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Abstract

We consider control-volume mixed finite element methods for the approxi-
mation of second-order elliptic problems on rectangular grids. These methods
associate control volumes (covolumes) with the vector variable as well as the
scalar, obtaining local algebraic representation of the vector equation (e.g.,
Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We
establish O(h2) superconvergence for both the scalar variable in a discrete L2-
norm and the vector variable in a discrete H(div)-norm. The analysis exploits
a relationship between control-volume mixed finite element methods and the
lowest order Raviart-Thomas mixed finite element methods.

1 Introduction

We consider the second-order elliptic problem in a domain Ω ⊂ IRd, d = 2 or 3,
written as a first-order system

u = −K∇p in Ω, (1.1)

∇ · u = f in Ω, (1.2)

u · n = 0 on ∂Ω. (1.3)

The above equations model single-phase flow in porous media, where p is the fluid
pressure, the vector u is the Darcy velocity, K is a symmetric uniformly positive
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definite and bounded diagonal tensor with Lipschitz components, representing the
rock permeability divided by the fluid viscosity, n is the outward unit normal to ∂Ω,
and f is the source term satisfying the compatibility condition

∫

Ω

f dx = 0.

The choice of homogeneous Neumann boundary condition corresponds to an imper-
meable boundary, which is the typical physical situation.

In this paper we consider discretizations for (1.1)–(1.3) based on control-volume
mixed finite element methods (CVMFEM) and establish O(h2) superconvergence for
the pressure and velocity in a discrete L2-norm and H(div)-norm, respectively. Most
of the arguments can be extended to Dirichlet boundary conditions. However, some
loss of superconvergence occurs on the boundary in that case. Global O(h) conver-
gence has been shown by Chou et al. [9, 10]; here we obtain the O(h2) rate suggested
by various numerical results (e.g., [8, 19, 24, 22]). Superconvergence is proved by
O(h2) estimates of the differences between the scalar and vector discrete solutions
and appropriate projections of the exact solutions.

CVMFEM, first introduced in [8], can be viewed as a type of mixed covolume
methods [9, 10, 11]. CVMFEM are closely related to the Raviart-Thomas mixed
finite element methods (MFEM) [26, 7, 27], cell-centered finite difference (CCFD)
methods [28, 29, 4], mimetic finite difference (MFD) methods [5, 21, 6], and multi-
point flux approximation (MPFA) methods [1, 17]. Some of these relationships are
explored in detail in [22].

Like MFEM, CVMFEM are designed to provide simultaneous (accurate) approxi-
mation of pressure and velocity, and local mass conservation,

∫

Q
∇·uh =

∫

Q
f on each

finite element Q, where uh is the computed velocity. These properties can be difficult
to obtain when K is heterogeneous (in particular, discontinuous) and/or anisotropic,
especially when it incorporates irregular geological features. The methods listed above
seek to accomplish this for flow in porous media, among other applications.

Unlike MFEM, CVMFEM have vector control volumes (covolumes) that give rise
to a local discrete Darcy law analogous to (1.1). An engineer measuring the perme-
ability of a core sample will typically impose a pressure at each end and observe the
flux through the core. The discrete CVMFEM control volume that corresponds to
the discrete flux unknown through a face, consisting of the two adjacent halves of
the elements on either side of the face (see Figure 1), plays the role of this core, with
the element pressures representing the imposed pressures at the ends. The vector
test function associated with the control volume is essentially a piecewise-constant
vector field, similar to a unit vector in the control volume and a zero vector outside
it. The algebraic equation produced by this test function is the local discrete Darcy
law. Thus, CVMFEM represent both physical principles in (1.1)–(1.3) locally.

In MFEM, the test vector belongs to the vector trial space, and therefore has
continuous normal component. Because the test and trial spaces are the same, the
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mass matrix is symmetric and positive definite (SPD). In CVMFEM, the normal
component of the test vector is discontinuous at the ends of the control volume,
and can also be discontinuous at the element face for general distorted grids. If
K is element-wise constant and the elements are affine (parallelograms in 2D), the
mass matrix is SPD, despite the distinct test and trial spaces; in general, it is not
symmetric, but symmetry can be restored by appropriate numerical integration [19].

On a uniform grid with homogeneous K, the lowest-order Raviart-Thomas MFEM,
denoted RT0, yields a tridiagonal mass matrix with weights 1/6, 2/3, 1/6, and the
basic CCFD results in a diagonal mass matrix. As will be seen below, CVMFEM
leads to weights 1/8, 3/4, 1/8. These are all of the form c, 1 − 2c, c, where c = 0
(CCFD), 1/6 (MFEM), or 1/8 (CVMFEM). In [19], some heuristic reasons to favor
c = 1/8 are presented: on a uniform grid, the second-order truncation error term is
half that of c = 0 and c = 1/6; on a nonuniform grid, only c = 1/8 matches one-sided
compact finite differences, avoiding any first-order local truncation error; in terms
of Fourier modes, the ratio of the discrete eigenvalue to the continuous eigenvalue is
generally closer to 1 for c = 1/8. Numerical results in [22] for homogeneous K show
second-order convergence for both MFEM and CVMFEM; on orthogonal grids, the
flux error for CVMFEM improves on that of MFEM by a factor of approximately 2.6;
on the distorted grids used, CVMFEM is worse by a factor of about 1.3.

The rest of the paper is organized as follows. In the next section we recall the
Raviart-Thomas MFEM for (1.1)–(1.3). Section 3 describes the CVMFEM and its re-
lation to the Raviart-Thomas MFEM. Superconvergence for the velocity is established
in Section 4. Section 5 is devoted to superconvergence for the pressure.

2 Mixed finite element methods

We will make use of the following standard notation. For a subdomain G ⊂ IRd,
the L2(G) inner product (or duality pairing) for scalar and vector valued functions is
denoted by (·, ·)G. We denote the norm in the Sobolev space W k

p (G), k ∈ IR, 1 ≤ p ≤
∞ [2] by ‖ · ‖k,p,G. Let ‖ · ‖k,G be the norm of the Hilbert space Hk(G) = W k

2 (G). We
omit G in the subscript if G = Ω. For a section of a subdomain boundary S ⊂ IRd−1

we write 〈·, ·〉S and ‖ · ‖0,S for the L2(S) inner product (or duality pairing) and norm,
respectively.

The mixed variational formulation, which is the basis for the MFEM is: find
u ∈ V and p ∈ W such that

(K−1u,v) = (p,∇ · v), v ∈ V, (2.1)

(∇ · u, w) = (f, w), w ∈ W, (2.2)

where

V = {v ∈ H(div; Ω) : v·n = 0 on ∂Ω}, W = L2
0(Ω) =

{

w ∈ L2(Ω) :

∫

Ω

w dx = 0

}

,
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and
H(div; Ω) = {v : v ∈ (L2(Ω))2, ∇ · v ∈ L2(Ω)}

with a norm
‖v‖V = (‖v‖2 + ‖∇ · v‖2)1/2.

We assume that Ω can be exactly covered by a rectangular-type finite element
partition Th. Let Vh × Wh ⊂ V × W be the lowest order Raviart-Thomas (RT0)
mixed finite element spaces on Th [26]. More precisely, for all Q ∈ Th,

Vh(Q) = {v = (a1+b1x, a2+b2y, a3+b3z)T on Q}, Wh(Q) = {w = constant on Q},

Vh = {v ∈ V : v|Q ∈ Vh(Q) ∀Q ∈ Th}, Wh = {w ∈ W : w|Q ∈ Wh(Q) ∀Q ∈ Th},

where the third component of v should be removed if d = 2. The degrees of freedom
of Vh are the constant normal components on the sides. If these are continuous, then
v ∈ H(div; Ω). Key properties of the RT0 spaces are

∇ · Vh = Wh (2.3)

and the existence of an interpolation operator Π : (H1(Ω))d → Vh (see [26, 7]) such
that for q ∈ (H1(Ω))2

(∇ · (Πq − q), w) = 0, ∀w ∈ Wh, (2.4)

and which satisfies the continuity and approximation properties

‖Πq‖V ≤ C‖q‖1, (2.5)

‖q − Πq‖0 ≤ Ch|q|1. (2.6)

The MFEM for approximating (2.1)–(2.2) is: find ũh ∈ Vh, p̃h ∈ Wh such that

(K−1ũh,v) = (p̃h,∇ · v), v ∈ Vh, (2.7)

(∇ · ũh, w) = (f, w), w ∈ Wh. (2.8)

It has been shown in [26] that (2.7)–(2.8) has a unique solution and

‖p − p̃h‖W + ‖u − ũh‖V = O(h).

A number of authors have studied superconvergence for the above method or the
closely related CCFD method [25, 14, 29, 15, 16, 18, 4] and have shown results of the
form

|||p − p̃h|||W + |||u − ũh|||V = O(h2),

where ||| · |||W and ||| · |||V are discrete norms defined in (4.7) and (4.8) below (or
some variants of them). The goal of this paper is to obtain similar superconvergence
results for the CVMFEM.
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Figure 1: Computational grid and control volumes

3 Control volume mixed finite element methods

Denote the elements of Th by Qi,j for d = 2 or by Qi,j,k for d = 3, see Figure 1 for
d = 2. For simplicity, in most of the paper we will use the notation and present the
arguments for d = 2. The case d = 3 is a trivial extension.

The center of Qi,j is denoted by ci,j. The midpoints of the left and right edges
are denoted by ci−1/2,j and ci+1/2,j , respectively, with similar notation for the bottom
and top edges. With each edge we associate a control volume, where the Darcy’s law
(1.1) is approximated. In particular, letting ci+1/2,j = (xi+1/2, yj), ci,j = (xi, yj), etc.,
define

Qi+1/2,j := (xi, xi+1) × (yj−1/2, yj+1/2) ∩ Ω, (3.1)

Qi,j+1/2 := (xi−1/2, xi+1/2) × (yi, yi+1) ∩ Ω. (3.2)

The control volumes Qi+1/2,j and Qi,j+1/2 are referred to as v1-volumes and v2-volumes,
respectively. The control volumes that have at least one edge on ∂Ω are called border
volumes.

Define the velocity test space

Yh = {(v1
h, v

2
h) : v1

h|Qi+1/2,j
= constant ∀Qi+1/2,j , v1

h = 0 on border v1-volumes

v2
h|Qi,j+1/2

= constant ∀Qi,j+1/2, v2
h = 0 on border v2-volumes}.

Thus, for example, the basis function yi+1/2,j ∈ Yh associated with ci+1/2,j is the
vector (χi+1/2,j , 0), i.e., (1, 0) on Qi+1/2,j , (0, 0) elsewhere. To see the form of the
associated algebraic equation, write (1.1) as K−1u +∇p = 0, form the inner product
with yi+1/2,j , and integrate:

∫ xi+1

xi

∫ yj+1/2

yj−1/2

(K1)−1u1 dy dx +

∫ yj+1/2

yj−1/2

(p(xi+1, y) − p(xi, y)) dy = 0,
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where u = (u1, u2) and K = diag(K1, K2). Suppose that K is element-wise constant
on Qi,j and Qi+1,j . Taking u = vi−1/2,j ,vi+1/2,j,vi+3/2,j ∈ Vh, the usual RT0 vector
basis functions, we obtain the tridiagonal mass-matrix coefficients

1/8 (K1
i,j)

−1hx
i h

y
j , 3/8 (K1

i,j)
−1hx

i h
y
j + 3/8 (K1

i+1,j)
−1hx

i+1h
y
j , 1/8 (K1

i+1,j)
−1hx

i+1h
y
j ,

where hx and hy are the element dimensions. For homogeneous K and a uniform
grid, this reduces to 1/8, 3/4, 1/8, as noted above.

3.1 Variational formulation for CVMFEM

Following [9], define the bilinear forms a(·, ·) : (L2(Ω))d × (L2(Ω))d → IR, b(·, ·) :
Yh × H1(Ω) → IR, and c(·, ·) : H(div; Ω) × L2(Ω) → IR as follows:

a(u,v) := (K−1u,v),

b(v, p) :=
∑

i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
+
∑

i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

c(u, w) := (∇ · u, w).

Lemma 3.1 If (u, p) ∈ H(div; Ω)×H1(Ω) solves (1.1)–(1.3), then (u, p) satisfies the

variational formulation

a(u,v) + b(v, p) = 0, v ∈ Yh, (3.3)

c(u, w) = (f, w), w ∈ Wh. (3.4)

Proof: Equation (1.1) implies, for v ∈ Yh,

(K−1u,v) = (−∇p,v) =
∑

i,j

(−∇p, (v1, 0)T )Qi+1/2,j
+
∑

i,j

(−∇p, (0, v2)T )Qi,j+1/2

= −
∑

i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
−
∑

i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

giving (3.3). Equation (3.4) follows trivially from (1.2). 2

The CVMFEM may be formulated as follows: find (uh, ph) ∈ Vh × Wh such that

a(uh,v) + b(v, ph) = 0, v ∈ Yh, (3.5)

c(uh, w) = (f, w), w ∈ Wh. (3.6)

Note that (3.5) is a Petrov-Galerkin FEM, since the test functions differ from the
trial functions. We next recall the transfer operator γh : Vh → Yh, introduced in [9].
Define, for all v ∈ Vh,

γhv =

(

∑

i,j

v1(ci+1/2,j)χi+1/2,j ,
∑

i,j

v2(ci,j+1/2)χi,j+1/2

)
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It has been shown in [9] that for constants α > 0 and C independent of h,

b(γhv, w) = −c(v, w) ∀ v ∈ Vh, w ∈ Wh, (3.7)

a(v, γhv) ≥ α‖v‖2
0 ∀ v ∈ Vh, (3.8)

‖γhv‖0 ≤ C‖v‖0. (3.9)

4 Velocity superconvergence analysis

In this section we establish superconvergence for the velocity in the CVMFEM. Sub-
tracting (3.5)–(3.6) from (3.3)–(3.4) gives the error equations

a(u − uh,v) + b(v, p − ph) = 0, v ∈ Yh, (4.1)

c(u − uh, w) = 0, w ∈ Wh. (4.2)

We first note that (4.2) implies

0 = c(u − uh, w) = (∇ · (u − uh), w) = (∇ · (Πu − uh), w), ∀w ∈ Wh,

using (2.4). Therefore, using (2.3),

∇ · (Πu − uh) = 0. (4.3)

Let p̂ be the L2-orthogonal projection of p onto Wh, defined by

(p − p̂, w) = 0, ∀w ∈ Wh.

Taking v = γh(Πu − uh) and w = p̂ − ph in (4.1)–(4.2) implies

a(Πu − uh, γh(Πu − uh))

= −a(u − Πu, γh(Πu − uh)) − b(γh(Πu − uh), p − ph), (4.4)

c(Πu − uh, p̂ − ph) = 0. (4.5)

The second term on the right in (4.4) can be manipulated as follows:

b(γh(Πu − uh), p − ph) = b(γh(Πu − uh), p − p̂) + b(γh(Πu − uh), p̂ − ph)

= b(γh(Πu − uh), p − p̂) − c(Πu − uh, p̂ − ph)

= b(γh(Πu − uh), p − p̂),

using (3.7) and (4.5) in the last equality. Therefore (4.4) gives

a(Πu− uh, γh(Πu− uh)) = −a(u−Πu, γh(Πu− uh))− b(γh(Πu− uh), p− p̂) (4.6)

Lemma 4.1 below implies that

|a(u − Πu, γh(Πu − uh)| ≤ Ch2‖u‖2‖Πu − uh‖0.
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Using (4.3), Lemma 4.2 below gives

|b(γh(Πu − uh), p − p̂)| ≤ Ch2‖p‖3‖Πu − uh‖0.

With the above two bounds and (3.8), (4.6) implies the following superconvergence
result.

Theorem 4.1 For the CVMFEM approximation (uh, ph), there exists a constant C
independent of h such that

‖Πu − uh‖0 ≤ Ch2(‖u‖2 + ‖p‖3). 2

The above result immediately implies superconvergence in the velocity in an L2

sense along the Gaussian lines. Consider an element Q = [a1, b1] × [a2, b2]. Following
[18, 16], for a vector q = (q1, q2) define

|||q1|||
2
1,Q = (b2 − a2)

∫ b1

a1

∣

∣

∣

∣

q1

(

x1,
a2 + b2

2

)
∣

∣

∣

∣

2

dx1,

|||q2|||
2
2,Q = (b1 − a1)

∫ b2

a2

∣

∣

∣

∣

q2

(

a1 + b1

2
, x2

)
∣

∣

∣

∣

2

dx2,

|||q|||2 =
2
∑

i=1

∑

Q∈Th

|||qi|||
2
i,Q.

Note that, for q ∈ Vh, |||q||| = ‖q‖0.

Corollary 4.1 There exists a constant C independent of h such that

|||u − uh||| ≤ Ch2(‖u‖2 + ‖p‖3).

Proof: It was shown in [16] that

|||u− Πu||| ≤ Ch2|u|2,

where | · |2 denotes the H2 seminorm. Also, using Theorem 4.1,

|||Πu− uh||| = ‖Πu − uh‖0 ≤ Ch2(‖u‖2 + ‖p‖3).

The assertion of the corollary follows from the above two bounds and the triangle
inequality. 2

It is also easy to see that ∇ · (u− uh) is superconvergent at the midpoints of the
elements. Define, for a scalar function g,

|||g|||2 =
∑

i,j

|Qi,j|g(ci,j)
2. (4.7)
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Using (4.3) and (2.4),

|||∇ · (u − uh)||| = |||∇ · (u − Πu)||| = |||∇ · u − ∇̂ · u||| ≤ Ch2‖∇ · u‖2,∞,

where the last inequality follows from Lemma 4.3. Defining

|||q|||2
V

= |||q|||2 + |||∇ · q|||2, (4.8)

the above results can be summarized as follows.

Corollary 4.2 There exists a constant C independent of h such that

|||u− uh|||V ≤ Ch2(‖u‖2 + ‖∇ · u‖2,∞ + ‖p‖3). 2 (4.9)

We next proceed with the three lemmas needed in the proof of Theorem 4.1.

Lemma 4.1 There exists a constant C independent of h such that, for all v ∈ Vh,

|a(u − Πu, γhv)| ≤ Ch2‖u‖2‖v‖0.

Proof: We first show that, if q ∈ (P1(Q))2, where Pk is the space of polynomials
of degree ≤ k, then

∫

Q

(q − Πq)γhv dx dy = 0, ∀v ∈ Vh, Q ∈ Th. (4.10)

The argument follows the proof of Lemma 3.1 in [16]. Let Q = [a, b] × [c, d] and let
L1(x) and L̃1(y) be the linear Legendre polynomials on [a, b] and [c, d], respectively.
It is easy to see that any q ∈ (P 1(Q))2 can be decomposed into

q(x, y) = q̄(x, y) + (αL̃1(y), βL1(x))T ,

where q̄ ∈ Vh(Q). Since q̄ − Πq̄ = 0, it is enough to establish (4.10) for q(x, y) =
(αL̃1(y), βL1(x))T . It is shown in [16] that in this case Πq = 0. Therefore
∫

Q

(q − Πq)γhv dx dy =

∫

Q

qγhv dx dy

=

∫

Q

(αL̃1(y)(γhv)1(x, y) + βL1(x)(γhv)2(x, y)) dx dy = 0,

using that for any fixed x0 ∈ [a, b], (γhv)1(x0, y) ∈ P0[c, d], that for any fixed y0 ∈
[c, d], (γhv)2(x, y0) ∈ P0[a, b], and the orthogonality properties of L1(x) and L̃1(y).

We now have

a(u − Πu, γhv) = (K−1(u − Πu), γhv)

=
∑

Q∈Th

[K−1

Q (u − Πu, γhv)Q + ((K−1 − K−1

Q )(u − Πu), γhv)Q],

9



where K−1

Q is the value of K−1 at the center of Q. Therefore, using that K−1 is
Lipschitz,

|a(u − Πu, γhv)| ≤ C
∑

Q∈Th

|(u − Πu, γhv)Q| + Ch‖u − Πu‖0‖γhv‖0. (4.11)

Using (4.10), an application of the Bramble-Hilbert lemma [12] implies

|(u − Πu, γhv)Q| ≤ Ch2|u|2,Q‖γhv‖0,Q,

which, combined with (4.11), (2.6), and (3.9) completes the proof. 2

Lemma 4.2 There exists a constant C independent of h such that, for all v ∈ Vh,

|b(γhv, p − p̂)| ≤ Ch2‖p‖3‖v‖V

Proof: Let ei+1/2,j = ∂Qi+1/2,j ∩ Qi,j and ei,j+1/2 = ∂Qi,j+1/2 ∩ Qi,j. Note that in
the sums in

b(γhv, p − p̂)

=
∑

i,j

〈p − p̂, ((γhv)1, 0)T · n〉∂Qi+1/2,j
+
∑

i,j

〈p − p̂, (0, (γhv)2)T · n〉∂Qi,j+1/2
,

every edge ei+1/2,j and ei,j+1/2 appears twice (from the two neighboring covolumes).
Using that ∂v1

∂x
and ∂v2

∂y
are constants on each element Qi,j, we have

b(γhv, p − p̂)

=
∑

i,j

(

hx
i

∂v1

∂x

∫

ei+1/2,j

(p − p̂) dy + hy
j

∂v2

∂y

∫

ei,j+1/2

(p − p̂) dx

)

=
∑

i,j

(

∂v1

∂x

(

hx
i

∫

ei+1/2,j

p dy −

∫

Qi,j

p dxdy

)

(4.12)

+
∂v2

∂y

(

hy
j

∫

ei,j+1/2

p dx −

∫

Qi,j

p dxdy

))

=
∑

i,j

(

(

p,
∂v1

∂x

)

Qi,j ,Mx

−

(

p,
∂v1

∂x

)

Qi,j

+

(

p,
∂v2

∂y

)

Qi,j ,My

−

(

p,
∂v2

∂y

)

Qi,j

)

,

where (·, ·)Q,Mx is the quadrature rule on Q which uses the midpoint rule in x and
exact integration in y, and (·, ·)Q,My uses exact integration in x and the midpoint
rule in y. Since the midpoint rule is exact for linear polynomials, the Peano Kernel
Theorem [13, Theorem 3.7.1] implies

(

p,
∂v1

∂x

)

Qi,j ,Mx

−

(

p,
∂v1

∂x

)

Qi,j

=

∫

Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v1

∂x
dxdy (4.13)

=

∫

Qi,j

ϕ(x)
∂2p

∂x2
(x, y)∇ · v dxdy −

∫

Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v2

∂y
dxdy ≡ T1 + T2
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where

ϕ(x) =

{

(x − xi−1/2)
2/2, xi−1/2 ≤ x ≤ xi

(x − xi+1/2)
2/2, xi ≤ x ≤ xi+1/2

For the first term we have

|T1| ≤ Ch2‖p‖2,Qi,j
‖∇ · v‖0,Qi,j

(4.14)

Integrating by parts in T2 gives

T2 =

∫

Qi,j

ϕ(x)
∂3p

∂x2∂y
(x, y)v2(x, y) dxdy

−

(

∫

ei,j,t

−

∫

ei,j,b

)

ϕ(x)
∂2p

∂x2
(x, y)v2(x, y) dx ≡ T2,1 + T2,2,(4.15)

where ei,j,t and ei,j,b are the top and the bottom edge of Qi,j, respectively. For T2,1

we have
|T2,1| ≤ Ch2‖p‖3,Qi,j

‖v‖0,Qi,j
. (4.16)

For T2,2 we notice that v2 is continuous across horizontal edges and the assumed

regularity of p(x, y) implies that the trace of ∂2p
∂x2 is well defined. When summing over

all elements, each edge integral will appear twice from the expressions for the two
neighboring elements, with opposite signs. Therefore

∑

i,j

T2,2 = 0. (4.17)

Combining (4.13)–(4.17) implies

∑

i,j

(

(

p,
∂v1

∂x

)

Qi,j ,Mx

−

(

p,
∂v1

∂x

)

Qi,j

)

≤ Ch2‖p‖3‖v‖V.

The second error term in (4.12) can be bounded in a similar way. Note that for d = 3,
a similar argument goes through with two terms analogous to T2. 2

Lemma 4.3 For all g ∈ W 2
∞ there exists a constant C independent of h such that

|||g − ĝ||| ≤ Ch2‖g‖2,∞.

Proof: Let Q ∈ Th. The Taylor expansion about the midpoint (x0, y0) of Q gives
for any (x, y) ∈ Q

g(x, y) = g(x0, y0) + (x − x0)
∂g

∂x
(x0, y0) + (y − y0)

∂g

∂y
(x0, y0) + R(x, y),

11



where |R(x, y)| ≤ Ch2‖g‖2,∞,Q. Integrating the above equation over Q and using that
∫

Q
g =

∫

Q
ĝ gives

|Q|(ĝ(x0, y0) − g(x0, y0)) =

∫

Q

R(x, y) dxdy,

which implies
|ĝ(x0, y0) − g(x0, y0)| ≤ Ch2‖g‖2,∞,Q.

The statement of the lemma now follows from the definition (4.7) of ||| · |||. 2

5 Pressure superconvergence analysis

In this section we employ a duality argument to derive superconvergence for the
pressure at the cell centers. We will make use of the following continuity property of
Π [23, 3]: for any ε > 0,

‖Πq‖0 ≤ C(‖q‖ε + ‖∇ · q‖0). (5.1)

Consider the auxiliary problem

−∇ · K∇ϕ = p̂ − ph in Ω, (5.2)

−K∇ϕ · n = 0 on ∂Ω,

which is well posed since
∫

Ω
p̂ =

∫

Ω
ph = 0. Elliptic regularity [20] implies that there

exists ε > 0 such that
‖ϕ‖1+ε ≤ C‖p̂ − ph‖0. (5.3)

Note that (5.3) holds for L-shaped domains. Let φ = −K∇ϕ. We have

‖p̂ − ph‖
2
0 = (p̂ − ph,∇ · φ) = (p̂ − ph,∇ · Πφ) = c(Πφ, p̂ − ph)

= −b(γhΠφ, p̂ − ph) = −b(γhΠφ, p̂ − p) − b(γhΠφ, p − ph)

= −b(γhΠφ, p̂ − p) + a(u − uh, γhΠφ), (5.4)

using (4.1) with v = γhΠφ. By Lemma 4.2,

|b(γhΠφ, p̂− p)| ≤ Ch2‖p‖3‖Πφ‖V ≤ Ch2‖p‖3(‖φ‖ε + ‖∇ · φ‖0) ≤ Ch2‖p‖3‖p̂ − ph‖0,

using (5.1), (5.3), and that ‖∇ ·Πφ‖0 ≤ ‖∇ · φ‖0, which follows from ∇ ·Πφ = ∇̂ · φ.
Note that the constant C above depends on ‖K‖ε,∞. For the last term in (5.4) we
write

|a(u − uh, γhΠφ)| = |a(u − Πu, γhΠφ) + a(Πu − uh, γhΠφ)|

≤ C(h2‖u‖2‖Πφ‖0 + ‖Πu − uh‖0‖γhΠφ‖0)

≤ Ch2(‖u‖2 + ‖p‖3)‖Πφ‖0

≤ Ch2(‖u‖2 + ‖p‖3)‖p̂ − ph‖0,

12



using Lemma 4.1, Theorem 4.1, (3.9), (5.1), (5.3), and (5.2). A combination of (5.4)
and the above two bounds gives the following pressure superconvergence result.

Theorem 5.1 For the CVMFEM approximation (uh, ph), there exists a constant C
dependent on ‖K‖ε,∞, but independent of h such that

‖p̂ − ph‖0 ≤ Ch2(‖u‖2 + ‖p‖3). 2

It is now easy to obtain superconvergence for the pressure at the midpoints of
the elements. Let |||w|||W = |||w|||, where |||w||| is defined in (4.7) and note that
|||w|||W = ‖w‖0 for all w ∈ Wh.

Corollary 5.1 There exists a constant C dependent on ‖K‖1,∞, but independent of

h such that

|||p − ph|||W ≤ Ch2(‖u‖2 + ‖p‖2,∞ + ‖p‖3).

Proof: The result follows immediately from the triangle inequality

|||p − ph|||W ≤ |||p − p̂|||W + |||p̂ − ph|||W ,

Lemma 4.3, and Theorem 5.1. 2
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