6= 0. On the other hand, when ∂Ω = ΓN and α = 0,
problem (1)-(3) has a solution in H1(Ω) which is unique up to an additive
constant, provided

∫

Ω f = − ∫∂Ω g.

Let Th = {E}E be a subdivision of Ω, where E is an interval if d = 1, a
triangle if d = 2, or a tetrahedron if d = 3. Let

h = max
E∈Th

hE,

where hE is the diameter of E.

Let p be a positive integer. Denote by Pp(E) the space of polynomials of total
degree less than p on the element E. The finite element subspace is taken to
be

Dp(Th) = {vh ∈ L2(Ω) : ∀E ∈ Th vh|E ∈ Pp(E)}.
We note that there are no continuity constraints on the discontinuous finite
element spaces. In what follows, we will denote by ‖ · ‖O the L2 norm over the
domain O.

We now present the scheme. For readibility purposes, we separate the one-
dimensional case from the higher dimensional case.

2.1 SIPG in One Dimension

Assuming that Ω = (a, b), we can write the subdivision:

Th = {In = (xn, xn+1) : n = 0, . . . , N − 1}

with x0 = a and xN = b. We assume that ΓD = {a, b} and thus ΓN = ∅.

If we denote v(x+
n ) = lim

ε→0+
v(xn +ε) and v(x−

n ) = lim
ε→0+

v(xn −ε), we can define
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the jump and average of v at the endpoints of In:

∀n = 1, . . . , N − 1, [v(xn)] = v(x−
n )− v(x+

n ), {v(xn)} =
1

2
(v(x−

n ) + v(x+
n )),

[v(x0)] = −v(x+
0 ), {v(x0)} = v(x+

0 ), [v(xN)] = v(x−
N ), {v(xN)} = v(x−

N).

The SIPG finite element method for problem (1)-(3) is then : find uh in Dp(Th)
such that :

∀vh ∈ Dp(Th), A(uh, vh) = L(vh), (5)

where the bilinear form A and linear form L are defined by:

A(w, v) =
N−1
∑

n=0

∫ xn+1

xn

(K(x)w′(x)v′(x) + αw(x)v(x))dx +
σ0

|I1|
[w(x0)][v(x0)]

+
N−1
∑

n=1

σn

(

1

2|In+1|
+

1

2|In|
)

[w(xn)][v(xn)] +
σN

|IN |
[w(xN)][v(xN )]

−
N
∑

n=0

{K(xn)w′(xn)}[v(xn)] −
N
∑

n=0

{K(xn)v′(xn)}[w(xn)], (6)

L(v) =
∫ b

a
f(x)v(x)dx + K(a)v′(a)uD(a) − K(b)v′(b)uD(b)

+
σ0

|I0|
v(a)uD(a) +

σN

|IN |
v(b)uD(b), (7)

where {σn}n are real positive penalty parameters defined on each subinterval
In independently. We denote by σ > 0 the minimum of all σn. The energy
norm associated to A is:

∀vh ∈ Dp(Th), ‖vh‖E =
(N−1
∑

n=0

∫ xn+1

xn

(K(x)(v′
h(x))2 + α(x)(vh(x))2)dx

+
σ0

|I1|
[v(x0)]

2 +
N−1
∑

n=1

σn

(

1

2|In+1|
+

1

2|In|
)

[v(xn)]2 +
σN

|IN |
[v(xN)]2

)1/2

. (8)

2.2 SIPG in High Dimensions

Let Γh be the set of interior edges in 2D (or faces in 3D) of the subdivision
Th. With each edge (or face) e, we associate a unit normal vector ne. If e is
on the boundary ∂Ω, then ne is taken to be the unit outward vector to ∂Ω.

We now define the average and the jump for w:

∀e = ∂E1
e ∩ E2

e , {w} =
1

2
(w|E1

e
) +

1

2
(w|E2

e
), [w] = (w|E1

e
) − (w|E2

e
),

∀e = ∂E1
e ∩ ∂Ω, {w} = (w|E1

e
), [w] = (w|E1

e
).
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The general SIPG variational formulation of problem (1)-(3) is: find uh in
Dp(Th) such that:

∀vh ∈ Dp(Th), A(uh, vh) = L(vh), (9)

where the bilinear form A and linear form L are defined by:

A(w, v) =
∑

E∈Th

∫

E
K∇w · ∇v +

∫

Ω
αwv +

∑

e∈Γh∪ΓD

σe

|e|β0

∫

e
[w][v]

−
∑

e∈Γh∪ΓD

∫

e
{K∇w · ne}[v] −

∑

e∈Γh∪ΓD

∫

e
{K∇v · ne}[w], (10)

L(v) =
∫

Ω
fv −

∑

e∈ΓD

∫

e
(K∇v · ne)uD +

∑

e∈ΓD

∫

e

σe

|e|β0
vuD +

∑

e∈ΓN

∫

e
vuN . (11)

The penalty parameter σe is a positive constant on each edge (or face) e and
we denote by σ > 0 the minimum of all σe. The parameter β0 > 0 is a global
constant that, in general, is chosen to be one. If β0 > 1, then the SIPG method
is said to be superpenalized. The energy norm associated to A is:

∀vh ∈ Dp(Th), ‖vh‖E =
(

∑

E∈Th

∫

E
K(∇vh)

2 +
∫

Ω
αv2

h +
∑

e∈Γh∪ΓD

σe

|e|β0

∫

e
[vh]

2
)

1

2

.

(12)

2.3 Error Analysis

We recall the well-known results about the schemes (5) and (9).

Lemma 1 Consistency. The exact solution of (1)-(3) satisfies the discrete
variational problem (5) in one dimension and (9) in two or three dimensions.

Lemma 2 Coercivity. There exists a penalty σ∗ such that for any σ > σ∗ we
have

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗‖vh‖2
E ,

for some positive constant C∗ independent of h.

Lemma 3 Continuity. There exists a constant C̃ such that

∀vh, wh ∈ Dp(Th), A(vh, wh) ≤ C̃‖vh‖E‖wh‖E .

Theorem 4 Error estimates. Let u ∈ Hp+1(Ω) be the exact solution of (1)-
(3). Assume that the coercivity lemma holds true. In addition, assume that
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β0 ≥ 1. Then, there is a constant C independent of h, but dependent of 1
C∗

,
such that

‖u − uh‖E ≤ Chp|u|Hp+1(Ω).

These results are proved by using standard trace inequalities [6] and they can
be found for example in [2,3,13].

The aim of this work is to determine exactly what is the value σ∗ that would
guarantee the coercivity. We also obtain a precise expression for both coerciv-
ity and continuity constants C∗, C̃. We then show numerically that for penalty
values lower than σ∗, unstable solutions could occur.

3 Improved Coercivity and Continuity Lemmas

We will consider each dimension separately as the details of the proofs differ.

3.1 Estimation of σ∗ in One Dimension

Theorem 5 Let ε∗ = k0

2
. For any ε > 0, define

σ∗
n(ε) =











2k2
1
(p+1)2

ε
∀n = 1, . . . , N − 1,

3k2
1
(p+1)2

4ε
n = 0, N .

(13)

Then for any 0 < ε < ε∗, if σn > σ∗
n(ε) for all n, there is a constant 0 <

C∗(ε) < 1, independent of h, such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗(ε)‖vh‖2
E .

Moreover, an expression for C∗(ε) is:

C∗(ε) = min{1−2ε

k0

, 1−3k2
1(p + 1)2

4εσ0

, 1−2k2
1(p + 1)2

εσ1

, . . . , 1−2k2
1(p + 1)2

εσN−1

, 1−3k2
1(p + 1)2

4εσN

}.

Proof Choosing w = v in (6) yields

A(v, v) =
N−1
∑

n=0

∫ xn+1

xn

K(x)(v′(x))2dx − 2
N
∑

n=0

{K(xn)v′(xn)}[v(xn)] +
σ0

|I1|
‖[v(x0)]‖2

+
N−1
∑

n=1

σn

(

1

2|In+1|
+

1

2|In|
)

‖[v(xn)]‖2 +
σN

|IN |
‖[v(xN)]‖2. (14)
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It suffices to bound the term −2
∑N

n=0{K(xn)v′(xn)}[v(xn)] and obtain some
restrictions on the penalty parameters {σn}n for the coercivity to hold. Let
us first consider one interior point xn. By definition of the average and the
property (4), we have

|{K(xn)v′(xn)}| ≤ 1

2
|K(x−

n )v′(x−
n )| + 1

2
|K(x+

n )v′(x+
n )|

≤ k1

2
(|v′(x−

n )| + |v′(x+
n )|). (15)

For any interval I = (s, t), the following improved inverse trace inequality
holds [20]:

∀vh ∈ Pp(I), |vh(s)| ≤
p + 1
√

|I|
‖vh‖I . (16)

Hence using (16) we can bound |v′(x−
n )| and |v′(x+

n )|:

|v′(x−
n )| ≤ p + 1√

xn − xn−1

‖v′(x)‖(xn−1,xn), |v′(x+
n )| ≤ p + 1√

xn+1 − xn

‖v′(x)‖(xn,xn+1).

Using these bounds we obtained for the interior point xn of the subdivision:

{K(xn)v′(xn)}[v(xn)] ≤ k1(p + 1)

2

(

‖v′(x)‖(xn−1 ,xn)√
xn − xn−1

+
‖v′(x)‖(xn,xn+1)√

xn+1 − xn

)

|[v(xn)]|.
(17)

Let us consider now the boundary nodes x0 and xN :

{K(x0)v
′(x0)}[v(x0)] ≤ |K(x0)v

′(x0)[v(x0)]|

≤ k1(p + 1)
‖v′(x)‖(x1,x0)
√

(x1 − x0)
|[v(x0)]|, (18)

{K(xN )v′(xN)}[v(xN )] ≤ |K(xN )v′(xN)[v(xN )]|

≤ k1(p + 1)
‖v′(x)‖(xN−1,xN )
√

(xN − xN−1)
|[v(xN)]|. (19)

Combining the bounds above gives:

N
∑

n=0

{K(xn)v′(xn)}[v(xn)] ≤ k1(p + 1)

2

(

‖v′(x)‖(x0,x1)
|[v(x0)]|√
x1 − x0

+
N
∑

n=1

‖v′(x)‖(xn−1,xn)
(|[v(xn−1)]| + |[v(xn)]|)√

xn − xn−1
+ ‖v′(x)‖(xN ,xN−1)

|[v(xN)]|√
xN − xN−1

)

.
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After application of discrete Cauchy-Shwarz’s inequality we have:

N
∑

n=0

{K(xn)v′(xn)}[v(xn)] ≤
k1(p + 1)

2

(

2‖v′(x)‖2
(x0,x1)

+
N−1
∑

n=2

‖v′(x)‖2
(xn−1,xn)

+2‖v′(x)‖2
(xN ,xN−1)

)
1

2
(‖[v(x0)]‖2

x1 − x0

+
N
∑

n=1

(|[v(xn−1)]| + [v(xn)]|)2

xn − xn−1

+
‖[v(xN)]‖2

xN − xN−1

)
1

2

.

Application of Young’s inequality yields:

N
∑

n=0

{K(xn)v′(xn)}[v(xn)] ≤ ε

k0
‖K1/2v′(x)‖2

0,I1 +
N−1
∑

n=2

ε

2k0
‖K1/2v′(x)‖2

0,In

+
ε

k0
‖K1/2v′(x)‖2

0,IN
+

k2
1(p + 1)2

ε

(

3

8|I1|
[v(x0)]

2 +
N−1
∑

n=1

(

1

2|In|
+

1

2|In+1|
)

[(v(xn)]2 +
3

8|IN |
[v(xN)]2

)

.

(20)

Hence using the estimate (20) we obtain a lower bound for the bilinear form
(14):

A(v, v) ≥
(

1 − 2ε

k0

)
∫

I1
K(x)v′(x)2dx +

N−1
∑

n=2

(

1 − ε

k0

)
∫

In

K(x)v′(x)2dx

+
(

1 − 2ε

k0

)
∫

IN

K(x)v′(x)2dx +
(

σ0 −
3k2

1(p + 1)2

4ε

)

[v(x0)]
2

|I1|
(21)

+
N−1
∑

n=1

(

σn−
2k2

1(p + 1)2

ε

)(

1

2|In+1|
+

1

2|In|
)

[v(xn)]2+
(

σN−3k2
1(p + 1)2

4ε

)

[v(xN)]2

|IN |
.

Let us denote ε∗ = k0

2
. From (21) the bilinear form (14) is coercive if :

ε < ε∗ (22)

and

σn >



















2k2
1
(p+1)2

ε
∀n = 1, . . . , N − 1,

3k2
1
(p+1)2

4ε
n = 0, N .

(23)

This concludes the proof. 2

Similarly, one can show the following improved continuity constant.

Lemma 6 Under the notation of Theorem 5, the continuity constant C̃ of
Lemma 3 is given by:

C̃ = max{1 +
3

σ0
, 1 +

8

σ1
, . . . , 1 +

8

σN−1
, 1 +

3

σN
, 1 +

k2
1(p + 1)2

2k0
}.
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3.2 Estimation of σ∗ in Two Dimensions

In this section, we denote θT the angle such that sin θT has the smallest value
over all triangles. In two dimensions, it is to be noted that this angle θT
corresponds to the smallest angle over all triangles in the subdivision. We
show that the coercivity constant depends on θT . In Section 4, we outline a
simple algorithm for computing such angle.

Theorem 7 For any ε > 0, define

σ∗
e(ε) = 5

k2
1

ε
(p + 1)(p + 2) cot θT |e|β0−1. (24)

Then for any 0 < ε < k0, if σe > σ∗
e(ε) for all e, there is a constant 0 <

C∗(ε) < 1, independent of h, such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗(ε)‖vh‖2
E .

An expression for C∗ is:

C∗(ε) = min
e∈Γh∪ΓD

{1 − ε

k0

, 1 − 5

εσe

k2
1(p + 1)(p + 2) cot θT |e|β0−1}.

Proof:

Similarly, as in the one-dimensional case, we choose w = v in (10):

A(v, v) =
∑

E∈Th

∫

E
K(∇v)2 +

∫

Ω
αv2

−2
∑

e∈Γh∪ΓD

∫

e
{K∇v · ne}[v] +

∑

e∈Γh∪ΓD

σe

|e|β0

∫

e
[v]2. (25)

In order to have coercivity of the bilinear form we need to bound the term
−2

∑

e∈Γh∪ΓD

∫

e{K∇v · ne}[v].

Let us first consider one interior edge e shared by two triangles E1 and E2.
Applying Cauchy-Schwarz inequality we have:

∫

e
{K∇v · ne}[v] ≤ ‖{K∇v · ne}‖e‖[v]‖e. (26)

Using the definition of the average and the property (4), we have

‖{K∇v · ne}‖e ≤
1

2
‖K∇v · ne|E1

‖e +
1

2
‖K∇v · ne|E2

‖e.
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Fig. 1. Angles and edges in a generic triangle.

≤ 1

2

(

‖K∇v|E1
‖e + ‖K∇v|E2

‖e

)

≤ k1

2

(

‖∇v|E1
‖e + ‖∇v|E2

‖e

)

, (27)

so we obtain for the interior edge e:

∫

e
{K∇v · ne}[v] ≤ k1

2

(

‖∇v|E1
‖e + ‖∇v|E2

‖e

)

‖[v]‖e. (28)

Similarly, for a boundary edge e belonging to the boundary of element E:
∫

e
{K∇v · ne}[v] ≤ k1‖∇v|E‖e‖[v]‖e. (29)

We now recall the inverse inequality valid on an edge of a triangle E [20]:

∀vh ∈ Pp(E), ‖vh‖e ≤
√

√

√

√

(p + 1)(p + 2)

2

|e|
|E|‖u‖E. (30)

Hence in (30) we need to estimate the ratio |e|
|E|

, where e is one edge of a
triangle E. For this, we consider a triangle with edges e1, e2 and e3. We denote
by θij the interior angle between edge ei and edge ej (see Fig. 1).Without loss
of generality, we assume that e = e3.

The area of the triangle E is given by the formula:

|E| =
1

2
|ei||ej| sin θij =

1

4
|e3||e1| sin θ13 +

1

4
|e3||e2| sin θ23

The length of the edge e in the triangle E can also be written as :

|e| = |e3| = |e1| cos θ13 + |e2| cos θ23.

Hence, using the smallest angle θT we have:

|e|
|E| =

4

|e|
( |e1| cos θ13 + |e2| cos θ23

|e1| sin θ13 + |e2| sin θ23

)

≤ 4

|e|
( |e1| cos θT + |e2| cos θT

|e1| sin θT + |e2| sin θT

)

.

So we obtain the following estimate :

|e|
|E| ≤

4 cot θT

|e| . (31)
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Then using inverse inequality (30), and the estimate (31) in (28) and (29) we
obtain for the interior edge e of the triangle E1 and E2:

∫

e
{K∇v · ne}[v] ≤ k1

√

√

√

√

(p + 1)(p + 2)

2|e| cot θT

(

‖∇v‖0,E1
+ ‖∇v‖0,E2

)

‖[v]‖e,

(32)
and for the boundary edge:

∫

e
{K∇v · ne}[v] ≤ k1

√

√

√

√

2(p + 1)(p + 2)

|e| cot θT ‖∇v‖E‖[v]‖e. (33)

Combining the bounds above and using discrete Cauchy-Schwarz’s inequality,
we obtain:

∑

e∈Γh∪ΓD

∫

e
{K∇v · ne}[v] ≤ k1

√

(p + 1)(p + 2) cot θT

×
(

∑

e∈Γh

1√
2
(‖∇v‖E1

+ ‖∇v‖E2
)

1
√

|e|
‖[v]‖e +

∑

e∈ΓD

√
2‖∇v‖E

1
√

|e|
‖[v]‖e

)

≤ k1

√

(p + 1)(p + 2) cot θT

×
(

∑

e∈Γh

(‖∇v‖2
E1

+ ‖∇v‖2
E2

) +
∑

e∈ΓD

2‖∇v‖2
E

)1/2(
∑

e∈Γh∪ΓD

1

|e|‖[v]‖2
e

)1/2

. (34)

We now rewrite the first sum over edges as a sum over triangles by decom-
posing the subdivision into disjoint sets T0, T1D, T2D, T1N , T2N and T2DN . The
set T0 represents the set of triangles with three interior edges. The set T1D

represents the set of triangles with two interior edges and one boundary edge
of Dirichlet type. The set T2D represents the set of triangles with one interior
edge and two edges on the Dirichlet boundary. The set T1N represents the set
of triangles with two interior edges and one boundary edge of type Neumann.
The set T2N represents the set of triangles with one interior edge and two
boundary edges of type Neumann. Finally, the set T2DN represents the set of
triangles with one interior edge, one Neumann edge and one Dirichlet edge.
The sum over edges can then be rewritten as:

∑

e∈Γh

(‖∇v‖2
E1

+ ‖∇v‖2
E2

) +
∑

e∈ΓD

2‖∇v‖2
E =

∑

E∈T0

3‖∇v‖2
E +

∑

E∈T1D

4‖∇v‖2
E

+
∑

E∈T2D

5‖∇v‖2
E +

∑

E∈T1N

2‖∇v‖2
E +

∑

E∈T2N

‖∇v‖2
E +

∑

E∈T2DN

3‖∇v‖2
E

≤ 5
∑

E∈Th

‖∇v‖2
E.

11



Therefore, by using Young’s inequality and the property (4), we have for any
positive ε:

∑

e∈Γh∪ΓD

∫

e
{K∇v · ne}[v] ≤ ε

2k0

∑

E∈Th

∫

E
K(∇v)2

+
5

2ε

∑

e∈Γh∪ΓD

k2
1(p + 1)(p + 2) cot θT |e|β0−1

|e|β0

∫

e
[v]2. (35)

Therefore using the estimate (35) we have the following lower bound for the
bilinear form (25):

A(v, v) ≥
(

1 − ε

k0

)

∑

E∈Th

‖K 1

2∇v‖2
E

+
∑

e∈Γh∪ΓD

σe − 5
ε
k2

1(p + 1)(p + 2) cot θT |e|β0−1

|e|β0
‖[v]‖2

e. (36)

From (36) the bilinear form (25) is coercive if the following two conditions
hold:

ε < k0, (37)

σe > 5
k2

1

k0
(p + 1)(p + 2) cot θT |e|β0−1. (38)

This concludes the proof. 2

Corollary 8 Assume that no super-penalization is used, namely β0 = 1, then
the estimate is independent of h:

∀0 < ε < k0, σ∗
e(ε) = 5

k2
1

ε
(p + 1)(p + 2) cot θT .

Lemma 9 Under the notation of Theorem 7, the continuity constant C̃ of
Lemma 3 is given by:

C̃ = max
e∈Γh∪ΓD

{1 +
|e|β0−1

σ0
e

, 1 +
5k2

1

k0
(p + 1)(p + 2) cot θT }.

3.3 Estimation of σ∗ in Three Dimensions

Theorem 10 Let θT denote the dihedral angle such that sin θT has the small-
est value over all tetrahedrons in the subdivision. For any ε > 0, define

σ∗
e(ε) =

21

4

k2
1

ε
(p + 1)(p + 3)h| cot θT ||e|β0−1. (39)

12
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Fig. 2. A tetrahedral element with faces ei.

Then for any 0 < ε < k0, if σe > σ∗
e(ε) for all faces e, there is a constant

0 < C∗(ε) < 1, independent of h, such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗‖vh‖2
E .

An expression for C∗ is

C∗(ε) = min
e∈Γh∪ΓD

{1 − ε

k0
, 1 − 21

4εσe
k2

1(p + 1)(p + 3)| cot θT ||e|β0−1}.

Proof: The proof is similar to the one for the two-dimensional case, and thus
we will skip some technical details. We first recall the inverse inequality in 3D
for a tetrahedral element E with face e [20]:

∀vh ∈ Pp(E), ‖vh‖e ≤
√

√

√

√

(p + 1)(p + 3)

3

|e|
|E|‖vh‖E. (40)

Here, |e| is the area of the face and |E| is the volume of the tetrahedral element.

So as in the case of the triangle we need to estimate the ratio |e|
|E|

. For this,
we fix an element E in Th and we denote by ei, i = 1, . . . , 4 the faces of E and
by dij the common edge to faces ei and ej. We will assume that the face e is
denoted by e4. We also denote by θij the dihedral angle between faces ei and
ej. A schematic is given in Fig. 2. The volume of the tetrahedron is given by
the formula [15]:

|E| =
2

3|dij|
|ei||ej| sin θij, (41)

therefore we can rewrite the volume as:

|E| =
1

3

(

2

3|d14|
|e4||e1| sin θ14 +

2

3|d24|
|e4||e2| sin θ24 +

2

3|d34|
|e4||e3| sin θ34

)

=
2

9
|e4|

( |e1|
d14

sin θ14 +
|e2|
d24

sin θ24 +
|e3|
d34

sin θ34

)

. (42)

Hence, using the fact that |dij| ≤ h, we have :

|e|
|E| =

|e4|
|E| =

|e4|
2
9
|e4|

(

|e1|
|d14|

sin θ14 + |e2|
|d24|

sin θ24 + |e3|
|d34|

sin θ34

)

13



≤ 9

2|e4|
|e4|

(

|e1|
h

sin θ14 + |e2|
h

sin θ24 + |e3|
h

sin θ34

)

≤ 9

2

h

|e4|
|e4|

(

|e1| sin θ14 + |e2| sin θ24 + |e3| sin θ34

) . (43)

The relation between areas of the faces and dihedral angles in general tetra-
hedron is given by the formula [15]:

|ek| =
4
∑

i6=k
i=1

|ei| cos θki. (44)

Hence we have using (44) in (43) and using dihedral angle θT defined above:

|e|
|E| ≤

9

2

h

|e4|
( |e1| cos θ14 + |e2| cos θ24 + |e3| cos θ34

|e1| sin θ14 + |e2| sin θ24 + |e3| sin θ34

)

≤ 9

2

h

|e4|
( |e1|| cos θT | + |e2|| cos θT | + |e3|| cos θT |

|e1| sin θT + |e2| sin θT + |e3| sin θT

)

.

Therefore we obtain the following estimate for a given face e in tetrahedral
element E:

|e|
|E| ≤

9

2

h| cot θT |
|e| , (45)

which is similar to estimate (31). Using a similar argument as in the triangular
case, we obtain for the interior face e of the tetrahedral element E1 and E2:

∫

e
{K∇v · ne}[v] ≤ k1

√

√

√

√

3(p + 1)(p + 3)

8|e| h| cot θT |
(

‖∇v‖E1
+ ‖∇v‖E2

)

‖[v]‖e.

(46)
and for the boundary face we have :

∫

e
{K∇v · ne}[v] ≤ k1

√

√

√

√

3(p + 1)(p + 3)

2|e| h| cot θT |‖∇v‖E‖[v]‖e (47)

Therefore we can estimate now the term
∑

e∈Γh∪ΓD

∫

e{K∇v · ne}[v]. We first
apply a discrete Cauchy-Schwarz’s inequality, then we decompose the subdi-
vision into disjoint sets T0, T1D, T2D, T3D, . . . as in the 2D case. The greatest
coefficient corresponds to the case of a tetrahedron with three Dirichlet bound-
ary faces. Therefore, it is easy to see that we obtain for any ε > 0:

∑

e∈Γh∪ΓD

∫

e
{K∇v · ne}[v] ≤ ε

2k0

∑

E∈Th

∫

E
K(∇v)2+

14



21

8ε

∑

e∈Γh∪ΓD

k2
1(p + 1)(p + 3)h| cot θT ||e|β0−1

|e|β0

∫

e
[v]2. (48)

Therefore using the estimate (48) we have the following bound for the bilinear
form (25):

A(v, v) ≥
(

1 − ε

k0

)

∑

E∈Th

‖K 1

2 (∇v)‖2
E+

∑

e∈Γh∪ΓD

σe − 21
4ε

k2
1(p + 1)(p + 3)h| cot θT ||e|β0−1

|e|β0
‖[v]‖2

e. (49)

Coercivity is then obtained for ε and σe satisfying the bounds:

ε < k0, (50)

σe >
21

4

k2
1

ε
(p + 1)(p + 3)h| cot θT ||e|β0−1. (51)

This concludes the proof. 2

Corollary 11 Assume that no super-penalization is used, namely β0 = 1,
then the estimate becomes:

σ∗
e =

21

4

k2
1

k0
(p + 1)(p + 3)h| cot θT |.

Lemma 12 Under the notation of Theorem 10, the continuity constant C̃ of
Lemma 3 is given by:

C̃ = max
e∈Γh∪ΓD

{1 +
|e|β0−1

σ0
e

, 1 +
21

4

k2
1

k0
(p + 1)(p + 2)h| cot θT |}.

4 Numerical examples

We now present simple computations obtained for the domains Ω1, Ω2, Ω3 in
1D, 2D and 3D respectively. The exact solutions are periodic functions defined
by:

u1(x) = cos(8πx) on Ω1 = (0, 1),

u2(x) = cos(8πx) + cos(8πy) on Ω2 = (0, 1)2,

u3(x) = cos(8πx) + cos(8πy) + cos(8πz) on Ω3 = (0, 1)3.

The tensor K is the identity tensor. We fix β0 = 1. We vary the number
of elements Nh in the mesh, the polynomial degree and the penalty value
(denoted by σ) that is chosen, for simplicity, constant over the whole domain.
In each case, we precise the limiting penalty value σ∗∗ = σ∗(ε∗).
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Fig. 3. p = 1, σ = 0.5: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Fig. 4. p = 1, σ = 16.5: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).

4.1 One-dimensional Problem

We first consider the case of piecewise linears on several meshes containing
10, 20 and 40 intervals respectively. In all figures, the exact solution is drawn
as a dashed line whereas the numerical solution is drawn as a solid line. For a
penalty value σ = 0.5 that is smaller than σ∗∗ = 16, oscillations occur for all
three meshes (see Fig. 3) and the numerical error is large. When σ > σ∗∗, the
numerical solution is accurate (see Fig. 4). The two curves coincide with each
other. The errors decrease as the mesh is refined according to the theoretical
convergence rate given in Theorem 4.

We repeat the numerical experiments with piecewise quadratics and piecewise
cubics. Unstable solutions are obtained for penalty values below the threshold
value (see Fig. 5 and Fig. 7). The stable and convergent solutions are shown
in Fig. 6 and Fig. 8. It is interesting to point that for the unstable penalty
σ = 3.5832, the solution is accurate for the mesh with 20 elements; however
large oscillations occur on meshes with 10 and 40 elements. Finally, Fig. 9
corresponds to a zero penalty on a coarse mesh and a very fine mesh: as
expected, refining the mesh is not enough to recover from the loss of coercivity.

A more precise estimate of the accuracy is given in Table 4.1. The absolute
L2 error ‖u − uh‖Ω and H1 error (

∑

E∈Th

(‖∇(u − uh)‖2
E + ‖u − uh‖2

E))1/2 are

computed for each simulation. We also indicate the limiting penalty values σ∗∗
n

for all n = 0, . . . , N . For stable solutions, we choose penalty values that are
greater than the limiting value. It is to be noted that when σ is very close to
the limiting value σ∗∗

n , the coercivity constant C∗ is very close to zero. In that
case, numerical oscillations could still occur. This poor coercivity property is
discussed in detail in [10].
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Table 1
Numerical errors for one-dimensional simulations.

Nh p σn σ∗∗
n

0<n<N
σ∗∗

n
n=0,N

L2 error H1 error

10 1 0 16 12 251.7794 267.3055

160 1 0 16 12 1.5748 2.6545

10 1 0.5 16 12 1.4784 19.2168

10 1 16.5 16 12 0.3167 11.6277

20 1 0.5 16 12 1.1143 40.2165

20 1 16.5 16 12 0.0931 6.2879

40 1 0.5 16 12 0.1334 9.7613

40 1 16.5 16 12 0.0247 3.2048

10 2 1.375 36 27 0.3166 13.8899

10 2 37 36 27 0.0558 3.8357

20 2 1.375 36 27 0.2620 22.1213

20 2 37 36 27 0.0073 1.0252

40 2 1.375 36 27 0.1265 21.1474

40 2 37 36 27 9.1352 × 10−4 0.2606

10 3 3.5832 64 48 0.1111 9.4335

10 3 65 64 48 0.0082 0.8264

20 3 3.5832 64 48 0.0072 1.2450

20 3 65 64 48 5.5723 × 10−4 0.1093

40 3 3.5832 64 48 1.3497 467.8908

40 3 65 64 48 3.5977 × 10−5 0.0138
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Fig. 5. p = 2, σ = 1.375: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).

4.2 Two-dimensional Problem

We first explain how to obtain the angle θT . This angle will give the largest
cos θ, or the largest cot θ over all triangle angles θ. For a given element E, we
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Fig. 6. p = 2, σ = 37: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Fig. 7. p = 3, σ = 3.5832: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Fig. 8. p = 3, σ = 65: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−200

−100

0

100

200

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Fig. 9. p = 1, σ = 0: coarse mesh Nh = 10 (left) and refined mesh Nh = 160 (right).

compute a value cot θE defined by:

(1) Compute the lengths of the edges of E from the vertices coordinates
(xE

i , yE
i ):

|e1| =
(

xE
2 − xE

1 )2 + (yE
2 − yE

1 )2)1/2

|e2| =
(

xE
3 − xE

1 )2 + (yE
3 − yE

1 )2)1/2

|e3| =
(

xE
2 − xE

3 )2 + (yE
2 − yE

3 )2)1/2

(2) Determine the smallest length, say |ei1|. Denote the other two lengths by
|ei2 | and |ei3|.

(3) Compute cot θE:

cos θE =
|ei2 |2 + |ei3 |2 − |ei1 |2

2|ei1||ei2 |
, sin θE = (1−(cos θE)2)1/2, cot θE =

cos θE

sin θE

18



X

Y

0 1
0

1

Fig. 10. Structured mesh with 128 elements.

Fig. 11. Exact solution: two-dimensional view (left) and three-dimensional view
(right)

The value cot θT is the maximum of cot θE over all mesh elements E.

We solve the problem on structured meshes as shown in Fig. 10. For this
mesh, the smallest angle is θT = π

4
. The exact solution for reference is shown

in Fig. 11. In Fig. 12 and 13, we first consider polynomial degree equal to
one on a very fine mesh (2048 elements): the penalty parameter takes the
values 0, 3 and 50. In this case, the limiting value is σ∗∗ = 30. For a penalty
value above the limiting value, no oscillations occur whereas for a penalty
value below σ∗∗, the solution is unstable. Fig. 14 and 15 show the solution
for polynomial degree 2 on a mesh containing 128 elements. We then refine
the mesh (512 elements) and obtain Fig. 16 and 17. Finally, for the case of
piecewise cubic polynomials, the solutions are shown in Fig. 18 and 19 for a
mesh containing 32 elements, and in Fig. 20 and 20 for a mesh containing 128
elements.

We give the error in the L2 norm for all cases and we also give the limiting
value σ∗∗ in Table 4.2. For a given penalty, the error decreases as the mesh
is refined. Similar conclusions as in the one-dimensional case can be made.
For stable method, the error decreases with the right convergence rate. For
unstable method, oscillations may occur.
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Table 2
Numerical errors for two-dimensional simulations.

Nh p σe σ∗∗ L2 error H1
0 error

2048 1 0 30 1.6208681 7.9950783

2048 1 3 30 9.7490787 × 10−1 1.8162526 × 102

2048 1 50 30 5.0342187 × 10−2 5.5419916

128 2 0 60 2.7842956e 1.1398348 × 102

128 2 4.5 60 4.9175469 2.8412357 × 102

128 2 100 60 1.7501758 × 10−1 10.840289

512 2 0 60 5.2324755 × 10−2 4.3847913

512 2 4.5 60 1.7144388 × 10−1 20.100636

512 2 100 60 1.7976364 × 10−2 2.1627031

32 3 0 100 4.6476606 × 10−1 6.6199869

32 3 11 100 52.643677 3.2830936 × 103

32 3 150 100 4.7347586 × 10−1 10.663237

128 3 0 100 7.8099710 × 10−3 6.0682964 × 10−1

128 3 11 100 2.1133410 × 10−1 25.599158

128 3 150 100 6.2219837 × 10−3 4.8017076 × 10−1

Fig. 12. Two-dimensional view for p = 1, Nh = 2048: σ = 0 (left), σ = 3 (center),
σ = 55 (right).

Fig. 13. Three-dimensional view for p = 1, Nh = 2048: σ = 0 (left), σ = 3 (center),
σ = 55 (right).
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Fig. 14. Two-dimensional view for p = 2, Nh = 128: σ = 0 (left), σ = 4.5 (center),
σ = 100 (right).

Fig. 15. Three-dimensional view for p = 2, Nh = 128: σ = 0 (left), σ = 4.5 (center),
σ = 100 (right).

Fig. 16. Two-dimensional view for p = 2, Nh = 512: σ = 0 (left), σ = 4.5 (center),
σ = 100 (right).

Fig. 17. Three-dimensional view for p = 2, Nh = 512: σ = 0 (left), σ = 4.5 (center),
σ = 100 (right).

4.3 Unstructured 2D mesh

We consider an unstructured coarse mesh shown in Fig. 22. This mesh contains
219 triangles and 876 triangles after uniform refinement. We only present
some results for the case of piecewise quadratic approximations. As before we
vary the penalty parameters σ = 0, 7, 5, 150. The limiting penalty value is
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Fig. 18. Two-dimensional view for p = 3, Nh = 32: σ = 0 (left), σ = 11 (center),
σ = 150 (right).

Fig. 19. Three-dimensional view for p = 3, Nh = 32: σ = 0 (left), σ = 11 (center),
σ = 150 (right).

Fig. 20. Two-dimensional view for p = 3, Nh = 128: σ = 0 (left), σ = 11 (center),
σ = 150 (right).

Fig. 21. Three-dimensional view for p = 3, Nh = 128: σ = 0 (left), σ = 11 (center),
σ = 150 (right).

σ∗∗ = 129.4676. The solutions on the coarse mesh are shown in Fig. 23 and
24 whereas the solutions on a refined mesh are shown in Fig. 25 and 26.

We give the error in the L2 and H1
0 norms for all cases in Table 4.3.

We present in Fig. 27 the numerical convergence of the SIPG solution for a
”good” penalty value (larger than σ∗∗) and a ”bad” penalty value (smaller
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Fig. 22. Unstructured mesh with 219 elements.

Table 3
Numerical errors for two-dimensional unstructured mesh simulations.

Nh p σe σ∗∗ L2 error H1
0 error

219 2 0 129.4676 1.0262113 52.510991

219 2 7.5 129.4676 6.3221136 × 10−1 66.159341

219 2 150 129.4676 5.9683013 × 10−2 4.9992556

876 2 0 129.4676 5.5677943 × 10−2 5.8047835

876 2 7.5 129.4676 2.2284393 × 10−2 4.3895847

876 2 150 129.4676 8.0261140 × 10−3 1.2883024

Fig. 23. Two-dimensional view for unstructured mesh and p = 2, Nh = 219: σ = 0
(left), σ = 7.5 (center), σ = 150 (right).

Fig. 24. Three-dimensional view for unstructured mesh and p = 2, Nh = 219: σ = 0
(left), σ = 7.5 (center), σ = 150 (right).
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Fig. 25. Two-dimensional view for unstructured mesh and p = 2, Nh = 876: σ = 0
(left), σ = 7.5 (center), σ = 150 (right).

Fig. 26. Three-dimensional view for unstructured mesh and p = 2, Nh = 876: σ = 0
(left), σ = 7.5 (center), σ = 150 (right).
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Fig. 27. Numerical convergence rates for the case σ = 3 (dashed line) and σ = 50
(solid line): H1

0 errors (left) and L2 errors (right).

than σ∗∗). Piecewise linear approximation is used. The stable solution con-
verges with the expected convergence rate (O(h2) for the L2 error) whereas
the unstable solution does not converge as the mesh size decreases.

4.4 Three-dimensional Problem

We first explain how to obtain the angle θT . The value | cot θT | is the maximum
of | cot θE| over all mesh elements E. For a given element E, the angle θE is
the one that yields the smallest sin θE,ξ over all edges ξ of the tetrahedron.
We now explain how to obtain θE,ξ for given E and ξ.

(1) Compute the equations of the planes corresponding to the two faces of
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Fig. 28. Solution on tetrahedral mesh: σ = 5 (left) and σ = 80 (right).

E that share the common edge ξ.

∀i = 1, 2, ai
E,ξx + bi

E,ξy + ci
E,ξz + di

E,ξ = 0.

(2) The normal vectors to those two faces are

i = 1, 2, nei
= (ai

E,ξ, b
i
E,ξ, c

i
E,ξ).

(3) Compute cos θE,ξ and sin θE,ξ:

cos θE,ξ = ne1
· ne2

, sin θE,ξ = (1 − (cos θE,ξ)
2)1/2.

The mesh contains 8640 tetrahedral elements. Piecewise quadratic approxi-
mation is used. In Fig. 28, we show the numerical solution with penalty val-
ues σ = 5 and σ = 80. The limiting penalty value for these simulations is
σ∗∗ = 78.75. The absolute L2 error is 1.5074340 for σ = 5 and 0.32264918
for σ = 80. The absolute H1

0 error is 112.83199 for σ = 5 and 19.834390 for
σ = 80.

5 Conclusions

By presenting lower bounds of the penalty parameter useful for practical com-
putations, this paper removes one known disadvantage of the symmetric inte-
rior penalty methods, namely the fact that stability of the method is obtained
for an unknown large enough penalty value. Even though we focused on the el-
liptic problems, our improved coercivity and continuity results can be applied
to the analysis of the SIPG method for time-dependent problems.
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