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Abstract

We present a new finite element scheme for solving the Navier-Stokes

equations that exactly conserves both energy (
∫

Ω
u2) and helicity

(
∫

Ω
u · (∇× u)) in the absence of viscosity and external force. We prove
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stability, exact conservation, and convergence for the scheme. Energy and

helicity are exactly conserved by using a combination of the usual

(convective) form with the rotational form of the nonlinearity, and solving

for both velocity and a projected vorticity.

1 Introduction

It is well known that the Navier-Stokes equations (NSE) preserve energy (E =

1
2

∫

Ω
|u|2) in the absence of viscosity and external force. Conserving energy

in numerical schemes for the NSE not only leads to stability for the scheme,

but also is necessary for physical relevance of solutions. In rotational flows,

however, other integral invariants are also important. In two dimensions

enstrophy (Ens = 1
2

∫

Ω
|∇ × u|2) and in three dimensions helicity (H =

∫

Ω
u · (∇× u)) are also conserved quantities of the NSE when viscosity and

external force are not present. In three dimensions, helicity also admits a

topological interpretation for a flow in terms of its reflectional symmetry

[11]. Hence accurate helicity prediction should be a goal in schemes for three

dimensional rotational flows.

For two dimensional flows, schemes such as the classical Arakawa [1] have

existed for over forty years which conserve both energy and enstrophy (this

and all future references to E/H/Ens conservation implicitly refer to the

case of no viscosity or external force). For three dimensional flows, however,

it was not until 2004 that Liu and Wang developed the first scheme that

conserves both energy and helicity. In [10], they present an energy and
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helicity preserving scheme for axisymmetric flows, and show that this dual

conservation eliminates the need for excessive numerical viscosity. It is their

work which motivated this article.

In this report, we present a new finite element scheme that globally con-

serves both energy and helicity for general flows. Our development of the

scheme herein is for periodic boundaries (and hence we use a box for the

domain Ω); for non-periodic boundary conditions, helicity is not necessarily

globally conserved (on the other hand, helicity generation near walls and

helicity flux away from walls are equally important for non-periodic prob-

lems). The key features that allow the scheme to conserve both energy and

helicity is the use of the projection of the vorticity in the scheme, and a new

variational formulation of the nonlinearity that vanishes when tested against

either the velocity or projected vorticity. We present the scheme in Section 3,

after providing the necessary notation in Section 2. Section 4 gives a rigorous

numerical analysis for the scheme, and Section 5 presents conclusions.

2 Notation and Preliminaries

(·, ·) and ‖·‖ denote the usual L2 inner product and norm, respectively, and

‖·‖k for the Hk(Ω) norm. ‖·‖∞ will denote the usual L∞(Ω) norm, and all

other norms that appear in this article will be clearly labeled with subscripts.

The domain Ω we use, as stated above, will be the box (0, L)3.
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Definition 2.1. The Hilbert space H1
#(Ω) will be defined as

H1
# := (v ∈ H1 : v periodic on Ω,

∫

Ω

v dx = 0).

This is the natural velocity space for the NSE with periodic boundary

conditions, as discussed in [8] and [9]. Note that velocities in this space

automatically conserve momentum (
∫

Ω
u), i.e. if u ∈ H1

#, d
dt

∫

Ω
u = 0. This

is physically important because the Navier-Stokes equations (with periodic

boundary conditions) also conserve momentum [5].

The following lemma (which can be found in [3] for example) will be used

frequently throughout the analysis in this article.

Lemma 2.2. For u, v ∈ H1
#(Ω),

(∇× u, v) = (u,∇× v)

Proof. The proof of this well known lemma follows immediately from inte-

grating by parts since u, v are periodic.

Let T h = T h(Ω) be a conforming finite element mesh on Ω. Define the

spaces (Xh, Qh) ⊂ (H1
#, L2

0) to be conforming velocity, pressure finite element

spaces (see, e.g. [2],[4] or [6] for examples) that satisfy the LBBh condition

0 < β ≤ inf
q∈Qh

sup
v∈Xh

(q,∇ · v)

‖v‖1‖q‖
. (1)

Define V h to be the space of discretely divergence free, zero-mean, periodic

functions.

V h = {v ∈ Xh : (∇ · v, q) = 0 ∀q ∈ Qh},
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Since V h is a closed subspace of H1
#(Ω), we have also that V h is a Hilbert

space, and thus the following result.

Lemma 2.3. Let uh ∈ V h. Then there exists a unique wh ∈ V h satisfying

(wh, v) = (∇× uh, v) ∀v ∈ V h (2)

Proof. Since uh ∈ V h ⊂ H1(Ω), it follows that ∇× uh ∈ L2(Ω). Since V h is

a closed subset of the Hilbert space L2(Ω), the Riesz representation theorem

implies the existence and uniqueness of a solution wh to (2).

The next lemma shows how an elementary property of the cross product

can be used for double skew symmetry of a trilinear term.

Lemma 2.4. Let uh, wh ∈ Xh. Then

(uh × wh, uh) = (uh × wh, wh) = 0.

Proof. This follows from an elementary property of the cross product; the

cross product of two vectors is perpendicular to each of them.

The significance of this lemma is that in a finite element scheme, the

trilinear form c(uh, wh, vh) := (uh × wh, vh) will vanish when vh = uh or wh.

Such a trilinear form has significance in the NSE if the rotational form of the

nonlinearity is used (see, e.g. [5] p.461 or [12]). Our scheme uses this form,

and exploits the double skew symmetry to show the scheme conserves both

energy and helicity.

The discrete Gronwall lemma will also be an essential tool in the error

analysis; we present it now.
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Lemma 2.5. (Discrete Gronwall) Let ∆t, H, and an, bn, cn, dn (for integers

n ≥ 0) be nonnegative numbers such that

al + ∆t

l
∑

n=0

bn ≤ ∆t

l
∑

n=0

dnan + ∆t

l
∑

n=0

cn + H for l ≥ 0. (3)

Suppose that ∆tdn < 1 ∀n. Then,

al + ∆t

l
∑

n=0

bn ≤ exp

(

∆t

l
∑

n=0

dn

1 − ∆tdn

)(

∆t

l
∑

n=0

cn + H

)

for l ≥ 0. (4)

Proof. See [7], for example, for proof of this well known lemma.

We end this section with definitions for discrete energy and helicity.

Definition 2.6. We define the discrete energy E and helicity H to be, at

time tk,

E(tk) =
1

2
‖uk

h‖
2,

H(tk) = (uk
h,∇× uk

h).

We are now ready to present the scheme.

3 An energy and helicity preserving scheme

for periodic flows

The energy and helicity preserving finite element scheme we study is com-

posed of a trapezoidal time discretization with a nonlinearity which is doubly
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skew-symmetic. Let ∆t denote the timestep, tk = k∆t, tk+1/2 = (k + 1
2
)∆t,

and uk
h the approximation to u(x, tk). u

k+1/2
h will denote

u
k+1/2
h :=

1

2
(uk+1

h + uk
h),

and fn+1/2(x) := f(tn+1/2, x) ∈ V h,∗. T = Nk denotes the final time. Given

u0
h ∈ V h, define w0

h to be the (unique in V h by Lemma 2.3) solution of

(w0
h, v) = (∇ × u0

h, v) ∀v ∈ V h, and find (uk
h, w

k
h, p

k
h) ∈ (Xh, Vh, Qh) for

k = 1..N , satisfying

1

∆t
(un+1

h , v) + (u
n+1/2
h × w

n+1/2
h , v) − (p

n+1/2
h ,∇ · v) +

ν

2
(∇u

n+1/2
h ,∇v)

+
ν

2
(w

n+1/2
h ,∇× v) = (fn+1/2, v) +

1

∆t
(un

h, v) ∀v ∈ Xh (5)

(∇ · un+1
h , q) = 0 ∀q ∈ Qh (6)

(wn+1
h −∇× un+1

h , χ) = 0 ∀χ ∈ V h (7)

We now prove the conservation properties of the scheme; energy and helicity

are exactly conserved in the absence and viscosity and external force. As a

remark, we note that even though the scheme (5)-(7) conserves helicity, the

analogous, continuous in time form of the scheme does not. This is due to

an inability to identify helicity with the the integral of the scalar product of

velocity and the projected vorticity, as ((uk
h)t, w

k
h) is not necessarily equal to

((uk
h)t,∇ × uk

h) because (uk
h)t need not be in V h. Since the scheme (5)-(7)

solves for the projected vorticity, such as identification is critical to prove

helicity conservation for the scheme, but only holds in the discrete time case

for our formulation.
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Lemma 3.1. The scheme (5)-(7) conserves energy and helicity in the ab-

sence of viscosity and body force, that is, E(tn) = E(t0) and H(tn) =

H(t0) ∀n ≤ N provided ν = f = 0.

Proof. For the conservation of energy, set v = u
n+1/2
h and ν = f = 0 in (5).

This gives

(un+1
h , u

n+1/2
h ) = (un

h, u
n+1/2
h ). (8)

By expanding the u
n+1/2
h terms in (8), we have

‖un+1
h ‖2 +

1

2
(un+1

h , un
h) =

1

2
‖un

h‖
2 +

1

2
(un

h, u
n+1
h ), (9)

E(tn+1) = E(tn), (10)

which implies that E(tn) = E(t0).

For helicity conservation, set v = w
n+1/2
h in (5). The pressure term van-

ishes since wn
h, wn+1

h ∈ V h, and so after setting ν = f = 0, we are left with

1

2
(un+1

h , wn+1
h ) +

1

2
(un+1

h , wn
h) =

1

2
(un

h, w
n
h) +

1

2
(un

h, w
n+1
h ). (11)

Using equation (7) and Lemma 2.2, we have the following identities for the

terms in (11).

(un+1
h , wn+1

h ) = (un+1
h ,∇× un+1

h ) = H(tn+1) (12)

(un
h, wn

h) = (un
h,∇× un

h) = H(tn) (13)

(un+1
h , wn

h) = (un
h, w

n+1
h ) (14)

Thus (11) can be rewritten as

H(tn+1) = H(tn), (15)

which implies that H(tn) = H(t0).
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The following lemma shows that the energy and helicity conserving scheme

is also stable.

Lemma 3.2. Solutions to the discrete scheme (5)-(7) satisfy

‖uN
h ‖

2 + ∆t

N−1
∑

n=0

(ν

2
‖∇u

n+1/2
h ‖2 + ν‖w

n+1/2
h ‖2

)

≤ ‖u0
h‖

2 +
2∆t

ν

N−1
∑

n=0

‖fn+1/2‖2
∗ (16)

Proof. Set v = u
n+1/2
h in (5), q = p

n+1/2
h in (6) and add the equations. This

gives

1

2∆t
‖un+1

h ‖2 +
1

2∆t
(un+1

h , un
h) +

ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
(w

n+1/2
h ,∇× un+1/2)

= (fn+1/2, u
n+1/2
h ) +

1

2∆t
‖un

h‖
2 +

1

2∆t
(un

h, un+1
h ). (17)

Note that (w
n+1/2
h ,∇× u

n+1/2
h ) = ‖w

n+1/2
h ‖2 since (7) must hold for (n + 1)

replaced by (n), and thus also for (n + 1) replaced by (n + 1/2). By making

this substitution, (17) reduces to

1

2∆t
‖un+1

h ‖2 +
ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
‖w

n+1/2
h ‖2

= (fn+1/2, u
n+1/2
h ) +

1

2∆t
‖un

h‖
2. (18)

Next we use the bound (fn+1/2, u
n+1/2
h ) ≤ ν

4
‖∇u

n+1/2
h ‖2 + 1

ν
‖fn+1/2‖2

∗, and

sum from n = 0..(N − 1), yielding

1

2∆t
‖uN

h ‖
2 +

N−1
∑

n=0

(ν

2
‖∇u

n+1/2
h ‖2 + ν‖w

n+1/2
h ‖2

)

≤
1

2∆t
‖u0

h‖
2 +

1

ν

N−1
∑

n=0

‖fn+1/2‖2
∗ (19)

Now multiplying both sides by (2∆t) proves the lemma.
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3.1 Existence of solutions for the scheme

Given un
h, wn

h ∈ V h, a nonlinear system must be solved for the approximations

at time level n+1. The question arises: does that system have a solution? In

other words, does imposing two integral invariants overdetermine the system

for un+1
h , wn+1

h ? The answer is that solutions to (5)-(7) do exist, as we will

show in this section.

For clarity, we show existence for the equivalent nonlinear problem: Given

ν, ∆t > 0, fn+1/2 ∈ V h,∗, and un
h ∈ V h, find uh, wh satisfying

2

∆t
(uh, v) + (uh × wh, v) +

ν

2
(∇uh,∇v)

+
ν

2
(wh,∇× v) = (fn+1/2, v) +

2

∆t
(un

h, v) ∀v ∈ V h, (20)

(wh −∇× uh, χ) = 0 ∀χ ∈ V h. (21)

This form of the scheme is derived from (5)-(7) by defining u := u
n+1/2
h , w :=

w
n+1/2
h , and restricting the test functions to V h. The equations (20)-(21) are

equivalent (5)-(7). To show solutions exist, we formulate (20)-(21) as a fixed

point problem, y = F (y), and use the Leray-Schauder fixed point theorem.

We will first prove several preliminary lemmas, followed by a theorem which

proves solution to (20)-(21) exist.

Lemma 3.3. For ν, ∆t > 0, there exists a unique solution (uh, wh) to: Given

g ∈ V h,∗, find (uh, wh) ∈ V h × V h satisfying

2

∆t
(uh, v) +

ν

2
(∇uh,∇v) +

ν

2
(wh,∇× v) = (g, v) ∀v ∈ V h, (22)

(wh −∇× uh, χ) = 0 ∀χ ∈ V h. (23)
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Proof. We will prove uniqueness of solutions to (22)-(23) by showing only

the trivial solution solves the homogeneous problem, which will also imply

the existence of solutions to the finite dimensional problem. Choose v = uh

in (22), χ = wh in (23) and substitute (23) into (22). This gives

2

∆t
‖uh‖

2 +
ν

2
‖∇uh‖

2 +
ν

2
‖wh‖

2 = 0, (24)

which implies uh = wh = 0, i.e. uniqueness.

This lemma allows us to define a solution operator to (22)-(23).

Definition 3.4. We define the solution operator T : V h,∗ → (V h × V h), to

be the solution operator of (22)-(23): if g ∈ V h,∗, T (g) = (uh, wh) solves

(22)-(23).

We have that T is well defined by the previous lemma, and we now prove

it is also bounded and linear.

Lemma 3.5. The solution operator T is linear, bounded, and continuous.

Proof. The linearity of T follows from the fact that T is a solution operator

to a linear problem. To see that T is bounded (and thus continuous since it

is linear), we let v = uh, χ = wh in (22)-(23), multiply (23) by ν
2
, and add

the equations. This gives

2‖uh‖
2

∆t
+

ν

4
‖∇uh‖

2 +
ν

2
‖wh‖

2 ≤
1

ν
‖g‖2

∗

Then since uh, wh are finite dimensional, ‖uh, wh‖V h×V h ≤ C‖g‖∗. Hence,

‖T‖ = sup
g∈V h

∗

‖T (g)‖

‖g‖∗
= sup

g∈V h
∗

‖uh, wh‖V h×V h

‖g‖∗
≤ C.
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We next define the operator N . The function F that will be used in the

formulation of the fixed point problem will be a composition of T and N .

Definition 3.6. We define the operator N on (V h × V h) by

N(uh, wh) := fn+1/2 +
2

∆t
un

h + uh × wh

We now prove properties for N necessary for use in Leray-Schauder.

Lemma 3.7. For the nonlinear operator N , we have that N : V h × V h →

V h,∗, N is bounded, and N is continuous.

Proof. To show N maps as stated, we let (uh, wh) ∈ V h × V h and write

‖N(uh, wh)‖∗ = sup
v∈V h

(N(uh, wh), v)

‖v‖1
.

From the definition of N , we have that
(fn+1/2,v)+(2(∆t)−1un

h ,v)

‖v‖1
≤ ‖f‖∗ +

C1‖u
n
h‖ ≤ C2, and that

(uh × wh, v)

‖v‖1
≤ ‖uh‖∞‖wh‖ ≤ C3

since uh.w
h was given to be in V h and all norms are equivalent in finite

dimension. Hence ‖N(u, w)‖∗ < C, and so N maps as stated. Note we have

also proven that N is bounded.

The equivalence of norms in finite dimension is also key in showing N is

continuous, as

‖N(u, w) − N(uk, wk)‖∗ ≤ ‖u × (w − wk)‖∗ + ‖(u − uk) × wk‖∗, (25)

≤ ‖u‖∞‖w − wk‖ + ‖wk‖∞‖u − uk‖, (26)

and thus → 0 as ‖(u, w)− (uk, wk)‖ → 0.
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We are now ready to define the operator F , which will formulate (20)-(21)

as a fixed point problem.

Definition 3.8. Define the operator F : (V h × V h) → (V h × V h) to be

composition of T and N : F (y) = T (N(Y )).

Lemma 3.9. F is well defined and compact, and a solution to y = F (y)

solves (20)-(21).

Proof. F is well defined because N and T are. The fact that F is compact

follows from the fact that both N and T are continuous and bounded. It can

easily be seen that a fixed point of F solves (20)-(21) by expanding F .

We are now ready to prove existence to (20)-(21).

Theorem 3.10. Let yλ = (uλ, wλ) ∈ V h and consider the family of fixed

point problems yλ = λF (yλ), 0 ≤ λ ≤ 1. A solution yλ to any of these fixed

point problems satisfies ‖yλ‖ < K, independent of λ. Since F is compact,

and fixed points of F solve (20)-(21), by the Leray-Schauder theorem there

exist solutions to (20)-(21).

Proof. All we have to show to prove this theorem is that solutions to yλ =

λF (yλ) are bounded independent of λ. Using the definition of F and the

linearity of T we have that

yλ = λF (yλ) = λT (N(yλ)) = T (λN(yλ)) = T (λ(fn+1/2 +
2

∆t
un

h + uλ × wλ)),
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which implies that

2

∆t
(uλ, v) − λ(uλ × wλ, v) +

ν

2
(∇uλ,∇v)

+
ν

2
(wλ,∇× v) = (λfn+1/2, v) +

2λ

∆t
(un

h, v) ∀v ∈ V h, (27)

(wλ −∇× uλ, χ) = 0 ∀χ ∈ V h. (28)

Multiply (28) by ν
2
, let χ = wλ in (28), v = uλ in (27), and add the equations.

Similar to the stability estimate, this gives

1

∆t
‖uλ‖

2 +
ν

4
‖∇uλ‖

2 +
ν

2
‖wλ‖

2

≤ λ2

(

1

ν
‖fn+1/2‖2 +

1

∆t
‖un

h‖
2

)

≤

(

1

ν
‖fn+1/2‖2 +

1

∆t
‖un

h‖
2

)

≤ C (29)

which is a bound independent of λ. Thus the theorem is proven.

We have now shown that the scheme (5)-(7) preserves energy and helicity

when ν = f = 0, is stable, and admits solutions. The final step is an error

analysis for the scheme.

4 Error analysis of the scheme

This section presents a theorem and corollary for the convergence of the

scheme, followed by the proof. The restriction that the theorem places on

the time step is for the use of the discrete Gronwall lemma. Although we

found its use necessary in the proof, it is widely believed that it gives a

gross underestimate of the largest timestep one can use and expect the same

asymptotic error results.
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Theorem 4.1. Let C∗ = C∗(Ω) be an interpolation constant satisfying

‖u‖2
1/2 ≤ C∗‖u‖‖∇u‖ ∀u ∈ Ω.

Assume ‖u‖L∞(Ω×(0,T )), ‖w‖L∞(Ω×(0,T ) < M , and ‖uttt‖L∞(Ω×(0,T )) < ∞. Se-

lect ∆t < (6M2

ν
+ 32C2

∗

ν3 supt<T infv∈V h‖u(t) − v‖4
1)

−1, and set N = T
∆t

and

ρn+1/2 := u
n+1/2
t − un+1−un

∆t
. Then the error (u − uh) satisfies

‖(u − uh)
N‖2 + ν∆t

N−1
∑

n=0

(

‖∇(u − uh)
n+1/2‖2 + ‖(w − wh)

n+1/2‖2
)

≤

inf
v∈V h

‖uN − v‖2 + C(ν, M)∆t
N−1
∑

n=0

( inf
v∈V h

‖∇(un+1/2 − v)‖2 + inf
v∈V h

‖wn+1/2 − v‖2

+ ‖ρn+1/2‖2 + inf
q∈Qh

‖pn+1/2 − q‖2) (30)

.

It is important to note, with smoothness assumptions on the true solution,

the restriction of the time step ∆t (arising from the use of Gronwall’s lemma)

reduces to

∆t < (
6M2

ν
+

32C2
∗

ν3
max
t<T

inf
v∈V h

‖u(t) − v‖4
1)

−1 ≈
ν

6M2
(31)

for fine meshes since infv∈V h‖u(t)− v‖4
1 = O(h4k). Hence the restriction is of

the order ν−1 and not ν−3 for fine meshes.

Before proving this theorem, we give as a corollary the asymptotic con-

vergence rate of the scheme for a usual choice of elements. This corollary

follows immediately from the theorem.
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Corollary 4.2. Assuming smoothness of true solutions and that the scheme

is solved with (Pk, Pk−1) velocity-pressure elements, the asymptotic conver-

gence rate of the scheme is

‖(u − uh)
N‖ + ν∆t

N−1
∑

n=0

(

‖∇(u − uh)
n+1/2‖ + ‖(w − wh)

n+1/2‖
)

=

O(hk + (∆t)2) (32)

Proof. The proof of this theorem is divided into the following parts. We first

develop the error equations by subtracting our scheme from the NSE (with

periodic boundary conditions). The error is then split into parts in and out

of the finite element spaces. This is followed by bounding the error in the

space by the interpolation error, and the proof concludes by bounding the

total error. Note we assume (u0
h, v) = (u0, v) ∀v ∈ V h.

Using the identity u ·∇u = 1
2
∇(u2)−u× (∇×u), and grouping the usual

pressure gradient with the 1
2
∇(u2) term to form the Bernoulli pressure, a

periodic solution (u, p) and w := ∇× u of the NSE satisfies

1

∆t
(un+1 −un, v)− (un+1/2 ×wn+1/2, v)− (pn+1/2,∇× v)+

ν

2
(∇un+1/2,∇v)

+
ν

2
(wn+1/2, v) = (fn+1/2, v) + (ρn+1/2, v) ∀v ∈ V h, (33)

where ρn+1/2 = u
n+1/2
t − (un+1−un)

∆t
. Subtracting the scheme (5)-(7) from (33)

and the identity w(t) = ∇× u(t) and restricting v to be in V h, we have the

error equations

1

∆t
(en+1−en, v)−(un+1/2×En+1/2, v)+(en+1/2×w

n+1/2
h , v)−(pn+1/2,∇×v)

+
ν

2
(∇en+1/2,∇v) +

ν

2
(En+1/2,∇× v) = (ρn+1/2, v) ∀v ∈ V h, (34)

16



(En+1/2, χ) = (∇× en+1/2, χ) ∀χ ∈ V h, (35)

where Ei = wi − wi
h and ei = ui − ui

h. We split the errors into parts inside

the finite element space and interpolation error by defining W i, U i to be the

L2 projections of wi, ui onto V h, and rewrite

Ei = (wi − W i) − (wi
h − W i) =: ri − si

h, (36)

ei = (ui − U i) − (ui
h − U i) =: ηi − φi

h (37)

We now rewrite (34)-(35) as one equation after expanding each E i and ei,

letting χ = s
n+1/2
h and v = φ

n+1/2
h in (34)-(35), and subtracting the equations,

which yields

1

2∆t
(‖φn+1

h ‖2−‖φn
h‖

2)+
ν

2
‖∇φ

n+1/2
h ‖2+

ν

2
‖s

n+1/2
h ‖2 =

1

∆t
(ηn+1−ηn, φ

n+1/2
h )

− (pn+1/2,∇ · φ
n+1/2
h ) +

ν

2
(∇ηn+1/2,∇φ

n+1/2
h ) +

ν

2
(rn+1/2,∇× φ

n+1/2
h )

+
ν

2
(rn+1/2, s

n+1/2
h ) −

ν

2
(∇× ηn+1/2, s

n+1/2
h ) − (ρn+1/2, φ

n+1/2
h )

−(un+1/2×rn+1/2, φ
n+1/2
h )+(un+1/2×s

n+1/2
h , φ

n+1/2
h )+(ηn+1/2×w

n+1/2
h , φ

n+1/2
h ).

(38)

We first note that since ηi is the difference between ui and its projection of

ui onto V h, ηi must be orthogonal to any element of V h. Hence (ηn+1 −

ηn, φ
n+1/2
h ) vanishes. Cauchy-Schwarz and Young’s inequalities give the fol-
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lowing bounds for terms on the right hand side of (38).

ν

2
(∇ηn+1/2,∇φ

n+1/2
h ) ≤

ν

2
‖∇ηn+1/2‖2 +

ν

8
‖∇φ

n+1/2
h ‖2 (39)

ν

2
(rn+1/2,∇× φ

n+1/2
h ) ≤

ν

2
‖rn+1/2‖2 +

ν

8
‖∇φ

n+1/2
h ‖2 (40)

ν

2
(rn+1/2, s

n+1/2
h ) ≤

ν

2
‖rn+1/2‖2 +

ν

8
‖s

n+1/2
h ‖2 (41)

−
ν

2
(∇× ηn+1/2, s

n+1/2
h ) ≤

ν

2
‖∇ηn+1/2‖2 +

ν

8
‖s

n+1/2
h ‖2 (42)

Thus the error equation becomes

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖

2) +
ν

4
‖∇φ

n+1/2
h ‖2 +

ν

4
‖s

n+1/2
h ‖2 ≤

ν‖∇ηn+1/2‖2 + ν‖rn+1/2‖2 − (pn+1/2,∇ · φ
n+1/2
h ) − (ρn+1/2, φ

n+1/2
h )

− (un+1/2 × rn+1/2, φ
n+1/2
h ) + (un+1/2 × s

n+1/2
h , φ

n+1/2
h )

+ (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ). (43)

Recall that since φ
n+1/2
h ∈ V h, (q,∇ · φ

n+1/2
h ) = 0 ∀q ∈ Qh. Hence we make

this substitution into (43) and use Cauchy-Schwarz on this pressure term,

and bound the ρ term using Cauchy-Schwarz, which gives

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖

2) +
ν

4
‖∇φ

n+1/2
h ‖2 +

ν

4
‖s

n+1/2
h ‖2 ≤ ν‖∇ηn+1/2‖2

+ ν‖rn+1/2‖2 + inf
q∈Qh

‖pn+1/2 − q‖‖∇φ
n+1/2
h ‖ + ‖ρn+1/2‖‖φ

n+1/2
h ‖

− (un+1/2 × rn+1/2, φ
n+1/2
h ) + (un+1/2 × s

n+1/2
h , φ

n+1/2
h )

+ (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ). (44)

To get upper bounds on the trilinear terms, we must use the bounds, (a ×

b, c) ≤ ‖a‖∞‖b‖‖c‖ and, since the scheme is for three dimensions, (a×b, c) ≤
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‖a‖0‖b‖1/2‖c‖1. The first bound will be applied to the first two trilinear

terms, and the infinity norm will be used on the un+1/2 term, since by as-

sumption, ‖u(t)‖∞ < M . The third trilinear term will be rewritten by adding

and subtracting w to wh. Then using the assumption that ‖w(t)‖∞ < M

and the bounds stated above, we have

− (un+1/2 × rn+1/2, φ
n+1/2
h ) + (un+1/2 × s

n+1/2
h , φ

n+1/2
h )

+ (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ) ≤ M‖rn+1/2‖‖φ

n+1/2
h ‖

+ M‖sh‖‖φ
n+1/2
h ‖ + M‖ηn+1/2‖‖φ

n+1/2
h ‖ + ‖ηn+1/2‖1‖E

n+1/2‖‖φ
n+1/2
h ‖1/2.

(45)

Cauchy-Schwarz, Young, and Sobolev imbedding inequalities now give the

upper bound

− (un+1/2 × rn+1/2, φ
n+1/2
h ) + (un+1/2 × s

n+1/2
h , φ

n+1/2
h )

+ (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ) ≤

ν

4
‖rn+1/2‖2

+
ν

16
‖sh‖

2 +
5M2

ν
‖φ

n+1/2
h ‖2 +

ν

4
‖ηn+1/2‖2 +

ν

16
‖En+1/2‖2

+
4C∗

ν
(‖ηn+1/2‖2

1‖∇φ
n+1/2
h ‖‖φ

n+1/2
h ‖). (46)

Young’s inequality now gives

− (un+1/2 × rn+1/2, φ
n+1/2
h ) + (un+1/2 × s

n+1/2
h , φ

n+1/2
h )

+ (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ) ≤

5ν

16
‖rn+1/2‖2 +

ν

8
‖sh‖

2 +
5M2

ν
‖φ

n+1/2
h ‖2

+
ν

4
‖ηn+1/2‖2 +

ν

8
‖∇φ

n+1/2
h ‖2 +

32C2
∗

ν3
‖ηn+1/2‖4

1‖φ
n+1/2
h ‖2. (47)
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Inserting (47) back into (44) yields

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖

2) +
ν

8
‖∇φ

n+1/2
h ‖2 +

ν

8
‖s

n+1/2
h ‖2 ≤ ν‖∇ηn+1/2‖2

+
21ν

16
‖rn+1/2‖2 + inf

q∈Qh
‖pn+1/2 − q‖‖∇φ

n+1/2
h ‖ + ‖ρn+1/2‖‖φ

n+1/2
h ‖

+ ‖φ
n+1/2
h ‖2(

5M2

ν
+

32C2
∗

ν3
‖ηn+1/2‖4

1). (48)

Next we use Young’s inequality on the ρ term and the pressure term. Thus

we now have

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖

2) +
ν

16
‖∇φ

n+1/2
h ‖2 +

ν

8
‖s

n+1/2
h ‖2 ≤ ν‖∇ηn+1/2‖2

+
21ν

16
‖rn+1/2‖2 +

4

ν
inf

q∈Qh
‖pn+1/2 − q‖2 +

ν

4M2
‖ρn+1/2‖2

+ ‖φ
n+1/2
h ‖2(

6M2

ν
+

32C2
∗

ν3
‖ηn+1/2‖4

1). (49)

Decompose the ‖φ
n+1/2
h ‖2 term, and multiply through by 2∆t. Then using

the assumption on ∆t, we apply the discrete Gronwall lemma to get

‖φN
h ‖

2 +
ν∆t

8

N−1
∑

n=0

(

‖∇φ
n+1/2
h ‖2 + 2‖s

n+1/2
h ‖2

)

≤

C(ν, M)∆t
N−1
∑

n=0

(‖∇ηn+1/2‖2 + ‖rn+1/2‖2

+ inf
q∈Qh

‖pn+1/2 − q‖2 + ‖ρn+1/2‖2). (50)
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By the triangle inequality, we can now bound the total error as

‖(u − uh)
N‖2 +

ν∆t

8

N−1
∑

n=0

(

‖∇(u − uh)
n+1/2‖2 + 2‖(w − wh)

n+1/2‖2
)

≤

‖ηN‖2 + C(ν, M)∆t
N−1
∑

n=0

(‖∇ηn+1/2‖2 + ‖rn+1/2‖2

+ ‖ρn+1/2‖2 + inf
q∈Qh

‖pn+1/2 − q‖2). (51)

Hence,

‖(u − uh)
N‖2 +

ν∆t

8

N−1
∑

n=0

(

‖∇(u − uh)
n+1/2‖2 + 2‖(w − wh)

n+1/2‖2
)

≤

inf
v∈V h

‖un − v‖2 + C(ν, M)∆t
N−1
∑

n=0

( inf
v∈V h

‖∇(un+1/2 − v)‖2 + inf
v∈V h

‖sn+1/2 − v‖2

+ ‖ρn+1/2‖2 + inf
q∈Qh

‖pn+1/2 − q‖2). (52)

This proves the theorem. We now prove the corollary. Recalling the def-

initions of V h and Qh, and from approximation theory that ‖ρn+1/2‖2 ≤

‖uttt‖L∞(Ω×(tn,tn+1))(∆t)4, we can bound the error in terms of the mesh size

h and ∆t. Thus, assuming (Pk, Pk−1) velocity pressure elements (with k ≥ 2

to satisfy LBBh), we have

‖(u − uh)
N‖2 +

ν∆t

8

N−1
∑

n=0

(

‖∇(u − uh)
n+1/2‖2 + 2‖(w − wh)

n+1/2‖2
)

≤

h2(k+1) |u|2k + C(ν, M, T )(∆t4 + h2k |u|2k + h2(k+1) |w|2k + h2k |p|2k−1)

= C(ν, M, T, |u|k , |p|k−1)
(

∆t4 + h2k
)

. (53)

Taking square roots finishes the proof.
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5 Conclusions

We have developed a new energy and helicity preserving scheme for periodic

flows which is second order in time and converges optimally in space. The

scheme was able to conserve two inviscid invariants by using the rotational

form of the nonlinearity, and solving for a projected vorticity. The scheme

does not lose asymptotic convergence rates in velocity from the usual Crank-

Nicholson finite element method for the NSE. For a given mesh, each linear

system that needs to be solved (in a Newton iteration, for example) is roughly

double the size of the resulting linear systems in a scheme that solves for

only velocity. However, for higher Reynolds number flows, our scheme offers

a more physically meaningful solution.
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