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Abstract. In this paper, we investigate an one dimensional inverse problem in diffusion optical
tomography using the Discontinuous Galerkin (DG) method. We demonstrate that the DG method
with discontinuous piecewise polynomials as a basis for the parameter space acts as an implicit
regularization for the inverse problem. Our simulations suggest that DG inversion is inherently
different than Continuous Galerkin (CG) inversion if the sought for parameters are discontinuous.
Comparison of CG method with B-splines as a basis and the DG method with discontinuous piecewise
polynomials as a basis is presented.
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1. Introduction. Optical tomography is a way to probe highly scattering media
using low-energy visible or near infra-red light and then to reconstruct images of these
media. Light in the near-infrared range (wavelength from 700 to 1200 nm) penetrates
tissue and interacts with it. The predominant effects are absorption and scattering
[12, 15, 8]. The formation of an image for the optical properties of the tissue from
a series of boundary measurements is the inverse problem. The widely accepted
photon transport model is the radiative transfer equation (RTE). The RTE is an
integro-differential equation for the radiance and has spatially dependent diffusion
and absorption parameters as coefficients which are a priori unknown. Hence the
problem is to infer from the measurements of some function of the photon density on
the boundary, the coefficients of absorption and diffusion in the tissue. A low order
Diffusion Approximation (DA) to the RTE has been derived and studied in the last
several years. DA is an approximation to the RTE by a parabolic differential equation
in the time dependent case and by an elliptic differential equation in the steady-state
case [2]. The DA to the RTE has been widely used to calculate photon migration in
biological tissues [16]. The existing computational methods for the inverse problem
for photon migration in biological tissues are almost exclusively based on the DA [9].

It is well known that the Diffusion Optical Tomography (DOT) inverse problem
is exponentially ill-posed or unstable [22, 2]. In fact, the one dimensional version
of the DOT ill-posed inverse problem has been studied recently using Continuous
Galerkin (CG) method [19, 4]. In order to understand the effect of Discontinuous
Galerkin (DG) method on the inverse problem, we investigate the one dimensional
inverse problem in DOT. The flexibility of DG methods has made these methods com-
petitive for modeling a wide range of engineering problems. Some of the advantages
of DG methods include the high order approximation, the easy implementation on
nonconforming unstructured grids, the robustness and accuracy of the method for
equations with discontinuous coefficients and the local mass conservation property.
In this paper, we consider the non-symmetric interior penalty Galerkin method, for-
mulated and analyzed in [24]. To our knowledge, this is the first application of DG
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to inverse problems. Theoretically, both DG and CG approximations converge to the
exact solution as step size gets smaller and the degree of polynomial gets larger. How-
ever, computationally the inverse problem always depends on the choice of basis for
the forward solver [5]. In fact, the DG method differs from the CG method inherently
for equation with discontinuous coefficients. Therefore it is plausible that inversion
of discontinuous coefficients using DG forward solver will result in a different solu-
tion than inversion using CG forward solver. Our simulations presented in this paper
demonstrate that CG inversion with L2 smoothing term such as Tikhonov regulariza-
tion [13] differs from the DG solution with the same regularization. The DG method
allows discontinuities in the parameters which acts as an implicit regularization apart
from the L2 Tikhonov regularization. The DG regularization is implicit because it is
inherently embedded in the computational technique for the forward problem and one
does not need to solve the total variation type regularization in the L1 norm which is
computationally very intensive [11].

The outline of the paper is as follows. In section 2, we discuss the forward and
the inverse problem. In section 3, we describe system approximation using the DG
method and the CG method. In sections 4 and 5, we describe the computational
methods for the inverse problem. In section 6, we compare the solution to the inverse
problem via a forward solver using DG method versus the CG method. In section 7,
we discuss our results and we finish with some conclusions.

2. Forward and Inverse Problem. In optical imaging, low-energy visible light
is used to illuminate the biological tissue. The illumination of the tissue can be
modelled as a photon transport phenomenon. The process is described by the most
widely applied equation in optical imaging, the RTE [10, 18]. Simpler deterministic
models can be derived from RTE for a constant refractive index by expanding the
density and the source in spherical harmonics and retaining a limited number of
terms [20, 7, 3, 2].

Let Ω ⊂ IRn, n ≥ 1 be a domain with boundary ∂Ω. The DA to the RTE model
can be written in the time independent case as in [2]:

−∇ · D∇u + µu = f in Ω, (2.1)

where D ∈ L∞(Ω) is the diffusion coefficient, µ ∈ L∞(Ω) the absorption coefficient
and f ∈ L2(Ω) a source function. The resulting density u then belongs to H1(Ω).
The associated boundary condition is of Robin type:

u + 2D
∂u

∂ν
= 0 on ∂Ω. (2.2)

The weak forward problem corresponding to equation (2.1) is: find u ∈ H1(Ω) such
that for all v ∈ H1(Ω), the following variational equation is satisfied:

∫

Ω

D∇u · ∇vdΩ +

∫

Ω

µuvdΩ +

∫

∂Ω

1

2
uvds =

∫

Ω

fvdΩ. (2.3)

Now we can define the forward problem as: given a source f and the vector of coeffi-
cients q = (D, µ)T , find the solution u on the boundary ∂Ω that satisfies (2.3) and the
inverse problem as: given data z on ∂Ω, find q. We will denote u(x) = u(x;q, f) or
u(q, f) to explicitly write the dependence of the forward solution u on the coefficients
and source function. In general, measurement of u(q, f) may not be possible, only
some observable part Cu(q, f) of the actual state may be measured. In an abstract
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setting, the objective of the inverse or parameter estimation problem is to choose a
parameter q∗ that minimizes an error criterion or cost functional J over all possible
q subject to u(q, f) satisfying the DA (2.1). A typical observation operator is:

Cf
i u(q, f) = −D

∂u

∂ν
(xi;q, f) =

1

2
u(xi;q, f), 1 ≤ i ≤ m (2.4)

where m is the number of measurements, xi is a point on ∂Ω and the second equality
comes from the boundary condition (2.2). For example, in one dimension with Ω =
[0, L], we have m ∈ {1, 2} and x1 = 0, x2 = L. In this work, we employ the following
typical cost functional J :

J(q) =
1

2

ms
∑

j=1

m
∑

i=1

∣

∣

∣
Cfj

i u(q) − z
fj

i

∣

∣

∣

2

+ λ‖q − q̂‖2 (2.5)

where ‖ · ‖ is the Euclidean norm, zj
i is the measured data at the boundary point xi

for a given source fj , λ is the Tikhonov regularization parameter, and q̂ is in general
the vector of nominal values (corresponding to healthy tissue) for the diffusion and
absorption coefficients.

3. System Approximation Using Finite Element Method. The general
analytic method for solving ODEs or PDEs containing a delta distribution source is
the Green’s function method. However for complex geometries, the analytic solution
is intractable. Therefore one requires numerical solutions. The finite element method
(FEM) is more versatile than other methods including the finite difference method
because of its ease in complex geometries and modelling boundary effects. The FEM is
a variational method used to approximate the solution by a family of finite dimensional
basis functions. Then the forward problem is reduced to one of linear algebra.

If we let Ω = [0, L] be the domain under consideration with boundary ∂Ω = {0, L},
the weak formulation (2.3) is rewritten as: find u ∈ H1([0, L]) such that for all
v ∈ H1([0, L]):

∫ L

0

D(x)u′(x)v′(x)dx +

∫ L

0

µ(x)u(x)v(x)dx +
1

2
u(0)v(0)

+
1

2
u(L)v(L) =

∫ L

0

f(x)v(x)dx.

(3.1)

We first discretize the domain by considering the following subdivision

x−1 < x0 = 0 < x1 < ... < xNp−1 < xNp
= L < xNp+1,

and stepsize,

hi = xi − xi−1 for 0 ≤ i < Np + 1, h = max
i

hi.

3.1. Continuous Galerkin Method. The classical FEM is derived by project-
ing the weak form (3.1) onto a finite dimensional function space V h

CG, consisting of
continuous and twice differentiable, piecewise cubic polynomials on the subintervals
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(xi, xi+1):

∫ L

0

Du′

CG(x)v′(x)dx +

∫ L

0

µ(x)uCG(x)v(x)dx +
1

2
uCG(0)v(0)

+
1

2
uCG(L)v(L) =

∫ L

0

f(x)v(x)dx,

(3.2)

for all v ∈ V h
CG. We can expand uCG:

uCG(x) =

Np+1
∑

i=−1

cf,CG
i Bi(x) (3.3)

where Bi(x) = B(x−xi

hi+1
) and B is the cubic B-spline. Thus, denoting the vector of

unknowns by Cf,CG = (cf,CG
−1 , . . . , cf,CG

Np+1)
T we obtain a linear system

ACGCf,CG = FCG (3.4)

with FCG = {
∫ L

0
f(x)Bi(x)dx}i and ACG = DCG + MCG + PCG defined by:

DCG,ij =

∫ L

0

DB′

i(x)B′

j(x)dx, (3.5)

MCG,ij =

∫ L

0

µBi(x)Bj(x)dx, (3.6)

PCG,ij =
1

2
Bi(0)Bj(0) +

1

2
Bi(L)Bj(L). (3.7)

These integrals are computed using Gaussian quadrature rules. The linear system
then can be solved by standard direct or iterative methods.

3.2. Discontinuous Galerkin Method. The DG method differs from CG with
respect to both the discrete space and the weak formulation. Let V h,r

DG be the space
of discontinuous piecewise polynomials of degree r > 0.

V h,r
DG = span{Φi(x) : 1 ≤ i ≤ Ndofs} = {v ∈ L2(Ω) : v|(xi,xi+1) =

r+1
∑

k=1

αk,iφk,i(x)}.

(3.8)
Since there is no continuity constraints between the subintervals, we introduce nota-
tion for jumps [·] and averages {·}. For this, we first denote v(x−

i ) = limε→0 v(xi − ε)
and v(x+

i ) = limε→0 v(xi +ε), with ε > 0. The jump and average of v at the endpoints
of the subintervals of Ω are defined by:

[v(xi)] = v(x−

i ) − v(x+
i ), {v(xi)} =

1

2
(v(x−

i ) + v(x+
i )), ∀i = 1, . . . , Np (3.9)

[v(0)] = −v(x+
0 ), {v(0)} = v(x+

0 ), [v(L)] = v(x−

Np
), {v(L)} = v(x−

Np
). (3.10)
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The DG solution uDG ∈ V h,r
DG satisfies:

∀v ∈ V h,r
DG ,

Np−1
∑

k=0

∫ xk+1

xk

D(x)u′

DG(x)v′(x)dx −
Np−1
∑

k=1

{D(xk)u′

DG(xk)}[v(xk)]

+

Np−1
∑

k=1

{D(xk)v′(xk)}[uDG(xk)] +

Np−1
∑

k=1

[uDG(xk)][v(xk)] +
1

2
u(0)v(0) +

1

2
u(L)v(L)

+

Np−1
∑

k=0

∫ xk+1

xk

µ(x)uDG(x)v(x)dx =

∫ L

0

f(x)v(x)dx. (3.11)

If we expand uDG:

uDG(x) =

Np−1
∑

l=0

r+1
∑

k=1

cf,DG
k,l φk,l(x) =

Ndofs
∑

i=1

cf,DG
i Φi(x), (3.12)

we obtain a linear system for the vector of unknowns Cf,DG:

ADGCf,DG = FDG (3.13)

It is easy to check that if u is solution to (2.1), then u satisfies (3.11) (see for instance
[23]). We can decompose the matrix ADG = DDG + MDG + PDG where the matrices
are defined by:

DDG,ij =

Np−1
∑

k=0

∫ xk+1

xk

D(x)Φ′

i(x)Φ′

j(x)dx −
Np−1
∑

k=1

{D(xk)Φ′

i(xk)}[Φj(xk)]

+

Np−1
∑

k=1

{D(xk)Φ′

j(xk)}[Φi(xk)}, (3.14)

MDG,ij =

Np−1
∑

k=0

∫ xk+1

xk

µ(x)Φi(x)Φj(x)dx, (3.15)

PDG,ij =

Np−1
∑

k=1

[Φi(xk)][Φj(xk)] +
1

2
Φi(0)Φj(0) +

1

2
Φi(L)Φj(L). (3.16)

3.3. Forward Simulation. To test our forward solver for the DG method, we
first computed the approximate solutions in two cases: 1) constant values of D and
µ, using f = e−x (see Figure 3.1a for the computed solution using Dirichlet boundary
condition with Np = 100 and r = 3 and compare to analytic solution in Figure 3.1b
for the forcing distribution Figure 3.1c. The absolute error plotted in Figure 3.1d),
2) constant values of D and µ using

f =
A√
2πε2

e−
|x−xs|2

2ε2 (3.17)

with A = 1 and ε = 0.1 where xs = 42.5 is the source location (see Figure 3.2). Here
this particular f is an approximation to the δ(x − xs) source for which the Green’s
function solution is available (see Figure 3.2).
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Fig. 3.1. Constant values of D and µ, (a) DG computed solution with Np = 100 and r = 3,
(b) exact solution, (c) forcing distribution, and (d) absolute error.

4. Computational Inverse Problem. In the previous section, we outlined
the numerical method for the forward problem. In this section, we will describe the
computational method for the inverse problem.

4.1. Parameter Estimation. We approximate the infinite dimensional param-
eters D and µ by the discrete functions DN and µN for any positive integer N :

DN (x) =

N
∑

k=1

dkξk(x) (4.1)

µN (x) =

N
∑

k=1

µkξk(x), (4.2)

where the basis functions {ξk}k are defined on a possibly different set of grid points
{x̃0, . . . , x̃N} than the subdivision {x0, . . . , xNp

}. In general, N is different than Np.
The model parameter vector q is approximated by

qN = (d1, . . . , dN , µ1, . . . , µN )T (4.3)

For the CG parameter estimation problem, the basis functions are cubic B-spines on
the subintervals (x̃i, x̃i+1) and for the DG parameter estimation problem, the basis
functions are discontinuous piecewise polynomials of degree r̃ on the subintervals
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Fig. 3.2. Constant values of D and µ, f = A√
2πε2

e
− |x−xs|2

2ε2 (a) exact solution for a delta

distribution source, (b) DG computed solution with Np = 100 and r = 3 for a delta distribution
source, (c) approximation to the delta distribution force, and (d) computed error.

(x̃i, x̃i+1):

D(x)|(x̃i,x̃i+1) =

r̃
∑

k=1

dk,iφk,i(x), µ(x)|(x̃i,x̃i+1) =

r̃
∑

k=1

µk,iφk,i(x). (4.4)

4.2. Discrete Sensitivity Relations. Now we will derive the discrete sensitiv-
ity relations which will be used for the Jacobian calculation for our numerical scheme
below. We differentiate (3.4) and (3.13) with respect to the components qN

k of the
discrete parameter qN :

ACG
∂Cf,CG

∂qN
k

+
∂ACG

∂qN
k

Cf,CG = 0 1 ≤ k ≤ 2N (4.5)

ADG
∂Cf,DG

∂qN
k

+
∂ADG

∂qN
k

Cf,DG = 0 1 ≤ k ≤ 2N. (4.6)

If we solve for the partial derivatives with respect to the components dk and µk, we
obtain in the case of CG:

∂Cf,CG

∂dk

= −A−1
CGDCG,kCf,CG 1 ≤ k ≤ N (4.7)

∂Cf,CG

∂µk

= −A−1
CGMCG,kCf,CG 1 ≤ k ≤ N, (4.8)
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where DCG,k and DCG,k are the (Np + 3) × (Np + 3) matrices defined by:

(DCG,k)ij =

∫ L

0

ξk(x)B′

i(x)B′

j(x)dx, (MCG,k)ij =

∫ L

0

ξk(x)Bi(x)Bj(x)dx. (4.9)

Similarly for the DG case, solving for the partial derivatives with respect to dk and
µk yields:

∂Cf,DG

∂dk

= −A−1
DGDDG,kCf,DG 1 ≤ k ≤ N (4.10)

∂Cf,DG

∂µk

= −A−1
DGMDG,kCf,DG 1 ≤ k ≤ N, (4.11)

where DDG,k and DDG,k are the matrices defined by:

(DDG,k)ij =
∂DDG,ij

∂dk

, (MDG,k)ij =
∂MDG,ij

∂µk

. (4.12)

The precise form of the entries of DDG,k and DDG,k depend on the choice of the
subdivisions {x0, . . . , xNp

} and {x̃0, . . . , x̃Np
}. In our numerical experiments, those

meshes are chosen independently of each other.

5. Numerical Scheme. Now we describe our numerical scheme for the inverse
problem. The inverse problem in equation (2.5) without any regularization can be
casted as a finite dimensional nonlinear minimization problem mainly,

min
qN∈IR2N

J(qN ) =
1

2

ms
∑

j=1

m
∑

i=1

∣

∣

∣
Cfj

i uNp(qN ) − z
fj

i

∣

∣

∣

2

=
1

2
‖R(qN )‖2 =

1

2

mtot
∑

i=1

r2
i (qN )

with zero or nonzero residual, where, R(qN ) = (r1(q
N ), r2(q

N ), . . . , rmtot
(qN ))T with

mtot = m × ms, rn(qN ) = Cfj

i uNp(qN ) − z
fj

i with n = i + (j − 1)m, and the norm
‖R(qN )‖ is called the residual at qN . Let H̄(qN ) = K∗(qN )K(qN ), where K(qN ) is
the Jacobian matrix of R(qN ),

K(qN ) =

(

∂rn(qN )

∂qk

)

, n = 1, ..., mtot, k = 1, ..., N. (5.1)

The gradient is given by,

∇J(qN ) = K∗(qN )R(qN ) (5.2)

and the Hessian is given by,

∇2J(qN ) = H̄(qN ) + A(qN ) (5.3)

where A(qN ) =
∑mtot

i=1 ri∇2ri(q
N ). Thus, if the Jacobian matrix K(qN ) is available,

we know the first part H̄ of the Hessian ∇2J(qN ) without requiring any second order
information.

For example, if we use an observation operator as in equation (2.4) we get:

∂rn(qN )

∂qN
k

= −D
∂

∂qN
k

(∂uh

∂ν
(xi;q

N , fj)
)

=
1

2

∂uh

∂qN
k

(xi;q
N , fj) (5.4)
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where uh is either the CG or DG solution to the forward problem. We will consider
both cases separately. First, if we plug the expression for uCG from equation (3.3)
into equation (2.4) we get:

∂rn(qN )

∂qN
k

=
1

2

Np+1
∑

l=−1

∂c
fj ,CG
l

∂qN
k

Bl(xi) = B̄T
∂Cfj ,CG

∂qN
k

(5.5)

where

B̄ =
1

2
(B−1(xi), B0(xi), . . . , BNp

(xi), BNp+1
(xi))

T (5.6)

and Cfj ,CG is given by equation (3.4). Therefore using the sensitivity equations (4.7)

and (4.8) for the expression
∂Cfj ,CG

∂qN
k

in equation (5.5) we can compute the Jacobian

matrix K(qN ) for the inverse calculation. One can also use the adjoint formulation
to derive this Jacobian matrix which can be beneficial in two and three dimensions.
However in one dimension the speed of the forward sensitivity relations is adequate
to compute the Jacobian of the inverse problem. Similarly, for the DG case, we use
the expression (3.12) to obtain:

∂rn(qN )

∂qN
k

=
1

2

Np−1
∑

l=0

r+1
∑

t=0

∂c
fj ,DG
t,l

∂qN
k

φt,l(xi) = Φ̄T
∂Cfj ,DG

∂qN
k

(5.7)

with

Φ̄ = (φ1,0(xi), φ2,0(xi), . . . , φr+1,0(xi), . . . , φ1,Np−1(xi), . . . , φr+1,Np−1(xi))
T (5.8)

and
∂Cfj ,DG

∂qN
k

is given by (4.10) and (4.11).

Given the Jacobian of the inverse problem, we can define the Iteratively Regular-
ized Gauss-Newton (IRGN) method as follows

qN
k+1 = qN

k − γk[K∗(qN
k )K(qN

k ) + λkI ]−1
(

K∗(qN )R(qN
k ) + λk(qN

k − q̂N )
)

,

where λk is a regularizing sequence that satisfies the conditions:

λk > 0, 1 ≤ λk

λk+1
≤ r, lim

k→∞

λk = 0.

The reader may consult [1], [6] and [17] for the convergence analysis of IRGN un-
der different types of conditions on the initial guess q0 for the CG method. The
best convergence rate was achieved when we used the iteratively regularized analog
of a line search procedure suggested in [21] for the well-posed case. Namely, a back-
tracking strategy with γk = γ0, γ0/2, γ0/4, until the following two requirements were
simultaneously fulfilled:

Jλk
(qk+1) ≤ Jλk

(qk) + δγk < ∇Jλk
(qk), sk > (5.9)

which is the Armijo-Goldstein strategy and

||∇Jλk
(qk+1)|| ≤ ρ||∇Jλk

(qk)|| (5.10)

which is the Wolfe type strategy. Here sk is the solution to (K∗(qk)K(qk)+λkI)sk =
−(K∗(qk)R(qk) + λkqk). In the case of CG, we choose the parameters δ = 0.0001
and ρ = 0.99 as in [14]. In the case of DG, no backtracking strategy is used and a
constant λ = λ0 was chosen.
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6. Simulation Results. The optimization of the functional J was performed
using the IRGN iterative method described above. After 20 iterations using the CG
method with equally spaced grid points with Np = 40 and N = 20 with λ0 = 1.0E−6
with the choice of cubic B-splines satisfying Robin boundary condition for the solution
and Neumann boundary condition for the parameter, we reconstructed the D profile
for a set of 10 sources. The reconstructed profile is depicted in Figure 6.1a. The
line corresponds to true D and the circles correspond to the constructed D. After
29 iterations using DG method with equally spaced grid points with Np = 40 and
N = 10 with λ0 = 1.0E − 3 with the choice of piecewise cubic polynomials r = 3 as
a basis for the forward problem and piecewise cubic polynomials r̃ = 3 for the the
parameters, we reconstructed the D profile. The reconstructed profile is depicted in
Figure 6.1b. It is evident from Figure 6.1 that the inversion using forward CG and
DG method are inherently different as expected because the inversion depends on the
basis functions used for the solution as well as the parameters [5]. Furthermore, the
DG method is known to be more robust and accurate than CG method for equations
with discontinuous coefficients. In fact, the DG method allows discontinuities in
the parameters which acts as an implicit regularization apart from the L2 Tikhonov
regularization. This is evident from the comparison of CG and DG inversion shown
in Figure 6.1 where the DG inversion results in a more piecewise constant solution
than L2 smoothed CG solution.
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Fig. 6.1. Comparison of CG (left) and DG (right) inversions

In the next experiment, we vary the polynomial degrees for the DG foward and
inverse problems. After 35 iterations with the choice of discontinuous linear piecewise
polynomials with r̃ = 1 and N = 10, we reconstructed the D profile shown in Figure
6.2a. After 30 iterations with the choice of discontinuous quadratic piecewise poly-
nomials with r̃ = 2 and N = 5, we reconstructed the D profile shown in Figure 6.2b.
After 20 iterations with the choice of cubic piecewise polynomials with r̃ = 3 and
N = 8, we reconstructed the D profile shown in Figure 6.2c. From this experiment,
we conclude that increasing the polynomial degree yields a more accurate inverse
solution.

For a polynomial of degree four r̃ = 4, we computed the inverse solution for D
for three different mesh sizes N = 5, 8, and 10. After 18 iterations, the reconstructed
profile D for N = 5 is shown in Figure 6.3a, after 24 iterations, the reconstructed
profile D for N = 8 is shown in Figure 6.3b, and after 20 iterations, the reconstructed
profile D for N = 10 is shown in Figure 6.3c. In Table 1 one can see the summary for
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Fig. 6.2. Inversion for three different polynomial degrees. D profile for polynomial degree (a)
r̃ = 1, (b) r̃ = 2, and (c) r̃ = 3.

the DG inversion of measured accuracy and work done for values of λ in the range
from 1.0E + 1 to 1.0E − 4. The best results were obtained for γ = 0.25. One can
notice that the lowest residual was attained for λ = 1.0E − 3.

Table 1. Effect of Regularization Parameter for the DG Inversion

λ L2 Error Norm The Residual Number of Iterations
1.0E+1 0.1537 5.33E-1 14
1.0E+0 0.1430 8.9E-2 17
1.0E-1 0.0868 1.14E-2 22
1.0E-2 0.0716 7.83E-4 26
1.0E-3 0.0744 1.38E-5 38
1.0E-4 div div ∞
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Fig. 6.3. Inversion for three different meshes for the polynomial of degree four r̃ = 4. D profile
for meshes (a) N = 5, (b) N = 8, and (c) N = 10.

7. Conclusion. In this paper, we investigate the one dimensional version of
the inverse problem in diffusion based optical tomography. We compare the DG
method to regular cubic spline CG method. We demonstrate that the DG method
with discontinuous piecewise polynomials as a basis for the parameter space acts
as an implicit regularization for the inverse problem. Our simulations suggest that
DG inversion is inherently different than CG inversion if the sought for parameters
are discontinuous. Our simulations presented in this paper demonstrate that the DG
method allows discontinuities in the parameters which acts as an added regularization
in addition to the L2 Tikhonov regularization. The DG regularization is implicit
because it is inherently embedded in the computational technique for the forward
problem and one does not need to solve the total variation type regularization in the
L1 norm which is computationally intensive. Currently, we are performing theoretical
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studies on the regularization behavior of the DG method for ill-posed problems.
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