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Abstract. We study a time relaxation regularization of flow problems proposed and tested ex-
tensively by Stolz and Adams. The aim of the relaxation term is to drive the unresolved fluctuations
in a computational simulation to zero exponentially fast by an appropriate and often problem depen-
dent choice of its coefficient; this relaxation term is thus intermediate between a tunable numerical
stabilization and a continuum modeling term. Our aim herein is to understand how this term, by
itself, acts to truncate solution scales and to use this understanding to give insight into parameter
selection.
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1. Introduction. Direct numerical simulation of a 3d turbulent flow typically
requires NNSEdof ≃ O(Re+9/4) mesh points in space per time step, and thus is often
not computationally economical or even feasible. On the other hand, the largest
structures in the flow (containing most of the flow’s energy) are responsible for much
of the mixing and most of the flow’s momentum transport. Thus, various numerical
regularizations for truncating the small structures and turbulence models of the large
structures are used for simulations seeking to predict flow statistics or averages. The
resulting simulations are typically complex with many uncertainties and fitting/tuning
parameters whose effects upon the computed solutions are often poorly understood.
Thus, it is important to understand how these regularizations and models (and their
parameters) act to truncate the scales in a simulated flow to be representable on a
computationally feasible grid.

In this report we study one such model/regularization: a time relaxation operator
introduced as a numerical regularization by Stolz and Adams, e.g., Stolz, Adams and
Kleiser [39], [40], based on theoretical work on regularizations of Chapman-Enskog ex-
pansions in Rosenau [32], Schochet and E. Tadmor [35]. This operator aims precisely
to truncate the small scales in a solution without altering appreciably the solution’s
large scales. This regularization operator has many attractive features. It is a lower
order perturbation and thus (since the equation does not change order or type) ques-
tions of well-posedness and boundary conditions are transparent; it ensures sufficient
numerical entropy dissipation for numerical solution of conservation laws, Adams and
Stolz [2], p.393; in combination with a large eddy simulation model, it has produced
positive results for the Navier-Stokes equations at high Reynolds numbers. It can
also be used quite independently of any turbulence model (and has been so used in
compressible flow calculations). As a stand alone regularization, it has been successful
for the Euler equations for shock-entropy wave interaction and other tests, [2],[39] ,
[40], [41], including aerodynamic noise prediction and control, Geunanff [18]. Because
this term has proven to be widely useful, we isolate its effects by studying the sizes of
the persistent scales in the Navier-Stokes equations+Relaxation term. We focus on
the expected case when the Reynolds number is high enough that all dissipation and
scale truncation is created by precisely this relaxation term (up to negligible effects).
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In Section 5.1 we shall examine this assumption and see that it is satisfied provided
(essentially) the filter length-scale δ is larger than the Kolmogorov micro-scale and
the relaxation parameter χ > O(1).

To introduce the time relaxation term which, when added to the Navier-Stokes
equations, we consider as a continuum model, let Ω = (0, L)3 and suppose periodic
with zero mean boundary conditions are imposed on ∂Ω :

φ(x+ Lej , t) = φ(x, t) and
∫
Ω
φ(x, t)dx = 0 for φ = u, p, f, u0.

A local spacial averaging operator associated with a length-scale δ must be selected
and many are possible, e.g., [5], John [21], Sagaut [34]. For specificity, we choose a
simple differential filter, Germano [16] (related to a Gaussian, e.g.,[15] ): given an
L-periodic φ(x), its average φ is the unique L-periodic solution of

−δ2△φ+ φ = φ, in Ω.
The correct extension to no-slip boundary conditions is developed in [28].This filtering
operation is often denoted φ = Gφ and it will be convenient to let A := −δ2△ + I
. The Nth van Cittert approximate deconvolution operator GN is defined compactly
by

GNφ :=
N∑
n=0

(I −G)φ,N = 0, 1, 2, · · ·.

See Section 2.1 for more detail. The (bounded) operator GN is a approximation to
the (unbounded) inverse of the filter G in the sense that for very smooth functions
and as δ → 0

φ = GNφ+O(δ2N+2),
e.g., Adams and Stolz [1], [38], Dunca and Epshteyn [9], and [5].

The model we consider is to find a L-periodic (with zero mean) velocity and
pressure satisfying

ut + u · ∇u+∇p+ ν△u+ χ(u−GNu) = f, in Ω× (0, T )
u(x, 0) = u0(x), in Ω and (1.1)
∇ · u = 0, in Ω× (0, T ) .

The relaxation coefficient χ must be specified and has units 1
time . The term u−GNu

is a generalized fluctuation included to drive fluctuations below O(δ) to zero rapidly
as t → ∞ without affecting the order of accuracy of the model’s solution u as an
approximation to the resolved ( ≥ O(δ))scales.

R����� 1.1. Another option is to use a related formulation of the relaxation
term given by χ(I − GNG)2u . There is little difference in the above (linear) case
between these two possibilities. In the nonlinear case (Section 5) the difference might
be more significant.

The simplest interesting case is N = 0 . Here G0u = u represents the part of
the velocity that can be represented on an O(δ) mesh, while u′ := u − u represents
the part of the velocity varying over scales l ≤ O(δ) . When N = 0 the above model
reduces to

ut + u · ∇u+ ν△u+∇p+ χu′ = f, in Ω× (0, T ) . (1.2)
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When N = 0, u′ = u − u = −δ2△u so the term χu′ represents a smoothed viscous
term and some sort of scale truncation is plausible.

To use time relaxation, the relaxation parameter χ must be chosen. Analytical
guidance concerning its appropriate scaling with respect to other problem parameters
is essential. In Schochet and Tadmor [35] asymptotic analysis suggested the scaling
χ ∼ C0+C1/δ but this value was found too large in tests reported in Adams and Stolz
[2] p. 403. Herein we consider parameter selection for the Navier-Stokes equations
as a part of broader issues for the relaxation model, including: What is the length
scale of the smallest persistent eddy in the above model’s solution? (This length
scale for (1.1) corresponds to the Kolmogorov dissipation length scale for a turbulent
flow of an incompressible, viscous, Newtonian fluid.) Do solutions of the Navier-
Stokes equations + relaxation term exhibit an energy cascade and, if so, what are the
details of their energy cascade? And, How does the relaxation term act to truncate
the small eddies? Our work herein has been inspired by Muschinsky’s study of the
Smagorinsky model [29] and Foias, Holm and Titi [11] study of the Camassa-Holm
/ Navier-Stokes-alpha model. The answers to these questions will come from two
simple but powerful tools: a precise energy balance for (1.1) in Section 3 together
with Kolmogorov’s similarity theory, e.g., [5], [12], [30], [25], [34], suitably adapted.
Interestingly, similarity theory in section 5 yields χ ∼ Cδ− 2

3 which is smaller than
the value obtained by Schochet and Tadmor [35] but consistent with it within the
accuracy of an asymptotic expansion.

1.1. Summary of results. The results are presented in the following sections
with full details. We give here an overview of the main results of this report keeping
notation as transparent as possible and describing only the most interesting cases.

Section 3 reviews the analytic framework of the space-periodic problem. Using
simple energy estimates (which are similar in spirit and detail to the numerical analysis
of penalty methods) we show that the component of the solution of (1.1) fluctuating
below O(δ) must → 0 in L2(Ω × (0, T )) as χ → ∞.This result follows directly from
the continuum equations (1.1) and validates the relaxation term as a general compu-
tational strategy but it sheds no light into parameter selection or the details of how
scales are truncated by the relaxation term. K41 phenomenology is briefly reviewed
in the appendix to establish that it is indeed applicable to the case herein of NSE +
Time relaxation. In Section 4 we delineate those details by developing a similarity
theory for (1.1) following the K-41 Theory of the Navier-Stokes equations. There are
several interesting cases, but the most important consequence for practical comput-
ing is the following predicted optimal scaling of the relaxation parameter which forces
the model’s micro-scale ηmodel = O(δ):

χ ≃ U
L 1

3
2N+1

3 δ− 2
3 . (1.3)

Note that χ = O(δ− 2
3 ) → ∞ as δ → 0 as required in the analytic estimates of Section

3. For this value of the relaxation term the consistency error of the relaxation term is
|χ(u−GNu)| = O(χδ2N+2) = O(δ2N+ 4

3 ).
Section 5 considers extension to a nonlinear relaxation term. For the most physically
appealing choice of the nonlinear term a heuristic analysis of Lilly [27], famous in
the large eddy simulation community, is adapted to give a prediction of an optimal
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χ based upon a different but equally valid physical principle. Interestingly, with the
proper form of relaxation parameter, this analysis also yields the scaling: χ = O(δ− 2

3 )
as δ → 0. Section 6 collects conclusions and open problems.

2. Preliminaries. The de-convolution problem is central in both image process-
ing, [4] and turbulence modeling in large eddy simulation, [5], [17], [23], [26], [24]. The
basic problem in approximate de-convolution is: given u find useful approximations
of u. In other words, solve the following equation for an approximation which is ap-
propriate for the application at hand

Gu = u, solve for u.
For most averaging operators, G is symmetric and positive semi-definite. Typically, G
is not invertible or at least not stably invertible due to small divisor problems. Thus,
this de-convolution problem is ill-posed.

2.1. The van Cittert Algorithm. The de-convolution algorithm we consider
was studied by van Cittert in 1931. For each N = 0, 1, ... it computes an approximate
solution uN to the above de-convolution equation by N steps of a fixed point iteration,
[4]. Rewrite the above de-convolution equation as the fixed point problem:

given u solve u = u+ {u−Gu} for u.
The de-convolution approximation is then computed as follows.

A
������ 2.1 (van Cittert approximate de-convolution algorithm). u0 = u ,
for n=1,2,...,N-1, perform
un+1 = un + {u−Gun}
Clearly, this is nothing but the first order Richardson iteration for the oper-

ator equation Gu = u involving a possibly non-invertible operator G. Since the
de-convolution problem is ill posed, convergence as N → ∞ is not expected.

D������ 2.2. The Nth van Cittert approximate deconvolution operator GN :
L2(Ω) → L2(Ω) is the map GN : u → uN , or GN (u) = uN .

HN denotes the map HN : L2(Ω) → L2(Ω) by HN (φ) := GNGφ = GNφ.
By eliminating the intermediate steps, it is easy to find an explicit formula for

the N th de-convolution operator GN :

GNφ :=
N∑
n=0

(I −G)nφ. (2.1)

For example, the approximate de-convolution operator corresponding to N = 0, 1, 2
are G0u = u, and G1u = 2u − u, and G2u = 3u − 3u + u. The consistency error of
GN as an approximate inverse of G is known to be O(δ2N+2).

L���� 2.3 (Error in approximate de-convolution). For any φ ∈ L2(Ω),
φ−GNφ = (I −A−1)N+1φ (2.2)

= (−1)N+1δ2N+2△N+1A−(N+1)φ
= O(δ2N+2) as δ → 0 for smooth φ.

Proof. See [9] , [5] .
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3. Energy estimates. Recall that we impose the zero mean condition ∫
Ω φdx =

0 on φ = u, p, f, and u0. We can thus expand the fluid velocity in a Fourier series

u(x, t) = ∑
k
û(k, t)e−ik·x, where k = 2πn

L is the wave number and n ∈ Z3.

The Fourier coefficients are given by

û(k, t) = 1
L3

∫
Ω
u(x, t)e−ik·xdx.

Magnitudes of k,n are defined by

|n| = {|n1|2 + |n2|2 + |n3|} 1
2 , |k| = 2π|n|

L ,
|n|∞ = max{|n1|, |n2|, |n3|}, |k|∞ = 2π|n|∞

L .

The length-scale of the wave number k is defined by l = 2π
|k|∞ . Parseval’s equality

implies that the energy in the flow can be decomposed by wave number as follows.
For u ∈ L2(Ω) ,

1
L3

∫
Ω
1
2 |u(x, t)|

2dx = ∑
k

1
2 |û(k, t)|

2 =

= ∑
k


 ∑

|k|=k

1
2 |û(k, t)|

2

 ,where k = 2πn

L is the wave number and n ∈ Z3.

Let < · > denote long time averaging (e.g., Reynolds, [31])

< φ > (x) := limT→∞ sup 1
T
∫ T

0
φ(x, t)dt. (3.1)

D������ 3.1. The kinetic energy distribution functions are defined by

E(k, t) = L
2π

∑
|k|=k

1
2 |û(k, t)|

2, and

E(k) : =< E(k, t) >,

Parseval’s equality thus can be rewritten as
1
L3

∫
Ω
1
2 |u(x, t)|

2dx = 2π
L

∑
k
E(k, t), and

< 1
L3

∫
Ω
1
2 |u(x, t)|

2dx >= 2π
L

∑
k
E(k).

The analysis of time relaxation involves dimensional analysis coupled with precise
mathematical knowledge of (1.1) ’s kinetic energy balance. This requires information
on the action of the operator HN .
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L���� 3.2. Define the bounded linear operator HN : L2(Ω) → L2(Ω) by HNφ =
GNGφ . Then, HN and I −HN are both symmetric, positive semi-definite operators
on L20(Ω). For u ∈ L20(Ω)

∫
Ω
(u−HNu) · udx ≥ 0,

∫
Ω
(HNu) · udx ≥ 0.

Proof. Both HN and GN are functions of the SPD operator G so symmetry is
immediate and positivity is easily established in the periodic case by a direct calcula-
tion using Fourier series. To begin, expand u(x, t) = ∑

k û(k, t)e−ik·x, where k = 2πn
Lis the wave number and n ∈ Z3. Then, by direct calculation using Parseval’s equality

1
2L3

∫
Ω
(HNu) · udx = 2π

L
∑
k
ĤN (k)E(k, t) , where

ĤN (k) = 1
1 + z2

N∑
n=0

(1− 1
1 + z2 )

n , where z = δk.

The expression for ĤN (k) can be simplified by summing the geometric series. This
gives

ĤN (k) = 1− ( z2
1 + z2 )

N+1 , where z = δk .

Since z is real, 0 ≤ z2
1+z2 ≤ 1, and 0 ≤ 1− ( z2

1+z2 )N+1 ≤ 1. Thus we have shown

0 ≤
∫
Ω
(HNu) · udx ≤

∫
Ω
|u|2dx.

Similarly, we show 0 ≤ 1− ĤN (k) ≤ 1 and

0 ≤
∫
Ω
(u−HNu) · udx ≤

∫
Ω
|u|2dx,

which completes the proof.
It is insightful to plot the transfer function ĤN (k) = 1 − ( z2

1+z2 )N+1 for a few
values of N . We do so below for N = 5, 10, 100 .
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Transfer function ĤN(·), N = 5, 10,100.
Examining these graphs, we observe that HN (u) is very close to u for the low

frequencies/largest solution scales and that HN (u) attenuates small scales/high fre-
quencies. The breakpoint between the low frequencies and high frequencies is some-
what arbitrary. The following is convenient for our purposes and fits our intuition of
an approximate spectral cutoff operator1 .

D������ 3.3 (Cutoff-Frequency). The cutoff frequency of HN is

kc := greatest integer(Ĥ−1N (12)).

In other words, the frequency for which ĤN most closely attains the value 1
2 .From the above explicit formulas, it is easy to verify that the cutoff frequency

grows to infinity slowly as N → ∞ for fixed δ and as δ → 0 for fixed N . Other
properties of the operator HN (·) follow similarly easily from its transfer function.

P�������� 3.4. HN is a compact operator. Let ΠN denote the orthogonal L2
projection into span{eik·x : |k| ≤ kc}.For all u ∈ L2(Ω) :

(HNu, u)L2(Ω) ≥ C||ΠNu||2, (3.2)
(u−HNu, u)L2(Ω) ≥ C||(I −ΠN )u||2.

Proof. Compactness follows since ĤN (k) → 0 as k → ∞. The second and third
claims follow from the definition of the cutoff frequency, the explicit formula for the
transfer function and a calculation.

The theory of (1.1) begins, like the Leray theory of the Navier-Stokes equations,
with a clear global energy balance;

1For periodic problems, spectral cutoff is, of course, best done by spectral cutoff. The van Cittert
deconvolution operators give an approximate spectral cutoff operator that is computationally cheap
and extends to the non-periodic case.
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P�������� 3.5. Let u0 ∈ L20(Ω), f ∈ L2(Ω× (0, T )), and ∫Ω f(x, t)dx = 0. For
δ > 0, let the averaging be (−δ2△+1)−1. There exists a weak solution to (1.1) which
is unique if it is additionally a strong solution. If u is a strong solution of (1.1) , u
satisfies

1
L3

1
2 ‖u(t)‖2 +

∫ t

0
1
L3

∫
Ω
ν|∇u|2 + χ(u−HNu) · udxdt′ =

1
L3

1
2 ‖u0‖2 +

∫ t

0
1
L3

∫
Ω
f · udxdt′.

The above energy bound with equality replaced by "≤" is also satisfied by weak solu-
tions.

Proof. The model (1.1) is a lower order, linear perturbation of the Navier Stokes
equations so this follows the Navier-Stokes case very closely, e.g., Galdi [13], [14] for a
clear and beautiful presentation. For example, for the energy equality, multiply (1.1)
by u, integrate over the domain Ω, then integrate from 0 to t.

R����� 3.6. By the above lemma and energy estimate, the model’s relaxation
term thus extracts energy from resolved scales. Thus, we can define an energy dissi-
pation rate induced by time relaxation for (1.1) as

ε model(u)(t) := 1
L3

∫
Ω
χ(u−HNu) · udx (3.3)

The models kinetic energy is the same as for the Euler equations

E model(u)(t) := 1
L3

1
2 ‖u(t)‖2 (3.4)

The following analytic estimate of the effect of the relaxation term follows easily
from the above energy estimate.

T������ 3.7. Let u be a weak solution of (1.1). If u0 ∈ L2(Ω) and f ∈
L2(0, T ;L2(Ω)) then there is a C = C(u0, f, T ) such that∫

Ω×(0,T )
|(I −ΠN )u|2dxdt ≤ C

χ , (3.5)

and thus (I −ΠN )u→ 0 in L2(Ω× (0, T )) as χ→ ∞.
Proof. With the stated regularity of the body force, we may use the Cauchy-

Schwarz inequality in the RHS of the energy inequality and apply Gronwall’s inequal-
ity. After this, drop every term on the LHS except the time relaxation term giving∫ T

0

∫
Ω
χ(u−HNu) · udxdt′ ≤ C(u0, f, T ).

The result follows from this and the previous proposition.
4. A similarity theory of time relaxation. We consider now the Navier-

Stokes equations with time relaxation at a high enough Reynolds number and large
enough relaxation coefficient that viscous dissipation is negligible. The first question
is: Does the time relaxation term induce a truncation of persistent solution scales?
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This question is linked to another: Does the NSE + time relaxation share the common
features of the Navier-Stokes equations which make existence of an energy cascade
likely? Since (1.1) has the same nonlinearity as the Navier-Stokes equations, the
conditions remaining are that (i) the solution satisfies an energy equality in which its
kinetic energy and energy dissipation are readily discernible, and (ii) in the absence
of relaxation (for χ = 0 ) the model’s kinetic energy is conserved through a large
ranger of scales/wave-numbers. Since both conditions are satisfied we are proceed to
develop a quantitative similarity theory of (1.1) , along the lines of the K-41 theory
of turbulence.

Since the time relaxation term is not scale invariant, it is critical to formulate
the problem in a way that is as simple, clear and physically correct as possible. The
first step is to find the model’s equivalent of the large scales’ Reynolds number of the
Navier-Stokes equations. Recall the Reynolds number for the Navier Stokes equations
is, in simplest terms, the ratio of nonlinearity to viscous terms action on the largest
scales:

for the NSE: Re ≃ |u · ∇u|
|ν△u| ≃ U 1

LU
ν 1
L2U = UL

ν .

The NSE’s Reynolds numbers with respect to the smallest scales is obtained by re-
placing the large scales velocity and length by their small scales equivalent as in
Resmall = usmallην . To proceed we must find the physically appropriate and mathe-
matically analogous quantity for the NSE equations + time relaxation. Again, this
derivation is under the assumption that viscous dissipation is negligible compared to
dissipation due to time relaxation.

Proceeding analogously, it is clear that the ratio of nonlinearity to dissipative
effects should be the analogous quantity, and it should correspond to

RN ≃ |u · ∇u|
|χ(u−HNu)| .

For example, if N = 0 , and keeping in mind that for the large scales ( δL)2 << 1 ,
then we have

R0 ≃ |u · ∇u|
|χ(u− u)| =

|u · ∇u|
|χδ2△u| =

= |u · ∇u|
|χδ2△(−δ2△+ 1)−1u| ≃

U 1
LU

χδ2 1
L2 ( δ2L2 + 1)−1U

= LU
χδ2 (

δ2
L2 + 1) ≃ LU

χδ2
In the general case, and using Lemma 2.3, we have

RN ≃ |u · ∇u|
|χ(u−HNu)| ≃

U2 1
L

χδ2N+2( 1
L2 )N+1( δ2L2 + 1)−(N+1)U

= L2N+1U
χδ2N+2 ( δ

2
L2 + 1)N+1 ≃ L2N+1U

χδ2N+2 .
This parameter definition can also be obtained by non-dimensionalization. For

example, for N = 0, denoting the non-dimensionalized quantities with an over-^, we
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non-dimensionalize in the usual manner and obtain the following system. The term
R0 multiplies is O(1) for the large scales-as it should be after non-dimensionalization.

ût + û · ∇̂û+ ∇̂p̂+ ν̂△̂û+R−10 ( û− û
( δL)2

) = f̂ , in Ω× (0, T ) .
D������ 4.1. The non-dimensionalized time relaxation parameter for the NSE

equations + time relaxation is
RN = L2N+1U

χδ2N+2 , for N = 0, 1, 2, · · ·. (4.1)

Next we must form the small scales parameters which measure the ratio of non-
linearity to dissipation at the smallest persistent scales. Let usmall denote a charac-
teristic velocity of the smallest persistent eddies and let ηmodel denote the length scaleassociated with them. Then, exactly as above we calculate

RN−small ≃ |usmall · ∇usmall|
|χ(usmall −HNusmall)|

≃ u2small 1
ηmodel

χδ2N+2( 1
η2
model

)N+1( δ2
η2
model

+ 1)−(N+1)usmall

= η2N+1
modelusmall
χδ2N+2 ( δ2

η2model
+ 1)N+1.

For the small scales it is no longer reasonable to suppose δ is small with respect to
ηmodel.D������ 4.2. Let ηmodel, usmall denote, respectively, a characteristic length
and velocity of the smallest persistent structures in the flow. The non-dimensionalized
parameter associated with the smallest persistent scales of the NSE equations + time
relaxation is

RN−small = η2N+1
modelusmall
χδ2N+2 ( δ2

η2model
+ 1)N+1 (4.2)

The estimate of the smallest resolved scales is based upon two principles:
RN−small = O(1) at length-scale ηmodel

and statistical equilibrium in the form energy input at large scales = dissipation at
small scales. As in the Navier-Stokes equations, the NSE equations + relaxation
term’s energy cascade is halted by dissipation caused by the time relaxation effects
grinding down eddies exponentially fast whenRN−small = O(1) at length-scale ηmodel.The largest eddies have energy which scales like O(U2) and associated time scale
τ = O(LU ) . The rate of energy transfer/energy input is thus O(U2

τ ) = O(U3
L ) exactly

as in the Navier-Stokes case. The dissipation at the smallest resolved scales, estimated
carefully, is
dissipation at small scales ≃ χ(u−HNu)u ≃ (by Lemma 2.3)

≃ χδ2N+2(△N+1A−(N+1)u)u ≃ (at the smallest scales)
≃ χδ2N+2( 1

η2model
)N+1(1 + δ2

η2model
)−(N+1)u2small.
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These two conditions thus give the pair of equations
η2N+1modelusmall
χδ2N+2 ( δ2

η2model
+ 1)N+1 ≃ 1 , and (4.3)

U3
L ≃ χδ2N+2( 1

η2model
)N+1(1 + δ2

η2model
)−(N+1)u2small .

The first equation gives an estimate of the characteristic velocity of the smallest eddy
in terms of the other parameters; solving for usmall gives

usmall ≃ χδ2N+2

η2N+1
model(1 + δ2

η2
model

)N+1 .

Inserting this value into the second equation gives the following equation determining
the model’s micro-scale

U3
L ≃ χδ2N+2( 1

η2model
)N+1(1 + δ2

η2model
)−(N+1)[ χδ2N+2

η2N+1model(1 + δ2
η2
model

)N+1 ]2. (4.4)

This is the fundamental equation determining the model’s micro-scale. There are
three cases: δ < ηmodel , δ > ηmodel and δ = ηmodel . This third and last case is theimportant one.

Case 1: Fully resolved. In this case δ < ηmodel so that 1 + δ2
η2
model

≃ 1.
In this case the equation for the micro-scale reduces to

U3
L ≃ χδ2N+2( 1

η2model
)N+1[χδ

2N+2

η2N+1
model

]2,

which implies

ηmodel ≃ (χ3L
U3 ) 1

6N+4 δ1+ 1
3N+2 . (4.5)

Case 2: Under resolved. In this case δ > ηmodel so that 1 + δ2
η2
model

≃ δ2
η2
model

.
In this case we have

U3
L ≃ χδ2N+2( 1

η2model
)N+1( δ2

η2model
)−(N+1)[ χδ2N+2

η2N+1model( δ2
η2
model

)N+1 ]2, (4.6)

which gives, after simplification,

ηmodel ≃ ( U3
χ3L ) 1

2 . (4.7)

At this point, we do not know how to interpret this estimate because it predicts that
in this case increasing χ decreases the model’s micro-scale. However, this case is not
the expected one in practical computations so perhaps the simple interpretation is
that solution scales should be resolved and odd results can occur otherwise.

Case 3: Perfect resolution. In this case δ = ηmodel so that 1 + δ2
η2
model

≃ 2.
11



In this case the interesting question is to determine the choice of relaxation pa-
rameter that enforces δ = ηmodel. Setting δ = ηmodel and solving for χ gives

χ ≃ U
L 1

3
2N+1δ− 2

3 . (4.8)

When perfectly resolved, the consistency error of the relaxation term (evaluated for
smooth flow fields) is, for this scaling of relaxation parameter,

|χ(u−GNu)| = O(χδ2N+2) = O(δ2N+ 4
3 ).

4.1. Interpreting the assumption that viscous dissipation is negligible.
Our assumption that viscous dissipation is negligible compared to dissipation caused
by time relaxation holds provided the Kolmogorov micro-scale for the Navier-Stokes
equations is smaller than the model’s micro-scale induced by the relaxation term. This
is because the K41 theory is asymptotic at infinite Reynolds number meaning that
viscous dissipation is considered negligible at scales above the micro-scale. Thus, one
tenant of K41 is that above the Kolmogorov micro-scale the NSE acts like the Euler
equations. At high enough Reynolds number and large enough relaxation parameter,
it is certainly plausible that relaxation dominates viscosity and that the latter is
negligible. The estimates derived in this section give some insight into how large
"large enough" is.

The first interpretation of "large enough" is that ηmodel >> ηKolmogorov . Ifηmodel >> ηKolmogorov then practical considerations suggest that we are most com-monly in the fully-resolved case or the perfectly resolved case. In the latter, ηmodel = δ
and the condition is that δ >> ηKolmogorov , i.e., computational resources are insuf-ficient for a DNS. In the fully-resolved case ηmodel > ηKolmogorov is equivalent to

(χ3L
U3 ) 1

6N+4 δ1+ 1
3N+2 > ηKolmogorov = Re− 3

4 L, which implies
χ > (Re− 3

4 L)2N+ 4
3
U
L 1

3
δ−2(N+1) (4.9)

In the typical case of δ >> ηKolmogorov and χ large this places almost no constraintupon the relaxation parameter.
The second interpretation is that at η = ηKolmogorov , Resmall >> RN−small ;

this also gives the following mild condition, satisfied by any reasonable scaling of χ,
including those derived herein,

χ > ν( δη )
−2Nδ−2(1 + ( δη )

2)N+1.

5. Nonlinear time relaxation. Nonlinear time relaxation mechanisms endeav-
ors to focus the dissipative effects further on smaller scales by localization in physical
as well as wave number space. Nonlinear relaxation, especially quadratic relaxation,
is also a more physical realization due to the connection to friction (which is quadratic
being proportional to the square of the speed and acting to oppose the direction of
motion). For this reason we focus on the quadratic case; the extension to a more
general nonlinearity is immediate. In the quadratic case, the following is the correct
frictional relaxation model: find a L-periodic (with zero mean) velocity and pressure

12



satisfying
u(x, 0) = u0(x), in Ω ,
∇ · u = 0, in Ω× (0, T ) ,

ut + u · ∇u+∇p+ ν△u+ χ 3
2 (I −HN ){|u−HNu|(u−HNu)} = f, in Ω× (0, T ) .

The dissipation in the above is given by
εmodel(u)(t) = 1

L3
∫
Ω
χ3

2 (I −HN ){|u−HNu|(u−HNu)} · udx

= 1
L3

∫
Ω
χ3

2 |u−HNu|(u−HNu) · (u−HNu)dx

= 1
L3

∫
Ω
(χ 1

2 |u−HNu|)3dx.
Note that εmodel ≥ 0 precisely because of the form chosen for the nonlinear term2 .

5.1. Parameter determination via < ε >=< εmodel >. For the special value
µ = 3 the derivation of Lilly [27] for the Smagorinsky model can be adapted to non-
linear time relaxation. This derivation is heuristic but gives another useful indication
of the scaling of the relaxation parameter with respect to the other model parameters.
Since this analysis is very well known in large eddy simulation, e.g., [30], [34], [5], we
give an abbreviated summary here. The idea of Lilly is to equate < ε >=< εmodel >
and evaluate the RHS by assuming (among other things) that the velocity field arises
from homogeneous isotropic turbulence. To use energy spectrum information a further
assumption is needed that the following two are of comparable orders of magnitude:

< ||u−HNu||3L3(Ω) >≃< ||u−HNu||2L2(Ω) > 3
2 .

Under these assumptions we calculate
< εmodel >= [

∫ kmax

kmin
(1− ĤN (k))2E(k)dk] 32 , where

< εmodel >= (4πχ) 3
2 [∑

k
(1− ĤN (k))2E(k)] 32 .

Using the formula for ĤN (k) and E(k) ≃ αε 2
3 k− 5

3 , α = Kolmogorov constant, we
get

< εmodel >= (4πχα) 3
2 < ε > [∑

k
( (δk)2
1 + (δk)2 )

2N+2k− 5
3 ] 32

The above infinite series is convergent and its value depends upon both δ and N .
We are interested in its asymptotics as δ → 0 for N fixed. Its sum can be majorized
by a few initial terms plus a convergent improper integral. With this majorization,
the infinite series is bounded as follows∑

k
( (δk)2
1 + (δk)2 )

2N+2k− 5
3 ≤ βNδ 2

3 + higher order terms in δ

≃ βNδ 2
3 .

2The choice of relaxation parameter (χ 3
2 instead of χ) is motivated by the resemblance of this

last expression with the one arising in the linear case.
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The value of βN can be estimated by the value of the integral

βN ≃
∫ ∞

0
( z2
1 + z2 )

2N+2z−5
3 dz

It can be shown that βN = O(1) for the first few values of N and is decreasing as N
increases3 . Some estimates of values of βN , obtained by numerical integration, are
given below.

N =0 1 2 3 4 5 6 7 8
βN ≃1.21 0.895 0.766 0.689 0.635 0.596 0.564 0.538 0.517

Setting < ε >=< εmodel > thus gives the following value of the relaxation parameter
(after simplification)

χ = [4παδ 2
3βN ]−1 .

These calculations reiterate the scaling of the linear case, obtained by a different
physical principle, in the nonlinear case

χ ∼ O(δ− 2
3 ). (5.1)

6. Conclusions and open problems. The Navier-Stokes equations + time
relaxation possesses an energy cascade that truncates the energy spectrum at a point
that depends upon the relaxation parameter, the global velocity and length scale and
the averaging radius δ . This time relaxation term does not dissipate appreciable
energy for the resolved scales of the flow for N large enough. The action of this
time relaxation term is to induce a micro-scale, analogous to the Kolmogorov micro-
scale in turbulence, and to trigger decay of eddies at the model’s micro-scale. The
extra dissipation at the cutoff length scale induced by time relaxation must reduce
the number of degrees of freedom needed (per time step) for a 3d turbulent flow
simulation. With proper scaling of χ this extra dissipation will also balance the
transfer of energy to those scales from the flow’s power input and thus prevent a
non-physical accumulation of energy around the cutoff length scale as well as force
the model’s micro-scale to coincide with the averaging radius δ.

With the formula derived herein, χ ≃ U
L 1

3
2N+1δ− 2

3 , the model’s micro-scale is δ
and the number of degrees of freedom (per time step) needed for a 3d turbulent flow
simulation with the model (1.1) is

Ndof ≃ (Lδ )
3, independent of Re !

This leads to a huge computational speedup using (1.1) over a DNS of

(N
NSEdof
Ndof

) 4
3 ≃ ( Re 9

4

L3δ−3 ) 4
3 = ( δL)4Re3 .

3The proof that βN is decreasing can be done by differentiation with respect to "N". It is also
our instinct as mathematicians to ask the limit of βN as N → ∞ . We have shown in fact that
βN → 0 as N → ∞ . However interesting this case N → ∞, the important case is N fixed.
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Finally, the time relaxation studied herein, since it is a lower order term, is ideal to
be used with many other models (e.g., the NSE-alpha model) to reduce further the
computational complexity of simulations with them by accelerating the truncation of
scales without altering a model’s accuracy on the resolved scales. The above value
of χ is derived for fully developed, turbulent flow. While it is smaller than other
theoretical values, it is also possible that other flow settings, such as transition, would
require other, still smaller, values- an important open problem.

There are many other open problems connected to finding rigorous proofs of this
description of the effects of time relaxation directly from the Navier-Stokes equations
and without assumptions of homogeneity or isotropy. There are also other possible
scale-dependent relaxation strategies which should be developed and compared to
find the best tool for a given flow problem. It is also important to study the time
relaxation operator used in a synthesis with other good models of turbulence. There
does not seem to be a clear strategy of developing a general theory of such mixed
models so the effect of such combinations must be investigated on a case by case
basis. Lastly, we have studied, as a first step, time relaxation as the continuum model
(1.1). Simulations are of course performed using a chosen discretization of (1.1). Thus
understanding the effects of these terms, when discretized, and performing a rigorous
numerical analysis of the combination is a very important next step.
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Appendix. A synopsis of K41 phenomenology.

Turbulent flows consist of three dimensional eddies of various sizes. In 1941, I.
Kolmogorov gave a remarkable, universal description of the eddies in turbulent flow
by combining a judicious mix of physical insight, conjecture, mathematical analysis
and dimensional analysis, e.g., Frisch [12], Pope [30]. In his description, the largest
eddies are deterministic in nature. Those below a critical size are dominated by vis-
cous forces, and die very quickly due to these forces. This critical length scale (the
Kolmogorov micro-scale) is η = O(Re−3/4)4 in 3d. From this estimate, it follows that

4The length scale of the smallest persistent eddy is traditionally denoted by η rather than l .
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direct numerical simulation of a 3d flow thus requires ∆x = ∆y = ∆z = O(Re−3/4)
giving O(Re+9/4) mesh points in space per time step, and thus is often not compu-
tationally economical or even feasible. This estimate is based upon existence of an
energy cascade in turbulent flow problems and Kolmogorov’s above estimate of the
micro-scale at the bottom of the energy cascade. Since this energy cascade theory is
extended herein (and in other papers as well) beyond the Navier-Stokes equations,
the answers to important questions about it must be reviewed.

Why do solutions of the Navier-Stokes equations exhibit an energy cascade? And,
should it be expected that solutions of (1.1) have their own energy cascade? The an-
swer to the first question has been understood since the work of L. F. Richardson and
I. Kolmogorov. We shall briefly review the answer (which is given also in Chapter 1 of
most books on turbulence) because its answer also contains the answer to the second
question (which we have developed in this report). The Navier-Stokes equations and
their solutions have the following well-known features;

• If ν = 0 the total kinetic energy of the flow is exactly conserved5 :
E(u)(t) = E(u)(0) +

∫ t

0
1
L3

∫
Ω
f · udxdt.

• The nonlinearity conserves energy globally (since ∫Ω u·∇u·udx = 0 ) but acts
to transfer energy to smaller scales by breaking down eddies into smaller ed-
dies ( for example, if u ≃ (U sin(πx1l ), 0, 0)tr has wave length l and frequency
π
l then u · ∇u ≃ U2π

2l (sin(πx1l/2 ), 0, 0)tr has shorter wave length l
2).• If ν > 0, them the viscous terms dissipate energy from the flow globally:

E(u)(t)+
∫ t

0
ε(u)(t′)dt′ = E(u)(0)+

∫ t

0
1
L3

∫
Ω
f ·udxdt, where ε(u)(t′) ≥ 0.

• For Re large the energy dissipation due to the viscous terms is negligible
except on very small scales of motion. For example, if u ≃ (U sin(πx1l ), 0, 0)tr
then

viscous term on this scale = −ν△u ≃ π2 νU
l2 (sin(πx1l ), 0, 0)tr, from which:

energy dissipation on this scale = ε(u) ≃ C
L3

νU2
l2 .

Thus the nonlinear term dominates and the viscous term is negligible if
U2
l >> νU

l2 , i.e., lUν >> 1.
• The forces driving the flow input energy persistently into the largest scales of
motion.

The picture of the energy cascade that results from these effects is thus: energy
is input into the largest scales of the flow. There is an intermediate range in which
nonlinearity drives this energy into smaller and smaller scales and conserves the global
energy because dissipation is negligible. Eventually, at small enough scales dissipation
is nonnegotiable and the energy in those smallest scales is driven to zero exponentially
fast. This is the physical reasoning behind Richardson’s famous description:

5For the physical reasoning in this appendix and sections 4 it is perhaps appropriate to suppose
that the energy equality holds and sidestep the deeper questions concerning weak vs. strong solutions
and energy equality vs. energy inequality, e.g., [13], [14].
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"Big whirls have little whirls
That feed on their velocity,
And little whirls have lesser whirls,
And so on to viscosity."

Inspired by this description, in 1941 I. Kolmogorov gave a quantitative and uni-
versal characterization of the energy cascade (often called the K-41 theory). The most
important components of the K-41 theory are the time (or ensemble) averaged energy
dissipation rate, ε, and the distribution of the flows averaged kinetic energy across
wave numbers, E(k). Given the velocity field of a particular flow, u(x, t) , the (time
averaged) energy dissipation rate of that flow is defined to be

< ε >:=< 1
L3

∫
Ω
ν|∇u(x, t)|2dx > . (A.1)

To present the K-41 theory’s conclusions, recall that the time-averaged kinetic
energy distribution in wave number space, Section 2, is denoted by E(k). The K-41
theory states that at high enough Reynolds numbers there is a range of wave numbers

0 < kmin := Uν−1 ≤ k ≤< ε > 1
4 ν− 3

4 =: kmax <∞, (A.2)
known as the inertial range, beyond which the kinetic energy in a turbulent flow is
negligible, and in this range

E(k) .= α < ε > 2
3 k− 5

3 , (A.3)
where α is the universal Kolmogorov constant whose value is generally believed to be
between 1.4 and 1.7 (for example, Wyngaard and Pao [43] found a value of α = 1.62
in studies of atmospheric turbulence), k is the wave number and ε is the particular
flow’s energy dissipation rate. In this formula, the energy dissipation rate < ε >
is the only parameter which differs from one flow to another. Indeed, in Pope [30],
figure 6.14 page 235 in [30], the power spectrums of 17 different turbulent flows taken
from Saddoughi and Veeravalli [33, SV94] (which also contains the references to the
particular experiments) are plotted on log-log plots. The slope of the linear region in
this plot has the universal value of −5

3 for all 17 turbulent flows, exactly corresponding
to the k− 5

3 law.
We review this argument of Kolmogorov, which is adapted in the next section. It

begins with a physical conjecture that:
C��!�"�#�� A.1. The time averaged kinetic energy only depends on the time

averaged energy dissipation rate ε and the wave number k .
Beginning with this, postulate a simple power law dependency of the form

E(k) ≃ C < ε >a kb. (A.4)
If this relation is to hold the units, denoted by [·] on the LHS must be the same as
the units on the RHS, [LHS] = [RHS]. The three quantities in the above have the
units

[k] = 1
length, [< ε >] = length2

time3 , [E(k)] = length3
time2 .
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Inserting these units into the above relation gives
length3
time2 = length2a

time3a
1

lengthb = length2a−btime−3a, giving

3a = 2, 2a− b = 3, or a = 2
3 , b = −5

3 .
Thus, Kolmogorov’s law follows

E(k) = α < ε > 2
3 k− 5

3 , over the inertial range 0 < k ≤ C(LRe− 3
4 )−1.

The above estimate η ∼ LRe− 3
4 for the Kolmogorov micro-scale is derived by

similar physical reasoning. Let the reference large scale velocity and length (which
are used in the definition of the Reynolds number) be denoted by U,L. At the scales
of the smallest persistent eddies (the bottom of the inertial range) we shall denote the
smallest scales of velocity and length by vsmall, η. We form two Reynolds numbers:

Re = UL
ν ,Resmall = vsmallη

ν .
The global Reynolds number measures the relative size of viscosity on the large scales
and when Re is large the effects of viscosity on the large scales are then negligible.
The smallest scales Reynolds number similarly measures the relative size of viscosity
on the smallest persistent scales. Since it is non-negligible we must have

Resmall ≃ 1, equivalently vsmallη
ν ≃ 1.

Next comes an assumption of statistical equilibrium: Energy Input at large scales =
Energy dissipation at smallest scales. The largest eddies have energy which scales
like O(U2) and associated time scale τ = O(LU ) . The rate of energy transfer/energy
input is thus O(U2

τ ) = O(U3
L )6 . The small scales energy dissipation from the viscous

terms scales like
εsmall ≃ ν|∇usmall|2 ≃ ν(vsmall

η )2.
Thus we have the second ingredient:

U3
L ≃ ν(vsmall

η )2.
Solving the first equation for vsmall gives vsmall ≃ ν

η . Inserting this value for the smallscales velocity into the second equation, solving for the length-scale η and rearranging
the result in terms of the global Reynolds number gives the following estimate for η
which determines the above estimate for the highest wave-number in the inertial range:

η = ηKolmogorov ≃ Re−3
4L.

6 It is known for many turbulent flows that, as predicted by K-41, ε scales like U3
L . This estimate

expresses statistical equilibrium in K-41 formalism, [12], [25], [30], [36], [37] and has been proven as an
upper bound directly from the Navier Stokes equations without any assumptions of homogeneity or
isotropy for turbulent flows in bounded domains driven by persistent shearing of a moving boundary,
Constantin and Doering [7] , and Wang [42], . The same estimate has been proven, Foias [10], Doering
and Foias [8], Childress, Kerswell and Gilbert [6] (others have also contributed to this important
theory as well), when the flow is driven by a persistent body force, the boundary conditions are
periodic and the forcing acts on the largest modes/ largest scales.
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This estimate for the size of the smallest persistent solution scales is the basis for the
estimates of O(Re 9

4 ) mesh-points in space leading to complexity estimates of O(Re3)
for DNS of turbulent flows.
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