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Abstract

When discussing numerical solutions of the Navier-Stokes equations, especially when turbu-
lent flows are concerned, there are at least two questions that can be raised. What is meaningful
to compute? How to determine the fidelity of the computed solution with respect to the true
solution? This paper takes a step to the answer of these questions for turbulent flows. We
consider long time averages of weak solutions of the Navier-Stokes equations, rather than strong
solutions. We present time averaged error estimates for the time averaged energy dissipation
rate, drag and lift. For shear flows, we address the question of fidelity of the computed solution
with respect to the true solution, in view of Kolmogorov’s energy cascade theory.

1 Introduction

The motion of an incompressible fluid is governed by the incompressible Navier-Stokes equations. A
fundamental problem of fluid motion is turbulence and a fundamental problem in the Navier-Stokes
equations is that of uniqueness of weak solutions in the general case of no assumed extra regularity
or small data. The Leray conjecture [14] is that these two problems are connected: the lack of
uniqueness of weak solutions (which he called “turbulent solutions”) is not an artifact of imperfect
mathematical techniques but it reflects fundamental physical mechanisms of turbulence.

The numerical analysis of turbulent flows is caught between the gaps in the physical understand-
ing of turbulence and those in the mathematical foundations of the Navier-Stokes equations. For
example, smooth strong solutions are not expected while, if the uniqueness of the weak solution is
unknown, bounding the error in a numerical simulation is currently not possible without assuming
extra regularity on the solution, or without assuming both the initial data u0 and the body force
f(x, t) are very small.

On the other hand, computational simulations are carried out and statistics of computed fluid
velocities and pressures often reflect rather accurately statistics of physical flows even in the absence
of mathematical justification for this accuracy. Further, statistics (by which we shall mean long time
averages) are often smooth, behave deterministically (often in accord with the Kolmogorov theory
[12]) in both numerical simulations and in physical experiments. From this situation, a challenge
for the numerical analysis of fluid motion arises: develop a rigorous understanding of how statistics
computed from numerical simulations reflect those for the unknown solution of the Navier-Stokes
equations.
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The incompressible Navier-Stokes equations are given by

ut + u · ∇u− ν∇u +∇p = f(x, t), x ∈ Ω, 0 < t < ∞ (1.1)
∇ · u = 0, x ∈ Ω, 0 < t < ∞
u(x, 0) = u0(x), x ∈ Ω
u = 0 on ∂Ω, t ≥ 0.

Here, Ω denotes a bounded and regular flow domain in Rd (d=2 or 3), u(x, t), p(x, t) denotes the
fluid velocity and pressure, ν is the viscosity, f(x, t) ∈ L∞(0,∞; L2(Ω)) are the body forces and
u0 ∈ L2(Ω) is a weakly divergence free initial condition. The Reynolds number Re is the inverse of
the viscosity.

We will study statistics of the energy dissipation rate and the total kinetic energy of the flow.
The energy dissipation rate of the flow at time t is given by

ε(u) :=
ν

|Ω | ||∇u(·, t) ||2,

where |Ω | is the measure of Ω and || · || denotes the L2(Ω)-norm, and its total kinetic energy is

k(u) :=
1
2
||u(·, t) ||2.

The time average < q > of a quantity q is defined by

< q >= lim sup
T→∞

1
T

∫ T

0

q(t) dt,

such that time average of the energy dissipation rate is

< ε(u) >= lim sup
T→∞

1
T

∫ T

0

ε(u) dt = lim sup
t→∞

1
T

∫ T

0

ν

|Ω | ||∇u||2 dt,

and the time average of the kinetic energy is

< k(u) >= lim sup
T→∞

1
T

∫ T

0

k(u) dt.

In practical simulations of turbulent flows, it is typical to output time averaged flow statistics
(which are then matched against benchmark averages, e.g. [1, 11, 9, 10, 15, 4]). However, there is
very little numerical analysis in support of these calculations. Of course, if the error in certain norms
of the velocity and the pressure is provably optimal over 0 ≤ t < ∞ then time averages involving
these norms are convergent as well. But, the practical case is complementary: time averages seem
to be predictable even when dynamic flow behavior over bounded time intervals is irregular. This
is the case we aim to study. However, a complete analysis seems to be still beyond the present
mathematical tools.

We consider herein as a first step the case of arbitrary initial data u0 and asymptotically small
body forces which converge to a stationary limit f∗(x) = limt→∞ f(x, t). Let (uh, ph) be a finite
element approximation of the velocity field and the pressure and assume that a small data condition
is satisfied. Let u∗ be the solution of the stationary Navier-Stokes equations with body force f∗.
We show that

< ε(u− u∗) >= 0, < ε(uh − u∗h) >= 0.

and we prove, see Theorem 3.2, an error estimate which shows that the problem of estimating
< ε(u−uh) > reduces to the one of estimating ||∇(u∗−u∗h)||2. So the error goes to zero optimally
as the mesh width h → 0. This result is plausible because the possible irregularities caused by large
initial data are washed out by the time averaging.
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Section 4 studies the flow around a body. The results of Section 3 are used to give estimates for
the time averaged drag and the lift coefficients at the body.

In Section 5, we consider the complementary situation of a flow driven by a large and persistent
boundary condition. We are not (yet) able to perform a complete error analysis in this case. However,
following the important work of Constantin and Doering [3] in the continuous case, we show that
provided the first mesh line in the finite element mesh is within O(1/Re) of the moving wall which
drives the flow, then the computed time averaged energy dissipation rate for the shear flow scales
as predicted for the continuous flow by the Kolmogorov theory:

< ε(uh) > ≤ C
U3

L
.

This restriction on the mesh size arises from mathematical analysis of constructible background flows
in finite element spaces and their subsequent analysis. However, it is in accordance with entirely
different observation of the thickness of time averaged turbulent boundary layers [19].

2 Mathematical Preliminaries

The velocity at a given time t is sought in the space

X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇ v ∈ L2(Ω)d×d and v = 0 on ∂Ω}

equipped with the norm ‖v‖X = ‖∇v‖. The norm of the dual space of X is denoted by by || · ||−1.
The pressure at time t space is sought in

Q = L2
0(Ω) =

{
q : q ∈ L2(Ω) ,

∫

Ω

q dx = 0
}

.

In addition, the space of weakly divergence free functions is denoted by

V = {v ∈ X : (∇ · v, q) = 0 for all q ∈ Q}.

For Y being a function space of functions v : [0,∞) → Y , we use the notation

Lp(0, T ; Y ) =

{
v : v(t) : (0, T ) → Y, strongly measurable and

∫ T

0

|| v(t) ||pY dt < ∞
}

,

with 1 ≤ p < ∞, and the usual modification is made if p = ∞.
Define the trilinear forms on X× X× X:

b(u, v, w) =
∫

Ω

u · ∇v · w dx, and b∗(u, v, w) =
1
2
b(u, v, w)− 1

2
b(u,w, v).

Let M ≥ N denote the finite constants

M = sup
u,v,w∈X

b∗(u, v, w)
||∇u || || ∇v || ||∇w || < ∞ and N = sup

u,v,w∈V

b∗(u, v, w)
||∇u || || ∇v || || ∇w || < ∞. (2.1)

Corresponding constants Mh and Nh are defined by replacing X by the finite element space Xh ⊂ X
and V by Vh ⊂ X (defined below). Note that M ≥ Mh, Nh, N and that as h → 0, Nh → N (see
[6]) and by the same argument Mh → M .

We shall assume throughout the paper that the velocity-pressure finite element spaces Xh ⊂
X and Qh ⊂ Q are conforming, have approximation properties typical of finite element spaces
commonly in use and satisfy the discrete inf-sup condition,

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)
||∇vh || || qh || ≥ βh > 0,
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where βh is bounded away from zero uniformly in h. The space of discretely divergence free functions
is defined as

Vh = {vh ∈ Xh : (qh, ∇ · vh) = 0, ∀ qh ∈ Qh}.

For examples of such spaces see, e.g., Gunzburger [8], Brezzi and Fortin [2] and Girault and
Raviart [6].

2.1 The Continuous in Time Finite Element Discretization

Consider the standard finite element discretization of the Navier-Stokes equations. The semi-discrete
(continuous in time) finite element approximations uh = uh(·, t) and ph = ph(·, t) are maps uh :
[ 0,∞ ) → Xh, ph : [ 0,∞ ) → Qh satisfying

(uh
t , vh) + ν(∇uh,∇vh) + b∗(uh, uh, vh)− (ph,∇ · vh) = (f, vh) ∀ vh ∈ Xh (2.2)

(∇ · uh, qh) = 0 ∀ qh ∈ Qh (2.3)
(uh(·, 0)− u0, v

h) = 0 ∀ vh ∈ Xh.

Under the inf-sup condition (2), this is equivalent to: find uh : [ 0,∞ ) → V h satisfying

(uh
t , vh) + ν(∇uh,∇vh) + b∗(uh, uh, vh) = (f, vh), ∀ vh ∈ Vh, (2.4)

(uh(·, 0)− u0, v
h) = 0 ∀ vh ∈ Vh.

2.2 The Associated Equilibrium Problem

Consider the Navier-Stokes (1.1). When f(x, t) → f∗(x) as t →∞, we can associate with (1.1) the
following equilibrium problem: find u∗(x), p∗(x) satisfying

−ν∆u∗ + u∗ · ∇u∗ +∇p∗ = f∗ in Ω
∇ · u∗ = 0 in Ω (2.5)

u∗ = 0, on ∂Ω, and
∫

Ω

p∗dx = 0.

The variational formulation of the equilibrium problem is: Find u∗ ∈ X and p∗ ∈ Q such that

ν(∇u∗,∇v) + b∗(u∗, u∗, v)− (p∗,∇ · v) = (f∗, v) ∀ v ∈ X (2.6)
(∇ · u∗, q) = 0 ∀ q ∈ Q (2.7)

or, equivalently: Find u∗ ∈ V such that

ν(∇u∗,∇v) + b∗(u∗, u∗, v) = (f∗, v) ∀ v ∈ V. (2.8)

The finite element approximations u∗h and p∗h satisfy the equations

ν(∇u∗h,∇vh) + b∗(u∗h, u∗h, vh)− (p∗h,∇ · vh) = (f∗, vh) ∀ vh ∈ Xh (2.9)
(∇ · u∗h, qh) = 0 ∀ qh ∈ Qh.

This becomes in Vh: Find u∗h ∈ Vh such that

ν(∇u∗h,∇vh) + b∗(u∗h, u∗h, vh) = (f∗, vh) ∀ vh ∈ Vh. (2.10)

It is known that solutions to of the equilibrium problem are nonsingular for small data, generically
nonsingular for large data and optimally approximated by u∗h when nonsingular, [7]. Setting v = u∗

in (2.6) and vh = u∗h in (2.9), it is easy to check the a priori bounds

||∇u∗ || ≤ ν−1|| f∗ ||−1, ||∇u∗h || ≤ ν−1|| f∗ ||−1. (2.11)
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Both bounds can be sharpened slightly. In the continuous case, || f∗ ||−1 can be replaced by the dual
norm of V,

|| f∗ ||∗ := sup
v∈V

(f∗, v)
||∇v || ,

and in the discrete case by the dual norm of Vh,

|| f∗ ||∗h := sup
vh∈Vh

(f∗, vh)
||∇vh || .

It is known that if the problem data is small enough, concretely if

Nν−2|| f∗ ||−1 < 1, (2.12)

then u∗ is unique. If additionally f(x, t) ≡ f∗(x), u(x, t) → u∗(x) in L2(Ω) exponentially fast as
t →∞ and (uh, ph) approximates (u, p) optimally, [6, 13, 8].

2.3 Weak Solutions of the Navier-Stokes Equations

The problem of turbulence is perhaps intimately connected with questions about weak solutions vs.
strong solutions of the Navier Stokes equations. It is well-known that weak solutions exist but it
is not known if they are unique. (Thus, different methods of proving existence might possibly lead
to different solutions.) A strong solution is generally defined as a weak solution which has enough
extra regularity to ensure global uniqueness, i.e., which fulfills Serrin’s condition [20]. In 3d, it is
also unknown if strong solutions exist, [5, 21]. But if a strong solution exists, it is unique. Strong
solutions might conceivably describe all fluid motion. However, in at least one conjecture about
turbulence the case of strong solutions is associated with laminar flow.

For clearness of notation, we will give the definition of a weak and a strong solution, following [5]:

Definition 2.1. Let

1. DT = {v ∈ C∞(Ω× [0, T ]) : v(t) ∈ C∞0 (Ω) for each t}d,

2. D =
{
ψ ∈ C∞(Ω)d : ψ has compact support in Ω and ∇ · ψ = 0 in Ω

}
,

3. H(Ω) ≡ {
v ∈ L2(Ω)d : ∇ · v = 0 and v · n̂ on ∂Ω

}
,

4. DT ={ φ(x, t) ∈ C∞(Ω× [0, T ]) : φ(x, t) ∈ D for each t, 0 ≤ t ≤ T}.
Let u0 ∈ H(Ω), f ∈ L2(0, T ; L2(Ω)). A measurable function u(x, t) : Ω × [0, T ] → Rd is a weak
solution of the Navier-Stokes equations if, for all T > 0

1. u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H(Ω)),

2. u satisfies the integral relation

(u(T ), φ(T ))−
∫ T

0

[(
u,

∂ φ

∂ t

)
− ν (∇u,∇φ)− (u · ∇u, φ)

]
dt = (u(0), φ(0)) +

∫ T

0

(f, φ) dt

(2.13)
for all φ ∈ DT , which is equivalent to

d

dt
(u, v) + ν(∇u,∇v) + (u · ∇u, v)− (f, v) = 0 (2.14)

for all v ∈ V.

3. u is a strong solution if u is a weak solution and u ∈ L∞(0, T ;V) for any T > 0.
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We note that if Ω is a bounded domain with ∂Ω satisfying a cone condition, then it is known
that, given a weak solution u, there exists a pressure p(x, t) ∈ L∞(0, T ; L2

0(Ω)) (see, e.g. Galdi [5],
Remark 2.5) satisfying

(u(T ), φ(T ))−
∫ T

0

(
u,

∂φ

∂t

)
− ν (∇u,∇φ)− (u · ∇u, φ) + (p,∇ · φ) dt

= (u(0), φ(0)) +
∫ T

0

(f, φ) dt ∀ φ ∈ DT . (2.15)

This is equivalent to

d

dt
(u, v) + ν (∇u,∇v) + (u · ∇u,∇v)− (p,∇ · v) = (f, v) ∀ v ∈ X. (2.16)

Lemma 2.1. Let (u, p) be a weak solution of the Navier-Stokes equations and (uh, ph) its finite
element approximation in finite dimensional subspaces Xh ⊂ X and Qh ⊂ Q. Let e = u− uh. Then,
for any C1 maps vh : [0, T ] → Xh, qh : (0, T ] → Qh (for each T , 0 < T < ∞),

(e(T ), vh(T ))−
∫ T

0

[ (
e,

∂vh

∂t

)
− ν(∇e,∇vh)− b∗(u, u, vh) + b∗(uh, uh, vh)

+(p− ph,∇ · vh) + (∇ · (u− uh), qh)

]
dt = (e(0), vh(0)) (2.17)

which is equivalent to

d

dt
(e, vh)−

(
e,

∂vh

∂t

)
+ ν (∇e,∇vh) + b∗(u, u, vh)− b∗(uh, uh, vh)− (p− ph,∇ · vh) = 0 (2.18)

(∇ · (u− uh), qh) = 0

Proof. We shall prove (2.18). The connection between (2.18) and (2.17) is the same as (2.15) and
(2.16).

First, note that both follow by subtraction provided (2.15) can be shown to hold for φ ∈
C1(0, T ;Xh) or (2.16) can be shown for v ∈ C1(0, T ;Xh) (since Xh ⊂ X). We show the latter.

Since Xh ⊂ X (2.16) holds for all vh(x) ∈ Xh. Next, let A(t) be a C1(0, T ) function. Multiplica-
tion of (2.16) by A(t) and using

A(t)
d

dt
(u, vh) =

d

dt
(u, A(t)vh)− (u,A′(t)vh)

gives that u and p satisfy

d

dt
(u, vh)−

(
u,

∂vh

∂t

)
+ ν (∇u,∇vh) + (u · ∇u, vh) + (p,∇ · vh) = (f, vh)

with vh = A(t)vh(x). The same equation holds for uh and ph. Subtracting gives (2.18) for any vh

of the form vh = A(t)vh(x).
Since (2.18) is linear in vh, it also follows for any vh which is a finite finite linear combination of

such function,

vh(x, t) =
N∑

i=1

Ai(t)vh
i (x).

Picking vh
i (x) to be a basis for Xh completes the proof.
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It is also known, [5], that weak solutions satisfy the energy inequality: for any t ∈ [0, T ],

1
2
||u(T ) ||2 + ν

∫ T

0

||∇u(t) ||2 dt ≤ 1
2
||u0 ||2 +

∫ T

0

(u(t), f(t)) dt. (2.19)

Strong solutions satisfy even an energy equality, i.e., (2.19) with “≤” replaced by “=”.

2.4 Properties of the Time Averaging Operator

For any function q(t) holds

| < q > | =

∣∣∣∣∣lim sup
T→∞

1
T

∫ T

0

q(t) dt

∣∣∣∣∣ ≤ lim sup
T→∞

1
T

∣∣∣∣∣
∫ T

0

q(t) dt

∣∣∣∣∣

≤ lim sup
t→∞

1
T

∫ T

0

|q(t)| dt

= < |q| > . (2.20)

Similarly, for any function q(t, x) where || · || is a finite norm of q(t, x) holds

|| < q > || ≤< ||q|| > . (2.21)

Let u ∈ Lp(Ω), v ∈ Lq(Ω) with p−1 + q−1 = 1, p, q ∈ [1,∞]. Let the time averages of u in Lp(Ω)
and of v in Lq(Ω) exist. Using the Hölder inequality for Lebesgue spaces and Young’s inequality,
one can show a Hölder inequality for the time averaging operator

| < (u, v) > | = lim sup
t→∞

1
T

∫ T

0

(u, v) dt ≤ lim sup
t→∞

1
T

∫ T

0

||u||Lp ||v||Lq dt

≤ lim sup
t→∞

(
1
T

∫ T

0

||u||pLp dt

)1/p (
1
T

∫ T

0

||v||qLq dt

)1/q

= < ||u||pLp >1/p< ||v||qLq >1/q . (2.22)

With the same arguments, one obtains for u ∈ H1
0 (Ω) and v ∈ H−1(Ω)

| < (u, v) > | ≤< ||∇u||2L2 >1/2< ||v||2H−1 >1/2 (2.23)

if the right hand side of this inequality is well defined.
If limt→∞ q(t) = q∗ then

< q >= q∗. (2.24)

3 Analysis of Time Averaged Errors

We present some results involving the time averaged energy dissipation rate, aiming at establishing
an error estimate for this quantity. For a force f independent of time, we first show that the time
averaged energy dissipation rate < ε(u) > is bounded by the time averaged power input to the flow
through body force-flow interaction. It is significant that this upper bound is independent of the
initial condition (then it is reasonable that errors in its approximation could be insensitive to the
size of u0). We establish time averaged errors for the pressure.

Lemma 3.1. Let u be a weak solution to the Navier Stokes equations. If f ∈ L∞(0,∞;H−1(Ω)),
then ||u || is uniformly bounded

1
2
||u ||2(T ) ≤ e−νC−2

P F T ||u(0) ||2 +
C2

PF

ν2
|| f ||2L∞(0,∞;H−1), (3.1)

where CPF is the Poincare-Friedrichs constant of Ω, and consequently

lim
T→∞

1
T
||u ||2(T ) = 0.
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Proof. Let VN be a span of eigenfunctions of the Stokes operator. The Leray-Hopf construction of
weak solutions gives a sequence uN in VN satisfying

(uN,t, vN ) + ν(∇uN ,∇vN ) + (uN · ∇uN , vN ) = (f, vN ), ∀ vN ∈ VN . (3.2)

with uN → u, the weak solution, in L2(Ω× (0, T )) strongly and L2(0, T ;H1(Ω)) weakly.
This is a system of ordinary differential equations; setting vN = uN and using Cauchy-Schwarz

and Young inequalities, followed by Poincare-Friedrich inequality, we have

d

dt
||uN (t) ||2 + νC−2

PF ||uN (t) ||2 ≤ 1
ν
|| f ||2−1.

Using an integrating factor, we obtain a differential inequality which can be integrated on (0, T ),
yielding

||uN (T ) ||2 ≤ e−νC−2
P F T ||uN (0) ||2 +

1
ν2C−2

PF

|| f ||2L∞(0,∞;H−1).

This shows the uniform boundedness of ||uN (T ) ||. Taking the limit inferior of both sides and using
a weak convergence argument (which is standard for the Navier-Stokes equations and which we show
in detail in the proof of Proposition 3.3), letting N →∞, we recover (3.1) for u. The second claim
now follows from the first.

Lemma 3.2. Let f ∈ L∞(0,∞; H−1(Ω)) and let uh be the solution of (2.4). Then ||uh || is uniformly
bounded and consequently

lim
T→∞

1
T
||uh ||2 = 0, and lim

T→∞
1
T
||u− uh ||2 = 0.

Proof. Take vh = uh in (2.4) (a step not possible in the continuous case of Lemma 3.1) and pro-
ceeding as in the proof of Lemma 3.1, we prove a similar uniform bound for ||uh ||. This proves the
first equation and the bound on ||u− uh || follows by the triangle inequality and Lemma 3.1.

We next consider time averages.

Proposition 3.1. Let u be a weak solution of the Navier-Stokes equations satisfying the energy
inequality (2.19). Then

< ε(u) > ≤ lim sup
T→∞

1
|Ω |T

∫ T

0

( f, u ) dt =
1
|Ω | < (f, u) > . (3.3)

If u satisfies the energy equality then the above inequality can be replaced by equality. Further, if
f ∈ L∞(0,∞;H−1(Ω)) ∩ L2(0, T ;L2(Ω)) for every 0 < T < ∞ then

< ε(u) > ≤ ν−1

〈
1
|Ω | || f ||

2
−1

〉
≤ ν−1

|Ω | || f ||
2
L∞(0,∞;H−1(Ω)). (3.4)

The semidiscrete finite element approximation uh of u fulfills also inequalities of form (3.3) and
(3.4), where in (3.3) even equality holds.

Proof. Since u satisfies the energy inequality (2.19), we have

1
2T

1
|Ω | ||u(T ) ||2 +

1
T

∫ T

0

ν

|Ω | ||∇u(t) ||2 dt ≤ 1
2T

1
|Ω | ||u0 ||2 +

1
T

∫ T

0

1
|Ω | (f, u) dt.

Since 1
2T ||u(T ) ||2 → 0 by Lemma 3.1 and 1

2T ||u0 ||2 → 0 as T → ∞, we obtain (3.3). If we use as
starting point the energy equality, the equal sign will be preserved.
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For proving the last claim, we apply inequality (2.23) to (3.3)

< ε(u) > ≤ ν

2|Ω | < ||∇u(t) ||2 > +
1

2ν|Ω | < || f ||2−1 >

≤ 1
2

< ε(u) > +
1

2ν|Ω | ||f ||
2
L∞(0,∞;H−1).

In the semidiscrete case take uh as test function in (2.2). This gives

1
2

d

dt
||uh(t) ||2 + ν||∇uh(t) ||2 = (uh(t), f(t)).

Integration in (0, T ) shows that uh fulfills an energy equality. Now, the arguments to derive the
estimates of form (3.3) and (3.4) for uh are the same as in the continuous case.

Next, we consider the time averaged errors. It is important to note that there is a difference
between || < ∇(u − uh) > || and < ||∇(u − uh)|| >. By Minkowski’s inequality, the second is an
upper bound for the first. Experience with turbulent flows suggests that < ∇u > might be smooth
(and thus approximable). Thus, ideally we would like estimates for the first || < ∇(u− uh) > ||. In
the case of the error in the pressure, we are able to prove such a bound.

Theorem 3.1. Let f ∈ L∞(0,∞; H−1(Ω)) and let (Xh,Qh) satisfy the discrete inf-sup condition
(2). Then,

|| < p− ph > || ≤ ν

βh
(1 + 2Mν−2 < || f ||2−1 >1/2)

〈 ||∇(u− uh)||2 〉1/2

+
(

1 +
1
βh

)
inf

qh∈Qh
|| < p− qh > ||.

Proof. A straightforward calculation shows that (2.17) is equivalent to

−
∫ T

0

(ph − qh,∇ · vh) dt = (e(T ), vh(T ))− (e(0), vh(0))

−
∫ T

0

[(
e,

∂vh

∂t

)
− ν(∇e,∇vh)− b∗(u, e, vh)− b∗(e, uh, vh) + (p− qh,∇ · vh)

]
dt

for all (vh, qh) ∈ Xh ×Qh. Since the velocity finite element functions are continuous in Ω, all terms
are well defined. Let vh = vh(x). Division by T and taking limit superior as T →∞ give

(< ph − qh >,∇ · vh) = ν (< ∇ e >,∇ vh)+ < b∗(u, e, vh) >

+ < b∗(e, uh, vh) > +(< p− qh >,∇ · vh). (3.5)

For estimating (3.5), one uses again that vh does not depend on time, (2.1) and ||∇ · vh|| ≤ ||∇vh||
to obtain

∣∣(< ph − qh >,∇ · vh)
∣∣ ≤ ν || < ∇ e > || || ∇ vh ||+ M < ||∇u || || ∇ e || > ||∇ vh ||

+M < ||∇ e || || ∇uh || > ||∇ vh ||+ || < p− qh > || || ∇ vh ||.
Dividing by || ∇ vh || and applying the discrete inf-sup condition (2) on the left hand side of this
inequality leads to

βh|| < ph − qh > || ≤ ν || < ∇ e > ||+ M < ||∇u || || ∇ e || >
+M < ||∇ e || || ∇uh || > +|| < p− qh > ||.

The first term on the right hand side can be estimated first with (2.21) and then the first three
terms with (2.22). This gives

βh|| < ph − qh > || ≤ ν < ||∇ e ||2 >1/2 +M < ||∇u ||2 >1/2 < || ∇ e ||2 >1/2

+M < ||∇ e ||2 >1/2 < ||∇uh ||2 >1/2 +|| < p− qh > ||.

9



The norms of the weak and the discrete solution can be estimated with the results of Proposition
3.1 such that

βh|| < ph − qh > || ≤ ν(1 + 2Mν−2 < || f ||2−1 >1/2)
〈||∇e ||2〉1/2

+ || < p− qh > ||.
The proof concludes with the application of the triangle inequality and by taking the infimum over
qh ∈ Qh.

The key idea in the above proof was to restrict vh ∈ Vh to be time independent. Then, time
averaging can be applied and brought inside upon the pressure error directly. It is interesting that the
equations of motion give a different realization of time averaged error for the velocity and pressure
(< ||∇(u − uh) || > versus || < p − ph > ||). This appears also in the time averaged lift and drag
error estimates in Theorem 4.1. At this point, we do not know if this disctintion has other, deeper
causes or implications.

We next turn to the error inequalities for the time averaged velocity error < ε(u− uh) >.

Proposition 3.2. Let Y = L2(0, T ;H1(Ω))∩L∞(0, T ; V h) and assume ut ∈ L1(0, T ;X∗) for every
0 < T < ∞. Then the time averaged velocity error satisfies the following inequalities

< ε(u− uh) > ≤ C inf
qh∈Qh

ν−1 < || p− qh ||2 > −2 < b∗(e, u, e) >

+ inf
ũ∈Y

[< ε(u− ũ) > +2 〈b∗(u, e, u− ũ) + b∗(e, u, u− ũ)− b∗(e, e, u− ũ)〉] ,

and

< ε(u− uh) > ≤ C inf
qh∈Qh

ν−1 < || p− qh ||2 >

+ inf
ũ∈Y

[
< ε(u− ũ) > +ν−3

〈
|| e ||2/3||∇u ||4/3|| ∇(u− ũ) ||4/3

〉

+ ν−3
〈|| e ||2|| ∇(u− ũ) ||4〉 + C < ν−1||∇u ||2 ||∇(u− ũ) || || ∇ (u− ũ) || >]

+ ν−3
〈||∇u ||4|| e ||2〉 .

Remark 3.1. If ||∇u || is uniformly bounded in time, then these equations can be closed provided
< || e ||2 >≤ Chα < ||∇e ||2 > for some α > 0 and provided h is small enough. However, this is
again the case when pointwise accuracy in time is reasonable to expect rather than accuracy in time
averaged statistics. Thus, the problem of closing the circle in the velocity error equation for the time
averaged statistics seems to catch at the same point as in the standard error analysis.

We shall see that in at least one case the circle of analysis is closable. In more general cases,
we believe the problem is due to the fact that we are estimating < ||∇(u − uh) ||2 > rather than
|| < ∇(u− uh) > ||2.
Proof. Since ut ∈ L1(0, T ;X∗), the weak solution satisfies the variational formulation

(ut, v
h) + ν(∇u,∇vh) + b∗(u, u, vh)− (p,∇ · vh) = (f, vh) ∀ vh ∈ L∞(0, T ;Xh). (3.6)

A similar equation holds for uh, so subtraction and the fact that, for qh ∈ Qh, (qh,∇ · vh) = 0,
give an equation for the error e = u− uh:

(et, v
h) + ν(∇e,∇vh) + b∗(u, u, vh)− b∗(uh, uh, vh)− (p− qh,∇ · vh) = 0 ∀ vh ∈ L∞(0, T ;Vh).(3.7)

Let ũ be an interpolant of u with ũ ∈ L2(0,∞;V) ∩ L∞(0,∞; V h) and write e = η − φh, where
η = u− ũ and φh = uh − ũ. Adding

−b∗(e, e, e) + b∗(u, uh, φh)− b∗(u, uh, φh),

where the first term vanishes, we get with vh = φh

1
2

d

dt
||φh ||2 + ν ||∇φh ||2 = (ηt, φ

h) + ν(∇η,∇φh)− (p− qh,∇ · φh)

+b∗(e, u, η)− b∗(e, e, η)− b∗(e, u, e) + b∗(u, e, η).

10



Time averaging the equation above and observing that ||φh || is uniformly bounded in time (since
||uh || is bounded and ũ ∈ L∞(0,∞; L2(Ω))), we have

< ε(φh) > =
1
|Ω|

[
< (ηt, φ

h) > + < ν(∇η,∇φh) > − < (p− qh,∇ · φh) >

+ < b∗(e, u, η) > − < b∗(e, e, η) > − < b∗(e, u, e) > + < b∗(u, e, η) >
]
.

The time-averaged Cauchy-Schwarz-Young inequality (2.22) now gives

1
2

< ε(φh) > ≤ Cν−1 < || ηt ||2−1 > + < ε(η) > +C ν−1 < || p− qh ||2 >

+ < b∗(e, u, η) > − < b∗(e, e, η) > − < b∗(e, u, e) > + < b∗(u, e, η) > .

The triangle inequality then gives

< ε(u− uh) > ≤ C < ε(u− ũ) > +Cν−1 < || ηt ||2−1 > +C ν−1 < || p− qh ||2 >

+2 < b∗(e, u, η) > −2 < b∗(e, e, η) > −2 < b∗(e, u, e) > +2 < b∗(u, e, η) > .

Inserting this into the right hand side of the last inequality gives the first claimed time-averaged
error inequality.

For the second inequality we use the following bounds on the trilinear form, see e.g. [13],

< b∗(e, u, e) > ≤ C < ||∇u || || e ||1/2 ||∇e ||3/2 >

≤ ν

8
< ||∇e ||2 > +C ν−3 < ||∇u ||4 || e ||2 >,

< b∗(e, e, η) > ≤ C < || e ||1/2 ||∇e ||3/2 || ∇η || >
≤ ν

8
< ||∇e ||2 > +C ν−3 < || e ||2 ||∇η ||4 >,

< b∗(e, u, η) > ≤ C < || e ||1/2 ||∇e ||1/2 ||∇u || || ∇η || >
≤ ν

8
< ||∇e ||2 > +C ν−3 < || e ||2/3 || ∇u ||4/3 ||∇η ||4/3 > .

< b∗(u, e, η) > ≤ C < ||∇u || || ∇ e || || η ||1/2 ||∇ η ||1/2 >

+ C < ||∇u || || ∇ η || || e ||1/2||∇ e ||1/2 >

≤ ν

8
< ||∇e ||2 > +C < ν−1||∇u ||2 || η || || ∇ η || >

+ Cν−3 < || ∇u ||4/3 || e ||2/3 ||∇ η ||4/3 >

Thus

< ε(u− uh) > ≤ C < ε(u− ũ) > +C ν−1 < || p− qh ||2 > +C
[
ν−1/3 < || e ||2/3 ||∇u ||4/3 || ∇η ||4/3

+ ν−3 < || e ||2 ||∇η ||4 > +C < ν−1||∇u ||2 || η || || ∇ η || > +ν−3 < || ∇u ||4 || e ||2 >
]
,

which is the second error inequality, completing the proof.

3.1 The Case of Large u0 and Small f ∗(x)

There is at least one interesting case in which the error equations for the time-averaged velocity
error, < ε(u − uh) > can be closed: the case of large initial condition u0 and asymptotically small
body force f(x, t). In this subsection we assume

f(x, t) ∈ L∞(0,∞;H−1(Ω)), f(x, t) → f∗(x) as t →∞

11



and

ν−2M || f∗ ||−1 =: α < 1.

In this case, it is possible time averaging will eventually wash out the irregularities caused by
the large initial condition. We show that this is indeed the case. To shorten the presentation, we
shall simplify the condition on f to

f(x, t) ≡ f∗(x) and ν−2M || f∗ ||−1 = α < 1. (3.8)

Proposition 3.3. Suppose (3.8) holds. Then

< ε(u− u∗) >= 0, (3.9)

where u∗ is the solution of the equilibrium Navier-Stokes equations (2.5).

Proof. Let VN be a span of eigenfunctions of the Stokes operator. Then, the Leray-Hopf construction
gives again a sequence uN in VN converging to the weak solution u, as N →∞, strongly in L2(Ω×
(0, T )), and weakly in L2(0, T ; H1(Ω)), i.e,

∫ T

0
(∇uN , v) dt → ∫ T

0
(∇u, v) dt for all v ∈ L2(Ω× (0, T )).

The Leray-Hopf Galerkin approximation satisfies

(uN,t, vN ) + ν(∇uN ,∇vN ) + (uN · ∇uN , vN ) = (f, vN ) ∀ vN ∈ VN . (3.10)

Let u∗N ∈ VN be the Galerkin projection of u∗ in VN . Then u∗N → u∗ in X and V as N →∞ and
u∗N satisfies

ν(∇u∗N ,∇vN ) + (u∗N · ∇u∗N , vN ) = (f, vN ) ∀ vN ∈ VN . (3.11)

Set φN = uN (x, t)− u∗N (x) and subtract (3.11) from (3.10) to get

(φN,t, vN ) + ν(∇φN ,∇vN ) + (uN · ∇uN , vN )− (u∗N · ∇u∗N , vN ) = 0 ∀ vN ∈ VN . (3.12)

Let vN = φN , add and subtract (uN · ∇u∗N , vN ) and integrate from 0 to T to get

1
2
||φN (T )||2 +

∫ T

0

ν||∇φN ||2 dt =
1
2
||φN (0)||2 +

∫ T

0

−b∗(φN , u∗N , φN ) dt

Next, using the bound on the trilinear form, the a priori bound (2.11) and the small data
assumption (3.8) gives

1
2
||φN (T )||2 + (1− α)ν

∫ T

0

||∇φN ||2 dt ≤ 1
2
||φN (0)||2

Thus, dropping the first term,
∫ T

0

ν||∇φN ||2 dt ≤ (1− α)−1 1
2
||φN (0) ||2. (3.13)

Since lim infN→∞∇φN = ∇φ in the same manner as before, by classical properties of weak
limits, we have

lim inf
N→∞

(∫ T

0

||∇φN ||2 dt

)
≥

∫ T

0

||∇φ ||2 dt

Therefore, taking limit inferior on both sides of (3.13), gives
∫ T

0

ν||∇φ ||2 dt ≤ (1− α)−1 1
2
||φ(0) ||2.

Dividing by T and taking the limit superior as T →∞ proves the result.
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The next proposition is needed in order to prove the desired error estimate on < ε(u − uh) >,
given below, in Theorem 3.2.

Proposition 3.4. Assume that (3.8) holds. Then

< ε(uh − u∗h) >= 0, (3.14)

Proof. The proof works in the same way as that of Proposition 3.3. It is based on subtracting (2.4)
and (2.10).

Remark 3.2. The statements of Propositions 3.3 and 3.4 also hold for the kinetic energy.

Theorem 3.2. Suppose that (3.8) holds. Then

< ε(u− uh) > ≤ C ν ||∇(u∗ − u∗h)||2, (3.15)

where the constant C depends on the domain.

Proof. We can start by writing

||∇(u− uh)||2 = ||∇(u− u∗ + u∗ − u∗h + u∗h − uh)||2.

Next, we use the triangle inequality, together with Proposition 3.3 and Proposition 3.4 to get

lim sup
T→∞

1
T

∫ T

0

ν ||∇(u− uh)||2 dt ≤ C ν ||∇(u∗ − u∗h)||2.

Remark 3.3. The statement of Theorem 3.2 says that the problem of estimating < ε(u − uh) >
reduces to the one of estimating ||∇(u∗ − u∗h)||2. Standard finite element error estimates thus
immediately imply < ε(u− uh) > is optimal.

Corollary 3.1. Suppose the small data assumption (3.8) holds, (Xh, Qh) satisfies the inf-sup con-
dition. Then

< ε(u− uh) >≤ C

[
inf

vh∈Xh
ν||∇(u∗ − vh) ||2 + inf

qh∈Qh
ν−1|| p∗ − qh ||2

]

Proof. This follows by inserting the error estimates for ||∇(u∗ − u∗h) || from [6] into the right hand
side of (3.15).

Concerning the time averaged error in the pressure, we have the following corollary. It is a direct
consequence of (2.24) and Theorem 3.1.

Corollary 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Suppose additionally that assump-
tions (3.8) hold. Then

|| < p− ph > || ≤ 3ν

βh

〈||∇(u− uh) ||2〉1/2
+

(
1 +

1
βh

)
inf

qh∈Qh
|| < p− qh > ||.
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4 Time Averaged Errors in Drag and Lift

Consider the flow around a body in a channel with flow region Ω and boundary Γ, which consists
of Γb (boundary of the body) and Γc = Γi ∪ Γo ∪ Γw (where Γi, Γo correspond to the inflow and
outflow and Γw, to the walls).

Define

σ = −p I+ 2 ν∇su,

where ∇s indicates the symmetric part of the operator ∇.
Then consider the Navier-Stokes equations written in the form:

ρ(ut + u · ∇u) = ν∇ · σ + f in Ω
∇ · u = 0 in Ω

u = g on Γ
u(x, 0) = u0(x) in Ω (4.1)

satisfying the compatibility condition
∫
Γ

g · n̂dS. We assume g = 0 on Γw and on Γb.
We introduce the spaces

Xg =
{
v ∈ H1(Ω)d : v|Γ = g

}
, X0 = H1

0 (Ω)d.

A weak formulation of (4.1) reads: Find u : [0, T ] → Xg and p : (0, T ] → Q such that

ρ (ut, v) + 2 ν(∇s u,∇s v) + ρ b(u, u, v)
+ (p,∇ · q) + (∇ · u, q) = (f, v) ∀(v, q) ∈ X0 ×Q. (4.2)

Drag and lift are defined as

D = −
∫

Γb

ê1 · σ · n̂ dγ and L = −
∫

Γb

ê2 · σ · n̂ dγ,

respectively, where êi is the unit vector in the ith direction and n̂ is the outward pointing unit normal
to Γb. (We assume that +ê1 is the direction of motion and −ê2 is the direction of gravity.)

Remark 4.1. Giving mathematical estimates of drag and lift involves some technical points neces-
sary to ensure that the trace of σ · n on Γ is well defined in an appropriate space. Requiring σ · n to
be well defined at each t requires regularity. On the other hand, time averages of σ ·n seem to require
less regularity. In this section, we assume that (u, p) is slightly more regular than a general weak
solution to ensure σ · n ∈ L1(0, T ; H−1/2(Γb)). In particular, we assume that, for some s > 1/2, for
a.e. T > 0, u ∈ L1(0, T ;H1+s(Ω)) and p ∈ L1(0, T ; Hs(Ω)). This implies, by the Trace Theorem,
that σ · n ∈ L1(0, T ;Hs−1/2(Γb)).

Lemma 4.1. Let u ∈ L1(0, T ;Hs+1(Ω)) ∩ Xg, ut ∈ L1(0, T ;H−1(Ω)) and p ∈ L1(0, T ;Hs(Ω)), for
some s > 1/2 be solutions of (4.2). Then σ · n ∈ L1(0, T ; Hs−1/2(Γb)) and

∫ T

0

∫

Γb

v · σ · n̂ dγ dt =
∫ T

0

{
ρ (ut, v) + 2 ν(∇s u,∇s v) + ρ b(u, u, v)− (p,∇ · v)− (f, v)

}
dt (4.3)

for any v ∈ L∞(0, T ;H1(Ω)) with v = 0 on Γc.

Remark 4.2. In particular, in (4.3), one choice of v satisfying v = ê1 on Γb gives a formula for
the drag and v = ê2, one for the lift.

Proof. The proof uses a density argument. First, let {vj}∞j=1 be a sequence in C∞(Ω × [0, T ])
with vj |Γb

= 0 for all j. Then, by the definition of distributional derivatives, equation (4.3) holds
true with v replaced by vj . For u, p with the assumed regularity, each term in (4.3) is a bounded
linear functional of v in L∞(0, T ; H1(Ω)). Thus it is continuous on L∞(0, T ;H1(Ω)). Therefore
we may let j → ∞ and (4.3) holds for v ∈ L∞(0, T ;H1(Ω)), since C∞(Ω × [0, T ]) is dense in
L∞(0, T ; H1(Ω)).
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Theorem 4.1. Let the assumptions of Lemmas 4.1 and 3.1 and Proposition 3.1 be fulfilled. The
time averaged drag and lift can be estimated as

| < D −Dh > | ≤ C
(
< ||∇ (u− uh) ||2 >1/2 ||+ || < p− ph > ||

)
,

| < L− Lh > | ≤ C
(
< ||∇ (u− uh) ||2 >1/2 ||+ || < p− ph > ||

)
. (4.4)

Proof. We present here a proof for the drag estimate, since the same argument follows for the lift
estimate, according to an appropriate choice of w.

Let w be a smooth time-independent vector field satisfying w = ê1 on Γb and w = 0 on Γc. If
we take v = w in (4.3), then we get a formula for the drag as follows

∫ T

0

D dt =
∫ T

0

{ρ (ut, w) + 2 ν(∇s u,∇s w) + ρ b(u, u, w)− (p,∇ · w)− (f, w)} dt.

Now let ihw be a finite element interpolant to w. Then

∫ T

0

D −Dh dt =
∫ T

0

{ρ (ut, w) + 2 ν(∇s u,∇s w) + ρ b(u, u, w)

− (p,∇ · w)− (f, w)− ρ (uh
t , ihw)− 2 ν(∇s uh,∇s ihw)

− ρ b(uh, uh, ihw) + (ph,∇ · ihw) + (f, ihw)
}

dt.

Adding and subtracting appropriate terms, this becomes

∫ T

0

D −Dh dt =
∫ T

0

{
ρ (ut, w − ihw) + ρ ((u− uh)t, ihw) + 2 ν(∇s u,∇s (w − ihw))

+ 2 ν(∇s (u− uh),∇s ihw) + ρ b(u, u, w − ihw) + ρ b(u, u, ihw)
− ρ b(uh, uh, ihw)− (p,∇ · (w − ihw))
− (p− ph,∇ · ihw)− (f, w − ihw)

}
dt. (4.5)

Observe now that the term containing (f, w− ihw) in (4.5) can be rewritten by multiplying (4.1)
by w − ihw and integrating:

(f, w − ihw) = ρ (ut, w − ihw) + 2 ν(∇s u,∇s (w − ihw))
+ ρ b(u, u, w − ihw)− (p,∇ · (w − ihw)), (4.6)

provided the mesh conforms to the boundary and the finite element space is conforming.
Hence, (4.5) and (4.6) together give

∫ T

0

D −Dh dt =
∫ T

0

{
ρ ((u− uh)t, ihw) + 2 ν(∇s (u− uh),∇s ihw)

+ ρ b(u, u, ihw)− ρ b(uh, uh, ihw) + (p− ph,∇ · ihw)
}

dt. (4.7)

Let e = u− uh. Then divide each term in (4.7) by T and take the limit superior on both sides,
using the fact that ihw does not depend on time. The first term on the left hand side yields

lim sup
t→∞

1
t
(e(t), ihw) ≤ lim sup

t→∞
1
t

(‖e(t)‖‖ihw‖)

≤ lim sup
t→∞

1
t

(‖e(t)‖2
2

+
‖ihw‖2

2

)

= 0

by Lemma 3.2 and the time-independence of ihw.
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Now, by (2.22) and (2.24)

< (∇s e,∇s ihw) > ≤ < ||∇ e ||2 >1/2 ||∇ ihw ||.

Next, consider the nonlinear term

< b(u, u, ihw)− b(uh, uh, ihw) >

= < b(u, e, ihw) + b(e, uh, ihw) >

≤ C < (‖∇u‖+ ‖∇uh‖)‖∇e‖‖∇ihw‖ >
(2.22)
≤ C‖∇ihw‖ < (‖∇u‖+ ‖∇h‖)2 >1/2< ‖∇e‖2 >1/2

≤ C‖∇ihw‖ < ‖∇u‖2 + ‖∇uh‖2 >1/2< ‖∇e‖2 >1/2

Prop.3.1
≤ C‖∇ihw‖‖f‖L∞(0,∞;H−1(Ω)) < ‖∇e‖2 >1/2 .

For the pressure term, we obtain with the time-independency of ihw and the Cauchy-Schwarz
inequality

< (p− ph,∇ · ihw) > = (< p− ph >,∇ · ihw) ≤ || < p− ph > || || ∇ ihw ||.

Putting everything together, equation (4.7) becomes

| < D −Dh > | ≤ (ν + C‖f‖L∞(0,∞;H−1(Ω))) < || ∇ e ||2 >1/2 ||∇ ihw ||
+ || < p− ph > || || ∇ ihw ||,

which gives the statement of the theorem, since the terms multiplying < ||∇ e ||2 >1/2 are bounded
and ||∇ ihw || ≤ 2 ||w ||H2(Ω) = C.

Corollary 4.1. If, in addition to the assumptions of Theorem 4.1, (3.8) holds, then (4.4) becomes

| < D −Dh > |, | < L− Lh > | ≤ C
(||∇(u∗ − u∗h)||+ || < p− ph > ||) . (4.8)

In the next section we investigate properties of the approximate solution of shear flows.

5 Persistent Shear Flows

We have seen in the previous sections that, provided the portion of the body force driving the flow
that persists is small, statistics, such as the time averaged energy dissipation rate, can be accurately
predicted by a flow simulation. This accuracy holds quite generally without any of the further
assumptions on u0, ν and Re typically needed to prove accuracy over bounded time intervals.

The case when the persistent forces driving the flow are not small is much more difficult; we
shall prove in this section that the analogous estimate of time averaged energy dissipation rate
is physically reasonable under a condition on the finite element mesh near the walls. Briefly, we
consider the finite element approximation to the following shear flow problem: let Ω = [0, L]3

∂u

∂t
+ u · ∇u +∇p− ν∆u = 0 in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]
u = u0 at t = 0

u(x1, x2, x3, t) = φ(x3) for x3 ∈ ∂Ω
u(x1, x2, x3, t) = u(x1 + L, x2, x3, t) for x1 ∈ ∂Ω
u(x1, x2, x3, t) = u(x1, x2 + L, x3, t) for x2 ∈ ∂Ω
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Figure 1: The shear flow problem.

where

φ(x3) =




0
0
0


 if x3 = 0 and φ(x3) =




U
0
0


 if x3 = L,

see Fig. 1.
In this problem, the persistent force driving the flow is clearly the motion of the top wall and

the time averaged energy dissipation rate must balance the drag exerted by the walls on the fluid.
For such problems, the Richardson-Kolmogorov energy cascade predicts quite simply 1

< ε(u) > ≈ U3

L

independent of ν and Re, respectively.
Remarkably, the upper estimate has also been proven for weak solutions of the Navier-Stokes

equations in full generality:

< ε(u) > ≤ C
U3

L

by Constantin and Doering [3] and Wang [22].
Herein, we show in essence that provided the first mesh line of the finite element space is within

O(1/Re) of the top and bottom walls then

< ε(uh) > ≤ C
U3

L
,

i.e. the computed energy dissipation has the correct mathematical and physical scaling.
Since the proof adapts the ideas of [22] we expect that a similar analysis would hold for other

variational methods as well.
1Briefly: the largest coherent structures are associated with the motion of the upper wall. They thus have length

scale L and characteristic velocity U . Their local Reynolds number is thus (U L
ν

(= Re)) and viscous dissipation is

negligible on them. These break up into smaller eddies (velocity u, length l, Re (l) =
u (l) l

ν
) until Re (l) is small

enough for viscous dissipation to drive their kinetic energy to zero exponentially fast. Since viscous dissipation is
negligible through this cascade, the energy dissipation rate is related then to the power input to the largest scales
at the first step in the cascade. These largest eddies have energy 1

2
U2 and time scale τ = L

U
so the rate of energy

transfer is O(U2

τ
) = O(U3

L
).
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Let

X = {v ∈ H1(Ω) : v(x1, x2, x3, t) = v(x1 + L, x2, x3, t) for x1 ∈ ∂Ω,

v(x1, x2, x3, t) = v(x1, x2 + L, x3, t) for x2 ∈ ∂Ω, v(x1, x2, x3, t) = φ(x3) for x3 ∈ ∂Ω},
X0 = {v ∈ H1(Ω) : v(x1, x2, x3, t) = v(x1 + L, x2, x3, t) for x1 ∈ ∂Ω,

v(x1, x2, x3, t) = v(x1, x2 + L, x3, t) for x2 ∈ ∂Ω, v(x1, x2, x3, t) = 0 for x3 ∈ ∂Ω},
Q = L2

0(Ω)

and denote corresponding conforming finite element spaces with a superscript h. We assume that
the finite element space contains linears.

The finite element problem reads as follow: find (uh, ph) ∈ Xh ×Qh such that

(uh
t , vh) + ν(∇uh,∇vh) + b∗(uh, uh, vh)− (ph,∇ · vh) = 0 ∀ vh ∈ Xh

0 (5.1)
(∇ · uh, qh) = 0 ∀ qh ∈ Qh (5.2)

(u(x, 0)− u0(x), v) = 0 ∀ vh ∈ Xh
0 (5.3)

Consider the background flow (an extension of the boundary condition φ to the interior of Ω)
given by

φ̃(x3) =
{

0, if x3 ∈ [0, L− β L]
U

β L (x3 − (L− β L)), if x3 ∈ [L− β L, L]

and

Φ =




φ̃(x3)
0
0


 ,

where β is a positive number. For β > 0 this function is piecewise linear, continuous and satisfies
the boundary conditions.

We shall select β appropriately so that Φ belongs to the finite element space and then take
vh = uh − Φ in (5.1) to get

(uh
t , uh)− (uh

t ,Φ) + ν ||∇uh ||2 − ν (∇uh,∇Φ)− b∗(uh, uh, Φ) = 0 (5.4)

since b∗ can be skew symmetrized and Φ is divergence free.
Observing that (uh

t ,Φ) = ∂
∂ t (u

h,Φ), since ∂ Φ
∂ t = 0, we rewrite (5.4) as

1
2

d

d t
||uh ||2 + ν ||∇uh ||2 =

∂

∂ t
(uh,Φ) + b∗(uh, uh, Φ) + ν (∇uh,∇Φ)

and integrate in time to get

1
2
||uh(T ) ||2 − 1

2
||uh(0) ||2 + ν

∫ T

0

||∇uh ||2 d t

= (uh(T ),Φ)− (uh(0),Φ) +
∫ T

0

b∗(uh, uh, Φ) d t + ν

∫ T

0

(∇uh,∇Φ) d t. (5.5)

We need to estimate each term on the right hand side of (5.5). For some of the terms, calculated
values of Φ will be needed:

||Φ ||L∞(Ω) = U

||∇Φ ||L∞(Ω) =
U

β L

||Φ ||2 = L2

∫ L

0

| φ̃(x3) |2 d x3 = L2

∫ L

L−β L

U2

(β L)2
(x3 − (L− β L) )2 d x3 =

1
3

U2 β L3,

||∇Φ ||2 =
U2 L

β
.
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For completeness, we include a short proof of the scaling of the constant in the Poincare-Friedr
ichs inequality. That will be helpful for the estimation of the nonlinear term.

Lemma 5.1. Let Oβ L = {(x1, x2, x3) ∈ Ω : L− βL ≤ x3 ≤ L} be the region close to the upper
boundary (where the background flow Φ does not vanish). Then,

||uh − Φ ||L2(Oβ L) ≤ β L ||∇(uh − Φ) ||L2(Oβ L). (5.6)

Proof. First, let v = uh − Φ be a C1 function. Then, componentwise (i = 1, 2, 3), we have

vi(x1, x2, x3) = vi(x1, x2, L)−
∫ L

x3

dvi

dz
(x1, x2, z)dz.

Observing that vi(x1, x2, L) = 0, squaring both sides and using the Cauchy-Schwartz inequality, we
get

vi(x1, x2, x3) ≤ βL

∫ L

L−βL

(
dvi

dz
(x1, x2, z)

)2

dz.

Integrating both sides with respect to x3 gives
∫ L

L−βL

vi(x1, x2, x3)dx3 ≤ (βL)2
∫ L

L−βL

(
dvi

dz
(x1, x2, z)

)2

dz.

Then, integrating with respect to x1 and x2, we have

|| vi ||2OβL
≤ (βL)2||∇vi ||2OβL

,

which proves the lemma in the case of a C1 function. The case v ∈ Xh ⊂ H1(Ω) follows by
density.

Next, we use the estimates above to derive upper bounds for the following terms:

(uh(T ), Φ) ≤ ||uh(T ) || ||Φ || ≤
√

β

3
UL3/2||uh(T ) ||,

(uh(0), Φ) ≤ ||uh(0) || ||Φ || ≤
√

β

3
UL3/2||uh(0) ||,

ν

∫ T

0

(∇uh,∇Φ) d t ≤ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2

∫ T

0

||∇Φ ||2 d t

≤ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2 β
LU2 T.

For the nonlinear term, we add and subtract terms, and use the fact that b∗(·, ·, ·) is skew-
symmetric, to write

b∗(uh, uh,Φ) = b∗(uh − Φ, uh − Φ,Φ) + b∗(Φ, uh − Φ, Φ)

=
1
2
b(uh − Φ, uh − Φ, Φ)− 1

2
b(uh − Φ, Φ, uh − Φ)

+
1
2
b(Φ, uh − Φ, Φ)− 1

2
b(Φ,Φ, uh − Φ) (5.7)

We use Lemma 5.1 together with the calculated values of Φ to analyze one term at a time in
(5.7). In all cases, integration is restricted to Oβ L, since supp(Φ) ⊂ Oβ L.

b(uh − Φ, uh − Φ, Φ) ≤ ||Φ ||L∞(Oβ L)||∇(uh − Φ) ||L2(Oβ L) ||uh − Φ ||L2(Oβ L)

≤ U β L || ∇(uh − Φ) ||2L2(Oβ L)

≤ 2 U β L || ∇uh ||2 + 2 U3L2, (5.8)
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b(uh − Φ,Φ, uh − Φ) ≤ ||∇Φ ||L∞(Oβ L)||uh − Φ ||2L2(Oβ L)

≤ U β L ||∇(uh − Φ) ||2
≤ 2 U β L ||∇uh ||2 + 2 U3L2, (5.9)

b(Φ, uh − Φ,Φ) ≤ ||Φ ||L∞(Oβ L)||Φ ||L2(Oβ L)||∇(uh − Φ) ||L2(Oβ L)

≤ U

(
1
3
U2βL3

)1/2

|| ∇uh ||+ U

(
1
3
U2βL3

)1/2 (
U2L

β

)1/2

≤ 1
2
U β L||∇uh ||2 +

5
6

U3L2, (5.10)

b(Φ, Φ, uh − Φ) ≤ ||Φ ||L∞(Oβ L)||∇Φ ||L2(Oβ L)||uh − Φ ||L2(Oβ L)

≤ U β L

(
U2 L

β

)1/2

|| ∇uh ||+ U β L

(
U2 L

β

)1/2 (
U2 L

β

)1/2

≤ 1
2
U β L||∇uh ||2 +

3
2

U3L2. (5.11)

Putting (5.8) to (5.11) together, equation (5.7) gives

b∗(uh, uh, Φ) ≤ 5
2
U β L ||∇uh ||2 +

19
6

U3L2,

so that equation (5.5) becomes

1
2
||uh(T ) ||2 − 1

2
||uh(0) ||2 + ν

∫ T

0

||∇uh ||2 d t ≤
√

β

3
UL3/2||uh(T ) ||

+

√
β

3
UL3/2||uh(0) ||+ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2 β
LU2 T

+
5
2
β L U

∫ T

0

||∇uh ||2 d t +
19
6

U3L2 T

Divide by T , let T →∞ and use |Ω| = L3 to get

L3

(
1
2
− 5

2
Lβ U

ν

)
< ε(uh) > ≤ ν

2 β
LU2 +

19
6

U3L2. (5.12)

If

β <
1

5 Re
, where Re =

U L

ν
,

then equation (5.12) gives

< ε(uh) > ≤ C
U3

L
.

6 Summary and Outlook

There are many important and interesting statistics and flow settings. In Section 5 we study a simple
yet interesting case of internal flow, higher Reynolds number, large initial data and asymptotically
small body force. In this setting, we prove convergence of the time averaged energy dissipation
rates in 3d without assuming the solution is a strong solution, smooth, unique or the initial data is
smooth.
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Our long-term goal is to develop a theory paralleling and inspired by the theory of shadowing
in approximation of dynamical systems [17], [16], [18], I.e., to understand when computed, time-
averaged statistics from numerical simulations of the Navier-Stokes equations either reflect statistics
corresponding to the exact solution of the Navier-Stokes equations with the data (which is essentially
driving the flow) perturbed.

References

[1] L.C. Berselli, T. Iliescu, and W. J. Layton, Mathematics of large eddy simulation of turbulent
flows, Scientific Computation, Springer, 2006.

[2] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, 1991.

[3] P. Constantin and C. Doering, Energy dissipation in shear driven turbulence, Physical Review
Letters 69 (1992), no. 11, 1648–1651.

[4] J. W. Deardorff, A Numerical Study of Three-Dimensional Turbulent Channel Flow of Large
Reynolds Numbers, J. Fluid Mech. 41 (1970), 453–480.

[5] G.P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental
Directions in Mathematical Fluid Dynamics (G.P. Galdi, J.G. Heywood, and R. Rannacher,
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