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Abstract. We address the question of whether or not a periodic train of excitatory
synaptic inputs recruits an excitable cell, such that it fires repeatedly, or does not recruit
a cell, such that it fails to fire, possibly after some transient. In particular, we study the
scenarios of one or two inputs per period; in the latter case, the degree of synchrony of
the inputs is a crucial factor in recruitment. We establish rigorous geometric conditions
that pinpoint the transition between recruitment and non-recruitment as the degree of
synchrony between input pairs, or other input parameters, is varied. These conditions
can be used to determine whether a particular temporal relation between periodic in-
put pairs leads to recruitment or not and to prove, in certain parameter regimes, that
recruitment can only occur when the inputs are sufficiently closely synchronized. The
concepts in this paper are derived for both the integrate-and-fire neuron and the theta
neuron models. In the former, the location in phase space of the unique fixed point of a
relevant two-dimensional map determines firing, while in the latter, it is the existence or
lack of existence of a fixed point of the map which does so. These results are discussed
in the context of recruitment of cells into localized activity patterns.

Keywords. excitable neurons, integrate-and-fire model, theta model, synaptic input,
geometric dynamical systems

1 Introduction

The activity of neurons is generally believed to encode and convey information through,
for example, the firing rate, inter-spike interval or phase relationship between neurons.
For a variety of reasons including issues of storage capacity, individual neurons (or sets
of neurons) are believed to participate in multiple coding events. Thus neuronal codes
cannot be hard wired into the brain and instead must be constructed in a transient
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manner as a response to specific input signals. Examples where this type of idea may
be utilized include progressive recall involving hippocampal place cells [14], working
memory [20], and coincidence detection [2]. The construction of a neural code therefore
relies on the ability of input stimuli to recruit appropriate silent neurons into the activity
pattern that eventually forms the code. This observation leads to a very simple question:
What detemines whether or not a stimulus recruits an excitable cell into an activity
pattern?

While there is a considerable literature on the effect of periodic forcing, particularly
smoothly varying forcing such as sinusoidal functions, on the behavior of oscillators,
much of which builds on the paper of Keener et al. [9], there has been less work to date
on the input-induced recruitment of excitable systems that are at rest in the absence
of inputs [12], [18]. Pakdaman has studied the effect of continuous periodic forcing of a
leaky integrate-and-fire neuron, under the assumption that the input integrates to zero
over one period. By relating the dynamics to those of an appropriate circle map, he
shows that the possible dynamic patterns are limited to periodic firing, quasiperiodic
firing, nonchaotic aperiodic firing, or no firing whatsoever.

In this paper, we are primarily interested in exploring the conditions under which
periodic, excitatory synaptic input can induce sustained firing of a post-synaptic neuron,
in which case we shall say that the excitable cell has been recruited. We are interested in
analyzing how the degree of synchrony of relevant inputs to an excitable neuron affects
its recruitment. We develop a geometric perspective to establish criteria that distinguish
between parameter sets that lead to recruitment or non-recruitment in some simple, yet
representative, excitable systems. In particular, we derive a precise geometric criterion
for the degree of synchrony between pairs of inputs needed for recruitment to occur.

In a prior paper, we studied the formation of bumps, or localized areas of sustained
activity, in a network of coupled excitatory neurons [17]. We showed that stable lo-
calized solutions can occur, despite the absence of inhibition. The localized solutions
are initiated by using a transient stimulus to induce a small number of cells to fire in
synchrony. Since these cells are synchronized, they provide a relatively strong input
to neighboring cells and can thus recruit them into the activity pattern. We showed,
however, that the cells in the bump tend to desynchronize after the applied stimulus
ends, which reduces the maximal synaptic input that they can provide to silent cells and
which eventually may end the recruitment. In [17], we were able to give a cycle-by-cycle
geometric criterion for whether or not a cell would be recruited. That is, we provided a
condition that could be applied immediately after each synaptic input that a silent cell
received to determine whether that cell would fire or not.

In this paper, we derive recruitment conditions that depend only on the nature of
the input train, independent of initial conditions, which specify a priori whether a cell
receiving this input train will be forced to fire in a sustained way or will be suppressed,
possibly after an initial transient. The conditions are derived for both the integrate-



and-fire (IF) neuron model and the theta neuron model. In both cases, we derive a
two-dimensional map which outputs the location in a relevant phase space of a cell after
it receives a synaptic input. The map effectively reduces to a one-dimensional map since
it uncouples in one of the two variables. In the IF case, we will show that the map always
has a stable fixed point and that the location of this fixed point determines whether or
not a cell is recruited. In the theta neuron case, we will show that the map need not have
a fixed point, and that recruitment arises precisely when no fixed point exists. In [17],
we worked with the Morris-Lecar model [11] for Type I cells, which feature a transition
from silence to oscillations through a SNIC bifurcation [16]. We also considered the theta
model, since it is a scalar equation that can be rigorously derived as a normal form for
Type I neurons [10, 4, 8]. Thus, it is natural to consider the theta model here as well.
We consider the IF model because it also possesses the Type I characteristic of onset of
oscillations at zero frequency yet takes a particularly simple form; moreover, it allows for
consideration of effects due to an imposed threshold. Despite their relative simplicity,
we show that both of these models have rich geometric structures, which lead to some
challenging mathematical questions. Interestingly, we show that significant qualitative
differences arise in the geometries of the two models; further, although the location of
the imposed threshold in the IF model does affect whether or not recruitment occurs for
fixed parameter values, the imposition of threshold is not responsible for the contrast in
the models’ respective geometries.

The outline of the paper is as follows. Section 2 introduces the two different models.
Section 3 is divided into 4 subsections. The first two, 3.1 and 3.2, deal with the IF
model. In 3.1, we derive precise conditions on synaptic strength, period and decay rate
that drive an IF cell to fire. These conditions are then generalized to the two input case
in section 3.2. Sections 3.3 and 3.4 derive these concepts for the theta neuron model. In
Section 4 we discuss the relationship of our results to the formation of localized regions
of activity and to the progressive development of synchrony in cortical networks. We
also discuss several open questions related to our work.

2 Model Equations

2.1 Integrate-and-Fire (IF) Neuron
We represent the dynamics of an IF neuron by the equation
v=I-v (1)

with a firing threshold vy, and a reset value v,, which we without loss of generality set
to v = 1 and v = 0, respectively, unless otherwise stated. Ignoring the threshold for a
moment, note that v = I is a stable fixed point. Therefore if I > 1, then any solution



trajectory with v(0) < 1 will at some time ¢; > 0 reach v(¢]) = 1. In the integrate-and-
fire formalism, we reset v(¢]) = 0 and say that the neuron fired a spike at ¢t = ¢;. If the
parameter I < 1, then v(¢) < 1 for all ¢t and the neuron never spikes. In this case, we
say that the neuron is excitable. Excitable neurons require input to fire.

Fix I < 1 and consider the effect of periodic synaptic excitation on an IF neuron.
We assume that an excitatory input, with instantaneous onset, arrives with period 7.
The equations of interest are:

v\ = I—v—glv—E] (2)
g = —Bg, (3)

where E > 1 is the excitatory reversal potential and
g(nT™*) =g(nT") +k, (4)

for kK > 0 and n = 1,2,... Equations (3-4) show that between inputs, the synaptic
conductance g decays exponentially. But at the moment of a synaptic input, g(t) is
reset to g(t) + k. Note that (I,0) is a stable fixed point of (2-3).

2.2 Theta Neuron

The theta model is a canonical model for an oscillator in the neighborhood of a SNIC,
or saddle-node on an invariant circle, bifurcation [7, 4, 8]. In the absence of input, the
theta model takes the form

0’ =1 —cosf + b(1 + cosh), (5)

where b is a parameter. For convenience, one identifies § = —7 with § = 7 and thus
considers § € S'. When the theta model is used to represent the dynamics of a neuron,
the neuron is said to fire when 6 increases through 7. For b < 0, there exist two critical
points of (5), given by s = —cos (1+b)/(1—b) < 0 and 8y = cos 1 (1+b)/(1-b) > 0.
The first is stable, while the second is unstable.

If a theta neuron receives excitatory input of the form discussed for the IF neuron,
the governing equations become

0 = 1—cosf+ (b+g)(1+ cosh), )
6
g = —pg.

As previously, equation (4) implements the arrival of each new input, when the input
has period T. Critical points of equation (6) are (fg,0), (6y,0). The zeros of the @
equation alone, however, depend on the level of input impinging on the theta neuron.



For b < 0 and g > 0 sufficiently small, there are two values of 6 for which ' = 0 holds.
As g increases, with b < 0 fixed, these values approach each other, until they meet
at (0,g) = (0,—b). Thus, the #-nullcline forms an arc that extends from (6g,0) up to
(0, —b) and back down to (0y,0) in the (6, g) phase plane.

3 Results

3.1 IF model - single input

Let ¢; be an excitable IF neuron, modeled by equations (2-4), which is subjected to
periodic excitatory input of period T. Fix the parameters I < 1 and £ > 1. If the
synaptic input is such that ¢y fires repetitively, we say that ¢; has been recruited. We
note that the sustained firing of ¢; is an important aspect of the definition of recruitment.
For example, if ¢; is made to fire transiently several times, but eventually becomes
quiescent, we will say that it has not been recruited. To be precise, we define recruitment
by the condition that for every positive integer N, there exists an integer n > N such
that that the neuron fires during the time interval [t,,%,+1), where ¢, is the onset time
of the nth input. We shall answer the following question. What are the conditions on
B, k and T such that ¢; is guaranteed to be recruited? The answer to this question
appears to be intuitively clear. For example, if T' is small and the reset value k is large
enough (frequent large input), then ¢; should be recruited. Alternatively, if k£ is small
and S is too large (small input that decays quickly), then ¢; should not be recruited. In
this section, we will make these answers analytically and geometrically precise.

The v nullcline is found by setting the right-hand side of (2) equal to 0. This yields
a curve

_'U—I
I=F&

forv< FE (7)
—v
in the v — g phase plane. Note that this curve has a vertical asymptote at v = FE,
crosses the positive v axis at v = I, has positive slope (dg/dv > 0) and is concave up
(d%2g/dv? > 0). On the v nullcline, since v' = 0 and ¢’ < 0, the vector field points down.
In the absence of input, all trajectories will converge to the stable critical point at (I,0).

We next define a map which will be used to track the behavior of trajectories in the
v—g phase plane. The input to ¢; arrives periodically every T' time units. Thus we define
P(v(07),g(0")) = (v(T),g(TT)). This map takes an initial condition (v(0%"),g(0%"))
and returns the position of the variables at time T'" after the reset due to synaptic
input. Note that only g is reset; v(0) = v(0") and v(T) = v(T"). We are interested in
fixed points of the map P.

Let us first consider the behavior of the synaptic variable g. The dynamics of g
decouple from those of v and can thus be understood independently. Define Ag =



g(T*) — g(0%). Suppose g(0*) = go. Solving (3), g(T~) = goexp(—BT). After the
synaptic reset, using (4) and enforcing the fixed point condition g(T'") = ¢g(0"), we
obtain the unique value gg = ¢* for which Ag =0,

" k
g = 1_e AT (8)

It follows from (8) that ¢* — oo as k — oo or T' — 0 or f# — 0. Note that since
we can solve for the value g* independently of v, the map P effectively reduces to a
one-dimensional map.

We next show how wv(t) changes over the time interval [0,7]. Let us ignore the
threshold v = 1 for a moment. Then the region I < v < E of the v — g phase plane is
positively invariant. In particular, if v(0) = I, then the fact that v > 0 along v = I
yields v(T') > v(0). Similarly, if v(0) = E, then the fact that v' < 0 on v = E yields
v(T) < v(0). Thus, for each fixed g > 0, by the intermediate value theorem, there exists
v* € (I, E) such that if v(0) = v*, then v(T) = v*.

To show uniqueness of v* for each g, we explicitly calculate its value using (2-3).
Rewriting (2) and substituting g(t) = goexp(—pt), we obtain the linear first order
equation

o' 4+ (14 goe ™ P)v =TI+ goe P'E.

Using an integrating factor and letting Fy = E — I, we rewrite this as

U(t)et_iﬁ%_ﬂt _ U(o)e—go/,b’
9 e=hs _90,—Bs
- fg {I[l +goe—’35]637706 ’ +906_’35E165 5e ’ } ds
= I[et_%(le_ﬂt _ e—go/,B] + f(;t goe—/BsEles_%Qe—ﬂs ds.

Thus if after a time T' we want v(T") = v(0)=v*, we find that

T
U*[eT*gﬁoefﬂT — e—go/ﬁ] = I[eT*g?OefﬁT — e—go/ﬂ] +/ goe—ﬂsElesf%oefﬂs ds.
0
This can be written more compactly as
F(g,T)
(g, T) =1 ’ 9
v0.T) =T+ (9
where
B L)
F(g,T) = L Ee’" 7 ds, (10)
K(g,T) = " 877" _¢9/B, (11)



For fixed T', define Av = v(T") — v(0). Omitting explicit representation of its depen-
dence on T (and on f), we note that the curve v = v*(g) is precisely the set of points
in the v — g phase that satisfy Av = 0. Let us elucidate some of the properties of v*(g).
First, note that v*(0) = I since (I,0) is a critical point of (2-3). Indeed, v*(g) — I as
g — 0 because in this limit, K(g,T) — exp(T') — 1 while F(g,T') — 0. Next, v*(g) must
lie to the left of the v nullcline since v' < 0 below and to the right of the v nullcline
and trajectories can only pass through it with ¢’ < 0. Further, as T' — oo, v*(g9) — I,
since F(g,T) < Eug [ ¢~ ds, such that F(g,T)/K(g,T) — 0 as T — oco. This
corresponds to the fact that given a sufficiently long time, all trajectories approach ar-
bitrarily close to (I,0), which means that vy &~ I will be required to achieve Av = 0
with large 7.

We now establish two additional useful properties of v*(g).

Lemma 3.1 The curve v = v*(g) converges to the v-nullcline as g — oo.

Proof: As noted above, for each g, v*(g) lies to the left of the v-nullcline. This gives an
upper bound of v*(g) < E as g — 00, based on solving equation (7) for v as a function
of g. Similarly, v*(g) > I for all g. Since v*(g) is given by the formula v*(g) = I + F/K
in equation (9), we will complete the proof by showing that 9(F/K)/dg — 0 as g — oo,
which implies that v*(g) converges, and then showing that v*(g) cannot converge to any
value strictly less than E. We omit explicit dependence on T in the following arguments.

Clearly, the sign of 9(F/K)/0g matches that of L(g)=(F'(g)K(g) — F(9)K'(g))/E.
A direct calculation, using (10),(11), gives

9,-Bs

s—Ze _ _Bs (s—Ze=Ps
Lig) = %exp (fole P26 5 ds) (e79/8 — 1) + (f e P57 ds) -

7Bt)

((%e‘ﬂt + 1)e(t_%e —(1+ g/ﬂ)e‘g/ﬂ) — 0 as g — oo,

as desired.
Now, suppose that there exists G such that F//K < B < F; for all ¢ > G, and let
0 = E; — B > 0. Note that points on the v-nullcline take the form (v,(g),g), where

.1+ Eg
149

Un(g)

Under the flow of (2),(3), trajectories (v(t), g(t)) originating from these points lie to the
right of the v-nullcline, with v(¢) > v, (g(t)) for all positive time. Further, since v,(g) —
E as g — oo, there exists G > @ sufficiently large such that vn(goe PT) > E — §/2 for
all go > G. Now, the trajectory (v(t),g(t)) originating at (v*(go),go) must reach the
v-nullcline within time 7', since by definition of the function v*(g),

o(T) = v*(90), (12)



which requires dv/dt < 0 for some ¢t € (0,7). Hence, we have v(T) > E — /2, since
go > G,but E—§/2=B+1+6/2 > B+ 1. This yields a contradiction to equation
(12), however, because gy > G implies v*(go) < B + I. a

Remark 3.2 One can also establish the bound v*(g) < E analytically by computing
that F/K < E; for all g, such that v* = I+ F/K < I+ (E —1I) = E for all g. We omit
the details here.

Lemma 3.3 For any fized g > 0, v* is a monotone decreasing function of T.

Proof: The lemma will be established by showing that 0v*(g,7") /0T < 0, where v*(g,T)
is given by equation (9). Let

F(t) = exp(t — %e—ﬂt) > 0. (13)

Differentiation of equations (10) and (11), using ' now to denote differentiation with
respect to 7', yields

| F'(T)K(T) — F(T)K'(T)
bT)= Egf(T)

= e T(f(T)—e79/7) - ( [ e ds> (1+ge™"T),

0
(14)
where we have neglected explicit representation of the g-dependence of the relevant
functions. Note that the sign of dv*(g,T)/0T is given by the sign of D(T), since the
denominator of D(T') is positive. Upon further differentiation, we obtain

D'(T) = Be T |—(f(T) = e 9/%) + g ff e P f(s)ds,]

- - _ (15)
D'(T) = Be PT(B(f(T)— e 9/%) = f(T)— By Jy e P f(s)ds]

Equations (13), (14), (15) give D(0) = 0,D'(0) = 0,D"(0) = —fBe 9/8 < 0. Further,
suppose that D(T) = 0 for some T' > 0. In this case, equations (14), (15) imply that
D'(T) = - fOT e P4 f(s)ds < 0. Hence, D cannot become nonnegative for positive T,
and it follows that dv*(g,T)/0T < 0 for all positive T, as desired. O

Consider again the map P(v(0"),g(0%)) = (v(T"),g(T")). The unique fixed point
of this map, (v*,g*), occurs when the line ¢ = g* intersects the curve v = v*(g).
From the construction of the map, it is clear that (in the absence of the threshold) the
fixed point is globally attracting. Therefore, if v*(g*) > 1, then clearly ¢; is recruited
into the activity pattern. By Lemma 3.1, for all other parameters fixed, there exists
k sufficiently large such that v*(¢g*) > 1 occurs, so sufficiently strong inputs lead to
recruitment. However, v* > 1 is not a necessary condition for recruitment. To see this,



denote by A the point at which the line v = 1 intersects the v nullcline, i.e. the point
(v,9) = (1, %) Let T' denote the forward and backward trajectory through A. Follow
A backward in time under the flow of (2),(3) for a time 7'. Denote this new point B and
denote the trajectory connecting the points A and B by I'r. If we consider points lying
on the line v = 1 with g > % and follow these points backward in time for time T,
we obtain a curve, which we denote v = h(g), that has negative slope in the v — g phase
plane and terminates at the point B. Finally, by ES, denote the open region bounded
to the left and below by the union of the curves h(g) and I'r and to the right by the line
v = 1. We call ES an exit set because any trajectory with initial conditions in it lies
less than T" away from the threshold v = 1. Thus any such trajectory will fire before the
next synaptic input and then be reset. Figure 1A illustrates the relations, in the (v, g)
phase plane, of the objects described here.

/il v=E

Figure 1: The (v,g)-phase space for the IF neuron with synaptic decay. A) Some
relevant structures as discussed in the text; in particular, the dashed curve is v*(g)
and the dotted curve is the v-nullcline. T'p, the subset of I' between B and A, is not
labelled here. Note that if an input places a cell into the exit set E.S, then the cell will
fire, by crossing the threshold {v = 1} (dash-dotted vertical line), before the next input
arrives. B) A zoomed view of E'S. The solid curves depict h(g),'r, as well as the curves
{v = v*(g9)} and {g = g¢*} for a special value of T such that {v = v*(9)} N {g = g*}
lies on the boundary of E'S. Starting from this fixed T', the intersection moves into E.S
as T is decreased and out of ES as T is increased, as discussed in the text. The solid
dots, other than the ones indicating the endpoints A, B of I'r, label intersection points
corresponding to each of these three scenarios.

Consider now the relationship between the fixed point (v*,¢*) of the map P and
the set ES. If the fixed point lies in ES, then all trajectories will eventually enter
ES since the fixed point is attracting. Once a trajectory enters E.S, it will be forced
to leave ES through the boundary v = 1. Thus if the parameters are such that the



fixed point lies in ES, then the neuron ¢; will fire repeatedly and therefore be recruited.
Alternatively, if the fixed point does not lie in ES, then ¢; will not be recruited. In
this case, depending on the initial conditions, a trajectory may fire several times, but
eventually it is attracted to the fixed point that lies outside of ES. In summary, cell
¢y will be recruited if (v*, g*) lies in ES and will not be recruited if (v*, g*) lies outside
of the closure of ES. Transitions between recruitment and non-recruitment occur at
parameter values for which (v*, g*) lies on the boundary of ES, as shown in Figure 1B.

To analyze such transitions, we next discuss the relationship between the curves
v*(g), T and h(g). The key result here is Lemma 3.4.

Lemma 3.4 v*(g) N {T"Uh(g)} consists of a single point lying in T'p.

Proof: Based on slopes, v*(g) must intersect the union of I' and h(g). By definition,
if (v(0),g(0)) € v*(g) then v(T) = v(0). But if v(0) € h(g), then v(T) =1 > v(0), a
contradiction. Similarly, if v(0) € T\ I'r above the v-nullcline, then v'(t) > 0 for all
t € [0,7] and v(T) > v(0). Finally, if v(0) € T'\ I'; below the v-nullcline, then v'(t) < 0
for all ¢t € [0,T], and v(T') < v(0). Therefore, v*(g) instead must intersect I'r. O

Based on this observation, consider parameter values for which (v*,¢*) € . If T
increases, corresponding to an increased input period, then the line ¢ = ¢* moves to a
smaller g value, while the curve v*(g,T) becomes more negative for each g, by Lemma
3.3. Thus, the intersection (v*(g*,T), g*) of these structures, for the increased T', occurs
outside of ES, as shown in Figure 1B, and ¢; will not be recruited. On the other hand,
if T' decreases, corresponding to a decreased input period, then g* grows, and v*(g,T)
is larger for each g, again by Lemma 3.3, as also shown in Figure 1B. As a result,
(v*(g*,T), g*) lies inside of ES, or possibly even to the right of {v = 1}, and ¢; will be
recruited. In summary, the above analysis yields the following theorem.

Theorem 3.5 For fized B,k, there exists T, such that ci is recruited by a periodic
excitatory input of size k and period T if T < T,, and c; is not recruited by this input if
T > T.. The value T, is determined by the condition (v*(g*(T.),T.),q*(T;)) € T.

3.2 IF model - 2 inputs

Next, we consider how to generalize the above analysis to the case of two distinct inputs
per period. For simplicity, we focus on two inputs of identical size. There are several
possibilities that arise concerning the recruitment of ¢;. For example, it is possible that
either or both of the inputs are sufficiently strong and frequent to individually recruit c;.
We shall not directly consider these cases, as the single input analysis above is sufficient
to describe the recruitment process there. Instead, we shall focus on the following

10



question. If neither input by itself is able to recruit ¢;, will both inputs acting together
be able to do so, and how does this depend on the relative timing of the two inputs?
Asked in a different way, what degree of synchrony between the inputs is necessary to
recruit ¢1?

Assume that ¢; receives two distinct inputs, each of period 271". One input arrives at
t =0,2T,4T, ... and the other at times ¢t = At, 2T+ At, 4T+ At, ... where T < At < 2T
(by symmetry we only need vary At over half the period). If At = T, then the inputs
are maximally out-of-phase or maximally asynchronous. If At = 2T, then the inputs
are completely synchronous. Note that these two situations are subcases of the single
input analysis where the period is 7" and 27, respectively. In this section, we develop a
geometric criterion that determines whether a pair of periodic inputs of given timing and
magnitude will lead to recruitment or not, independent of the initial conditions of the cell
receiving them. This criterion will arise as a natural generalization of results obtained
for the single input case. Subsequently, we present numerical examples that illustrate
the structures involved in this criterion, for particular parameter choices. Finally, we
prove results based on our geometric criterion that clarify further the recruitment process
when parameters satisfy certain relations. More specifically, we will prove that, at least
in certain cases, there exists a unique value At. € (T,2T) such that if At > At., then
c1 will be recruited. That is, ¢; will be recruited only if the inputs arrive sufficiently
closely in time. Our geometric criterion identifies precisely how close is sufficient.

3.2.1 Geometric representation of recruitment for IF in the 2-input case

First, consider the generalization of v*(g) to vi,(g), defined for each g as the value of v
at which v(0) = v(2T), noting that the trajectory is reset at ¢ = At from the position
(v(At),g(At)) to (v(At), g(At) + k).

Lemma 3.6 v},(g) ezists and is unique for each g > 0.

Proof: Fix g > 0. We consider a map Pay(v) defined on v € [I, E] by flowing (v, g)
under equations (2),(3) for time At, resetting from (v(At), g(At)) to (v(At), g(At) + k)
at t = At, continuing the flow until time 27", and projecting to the v coordinate. ;From
equation (2), it is obvious that Pa¢(I) > I and Pai(E) < E. Further, for two initial

conditions (vi1,g), (ve,g) with v; > ve, equation (2) implies that (v; — ve)' = —(1 +
g)(v1 —vg) < 0. Hence, Pa; is a contracting map from [I, E] into itself, with a unique
fixed point, which we call v},(g). O

The curves v7}.(g) and vy (g) can be determined from the single input result found
in equation (9). By Lemma 3.3, v3,-(g) lies to the left of v3.(g9). As At — 2T, the curve
vA4(g) converges to vj, since these curves are both constructed using the flow for time
2T'. Note that v},(g) does not converge to v}.(g) as At — T', however, as the latter curve

11



is constructed using the flow for T, based on the condition v(T") = v(0), while vi,(g)
is constructed using two resets, based on v(2T) = v(0). Instead, v},(g) converges as
At — T to a curve, which we denote v}, ,;-(¢9) and which is unique by the argument used
in the proof of Lemma 3.6. This curve intersects v}.(g) at the value g = ¢g* calculated
from (8) and has greater slope than v7.(g) where the two curves intersect, as shown in
Figure 2A. To see this, consider the map Pr applied to a point (vr,g) on the curve
vy (g), with trajectory (vr(t),g(t)) up to time T', when reset occurs, as shown in Figure
2B. If g < g*, then g(T') + k > ¢(0), and by uniqueness, Pr(vr) > vr. Hence, v} (g)
lies to the right of v}.(g) for g < ¢*. Similarly, v}, (g) lies to the left of v}.(g) for g > g*.

‘¢UT ,

| v | v(0)=v(T) V

Figure 2: The curve v} (g) in relation to the curve v.. A) Relative positions of the
curves. B) Trajectories described in the argument showing that v}, 1 (g) lies to the right
of v} for g < g*.

We are interested in where vi,(g) lies relative to the curves v}(g), vsr(g) and
vpur(9). Denote by (vai(g),g) and (ver(g),g) the points lying on the curves v},(g)
and v}, (g), respectively. In particular, we have the following lemma.

Lemma 3.7 The curve v},(g) lies to the right of the curve vip(g); that is, for each
At € [T,2T) and each fized g, var(g) > var(g).

Proof: Choose a value gy and let S = (v3;(g0), go) denote the intersection of g = go and
v3p. Denote the trajectory through S by vs = (vs(t), gs(t)), such that vs(0) = vi;(go),
and note that if S is flowed forward a time 27", then by definition vg(2T) = vg(0).
Therefore, yg crosses through the v-nullcline at a unique time ¢q in (0,27). Label the
part of g defined on time [0,%) as vd. Now consider a trajectory s = (v (t), g5 (t))
defined by flowing S for time At (such that (vg(t), gs(t)) = (vs(t),gs(t)) for t < At),
adding k to g, and then flowing the resulting point for an additional time 27" — At. Let
us first assume that At > ¢y. It suffices to prove that vg/(2T) > vg(2T) = vg(0) if
At € (T,2T).
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Figure 3: Proof that v} ,(g) lies to the right of va7(g) for each g. The wide black curve is
the trajectory g, which satisfies vg(2T) = vg(0). The green point on the curve denotes
(vs(At), gs(At)), where g is to be incremented to form ~yg. Different increment sizes
k pick out different points on the dotted vertical line emanating from the green point.
The figure illustrates five choices of k, labeled with numbers and, except for choice 5,
with open circles. For choices 1, 3, and 4, the part of yg/(¢; k) defined on (At,2T) is
given by a thin black curve, with the endpoint v (27; k) labeled in red. Note that
number 2 corresponds to ¥ = k4 and number 5 corresponds to k£ = 0, both of which
give (vgr(AtT), gs: (AtT) € 7yg, such that the corresponding vs:(¢; k) are not visible; the
corresponding endpoints are labeled 2’ and 5’, respectively. Number 4 corresponds to
k = kg, such that (vg(At1), gs (AtT)) lies on the dashed v-nullcline. The trajectory
vs(t; k) for choice 3 is squeezed between g (t; ko) and g (¢; k) for t € (At,2T]. A
continuous curve 7yg/(27T'; k) (dotted red) passes through the red points shown and lies
to the right of v = vg(0), the v-value at S. Note that the dotted red curve g (27 k)
may intersect ys below (vg(At), gs(At)), rather than as shown here, but the same result
holds in that case as well.

To do this, we fix At at an arbitrary value in (7',27") and show that the desired
inequality holds for all £ > 0. Another way to think of this is that, if we plot the
continuous curve (vg(2T'; k), gs (2T;k)) in v — g space, then it lies to the right of {v =
vg(0)} for all £ > 0; see Figure 3. In the following, we will use the notation vy (¢; k)
when we compare the positions at time ¢ of the yg curves generated for different values
of k, but for the most part we suppress explicit mention of dependence on k.
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Start with & sufficiently large such that vg(At) lies above 7;:, above the v-nullcline;
see point 1 in Figure 3. After reset, yg must remain to the right of g for ¢t € (At, 2T
by uniqueness of solutions. Note that gg/(2T) > gs(2T), since the point on g af-
ter reset is (ver(Att), g5 (AtT)) = goexp(—BAL) + k and gg (2T) = (go exp(—BAL) +
k) exp(—B(2T — At)) > goexp(—28T) = gs(2T). Thus, the value of vg (27') in this case
will be larger than vg(2T) = vg(0).

The above case will occur for all k£ larger than the unique value k; > 0 for which
(vsr (AtT), gs (AtT)) € vd. For k = k., shown as point 2 in Figure 3, (vs (27T), gs (2T)) €
vs as well, and gg/ (2T) > ¢g5(2T') again implies vg/ (2T') > vg.

Next, consider the other extreme of small k. In particular, define ky such that
(vsr (AtT), gs' (At)) lies below the v-nullcline if and only if k¥ < kg, and consider k €
(0,ko). Since (vgr(t),gs:(t)) lies closer to the v-nullcline than (vs(t),gs(t)) for all ¢ €
(At,2T], following the reset, it follows that 0 > dvg/(t)/dt > dvs(t)/dt for all ¢t €
(At, 2T]. Since v (Ath) = vg(At™), this inequality gives

’USI(ZT) > ’1)5(2T) = ’1)5(0),

with ve(2T') | vs(0) as k | 0. Since the vector field points down on the v-nullcline, a
similar argument gives vg (21') > vg(0) for k = ko; see point 4 in Figure 3.

It remains to consider k € (kg, k), for which (vg (AtT), gs/(At)) lies between the
v-nullcline and v, as holds for point 3 in Figure 3. For each such k, vg(t; k) nec-
essarily lies between g/ (¢; ko) and g (t;k4) for all ¢ € (At,2T). Hence, v (2T; k) €
(v (2T ko), vs (2T k4.)) for all k € (kg, k+ ), which completes the proof since vg/ (2T'; ko) >
’1)5'(0).

If At < tg, then after the reset, g is clearly to the right of yg and thus vg/ (27") will
be larger than vg(0), as in the above case when k was large (point 1 in Figure 3); thus,
the proof is complete. O

Remark 3.8 The curve vi,(g) is not monotonic in A¢. In particular, as shown in
Figure 7 below, vi,(g) can lie to the right of v} ;- for some values of At € (T, 2T).

Having understood which points lie on the curve v},(g), we now turn our attention
to those points which are mapped back to their original g value after time 27", with
resets of size k at t = At € [T,2T] and at ¢t = 2T. We can calculate the corresponding
steady state level of g due to two inputs in the following way. Suppose an input arrives
at t = 0 such that g(0) = go. If the next input arrives at At, then

g(AtT) = goePA 1k,
Another input occurs at ¢t = 27" and after reset

g(2T*) = (goe P2t 4+ k)ePET—AD |k,
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Now impose the periodicity condition that g(27't) = g(0™) to find go. Denote this value
as

. _ Kk[1+ e BRT-A)]
IAL = 1 _ 28T

(16)

A straightforward calculation of dg},/dAt shows that this derivative is always positive.
Thus the steady state level of g increases as At increases from T' to 27'. This makes sense,
as inputs that arrive closer in time should give a bigger synaptic kick than those that
arrive farther apart. Moreover, for At > T, which we can always arrange by redefining
which input occurs first in each cycle, direct calculation yields

g(0") > g(AtT) > g(2TT), g > g3,
) ) g3>g>92a

y g2 >g >gla
9(2T*) > g(AtT) > g(0"), g1 >g.

)
)
)
)

Here, g3 > g2 > g1 are given by
g1 = ﬁ, derived from solving g(At*) = g(0™),

g2 = gh;, from equation (16),

ke—B(2T—-At)

93 = ~“gnr—=spr, derived from solving g(27") = g(At™).

By abuse of notation, let us now use Pa; to denote the full 2-dimensional time 27
return map, given by Pa¢(v(07), g(0")) = (v(2T1), g(2T")), where At € [T, 2T] denotes
the timing of the second input relative to the first. Based on Lemma, 3.6, its proof, and
equation (16), for each At € [T, 2T/, there exists a unique fixed point of Pay, namely the
point (v},, gh;), and it is attracting. We emphasize that, based on the above calculation
with At > T, gi, > g1 always holds, which we will use below.

The main question to address is whether this fixed point lies in a region of recruitment
or not. Answering this question requires us to determine the exit set for the 2-input
case. In the previous section, we defined the exit set £S, which consisted of those initial
conditions that cross or reach {v = 1} under the time T flow. It was bounded by the
curves I'r and h(g). To generalize this to the 2-input case, define I'a; to be the curve
formed by flowing the point A, given by (v,g) = (1,(1 — I)/(E — 1)), backward in time
an amount At € [T, 2T]. For any At, the right endpoint of I'a; is the point A. The left
endpoint lies on the trajectory I' and depends on At. In particular, when At =T, this
endpoint is the point B as in the previous section. When At = 2T, the endpoint lies at
a point C. In general, for any At € (T,2T), the left endpoint lies between the points
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B and C and tends to these points in the limits At — T and At — 2T, respectively.
For any At € [0,2T], the curve h(g) generalizes to a curve ha;(g) which is defined by
flowing the set of points along v = 1 for ¢ > (1—1)/(E —1) backward in time an amount
At. Note that the family ha¢(g) moves left, away from v = 1, as At increases. For the
2-input case, we now define E'S as the set of points bounded to the left by ha:(g), below
by I'at and to the right by the line v = 1. Note that any initial condition starting within
ES will clearly reach threshold v =1 in a time less than At. However the set of points
E'S does not contain all points which cross or reach the threshold v = 1 under the time
2T flow (with synaptic reset at ¢t = At). We denote that larger set of points by ES.
The set ES can be viewed as the union of two different subsets. One subset consists
of all points lying above I' that are within time 27 of v = 1, when reset is taken into
account. The other subset consists of those points that, when flowed forward a time
At, are reset above I' and to the right of the curve hor_a¢(g). Points that are reset in
this way can cross threshold in time less than 27 — A¢. In Appendix A, we provide a
complete description of the set ES. However, as we will show below, it is the set ES,
not ES, that is most relevant for recruitment in the 2-input case.

We are now in a position to determine the location of fixed points of the map Pa;.
There are a few important points in the v-g phase plane we must first identify. One
is the point R. For each fixed k translate the part of I" that lies above the v-nullcline,
which terminates in point A, down by k units in the g-direction. Then set R as the
unique point of intersection of the translated curve and I'. Denote the coordinates of
R by (vg,gr). Next let Ra; be the point (on I') obtained by flowing R backward for
time At. By this definition, if we start at Ra;, flow forward for time At to the point
R, and then add k to the g-coordinate of R, then we obtain a point along I', which we
label @, with coordinates (vg, gg). We also define I'™ to be the part of I' lying below
the v-nullcline, which contains R but not Ba; and Q. Figure 4 illustrates the structures
described here.

As discussed above, the return map will have a unique fixed point (v},(g9), gh,) for
each At € (T,2T). The following Lemma, restricts where these fixed points may lie,
explicitly showing that they cannot lie in ES \ ES.

Lemma 3.9 For each At € [T,2T], the map Pa; has no fized points in ES \ ES.

Proof: Recall that T'; denotes the part of T' obtained by flowing A backward under
(2)-(3) for time ¢ and that ES is the set of points bounded to the left by ha¢(g), below
by I'a¢, and to the right by the line v = 1. First, we characterize the location of
points in ES \ ES. Note that the concatenated curves hat(g) U hor—at(g) UT partition
the rest of the (v, g)-plane into four open components, as shown in Figure 5. Denote
these components by C}, which is bounded above and below by I" and does not intersect
{v =1}, Cy, which contains all of {v = 1} except A € I' and which is positively invariant
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Figure 4: The unique trajectory I' passes through the point A where the v-nullcline
intersects {v = 1}; I'" is the part of T' below the v-nullcline, while T'a; (not labeled
here) is the part of I' extending from J%At to A. The point ]A%At is carried to the point R
by the flow in time At. Note that ¢ = (I —1)/(1 — F) and that vg = vg,g9¢ = gr + k-

under the flow of (2),(3) without reset, Cs, which lies between ha¢(g) and hor_a¢(g)
and is nonempty because At > 2T — At, and Cy, which lies above I" and left of hai(g)-
We have ES = Cy UC3 while ES \ ES C C; U C4.

Suppose that an arbitrary initial condition (v(0), g(0)) in ES\ ES N C; is a fixed
point of Pa;. As noted above, since this is a fixed point, g(0) > g1; therefore, if this
initial point is flowed for time At to (v(At), g(At)) and then reset, then

g(At) + k < ¢(0). (17)

Now, since (v(0),g(0)) is a fixed point of Pa;, the time 27 — At flow must carry
(v(At), g(At) + k) to (v(0),¢9(0) — k). Further, (v(0),g(0)) has been selected to lie
in ES, so the trajectory generated by this flow must cross {v = 1}. This is only
possible if (v(At),g(At) + k) lies to the right of hoy_a; and above T'op_ay; that is,
(v(At),g(At) + k) € Ca. Since g(At) + k < g(0) and the curves hor_a¢, [or7—at have
negative slopes as functions of g, it follows that v(At) > v(0), as illustrated in Figure 5.

Since (v(At), g(At) + k) € Cy, the image of this point under the time 27" — At flow

must remain in Co. Initially, its v-component will increase, and later it will decrease
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Figure 5: The curves hat(g), hor—a¢(g), and I' partition the plane into four open compo-
nents, C1, Cy, C3, Cy. If Pa; has a fixed point (v(0),¢(0)) in ES within component Cf,
then after it flows for time At plus reset, it must lie in component Cs, as shown, since it
lies in ES. To be a fixed point of Pa;, the flow must return it to its original v-coordinate
after its first reset, and then it will be reset again. But the two reset distances in g,
shown by the two dotted lines, cannot be equal.

until it reaches v(27") = v(0). Let 7 € (0,27 — At) denote the time such that v(At+7) =
v(At). Since the image of (v(At), g(At) + k) lies in C and (v(At), g(At)) lies in Ci, we
have g(At + 1) < g(At). Hence, g(2T) < g(At + 7), from equation (3), yields

g9(2T) < g(At). (18)

Since (v(0),g(0)) is a fixed point of Pa;, the equality ¢(2T") + k = g(0) must hold.
But inequalities (17), (18) yield

g(2T) + k < g(At) + k < ¢(0), (19)

a contradiction.

Finally, Pa; has no fixed points in ES \ ES N Cy by a similar argument. That is, if
(v(0),9(0)) € ES\ ES N Cy, then (v(t),g(t)) crosses v = 1 after time At¢. Hence, the
inequalities in (19) again hold by the argument given above, again giving a contradiction.
O

The next set of results gives more information on potential locations where the set
of fixed points of Pa; may lie. Henceforth, we use the phrases “to the left (right) of”
to refer to points in I" that have larger (smaller) g-values and smaller (larger) v-values
than those of other points, or sets of points, in I'.

18



Lemma 3.10 For At € [T, 2T], if Ra; lies to the right of Q on T, then the fized point
(vA4(9),gh;) of Pay lies in ES or has v, > 1.

Proof: Fix At € [T,2T] and assume Ra; lies to the right of Q. We will show that the
fixed point (vA;,gA;) of Pas has v}, > vg and g}, > go. Thus the fixed point will lie
either in ES or to the right of v = 1. Recall that the fixed point is attracting. Further
note that the g component of the time 27" map is monotone. Thus if g(0) < g(27),
then g(2nT") < g((2n 4+ 2)TT) < gi,; for alln =1,2,3,.. ..

Let (v(0), g(0)) lie at the point Ry lying to the right of Q. By definition, this point
flows to R at time At, and is reset to the point (). It then flows along I' for another
2T — At. Note that (v(277),¢(277)) € I, but g(277) is greater than gg, the g value
at the point R. Thus after reset, (v(21'"),g(27")) € ES. In particular, g(27) > gr
implies g(2T") = g(2T)+k > gr+k = go > ¢(0). The monotonicity in g then implies
that gA, > go-

The above argument also shows that v(2T") > vg. Since v(2nT) — v}, as n — oo,
we need only show that the forward iterates v(2nT) satisfy v(2nT) > vg for each
n. Consider the point (v(2T),g(27")) flowed forward for time At. This trajectory
must lie in Cy, and in particular, monotonicity gives g(27~ + At) > gr. Therefore
v(2T + At) > vg and g(2T" + At) > gg. So (v(2T + At),g(2T" + At)) lies in Cy and
v(4T) > vg results. The same argument can be applied at each time 2nT to reach the
conclusions of the Lemma. O.

Lemma 3.11 If R, lies to the left of Q, then any fized point of Pa; on T lies between
Rt and Q.

Proof: If (v(0),g(0)) € T is a fixed point to the left of Ray, then (v(At),g(At) +
k) € Cq, by the definition of Ra;. Hence, the argument in the proof of Lemma 3.9
gives a contradiction. If (v(0),¢(0)) € I is a fixed point lying to the right of @, then
(v(At), g(At) + k) € Cy, which is positively invariant between resets. Since g(0) < gg
and (v(2T),g(27)) € C1, the condition g(27 )+ k = ¢g(0) implies that g(2T)+k < gg.
Hence, v(2T') < vg = vg < v(0), contradicting the assumption that (v(0), g(0)) is a fixed
point. O

Henceforth, let I'a; denote the segment of I between Ra; and Q, regardless of which
of these points lies to the left of the other. For each At, the fixed point of Px; may lie
either in the part of Cy bounded above by I' and below by the v-nullcline, in which case
recruitment fails; above I' and to the right of hat(g), in which case recruitment occurs;
or exactly on f‘At, if R, lies to the left of (). Since gj, increases with At, it seems
plausible to expect a progression from non-recruitment to recruitment as At increases
from T to 2T, with the transition occurring at some unique At for which the fixed
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point of Pa; lies in Iac. However, the change in v}, with At may be non-monotone,
so this progression is not guaranteed. Based on Lemma 3.11, if g}, moves above Ray
for some At, then Pa; cannot have a fixed point on I', and thus recruitment will be
maintained if it has been achieved already; however, like g}, the g-coordinate of Ray
increases with At, so Ra; could theoretically overtake gji, as At increased further. In
Appendix B, we present Lemma 5.1 and Lemma 5.2, which further refine this picture,
and Figure 6 illustrates some of the possibilities that emerge. In the next subsection, we
examine numerical examples and establish conditions that guarantee that a progression
from non-recruitment to recruitment with increasing At does indeed occur.

3.2.2 Numerics for IF in the 2-input case

The results discussed above provide a strict criterion for a transition between non-
recruitment and recruitment to occur. Specifically, such a transition will occur at a
value At if and only if Pa; has a fixed point in a: C I', which is only possible if Ray
is to the left of ). Figure 7 shows a numerical example of how relevant structures
evolve as At is increased; the simulations for this, and all other numerical figures in the
paper, were performed using XPPAUT [5]. This figure was generated using equations
(2),(3),(4) with I =1,E =2,8=0.5,k = 1,T = 4.25 and various values of At, as listed
in the caption, and also various thresholds for v (rather than v = 1), as discussed in
the next paragraph. In the plot, each solid curve represents v, for some choice of At,
with the exception of the black solid curve, which is v} and is shown for comparison.
The results show that as At is increased from T', v, moves away from v}, 4 in a non-
monotone way, moving towards larger v-values at first and then coming back to smaller
v-values, converging to vy, as At 1 27. We observed a similar non-monotonicity for
other parameter sets used.

Unlike v},, the value gj, increases monotonically with A¢, as can be seen from
equation (16). The asterisk on each solid curve shows its intersection with g = g}, for
the corresponding value of At (note that g, for the At used for curve 5 is extremely
close to g5p). While the thick dashed red curve is the v-nullcline, the thin dashed black
curves denote the position of the curve I" for three different choices of threshold value for
v, namely vy, = 1.5,1.55, and 1.6. For vy, = 1.5 (leftmost dashed black curve in Figure
7), there is a unique value of At between 5.5 and 7 for which Pa; has a fixed point in T'.
Interestingly, this occurs for At sufficiently small such that v}, is still increasing in At.
For vy, = 1.55 (middle dashed black curve in Figure 7), the situation is more subtle.
Our numerics indicate that there again is a unique At for which the fixed point of Pa;
lies on I', but it occurs for larger At, for which v}, is decreasing, and hence it is more
difficult to discern whether it is truly locally unique. Finally, for vy, = 1.6 (rightmost
dashed black curve in Figure 7), the fixed point of Pa; lies below T for all At € [T, 271,
and recruitment never occurs.
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Figure 6: A possible progression of the fixed points of Pay for At; < Aty < Ats, all in
[T,2T). All blue, red, and green objects correspond to At = Aty, Aty, Ats, respectively.
Solid circles denote fixed points of Pa; for corresponding At, while the three slightly
enlarged but hollow circles denote Rm. For At = Aty, two different curves v}, , are
shown to illustrate two different possible locations of this curve; for fixed parameters,
only one such curve would exist; similarly, for At = Ats, two possible locations of
gAs, are shown. Note that all v* curves lie to the right of v, by Lemma 3.7. When
At = Aty as shown, v}, intersects I' at g > g, - Hence, this intersection may occur
above or below RAtl, but must be to the left of Q; in either case, vj,, NgA,, lies below I,
outside of ES, and no recruitment occurs. When At = Aty as shown, VAg, NGAs, OCCUTS
exactly on I and to the right of RAt2 (i.e., on f‘AtQ), by Lemma 3.9, corresponding to
the boundary between recruitment and non-recruitment. When At = Atz as shown,
VAL, N Gag, Occurs above I', leading to recruitment. Since va,, NI' occurs below gag;,
this intersection must lie to the right of fm’Atg (i.e., on r Ats), by Lemma 5.1. Finally, note
that Ry must lie to the left of the point vap(g) NT, if recruitment occurs for At = 2T,
by Lemma 5.2.

There are other ways to check the uniqueness of the transition point numerically,
as an alternative to computing positions of fixed points of Pa; directly. For example,
recall that for Pa¢(v(0),9(0)) = (v(2T),g(2T")), we define Av = v(2T) — v(0). For

21



\Y

Figure 7: An example of the evolution of v}y, and g, with At, along with other relevant
curves. The solid curves labeled with numbers correspond to v, with 1: At = 5.5, 2:
At=17,3: At =172, 4: At =8.25, 5: At = 8.45, which all lie in (T, 2T") = (4.25,8.5).
The asterix on each curve denotes the position of the fixed points of Pas. All other

parameter values are given in the text, where the other objects in the figure are also
described.

each point on I'; we can compute Av. For each At, let Av(At) denote the value of Av
found by applying the map Pa; to the unique intersection between the line g = giy, and
I'. Since recruitment transitions correspond precisely to fixed points of Pa; in I', we
have Av(At) = 0 if and only if a transition occurs at A¢. Thus, given that a transition
occurs, its uniqueness is guaranteed if we can show that d(Av)/d(At) > 0 for all At.
We have checked this carefully for various parameter sets, and we have always found
that this inequality holds. Figure 8 shows two examples.
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Figure 8: Change in Av with At along T'. AB) 8 =0.5,T =5,k=1. CD) =2,T =
3,k = 3. Both A) and C) show points sampled along I' for the associated parameter
values. Each sampled point represents g}, intersected with I" for a particular value of
At. These values are used in plots B) and D), which show the value of Av found by
implementing the map Pa; from the corresponding initial point on I', for each At used
in A) and C), respectively. The slopes of these curves, d(Av)/d(At), are unambiguously
positive. The unique At for which the fixed point of Pa; lies on I' is given by the At
value for which Av(At) = 0, which are approximately At = 8.9 in A,B) and At = 5.0
in C,D).

3.2.3 Refinement of the recruitment picture in particular parameter regimes

We will now use equation (16) to derive conditions on non-recruitment and recruitment
for the boundary cases when At = T and 2T respectively. This will allow us to prove
the following lemma.

Lemma 3.12 Fiz k < (1 —1)/2(E —1). Then for E sufficiently large or 8 sufficiently
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small, there exists an interval of T walues [T}, Th;] such that if T € [T}, Ths), then
recruitment occurs for At = 2T and fails for At =T.

Proof: As seen in subsection 3.2.1, for fixed T', as At varies, all transitions between
recruitment and non-recruitment must correspond to the existence of a fixed point
(vAs Ghy) of Pay on I'as, the subset of I' between Ra; and Q, for a value of At for
which Ra; lies to the left of Q. Let g denote the g-value of the unique intersection point
of v5; with I' and recall that the g-value of the point () is denoted gg. Since Lemma
3.7 shows that v}, lies to the right of v3, for all At € [T,2T), clearly all transitional
fixed points must occur with g, € [9q, g].

Now, recall from equation (7) that A = (1,(1 — I)/(F — 1)) is the unique point
on the v-nullcline with v = 1. Thus, we have g9 > (1 — I)/(F — 1), while taking
a backward flow implies that § < (1 — I)exp(28T)/(E — 1). Therefore, § — gg <
(1 —I(exp(28T) — 1)/(E — 1), which can be made small by taking F to be large or
to be small.

Consider next the value of g5, for T large. As T — oo, g5, — 2k. Therefore, by
taking 2k < (1 — I)/(E — 1), we guarantee that ¢ < g5, < (1 —I)/(E — 1) and thus
recruitment fails. Alternatively, if we now consider g7 for 7' small enough, we obtain
the opposite conclusion. Namely, as T' — 0, g — oo, and since g5 > g7, this implies
that for any & > 0, there exists a small enough T such that recruitment will occur.
The large and small 7" results together imply that for any fixed k < (1 —I)/2(E - 1),
there exists an intermediate interval [Tj,,Th;] of T values for which g3, > g, and the
difference g5, — g7 = k(1 —exp(—pBT))/(1 —exp(—28T)) can be made larger than §—gg
by choosing FE large enough or  small enough. Thus for an interval of T' values, we
have both g5, > g and g < gg, implying that for this interval, synchronized input of
size 2k that arrives with period 27 recruits, while input of period T' and size k£ does not.
O

The recruitment part of Lemma 3.12 establishes that under a few conditions on
parameters, the intersection of v}.(g) and g;. lies outside of ES. This intersection is
a fixed point of the map Pr. Under these same conditions, the intersection of v3;(g)
and g5 lies inside E'S or has v > 1, at a fixed point of the map Por. Since Pa; has
a unique fixed point for each At € [T,2T], there must be at least one At at which
the corresponding fixed point lies in the boundary of ES. More specifically, by Lem-
mas 3.10 and 3.11, this fixed point must occur at At such that Ray is to the left of Q
and must lie on I'a; € T. The natural question to ask at this point is whether or not
this transitional fixed point is unique. By proving that it is, under certain conditions,
we will now establish Theorems 3.13 and 3.15.

Theorem 3.13 Fiz parameters such that Lemma 3.12 holds, i.e. there exists an interval
[T10, Thi] such that recruitment occurs for At = 2T and fails for At = T whenever
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T € [Tio, Thi]. For B sufficiently small, there exists At. € (T,2T) such that recruitment
occurs if and only if At > At,.

Remark 3.14 Once parameters are fixed such that Lemma 3.12 holds, it will continue
to hold if 3 is reduced.

Proof: Our goal is to show that there is exactly one value of At € (T,2T) for which
the fixed point (vi,, gA;) of Pa; lies in I'a;. Since the assumptions of non-recruitment
for At = T and recruitment for At = 2T give the existence of at least one such At, it
suffices to assume that (v},, g4,) lies in I'a¢ and show that if At' < At, then (VA GAw)
cannot lie in T' Al -

To argue by contradiction, suppose that At' < At and that (v}, gh,) and (vAy, gAy)
lie in T At and f‘At:, respectively. Note that both fAt and f‘At’ are contained within the
same trajectory, I'. Since At < At, it follows from (16) that gi, < gA;, meaning that
(VAy, Ay ) is closer to @ than is (v, gh,)-

Let (va¢(t),gac(t)), (vay (t),gap (t)) denote the trajectories emanating from the two
initial conditions under consideration, We can calculate that gay (At') > gai(At), which
implies that vay (At') > va;(At) and of course that gay (At') +k > gas(At) + k. Hence,
the trajectory generated by the flow from (vay(t), gar (t) + k) is bounded between the
trajectory generated by the flow from (vai(t),ga:(t) + k) and T itself. Further, note
that the trajectory from (vay (%), gay (t) + k) must satisfy

gav (2T) = gay (0) — k < gar(0) — k = gar(2T). (20)

We can now prove that the theorem holds for § sufficiently small. By making
[ sufficiently small, we can assume that trajectories that reach the wv-nullcline fol-
low it arbitrarily closely. In this case, (vat(27T),9a:(2T)) and (vay (2T),gav (2T))
both lie as close as we wish to the v-nullcline. Hence, condition (20) implies that
var (2T) < var(2T). But then the fixed point conditions vay(0) = vay(2T) and
vA:(0) = va(2T) imply vap(0) < va¢(0), which contradicts the fact that At < At
with (va¢(0), gat(0)), (var (0),gar(0)) both on T O

A schematic illustration of a trajectory corresponding to a fixed point on T for g
small is given in Figure 9. Note that trajectories from different initial conditions on I'
will be strongly compressed in their v-coordinates, as used in the proof of Theorem 3.13.

The following theorem presents a second rigorous result on the transition from non-
recruitment to recruitment, corresponding to the case when 7' is small. This result is
weaker than the case of small 3, in that it does not rule out multiple transitions before
the final transition to recruitment occurs, but it does rule out the possibility that there
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Figure 9: Schematic illustration of a trajectory corresponding to a fixed point on I' for
[ small. The initial condition is labeled 0 and the location of the trajectory at the first
input time is labeled At.

are transitions arbitrarily close to At = 2T and it also gives a precise bound on how
small 7" has to be.

Theorem 3.15 Fiz T sufficiently small such that

k

9Q < 7T

where gg depends on k,B3, E, and I but not on T. If, for this T, recruitment fails for
At =T and succeeds for At = 2T, then there exists a unique value At, € (T,2T) such
that recruitment occurs for all At € (At,,2T.

Proof: Let Ra; be denoted by (0at,gat). If recruitment fails for A¢ = T but not for
At = 2T, then there exists a value Aty > T such that recruitment fails for At € [T, Aty]
and such that gi; < gat;, by Lemma 3.11. To establish the theorem, we will first
show that for T' sufficiently small, g5, > gor, which implies that the curves g, and gay
intersect for some At € (Aty,2T), and dgi,/d(At) > dgai/d(At) for all At € [T,2T],
which implies that this intersection is unique.

Equation (16) gives the formula for g}i,. In Appendix C, we derive the expression
dar = goeP2(1 — k/gq), where gg > k satisfies equation (28) and therefore depends
on k,3,FE, and I but not on T. ;From these equations, we find that both quantities
have positive derivatives with respect to At and that dgi,/d(At) > dga/d(At) for all
At € [T,2T] if and only if

9q < k/(1 — exp(—24T)), (21)
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which is true for 7' sufficiently small with all other parameters fixed. Similarly, after
some algebraic manipulation, g5 > gor if and only if

9@ < k(exp(26T) +1)/(exp(28T) - 1), (22)

which also holds for T' sufficiently small and all else fixed. In fact, since (exp(287T) +
1)/(exp(28T)—1) > 1/(1—exp(—2BT)), the condition given by (22) is redundant. Thus,
for any T such that equation (21) holds, the curves g, and ga; intersect uniquely on
(Atf,2T), and we call the intersection value At = At,.

Now, to conclude the proof of the theorem, it suffices to show that recruitment occurs
for all At > At.. This holds because gi, > ga; for all At > At., and hence the fixed
point of Pa; must lie outside of D'y for all At > At,, by Lemma 3.11. Thus, there
cannot be any transitions between recruitment and non-recruitment for At > At,, and
since recruitment occurs for At = 27", it must also occur for all At € (At.,2T. O

3.3 Theta model - single input

Consider the theta neuron with periodic excitatory input, given by the equations (6) and
(4). As with the IF neuron, we start by asking whether the input will recruit the model
neuron to fire, or cross through 6§ = 7, repetitively, as defined in Section 3.1. Again, we
will define a two-dimensional map, in this case based on the flow of (6). We shall see
that for the theta model, recruitment is determined by the existence or non-existence of
a fixed point of this map, rather than by the location of a fixed point that always exists,
as in the IF case. Our result that recruitment will occur if and only if a certain fixed
point of this map exists will be made precise at the end of this subsection, in Theorem
3.19.

Now, since ¢’ = —fg between inputs, which are each of size k, equation (8), namely
k
*
(A ——

again gives the unique value of g such that if g(0") = g*, then g(7't) = g*. Similarly,
for fixed g, we can ask whether there exists one or more values 8*(g) such that, under
the flow of system (6) with 8(0) = 6*(g), the condition 6(T") = 6*(g) holds. First, recall
that the critical points of (6) are the points (fs,0), (6r7,0) with 05 < 0 < . Note that
the #-nullcline partitions the {g > 0} part of the phase plane for system (6) into two
regions, with 8’ < 0 below the #-nullcline, and ¢’ > 0 above it. Denote the left branch
of the 6 nullcline by ©_ = {(0_(g),g)} and the right branch by ©, = {(6+(g),9)}. Let
B denote the region bounded above by the #-nullcline and below by {g = 0}, as shown
in Figure 10. The following preliminary result will be useful as we proceed.

27



Figure 10: Basic picture for the derivation of the curves ©1 = (01(g),9), 92 = (62(9),9),
where A = 0. The shaded region B is bounded above by the #-nullcline, which consists
of ©_ U ©, and is simply labelled by ¢’ = 0 here. On the first horizontal dotted curve
above g = 0, six points are marked. Moving from largest 8 to smallest 6, these are: a
point on W*, with A8 > 0; a point on O9, with Af = 0; a point on O, with A8 < 0 by
Lemma 3.16; a point on ©_, with Af < 0 by Lemma 3.16; a point on ©1, with Af = 0;
and a point on § = g, with A > 0 by Lemma 3.16. Note that ©1, ©2 need not coalesce
precisely as shown, as discussed below Lemma 3.18, and that ©®1 U ©9 are bounded by
W? and {0 = 6s}, as in Theorem 3.19ii.

Lemma 3.16 If(6(t),g(t)) is a solution to system (6) with (6(0), g(0)) on the 8-nullcline,
then 6(t) < 6(0) for all t > 0.

Proof: The #-nullcline exists for g < —b, where b < 0 appears in (6). The vector field
along the @-nullcline points into B since df(g)/dg < 0 and df_(g)/dg > 0, and ¢’ <0
for g > 0. Therefore B is positively invariant. Also if (#(0),g(0)) € B, then #'(t) < 0
for each ¢ > 0, which yields 6(t) < 6(0) for all £ > 0. O

Let A§ = 6(T) — 0(0) for any initial condition (6(0), g(0)); we omit explicit reference
to the dependence of A and A(T") on g(0) and on §(0). We now begin to characterize
the set of points where Af = 0, as illustrated in Figure 10.

Lemma 3.17 There exist g¢ > g. > —b > 0 such that:

i) For each g € [0,g.), there are at least two values, 01(g) < 02(g), such that, if
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(0(0),9(0)) = (6i(g9),9) for i =1 or 2, then under the flow of system (6), 6(T) =

ii) The functions 61(g),02(g) satisfy
01(g) — 0s and 62(g9) — 6y as g | 0. (23)

iii) If g > g, then O(T) > 0(0) for all initial conditions (6(0),g).

Proof: Denote the {g > 0} branch of the stable manifold of the saddle point (6, 0) by
We ={(6°(g),g) : g > 0}. Note that along this manifold, §’ > 0. Now consider Af for
various choices of (6(0),g(0)). Since W* is invariant, if (6(0),g(0)) € W*, then A8 > 0.
Further, for fixed g < —b, where the #-nullcline exists, and (6(0),g(0)) € ©,, Lemma
3.16 implies that A < 0. Thus, by the intermediate value theorem, there exists 2(g) €
(0+(g9),6°(g)) such that Af = 0 for 6(0) = 62(g). Moreover, since §%(g) — 0,(0) = 6y
as g J 0, the squeeze lemma implies the second limit in equation (23).

Similarly, A8 < 0 for (6(0),¢(0)) € ©_, by Lemma 3.16. Further, if §(0) < 8g, the
f-coordinate of the stable critical point of (6), then Af > 0, again using Lemma 3.16 to
note that 0(T') > 0g > 6(0) if (6(¢), g(t)) enters B. Hence, there exists 61(g) € (0s,0-(g))
such that A§ = 0 for 6(0) = 6,1(g), with the first limit in equation (23) following from
the facts that 8_(g) — s as g | 0 and that A@ > 0 for all initial conditions (6(0),0)
with 6(0) < 6.

By continuity in initial conditions, the curves ©1 = (61(g),9), ©2 = (62(g), g) extend
to g > —b, at least for g sufficiently close to —b. Omn the other hand, if g is suffi-
ciently large, then for each (6(0),¢(0)), we have g(T') > —b. Thus, the trajectory from
(0(0),g(0)) remains above the #-nullcline, with 8’ > 0, for all ¢ € [0,7], and Af > 0
results. This establishes the desired conclusion. O

The reason that we distinguish g¢ from g, in Lemma, 3.17 is that in theory, the curves
©; = (0i(g9),9) could undergo various bifurcations, giving rise to additional branches
satisfying A@ = 0, for some range of g < g°. We next provide some constraints on the
set © = {(0,¢9) : AO = 0}; again, see Figure 10.

Lemma 3.18 For g < —b, the curves ©1,04 contain the only sets of initial conditions
for which A8 = 0; that is, © N {(f,9) : 0 < g < —b} C ©1 U BOy. Moreover, © N {(6,9) :
8> 0,9 <1-b} C Oy Finally, dds(g)/dg <0 and db1(g)/dg > 0 on any intervals
(0,9) of g-values on which they exist, and at any fized 0, the sets ©1 N {0 = 0} and
©2 N {0 = 0} are either unique points or are empty.
Proof: From system (6), note that
d (df
— = )=(1-b-— in 6. 24
o (G) = =b—g)sind (24)
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Hence, if g < 1 — b, then d(#')/df > 0 for 6 € (0, 7), including the region between ©
and W*, and d(0')/d6 < 0 for 8 € (—=,0), including the region to the left of ©_.

Now, suppose that for some (6(0),g(0)) with (0) > 0 and g(0) < 1 — b, we have
A@ = 0. This is equivalent to the condition

T
/ ¢'(t)dt = 0. (25)
0

Note that the trajectory from (6(0),g(0)) satisfies 8(t) > 0(0) > 0 for all ¢ € [0,T].
Hence, if we consider any 6(0) > 6(0), then 6(t) > 6(t) for all t € [0,T] and thus
0'(t) > 0'(t) for all t € [0, T], and equation (25) cannot hold for the new trajectory; see
Figure 11. Similarly, if 0 < 6(0) < 6(0), then €'(t) < @'(t) for all ¢ € [0,7] for which
6(t) > 0. If 6(t) > 0 on all of [0,T], ‘then equation (25) again cannot hold, whereas if

0(to) = 0 for some ty € (0,T), then 6(¢y) lies inside B, beneath the 6-nullcline. Thus,
0(t) < 0(ty) = 0 < 6(0) for all t € (ty,T], and A@ < 0 results. This establishes that
©n{@,9) :0 > 0,9 <1-0>b} C Oy (see Figure 11A). The argument implying that
©n{(6,9): 0 <0,9g <—b} C O is analogous, since trajectories with initial conditions
(0(0), ¢(0)) satisfying 8(0) < 6_(g(0)),g(0) < —b cannot cross {# = 0} by Lemma 3.16.
However, it does not extend to g € (—b,1 — b) because for g(0) > —b, it is possible that

some trajectory could cross through {# = 0} and achieve A6 = 0.

Ag B d6/dt

AB>0
C nesoneso A9
6=0 0

—+ Y

Figure 11: Argument for the uniqueness of ©2 in {(6,g9) : § > 0,9 < 1—5b}. A) Given an
initial condition in this set for which A8 = 0, any initial condition with the same g value
and larger 6 yields Af > 0; an example is shown in the (6, g) plane. B) The same result,
illustrated using time courses of df/dt. For the time course that gives Af = 0, the two
shaded areas are equal, as stated in equation (25). Since df/dt is larger everywhere on
the other time course, by equation (24), Af > 0 results.

Next, we prove that df2(g)/dg < 0 and that there cannot exist two different g values
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sharing the same 62(g). Suppose that (0(0),g(0)) lies on the curve ©2, and label the
corresponding trajectory (0(t),g(t)). Consider also (0(0),§(0)) with g(0) > ¢(0), and

label the corresponding trajectory (6(t),g(t)). If g(t1) = g(t2), then by uniqueness of
solutions of (6), 8(t3) > O(t;), while by the exponential decay of g, to > ¢;. Since
6(t) > 6(0) on [0,T7], it follows that 6(t) > 6(0) on [0,7], and therefore 82(g§) # 62(g)-
Thus, two different g values cannot share the same 63(g) and also df2(g)/dg cannot
change signs, and it remains to determine whether it is nonpositive or nonnegative. To
do this, suppose that in the above argument, g is selected such that 62(g) > 0. The
above argument gives Af > 0 for any initial condition (62(g), g) with § > ¢g. Comparing
any trajectory emanating from (6, §), with 8 > 65(g), to the trajectory from (62(g), §)
shows that again A8 > 0, again by uniqueness and equation (24). Hence, 62(g) < 62(9)
for g > g. Thus, dfs(g)/dg < 0 at least for g < —b, where 02(g) > 0, and hence
df2(g)/dg < 0 for all g for which it is defined, as claimed.

Finally, the proofs that df(g)/dg > 0 and that no two g values share the same 6;(g)
are similar, where we can establish the sign of 6](g) by using g sufficiently small such
that the trajectory from (61(g), g) remains in {6 < 0}. O

Next, we consider how the curves ©; terminate as g increases, which clearly must
occur, as stated in Lemma 3.17, since they are bounded by W*. By Lemma 3.18, each
curve ©; cannot undergo a pitchfork bifurcation, a transcritical bifurcation, or a saddle-
node bifurcation in which df;(g)/dg = 0, since each of these requires the existence of
two points (6, ¢g1), (0,92) with g1 # go that both yield A@ = 0, which contradicts the
proof of Lemma 3.18.

One possibility that remains is that ©; and © meet and terminate at some value
of g, corresponding to a saddle-node bifurcation in the set of fixed points of the 6
component of map II, if g is considered as a bifurcation parameter. The only other
remaining possibility is that, as ¢ increases, ©; and ©, terminate in separate saddle-
node bifurcations with other, intermediate, curves along which A8 = 0; see Figure 12.
But since the ©; are the unique such curves for g < —b, these other curves must have
a lower bounds g,,g, > —b, and an additional saddle-node bifurcation must occur at
each of these bounds. Applying this argument repeatedly, the curves ©1, 09 would, at
their respective terminations, be linked by a snaking curve, composed of alternating
negatively and positively sloped segments, corresponding to a finite sequence of one
or more saddle-node bifurcations, with finiteness ensured by the fact that all of the
bifurcations would occur on a bounded interval of 8 values and that the vector field of
(6) is analytic, which rules out accumulations of bifurcation points. Figure 13 shows a
numerical example in which the set © consists simply of the union of the two curves
©1, 09, which coalesce in a single saddle-node bifurcation.

Given this rather complete characterization of the set of points, ©, at which A8 = 0,
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g*: succeeds

g=0 g=0

Figure 12: Possible scenarios for fixed points of II. Dashed curves correspond to O,
where Af = 0, and g = ¢g*, where Ag = 0; in each panel, multiple possible positions of
g = g* are shown. A) Here, O consists only of ©1U©,. If g* is sufficiently high to avoid
fixed points, then recruitment succeeds, while if it is low enough, then an attracting fixed
point of II exists on ©1 and recruitment fails. Arrows show the directions of change in
0, g, upon application of II, in a neighborhood of the attracting fixed point for the latter
choice of g*. B) Here, ©; and O4 are joined by a sequence of saddle-node bifurcations.
Again, recruitment succeeds for large ¢g*. As long as there exists an attracting fixed
point of II, which may or may not be on ©1, recruitment fails, as indicated by two of
the g* locations shown.

we now consider the map II(6, g) defined by the flow of system (6) for time T, followed
by an input of size k that resets g as described in equation (4). Fixed points of I can
only occur at the g value ¢* given in equation (8). Recruitment will be determined by
the nature of the set of fixed points of II. Recall that for the theta model, firing occurs
at @ = 7. This arises if and only if an input resets a point across W?, since {§ = n}
lies to the right of W, trajectories cannot cross W* under the flow of (6) without reset,
and the region to the right of W*¢ is invariant under II.

Now, if g* is sufficiently large, corresponding to large k& or small 87", then II has no
fixed points. In this case, all initial conditions are recruited. To see this, note that the
curve {g = ¢g*} is invariant and attracting under II, since g(0) < g* (g(0) > g*) yields
g(T) + k > g(0) (9(T) + k < ¢g(0)). But if {g = ¢g*} lies in the region where Af > 0 for
all initial 6, then all points will get mapped across W* under repeated iteration of II.

Alternatively, suppose that ¢g* is sufficiently small that II has two or more fixed
points, corresponding to small k or large ST'. Consider the fixed point of II with minimal
0 value, call it (0},,¢*) € ©1. Note that © = {(0,g) : A@ = 0} separates the (6, g) plane
into two regions, such that above ©, Af > 0, while below ©, Af < 0. The point
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Figure 13: An example of the set © where Af = 0, along with the stable manifold
W# and the #-nullcline (dashed). All curves were generated numerically from equations
(5),(3) with b= —1/3,8 = 1, and integration time 7' = 2.

(0F,,9%) € © necessarily lies on a branch of ©® with positive slope, such that we cross
from the A# > 0 region to the A# < 0 region as we increase §(0) through 6, with
g = g*; see Figure 12. The fixed point (6},,g*) is therefore attracting for II, and hence
recruitment fails in this case; that is, after at most a finite number of firings, every
cell will enter the basin of attraction of (6},,g*), or of another attracting fixed point if
multiple saddle-node bifurcations along © exist, and fall silent.

Finally, if we treat ¢g* as a bifurcation parameter and increase it without affecting
the location of ©, as may be done by increasing k, then it will pass through the values
at which all of the finitely many saddle-node bifurcations in © occur. Let g denote
the maximum of these values. We can now rigorously establish the following intuitively
sensible theorem; also see Figure 12.
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Theorem 3.19 i) If k, 3, T in system (6) with reset condition (4) are chosen such that
g* < gy, then the map 11 has an attracting fixed point and recruitment fails for all
initial conditions in the set {(0,9) : 0 € [—m,w]|,g > 0}. If g* > Gy, then II has no
fized points and all initial conditions in this set are recruited.

ii) Let (0s,95) = W*N {0 = Og} (see Figure 10). If O N {0 = 0} exists, then
g € (90,9s), where (0,g9) = ©2N {0 = 0}. Otherwise, g, € (1 — b,gs).

i1i) Recruitment occurs if k is made sufficiently large or if § or T is made sufficiently
small. Recruitment fails if B or T is made sufficiently large and k is not too large.

Proof: Part i) has been established. For part ii), the lower bounds on g, follow from
Lemma 3.18. The upper bound on g, holds because 01,02 must lie between {6 = 05}
and W?¥, so they must coalesce within the region bounded by these curves.

In iii), the dependence of recruitment on k follows immediately from the effect of &
on g*, given in equation (8). The effects of  and T are more subtle, since the set ©
depends on 3, T as well. The result for T holds because as T is decreased, g* — oo, but
© remains bounded by W*, so recruitment eventually occurs. On the other hand, as T
is increased, ¢g* | k, by equation (8). At the same time, for fixed g, the set © expands,
with its left boundary ©; moving to smaller # and its right boundary ©s moving to
larger 0; these changes both favor the existence of fixed points. To see the effect of T' on
O, consider an initial condition (6(0),g(0)) € O for fixed T' = T}, with corresponding
trajectory (6(t),g(t)) for t € [0,T]. For times near T, ¢'(t) < 0. For T = T > Ti, the
trajectory from (6, g) follows (6(t), g(t)) up to time 77 and then continues, with 6'(t) < 0
for t € [T1,T»]. Hence, Af < 0 for this initial condition with 7' = T, and 65(g) > 6(0)
for T =Ty. A similar argument proves that 61(g) moves to more negative 6 values as T
increases. These changes allow © to cross {g = k} if k is not too large (e.g. if kK < —b,
although clearly this can be sharpened).

The proof of the result for g is analogous to that for 7. Note that 8 and T appear
in a product in equation (8), so § has an identical effect to T there. Finally, as with
T, increases in (B lead to an expansion of ©, which complements the decrease in g* to
promote formation of fixed points. For example, suppose that (6(0),g(0)) € ©y with
B = 1 and then consider 8 = B > (1. Faster decay of g leads to less positive (or more
negative) df/dt, by equation (5), and hence Af < 0 results, such that ©y must move to
larger 0 values. The proof that ®; moves to smaller 8 as 8 increases is similar. O
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3.4 Theta model - 2 inputs
3.4.1 Definitions and parameter selection

As we did for the TF model, we now wish to consider pairs of periodic inputs of size
k, one of which arrives at times 0,27,47T,... and the other of which arrives at times
At 2T + At, AT + At,. .., with T < At < 2T'. For given At, we define a map, IIa(0, g),
by flowing the initial condition ((0),g(0)) under equation (6) for time At, applying
the reset condition g(At™) = g(At™) + k, flowing for an additional time 27 — At after
reset, and resetting again. In analogy with the single input case, we seek to determine
whether or not recruitment occurs by studying the set of fixed points of IIa;. Similarly
to the IF case, the set of fixed points can be viewed as the intersection of curves gj,,
for which g(2T't) = ¢(0"), and 6%,, for which #(27") = (0"). Further, since the g
dynamics decouple from the 6 dynamics in (6), g, is again given by equation (16). The
challenge that remains is to characterize 6,, which is the generalization of the set ©
from the single-input case.

To start, note that the value of k is irrelevant for defining 05, since when At = 2T,
a single input arrives with period 27" and there is no reset during time (0,27"). Thus,
Lemmas 3.17, 3.18 imply the existence of the set 67, consisting of curves ©; and O,
connected by one or more saddle-node bifurcations. For At € (T,2T), IIa; features a
reset of size k during (7, 2T), and this greatly impacts the location of 6% ,. In particular,
suppose that k is quite large, with k > —b. Then after reset, & > 0, no matter what
the value of § was before reset. This means that if £ is sufficiently large, %, may fail to
exist at all, except for At values extremely close to 27". In such a case, however, clearly
there is recruitment for all At, so this is not interesting to analyze. We shall henceforth
restrict our discussion to parameter regimes for which 6}, exists for all At € [T, 2T]. In
such regimes, we have the following lemma.

Lemma 3.20 Fiz any At € [T, 2T] and denote each constant-g section of Ox, by OA,(9),
although this may contain more than one point. If k < —b, then there exists go > 0 such
that O%,(g) consists of ezactly two points for each g € [0,g0). The results holds, for
exzample, for go = (—b — k)ePAt.

Proof: First, consider (0(2T'),g(2T)), generated by applying the map IIa; to various
(0(0), g) for fixed g. Note that 8(2T") > 6(0) for 6(0) = 6s, while 8(2T) > 6(0) as well
for 6(0) = 6%(g) defined such that (6%(g),g) € W?*. Moreover, for §(0) = 0, we have
0(At™) < 6(0), since (0(0),g) lies in B, beneath the #-nullcline. Further, if g < (—b —
k)eBAt, then g(AtT) < —band O(AtH) = (At~) < 8(0) = 0 ensure that 6(2T) < O(At).
Hence, by the intermediate value theorem, there are at least two elements in 8}, for this
g, call them (61(g),9), (62(g9),g9) with 6;(g) < 0 < 02(g). Further, the trajectory from
(01(g), g) stays in the region {# < 0} over the full 27" period with reset, while 65(g) > 0.
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Now, note that equation (24) holds here, in between resets. Thus, there can be at
most one (0, g) € 64,(g) such that the trajectory from (0, g) stays in the region {6 < 0}
over the full 27 period with reset. Similarly, there can be at most one (6, g) € 04,(g)
for which § > 0. This completes the proof. O

To proceed further, it is important to note that, in theory, there are two different
candidates for the curve to which 6}, converges as At | T, analogously to the IF case.
Similarly to what was done there, we use the notation 67} to define the curve where
6(T*) = 6(0"), for which k is again irrelevant. As At | T, 0%, in fact converges not to
6% but rather to a curve that we denote 67, for which 8(2T") = 6(0T), with a reset
of size k at time T'. While 67 differs from 07, -, they must intersect at g = g7.. In fact,
using 67.(g) and 67,1 (g) to denote the points in 07 and 07 1, respectively, with a given
g-coordinate, we have the following result, which parallels the IF 2-input case.

Lemma 3.21 Fiz all parameters and assume that g is fized such that 07.(g), 07 r(9)
both exist. If g < gy, then ming{(0,g9) € 67.(9)} < ming{(0,9) € 07 p(g9)}, while
maxg{(6,9) € 07.(9)} > maxe{(6,9) € 05,,(9)}. If g > gr*, then these relations are
reversed, and finally 67.(g7) = 07,r(g7); see Figure 14.

Proof: Suppose that g < g}.. For any trajectory (6(¢),g(t)) defined for ¢ € [0, 27, with
areset g(T") = g(T~) + k at time T, it follows that

g(T™) > g(T7). (26)

Choose (0(0),g(0)) € 6 such that g(0) = g and 6(0) = ming{(d,9) € 6;.(g9)}. This
choice yields 6(T) = 6(0). But since equation (26) holds, the segment {(6(t),g(t)) :
t > T} is forced to the right of the segment {(0(t),g(t)) : ¢ < T}, by uniqueness of
solutions of equations (5),(3), and furthermore, ¢g(27") > ¢(T'). Thus, 6(27) > 6(0),
as illustrated in Figure 14, so the minimal-0 element (6, g) € 6} (g) lies to the right
of (0(0),g). Similar consideration of #(0) = maxg{(0,g) € 07.(g9)} yields 6(2T) > 6(0),
so the maximal-6 element in 67 (g) lies to the left of ((0),g). Finally, reset and
uniqueness give the desired results for g > g7 in the same way; see Figure 14. O

Since 67 and 07 intersect at ¢ = g7, the maps Ily,II7 7 share the same fixed
points, and either can be used to study recruitment for At = T. Taking advantage of
this observation, we next show that it is possible to select parameters such that o has
no fixed points, and thus recruitment occurs for At = 27", while Il has an attracting
fixed point, and thus recruitment fails for At = T. Recall that the maximum point of
the #-nullcline lies at (0, g) = (0, —b), where b < 0, that (6s,0) is the stable critical point
of (6), that W? is the stable manifold of the saddle point (6, 0) of (6), and that we use
(0s,gs) to denote W N {0 = Og}.
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Figure 14: The relative positions of 67 and 6} ;. If a point on 60} is evolved, then
0(T) = 0(0) results. After reset (dotted vertical lines), the continuing trajectory on
(T, 2T is bounded by that produced on [0,7’]. If the initial g is below gj., then Af > 0
necessarily ensues, while if the initial g is above g7, then Af < 0 follows.

Lemma 3.22 Fiz 8 sufficiently small so that —2b > gg. For this 8, select k such that
gs/2 < k < —b. For this B and k, there exists Ty sufficiently large such that whenever
T > Ty, oy has no fized points and Iy has exactly two fized points, one of which is
attracting.

Remark 3.23 For example, b = —1.5,8 = 0.1 gives gs =~ 2.15, and the choice k = 1.3
and T = 25 gives a transition from non-recruitment to recruitment for At = 45 < 27.

Proof: Note that b and g are independent of 3, k,T, all of which characterize the
inputs to the cell, not its intrinsic dynamics. By taking 8 small, we can make gg as
close to —b > 0 as we wish, and in particular we can make —2b > gg.

Recall from the one-input case that if g5 < —b for some 7, then Il has exactly
two fixed points, an attracting one at (61(g}),g%) and an unstable one at (02(g}), g%).
Further, 6% is bounded above by W* and to the left by {# = fg}, and the maximal
g-coordinate of W* on {(6,g) : 8 > 05} occurs at fs. Thus, if gF > gg, then II; has no
fixed points. Therefore, it suffices to show that for the selected 8, we can choose k,T
such that g7 < —b and g3, > gs.

By our choice of §, it is possible to choose k such that gs/2 < k < —b; fix k such that
these inequalities hold. Now, g3, = 2k/(1 — e~ 2T) — 2k as T — oo. Since 2k > gg,
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g5y > gs for T sufficiently large. Similarly, g7 = k(1 + e #T)/(1 — e 2/T) — k as
T — o0, and since k < —b, it follows that g7 < —b for T sufficiently large, as desired. O

3.4.2 Transition from non-recruitment to recruitment

For very large k, recruitment occurs for all At. The previous subsection shows that
when k is not so large, 04, exists, at least for some range of g > 0, for each At € [T, 2T].
Further, 6}, varies from 07, - to 05, as At increases from T up to 2T. The key to the
transition from non-recruitment to recruitment, as At increases, is the change in location
of @}, relative to gi,. As in the IF case, equation (16) implies that g}, increases with
At, which would seem to promote recruitment. However, our numerics suggest that 6,
expands as At increases from T' to 27", which would oppose recruitment. Indeed, unlike
the IF case, where the curve v},(g) can first increase and then decrease as At increases,
O, appears to expand monotonically. An example of this expansion appears in Figure
15, while Figure 16 shows a comparison of 8}, curves for different values of 3 with other
parameters fixed.

Suppose that recruitment fails for At = T'; that is, 07, extends at least up to
g = g7, such that II7 has a an attracting fixed point. As At increases, g, increases
and 0, expands, such that recruitment may or may not emerge. The opportunity for
a transition to recruitment occurs at exactly those At values for which the maximum
point of 04, lies at g = gh,. If g5, exceeds the maximum point of 65, as Lemma 3.22
guarantees will occur for certain parameter choices, then recruitment certainly takes over
for some At < 2T'. Our results up to this point do not provide further information about
this transition, but instead indicate which structures should be generated numerically
to fill in the details of this transition for particular parameter sets.

A further example of these results, for 8 too large for Lemma 3.22 to apply, is
illustrated in Figure 17. For the parameter values used, a unique transition from non-
recruitment to recruitment does occur, at At ~ 1.6 € [T,2T] = [1,2], as can be seen
in both panels of the figure. However, as Figure 17B emphasizes, gj, lies very close to
the saddle-node of 04, for all At, in this example. Our simulations suggest that this
is representative of a general effect in the # model, namely that shifts in At lead to
qualitatively similar shifts in gi, and 63,. Hence, for wide ranges of parameters, the
recruitment outcome is the same for all At € [T, 2T]. This can be interpreted as a lack
of sensitivity to At in the theta model, relative to the IF model, in which transitions
from non-recruitment to recruitment with increasing At appear to be easier to achieve.
This likely relates to the crucial role of I'; which is independent of At, in the geometry of
the IF model. Indeed, one can easily adjust I" for the IF model, by adjusting the firing
threshold v, such that small changes in At have a large effect. This type of control is
not available in the @ model. In the # model, the stable manifold W* represents a At-

38



o
e
T

0.7} . ]
\
0.6 TUT

0.3 .- ~~~ \ n

0.2+ N \ i

-1 -0.5 0 0.5 1

Figure 15: A collection of curves generated numerically from equations (5),(3),(4) with
b= —1/3 and = 1. The dashed curves are the #-nullcline and the stable manifold
of (0y,0), labeled W*. The main group of solid curves show 8%, for & = 0.25 and
At =T =1 (labeled T), At = 1.5 (labeled 1), At = 1.8 (labeled 2), and At = 2T = 2
(labeled 2T) as well as the limiting curve 65, (labeled T U T); note that 67, ;- and 67
intersect at g = g7 ~ 0.4 and that 6}, expands as At increases. An additional solid
curve connects from the saddle-node point of 07, to that of 65,. Along this curve,
g increases monotonically with At. The figure also shows 67, for £ = 0.5 (labeled T
U T - 2k), as well as the curve of saddle-nodes for £ = 0.5, for comparison. Since 65,
is independent of k, the £ = 0.25 and k& = 0.5 curves of saddle-nodes terminate at the
same point.

independent structure that separates trajectories that cross threshold from those that
do not, but the location of W* cannot be changed independently from the locations of
the other relevant geometric structures in the phase plane.
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Figure 16: Extreme curves 07 and 05, for 8 = 0.25 (smallest g), # = 1 (intermediate
9), and 8 = 2 (largest g) with b = —1/3, kK = 0.25, T' = 1. Each pair is connected by the
corresponding curve of saddle-nodes of 6}, for At € [T,2T]. The dashed curve shows
the location of the #-nullcline. Note that 65, asymptotes to (fs,0) on one end and to
(0y,0) on the other, for all parameter choices.

4 Discussion

If a neuron is thought of as an integrator that sums its inputs, then the characteristics
of its firing pattern reveal information about the types of inputs it receives. The most
basic example one can consider is to see whether or not a neuron fires at all in response
to a given set of inputs. In this paper, we have laid out a set of geometric criteria
that allow us to determine whether or not a neuron will fire repeatedly in response to
periodically delivered excitatory synaptic inputs, including pairs of inputs of differing
degrees of synchrony. We called this process recruitment, in reference to ideas of pattern
completion [14] or bump formation [6, 13].

In the context of both the integrate-and-fire (IF) and theta neuron models, we showed
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Figure 17: Transitions from non-recruitment to recruitment in the theta model can
be subtle. This figure shows simulation results from equations (5),(3),(4) with b =
—1/3,8 =2, and T = 1, as in Figure 16, but with £ = 0.66. A) From lowest to highest,
the solid curves are 07,1, 07 ¢, and 65;. The corresponding values of gj, are dashed and
the curve of saddle-nodes for At € [T,2T] is also solid. The g7 line intersects 07,
corresponding to non-recruitment (which we verified in direct simulations). The g5
line lies above 65, corresponding to recruitment (again verified by simulation). The
transition occurs very close to At = 1.6, as indicated by the proximity of the line g7 4 to
the maximum of 07 4 and also verified in direct simulation. B) The curve of saddle-nodes
plotted as g as a function of At (dashed) lies very close to the curve g}, (solid). The
former curve starts above the latter for At =T = 1, corresponding to non-recruitment,
and intersects the latter uniquely near At = 1.6, yielding recruitment for all greater
values of At.

that if the inputs to a neuron are sufficiently strong and frequent, occur in a sufficiently
short time window (in the case of input pairs), and do not decay away too quickly, then
recruitment of cells can occur. Our analysis shows how analytic calculations associated
with the map P (IF case) or II (theta case) relate to geometric constructs such as
the exit set ES (IF case) or the set © (theta case). In particular, these structures
allow us to establish precise geometric criteria in phase space that specify the transition
between recruitment and non-recruitment as parameters are varied and that, for fixed
parameter values, a prior: determine whether or not a cells receiving the given inputs
will be recruited. Interestingly, despite similarities in the IF and theta models, they
feature qualitatively different geometries of the recruitment transition, which is given
by a change in the location of a unique fixed point of P in the IF case and a change in
the existence of fixed points of II in the theta case. Note that this difference does not
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simply correspond to the fact that the firing threshold is imposed arbitrarily in the IF
model; although the location of the threshold affects the transition in IF, it does not
change the existence of a unique fixed point of P.

The work that we presented here was motivated by trying to understand how regions
of localized activity (bumps) are formed in purely excitatory networks [3, 17]. By clar-
ifying what sets of inputs can or cannot recruit a cell into an activity pattern, we can
analytically explain several observations that we made about bump formation in exci-
tatory networks. Specifically, our results yield a condition on the degree of asynchrony
between inputs that determines the boundary in parameter space between inputs that
recruit cells and those that do not. When activity is initiated locally in a network and
begins to spread, whether additional cells are recruited or not depends on the input they
receive when the activity spreads close to them. Due to the gradual desynchronization
of activity as it spreads in a network of excitatory Type I cells [4], different degrees of
input synchrony will be present when activity reaches cells that are in different positions
relative to the initially stimulated region. So our condition on input synchrony relates
to which cells in the network will be recruited into a bump and which will not.

Our work also relates to the idea of synchrony-dependent propagation in feed forward
networks [15]. Specifically, for activity to propagate from one layer to the next, there
must be sufficient synchrony present in the inputs received by cells in the next layer,
and our results make precise the degree of synchrony required, at least in the case of
input pairs for IF and theta cells. Using firing rate measures of experimental data, Reyes
showed that increased firing synchrony can occur in deeper layers of feed forward cortical
networks, through a gradual enhancement of synchrony. Our work in this paper, applied
to bump formation [17], gives insight into a parallel, but opposite, process. That is, we
show how recruitment ends as synchrony breaks down, highlighting the consequences of
the gradual loss of synchrony.

The work of Pakdaman [12] is very clearly related to our single input IF story,
although we focus on the precise transition between recruitment and non-recruitment,
whereas Pakdaman considered the evenutal firing pattern of recruited IF cells. Similarly,
in other related work, Tiesinga derived analytic maps from the time of one spike to the
time of the next, and he used these and simulations to study mode locking in the
IF model. While Pakdaman’s model incorporated a smooth T-periodic input I(¢) that
changed signs on each period, such that fOT I(t) dt = 0, Tiesinga [19] considered piecewise
constant input that jumped between A and — A either periodically or quasiperiodically,
with or without noise. Both of these forms of input differ from our purely excitatory
synaptic input with instantaneous onset. We did examine the firing patterns of cells
driven with periodic trains of such synaptic input in a number of simulations of both the
IF and theta neuron models, under various parameter combinations. The simulations
suggest that when recruitment occurs in the IF case with one input per period, the
solutions eventually lock to the stimulus and settle into periodicity. With two inputs
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per period, solutions again appear to approach a periodic state, but we observe both
phase-locking and phase drift, relative to the stimulus, depending on parameter values.
The theta neuron case is harder to quantify, and details of firing patterns remain to be
studied thoroughly.

Borgers and Kopell also have studied how excitable cells, including theta neurons,
respond to different sets of synaptic inputs [1]. In this work, the authors concentrate
on E-I networks in an attempt to understand the origins of the gamma rhythm in the
hippocampus. They also state and prove some theorems on recruitment in the context of
IF neurons, but their results focus on extreme cases of input synchrony or desynchrony,
rather than transitions as the degree of input synchrony is varied, and their approach
is less geometric than what we presented. Borgers and Kopell also discuss the existence
of rivers, defined as certain strongly attracting or repelling trajectories. Rivers may
very well play a role in the recruitment that we consider, since we often observe strong
compression in simulations. Indeed, the lack of sensitivity to At in simulations of the 2-
input theta model may very well relate to the strong compression of trajectories induced
by the flow of equations (5),(3), although the details of such a relation remain to be
determined. We find that the IF model can also yield strong compression, particularly
below the v-nullcline. In IF, however, one can easily adjust the firing threshold vy, in
a way that makes the cell more or less sensitive to At, a form of control that is not
available in the § model.

We have considered situations where the inputs to the excitable cell are identical.

However, the ideas used here should generalize naturally to cases of many inputs, of
unequal strengths and/or frequencies. The analysis would, of course, be much more
complicated in such cases. However, the basic idea that the location of a fixed point
of an appropriately defined map in the IF case, or the (lack of) existence of a fixed
point in the theta neuron case, determines recruitment still holds in the more general
setting. In other recent work, we have also begun studying how an excitable cell responds
to stochastic inputs [18], using a Markov chain approach that yields firing statistics
as a function of the interinput interval distribution. For each interinput interval in a
stochastic train, the types of geometric structures discussed in this paper can be defined.
However, the question of how to derive probabilistic statements relating recruitment
likelihood to input train statistics remains for future work.
Acknowledgments. This work was partially supported by National Science Founda-
tion grants DMS-0414023 (JR), DMS-0315862 (AB). We thank Bard Ermentrout for
sharing XPPAUT tricks, on boundary value problems with resets, from his personal
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5 Appendices

5.1 Appendix A: The exit set ES for IF with 2 inputs

A full exit set EjS~ for the case of two inputs is shown in Figure 18. Note that depending
on parameters, FS may look as shown in the figure or slightly differently as described
below.

Nauzra(Q) hzTﬂ (9

Figure 18: The shaded region indicates the full exit set ES for the 2-input case. Initial
conditions that lie in this region are mapped into the set {v > 1} in time less than or
equal to 2T. See the text for definition of labeled points.

The points A and R are previously defined, but we repeat their definitions and define
other points here. A is the point along the v-nullcline that intersects the threshold
{v =1}. The curve I is the forward and backward trajectory through A. The point D,
along I, is obtained by flowing A backward a time 27" — At. The point R is the unique
point of intersection of I' and the curve obtained by shifting I' down by & units in the
g-direction. The curve hor_at(g) contains points that are exactly 27" — At away from
threshold and lies to the right of ha¢(g) since 2T — At < At. The point L lies along
the curve hor_at(g) and is k units above I'. The points E, C and F lie k units below
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L, D and A, respectively, as shown in Figure 18. Any point in the region FCRADE,
if synaptically reset, will be placed in the region above I' and to the right of hop_a¢(g)-
Thus these points are less than 27" — At away from the threshold and, when flowed
forward, will cross threshold before time 27". Therefore, to understand what points are
in the full exit set ES, we need to understand what points flow into this region in time
At.

Consider the forward trajectory through C (the forward and backward trajectory
through C is dashed in Figure 18). If the magnitude of the vector field through this
point is less than the magnitude of the slope of the curve CRF at the point C, then
the forward trajectory must intersect the curve CRF at a point, labeled G in Figure
18. The points C, E, G and R are obtained by flowing C, E, G and R, backwards in

AAAAA

time At, respectively. The set of points contained within the region FCGRFE, when
flowed forward time At, yields the region FCRADE. Thus points in ECGRE lie no
more than 27" away from threshold (keeping synaptic reset in mind), and are therefore
part of ES. Note that, as shown in Figure 18, the part of the boundary of ECGRE
between C and G extends below the trajectory from C to G in this case. The points
on this boundary segment are exactly those points that flow to the segment CG of the
curve CRF in time At.

The subset of ES described above results when the condition on slopes at the point
C is met. This can occur, for example, if 3 is small and there is much greater contraction
in the v-direction than in the g-direction. When the slopes at the point C' do not meet
the condition outlined above, then the point G does not exist and the ensuing full exit
set would contain a region bounded by just ECRE.

A second portion of ES lies above I' and is easier to understand. Points along the
curve haper—at(g), when flowed forward for time At, are reset to points above L on
the curve hop_at(g). Thus, any points lying on or to the right of hayer—at(g) are no
more than 27 away from threshold, with reset at At taken into account, and are also

part of ES.

5.2 Appendix B: Refinement of the possible recruitment progression
with At for IF with 2 inputs

In this appendix, we establish some results that refine the picture of how the progression
from non-recruitment to recruitment may or may not occur as At is increased in the
interval [T',27]. Note that for every At € [T,2T], there exists a unique g such that
(vi;(9),9) € T. Also, recall that I'a; denotes the part of T' lying between Ra; and Q.

Lemma 5.1 Suppose that (va,(9),g) € T'\ Cas. If (vi,(9),9) lies in the part of T that
is to the left of I'as, then g > Ay, While if (vA,(9),9) lies in the part of ' that is to the
right of FAt, then g < ghy-
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Proof: If (vi,(9), g) lies to the left of I'A¢, then the argument used to prove Lemma 3.9
implies that g(2T") < g(0"). Hence, g > gh,. Similarly, if (vi,(g),g) lies to the right
of T'as, then the argument used to prove Lemma 3.11 implies that g(271) > g(0+).
Hence, g < gi;- O

The following lemma gives a necessary condition for recruitment to occur for some
At € (T,2T], given that it does not occur for At =T.

Lemma 5.2 If recruitment fails for At =T but occurs for any At € (T,2T), then the
point p1 = Ror € T lies to the left of the point pe = vip(g) NT.

Proof: Let p; = (v;(0),9;(0)) for i = 1,2 and suppose to the contrary that p lies to the
left of p1, such that v9(0) < v1(0). Then the flow of system (2)-(3) for time 27", with
initial conditions (v;(0), g;(0)), gives v1(0) > v2(0) = v2(2T) > v1(2T) = vg, such that
Q is to the left of Ror. Since Ra; moves to the left along I' as At increases, while @) is
fixed, this implies that Q is to the left of Ra; for all At € [T, 2T]. Therefore, by Lemma
3.10, it follows that for all At € [T, 2T, the fixed point of Pa; lies outside of I', and
hence a transition from non-recruitment to recruitment cannot occur as At increases
from T, a contradiction. O

Putting together 5.1 with 5.2, the transition from non-recruitment with At =T to
recruitment with At = 2T, if it occurs, must occur as follows. When At =T, the fixed
point (v}, g7) of Pr lies outside of ES, while v}.(g) NT lies to the left of at least one of
Rr and Q. As At increases, eventually Ra; must lie to the left of @, and a transition
is reached at a value At. at which the fixed point (vA, ,gA; ) of Pa, lies in Tas, CT.
If the transition is unique, then for each At > At., the point v},(g) N " must remain
to the right of Ra;. See Figure 6 for an illustration of an example of this progression.
Note, however, that we have not yet ruled out multiple transitions between recruitment
and non-recruitment.

5.3 Appendix C: The expression for gn; for IF with 2 inputs

To derive an expression for gay, recall that QQ = (vg, gg) is the point on I' that has the
same v-coordinate as R € I" but lies above the v-nullcline. That is, R gets reset to Q.
We start by deriving the expression for gq.

Let ¢ = (I —1)/(1 — E) denote the g-coordinate of the point A, where I' intersects
both v = 1 and the v-nullcline, from equation (7). Note that the time for gg to decay
to cis t = —(1/8)In(c/gq) by equation (3). Thus, £ is a function of gg. Based on this,
we can derive an expression for vg as a function of gg by integrating equation (2) for
time #, with v(0) = vg and v(f) = 1. We omit writing out this expression here.
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Next, we note that the time for gg to decay to gg — k is

t=—(1/p)In(1 - k/gq), (27)

where clearly go > k by definition. Also by definition, if we integrate equation (2) for
time ¢, with v(0) = vg, then we obtain v(t) = vg as well. Using this, we obtain an
equation linking vg with ¢, which is effectively a second equation relating gg with ¢,
since vg is a function of gg. Combining this equation with equation (27) yields the
following equation to be solved for gg, depending on the fixed parameters 3, k, F, and
I,

—Lin(1—2£)

0 7 27 h(gg,s)ds =
_ 19y

[(!Jé@q%k)l/ﬂ ef — 1] [(QTQ)I//H 6_%(1 -1I) - Jo ? (lfé) h(gq,s)ds|,
(28)

_9Q -Bs
where h(gg,s) = Ergge P%e’” 7 ¢ .

Finally, we obtain ga; by flowing from (vg, gg) backward in time an amount At —¢,
if At > t, or forward an amount ¢ — At, if At < t. Given that t = —(1/8)In(1 — k/gq)

from equation (28), this yields ga; = goe®>* (1 — k/gg)-
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